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Abstract— We present a bilevel, contact-implicit trajectory
optimization (TO) formulation that searches for robot trajecto-
ries with learned soft contact models. On the lower-level, contact
forces are solved via a quadratic program (QP) with the maxi-
mum dissipation principle (MDP), based on which the dynamics
constraints are formulated in the upper-level TO problem that
uses direct transcription. Our method uses a contact model
for granular media that is learned from physical experiments,
but is general to any contact model that is stick-slip, convex,
and smooth. We employ a primal interior-point method with
a pre-specified duality gap to solve the lower-level problem,
which provides robust gradient information to the upper-level
problem. We evaluate our method by optimizing locomotion
trajectories of a quadruped robot on various granular terrains
offline, and show that we can obtain long-horizon walking gaits
of high qualities.

I. INTRODUCTION

Legged robot locomotion planners typically assume rigid
contacts with Coulomb friction, but non-rigid terrains with
different frictional characteristics are pervasive in the world,
e.g. sand, mud, carpet, etc. To tackle these challenging
soft terrains, existing techniques rely on feedback control
while assuming rigid contacts [1], or modeling the terrain
as a mass-spring damper [2, 3] or as vistoplastic [4] in the
controller. While inaccurate contact models result in sub-
optimal motions, our proposed trajectory optimization (TO)
framework adopts realistic soft contact models learned from
physical experiments on granular terrains.

This research is motivated by our prior work [5] that built
a semi-empirical simulator for robots traversing granular
terrains. Based on the stick-slip behavior of a rigid body
contacting granular media, a granular contact is first modeled
as all possible contact wrenches between a robot ankle and
the granular terrain, which is a convex volume learned from
data. Then during online simulation, contact forces are solved
by a quadratic program (QP) with linear constraints during
each simulation frame, based on the maximum dissipation
principle (MDP) [6].

In this work, we incorporate this simulator into motion
planning with granular contacts, where we take advantage
of the accurate learned contact models to obtain high-
quality trajectories. In particular, we employ TO, which
is a powerful framework for generating locally optimal
trajectories for robotic systems (for details on TO, refer to
the survey by Betts [7]). Compared to sampling-based motion
planning methods [8], which can generate globally optimal
trajectories, TO methods scale better to high-dimensional
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robotic systems. Our contribution in this work is two-fold.
First, we propose a bilevel TO framework that is capable
of automatically searching for locomotion trajectories of
legged robots traversing granular terrains. Second, we build
a differentiable rigid body simulator with learned granular
contact models. Each simulation frame consists of solving
a QP, whose gradients are robustly obtained by employing
a primal interior-point method with a pre-specified duality
gap.

On the upper-level of the TO framework, we adopt a direct
transcription formulation that is also contact-implicit. The
dynamics constraints of the TO are obtained through the
lower-level optimization, which is our differentiable physics
simulator. We are then able to supply analytic gradients of the
dynamics constraints to the optimization solver for efficiency
and accuracy.

In this work, we focus on locomotion planning on gran-
ular terrains for a Robosimian quadruped developed by
JPL, although it could be applied to general contact-rich
motion planning, with a contact model that is convex and
twice-differentiable. This turns out to be a very challenging
problem, ill-posed and with potentially many local minima.
However, we show that our method can automatically gen-
erate locomotion trajectories of long horizons offline on a
variety of terrain shapes, where competitive methods such as
reinforcement learning and standard trajectory optimization
fail to generate trajectories on a simple flat granular terrain.

II. RELATED WORK

While TO has been applied successfully to smooth dy-
namical systems, planning contact-rich trajectories, e.g. lo-
comotion planning for legged robots, is still a challenging
problem due to the underlying non-smooth, hybrid dynam-
ical system. Successes have been achieved by adopting a
pre-specified contact sequence [9, 10], however, manually
designing contact sequences requires significant engineering
and could be daunting for complex systems.

Contact-implicit TO: Recently, contact-implicit TO
methods [11, 12, 13, 14, 15] are proposed to solve this
problem by folding the contact dynamics into the formula-
tion of the mathematical program, which avoids the need
of a contact sequence input. Our method falls into this
category as well, and we review the closely related works
here. Posa et al. [11] propose a direct transcription method
that searches locally optimal trajectories for robots with
inelastic impacts and rigid contacts with Coulomb friction.
Based on the formulation of multi-contact dynamics as a
Linear Complementarity Problem (LCP) [16] for dynamics
simulation, the proposed algorithm introduces contact forces
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Fig. 1. An optimized trajectory on a flat terrain with sand (tiles are 1m in length). The centroid of the robot torso over the 9s trajectory is traced in red,
and the front right foot position in green. The contact wrench space of the front right foot is in purple. [Best viewed in color.]

as additional optimization variables and incorporates com-
plementarity constraints (CC) in the TO formulation. The
resulting algorithm solves a mathematical program with CC
and is demonstrated to generate locally optimized trajectories
for high-dimensional systems. One drawback of this method
is the high non-linearity introduced by the CC, which leads to
poor convergence performance. To avoid having CC, Carius
et al. [14] propose a bilevel TO framework, where the lower-
level solves for the robot dynamics with rigid contacts using
a time-stepping scheme of rigid body dynamics forward
simulation, whose gradients can be obtained analytically. The
upper-level TO uses iLQR [17], a shooting type method,
and is shown to be able to compute a trajectory with 300
time steps for a 3 degree-of-freedom (DoF) robot in 2.18
ms. The idea of our method is closely related to this work.
Instead of folding forward simulation with rigid contacts into
system dynamics constraints, we use granular contacts. In
addition, we use a direct TO method which is numerically
advantageous for long trajectories. Another method that aims
to remove CC is proposed by Landry et al. [13]. They also
put forward a bilevel TO framework, where the upper-level
is a direct transcription method and the lower-level solves
a QP to obtain the tangential contact forces at the rigid
contacts. Our method is most closely related to this work.
While Landry et al. [13] only include part of the system
dynamics in the lower-level optimization (only tangential
contact forces), our method solves all the system dynamics
implicitly in the lower-level. Our method considers a general
contact model and we also adopt a different strategy to
choose a gradient for the lower-level problem when it is not
uniquely defined. Landry et al. [13] use a first-order method
to solve the QP where the gradient of the solution could
be non-unique and they resort to choosing a subgradient
with least-squares, which does not have a strong theoretical
foundation. However, we use an interior point method with
a pre-specified duality gap where the gradient is always
uniquely defined.

Bilevel Optimization: Our method falls into the general
category of bilevel optimization [18], which is an optimiza-
tion problem (upper-level) whose constraints involve other
optimization problems (lower-level). In addition to the two
works that are mentioned above, bilevel optimization has
been applied to TO in a variety of works [19, 20]. Farshidian
et al. [19] propose a bilevel optimization framework to plan
motions for legged robots, where the upper-level optimizes

time allocation for a fixed contact sequence, and the lower-
level computes optimal continuous control inputs. Tang et
al. [20] propose a method to generate time-optimal trajec-
tories for smooth dynamical systems, which optimizes the
trajectory shape on the upper-level and the time allocation
on the lower-level. While these two methods decompose
a challenging optimization via bilevel optimization, our
method encodes system dynamics naturally into lower-level
optimization.

Locomotion on Soft Terrain: Instead of planning mo-
tions on soft terrains, previous methods design controllers
compensating for soft contacts. Kang et al. [2] model a
soft terrain with compressive springs and stablize the CoM
motion of a humanoid by tilting its ankle according to the
attitude angle of the robot. Vasilopoulos et al. [4] calculate
controls of a 1-DoF leg to maintain a desired height while
jumping on a soft terrain based on a viscoplastic model.
Fahmi et al. [3] model a soft terrain as a compressive
spring, run a online controller to estimate the compliance,
and incorporate the compliance explicitly into a whole-body-
control framework for a quadruped. Compared to building
controllers, our method plans trajectories with long horizons,
allowing for more diverse and optimal motion plans.

III. METHOD

A. Problem statement

We search for a discretized trajectory for a legged robot,
represented by the states x[⋅] ∈ Rnx and controls u[⋅] ∈ Rnu .,
where nx and nu denote the dimensions of state and control.
Let a robot state be the concatenation of robot configuration
and velocity, i.e. x = [q, q̇] and x[k] = [qk, q̇k], the dynamics
of the robot is represented by the Newton-Euler equation:

M(q)q̈ +H(q, q̇) = u + JT
c f, (1)

where u is the joint torque, M is the generalized mass matrix,
H is the centrifugal and Coriolis forces, Jc is the contact
jacobian, and f is contact wrench. Using an Euler integration
scheme, the robot dynamics along the discretized trajectory
x[⋅] and u[⋅] is:
q̇k+1 =M(qk)−1(uk + JT

c f −H(qk, q̇k)) ⋅ dt + q̇k,∀k
qk+1 = q̇k ⋅ dt + qk,∀k,

(2)

where dt is the time step. Formulating this equation requires
solving the contact wrench f , which is computed by a
differentiable semi-empirical simulator for robots traversing
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granular terrains. Details of the simulator are described in
the next section.

B. Robot dynamics with granular contacts

1) Contact model: Inspired by the stick-slip behavior
of granular media, we consider contact models that limit
the possible frictional contact wrenches between a rigid
robot foot and a granular substrate with a convex wrench
space, which can be learned from data obtained in physical
experiments [5]. If the external wrench can be resisted
by a wrench in the wrench space, the contact sticks, and
otherwise it slips. The shape of the wrench space changes
as the penetration depth and orientation of the rigid body
change, shown in Fig. 1, and here we have a learned twice-
differentiable contact model w.r.t. the robot configuration:

f ∈W ⇐⇒ f ∈
⎧⎪⎪⎨⎪⎪⎩

V

∑
i�1
wivi(q)

RRRRRRRRRRR
wi ≥ 0 ∧

V

∑
i�1
wi ≤ 1

⎫⎪⎪⎬⎪⎪⎭
. (3)

This is a vertex representation of the convex wrench space,
where V is the total number of vertices and vi(q) is a learned
vertex, which is dependent on the robot’s configuration and
the terrain shape.

2) Contact detection: We only consider contacts between
the robot feet and the granular substrate. At a single con-
tact, each learned contact wrench vertex vi(q) is a smooth
function of penetration depth and orientation, i.e.:

vi(q) = vi(−zT p(q),R(q)),
where p(q) is the bottom center point of the robot foot that is
having contact, z is the outward normal at the surface point
that is closest to p, and R(q) is the 3 × 3 local-to-global
rotation matrix. In our prior work, we take the assumption
that the environment is a flat terrain paved using granular
materials. Here, we propose a heuristic method to generalize
this model to an arbitrary terrain shape represented using
a watertight mesh. Since the terrain is a watertight mesh,
we can compute a singled distance value from p(q) to the
surface of the mesh, which is denoted as d(p(q)). We can
also estimate the generalized outward normal direction as:

z(q) = ∇d(p(q)).
We further denote R̄(z̄) as the minimal rotation matrix that
transforms [0,0,1]T to z̄. The generalized vertex of the
contact wrench space is then defined as:

v̄i(q) = R̄vi(d(p(q)), R̄TR(q)),

f ∈W ⇐⇒ f ∈
⎧⎪⎪⎨⎪⎪⎩

V

∑
i�1
wiv̄i(q)

RRRRRRRRRRR
wi ≥ 0 ∧

V

∑
i�1
wi ≤ 1

⎫⎪⎪⎬⎪⎪⎭
.

(4)

Intuitively, this is a generalized pullback operator from the
arbitrary shape terrain to the flat ground. Note that to form
a well-defined wrench space that can be used in a bilevel
optimization, v̄i must be a twice-differentiable function of q.
However, the generalized penetration depth computed using
an exact triangular mesh is generally non-differentiable. To
remedy this case, we first compute a signed distance field for
the mesh on a uniform grid and then use cubic interpolation
to approximate d.

3) Contact wrench solving: The robot dynamics is solved
based on the MDP [6], which states that the frictional contact
wrenches would maximize the energy dissipation of the
system. Therefore, a lower-level optimization problem is
given by:

argmin
f

1

2
∥M(qk)−1(uk + JT

c f −H(qk, q̇k)) ⋅ dt + q̇k∥2M(qk)

s.t. f ∈W,

(5)

where ∥⋅∥2M is the quadratic form. Here we slightly abuse
the notation and let f and W denote a concatenation of all
the contacts instead of a single contact. The program is a
QP which can be solved efficiently in polynomial time, and
the gradients of this program w.r.t. all problem parameters
can be obtained by sensitivity analysis, whose details we
refer readers to [21]. One concern in sensitivity analysis
is the loss of linear independence constraint qualification
(LICQ), which gives non-unique gradients. The constraints
in Eqn. 5 are learned from data and we cannot guarantee
LICQ, and in practice we do observe the loss of LICQ in
some cases. We handle this by using a primal, interior point
method with a pre-specified duality gap to solve the QP,
where the solution contact wrenches as a function of problem
parameters, i.e. f(qk, q̇k, uk), is always single-valued and
twice-differentiable.

If we assume that the QP in Eqn. 5 is strictly convex,
then function f is single-valued. However, using this single-
valued function f in a bilevel optimization is inappropriate
because it is known that f is only C0-continuous [22],
while large-scale constraint optimizers usually require twice-
differentiable constraints [23]. To ensure both strict convexity
and twice-differentiability, we propose to use a primal,
interior-point solver with a finite duality gap. In this way,
the QP is transformed into the following unconstrained
optimization:

argmin
f

1

2
∥M(qk)−1(uk + JT

c f −H(qk, q̇k)) ⋅ dt + q̇k∥2M(qk)

− µ ⋅ dt
V

∑
i�1

log(wi) − µ ⋅ log(1 −
V

∑
i�1
wi),

(6)

where µ is the finite log-barrier coefficient. Since the log-
barrier function always contributes a full-rank Hessian ma-
trix, the above problem is strictly convex and the function f
is single-valued. Further, by the implicit function theorem,
the function f is twice-differentiable as long as the problem
data, i.e. M,H,J, vi, are sufficiently smooth. In practice,
we solve the unconstrained optimization using Newton’s
method with the initial guess from last iteration of upper-
level optimization.

As a result, for a twice-differentiable learned contact
model, the contact wrenches are a smooth function of
problem parameters, whose gradient information can be
robustly obtained via sensitivity analysis, which we denote
as ∇f(qk, q̇k, uk). In addition, since we already calculate
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the gradients of all problem data during sensitivity analysis.
Specifically, denoting Eqn. 2 as g(qk, q̇k, uk), its gradient
∇g(qk, q̇k, uk) is obtained via the chain-rule.

C. Bilevel trajectory optimization

Our method uses a direct transcription TO method, where
the TO is formulated as a non-linear program (NLP) that
locally optimizes a physically correct discrete trajectory.
Overall, our method solves the following NLP:

argmin
x[⋅],u[⋅],c[⋅]

J(x[⋅],u[⋅],c[⋅])

s.t. x[0] ∈ Xinit,x[N] ∈ Xgoal,

x[⋅] ∈ X ,u[⋅] ∈ U ,
Eqn. 2 holds,
h(x[⋅],u[⋅],c[⋅]) = 0,

(7)

where c[⋅] ∈ Rnc represents additional problem-specific
variables of dimension nc. The feasible regions for the initial
and final states are specified in Xinit and Xgoal. The feasible
states and controls along the trajectory are defined in X and
U . N is the total number of grids in the discrete trajectory.
J is some performance measure we aim to optimize. Other
additional equality constraints are encoded in h(⋅).

This problem is bilevel because the dynamics constraints
Eqn. 2 entail solving a set of lower-level optimization
problems, i.e. Eqn. 5, which were introduced in the previous
section. In practice, solving such a challenging TO problem
using a NLP solver requires analytical gradients of the ob-
jective function and the constraints. In particular, the analytic
gradients of the dynamics constraints ∇g(qk, q̇k, uk), given
by our differentiable simulator, are supplied to the NLP
solver, along with the gradients of other constraints and the
objective function in Eqn. 7.

D. Spline constraints

To improve the smoothness of the optimized locomotion
gaits, we present a scheme to use splines to regularize the end
effector movement and avoid “stutter step“. Intuitively, we
expect an optimized robot gait where each robot foot traces a
smooth path. In particular, for each robot foot, we represent
its position and orientation with a cubic spline whose control
points are c[⋅] ∈ Rn, where n is 3 in 2D and 6 in 3D. We
use Tj(k) ∶ [0,N − 1] → Rn, to denote the interpolated
position and angle of robot foot j along the cubic spline
specified by the control points, where N is the total number
of grid points in the discrete robot trajectory. In addition, let
FKj(x) ∶ Rnx → Rn denote the forward kinematics of the
robot that gives the position and angle of the j-th robot foot,
the spline constraints are formulated as:

FKj(x[k]) = Tj(k),∀j, k. (8)
In practice, we might only use partial dimensions of a spline,
i.e. we may choose to use only the position for the spline
control points, without the angle.

E. Cost function

We propose a cost function that includes 3 different
components, where the third component is optional: Jtotal =

Jpath + Jperiodic + Jspline. Jpath is the quadratic path cost
defined as Jpath = ∑k∥x[k]−xref∥2Q+∥u[k]∥2R, where xref
is the reference robot state that is manually selected, and
Q,R are diagonal weight matrices. We further regularize the
trajectory by introducing a periodic cost that encourages the
robot limbs to move periodically: Jperiodic = ∑N−P

k�0 cp(F ⋅
qk−F ⋅qk+P )2, where cp is a weight constant, F is a selection
matrix that selects only the limbs of the robot, and P is the
desired period.

Instead of having the splines be hard constraints, we find
in practice that soft constraints might work better for certain
terrains. Therefore, we propose an alternative formulation
where we use a spline cost to replace the spline constraints.
Letting h(⋅) denote the constraints in Eqn. 8, the spline cost
is Jspline = cs∥h(⋅)∥2, where cs is a weight constant.

F. Full formulation

A final consideration is that for contact models learned
from data, it is prudent to limit the input, i.e. depth and ori-
entation, to stay close to the range of collected data, because
learned models have questionable extrapolation capability.
We encode this constraint, along with the robot joint position
and velocity limits, in X . In addition, we have the joint
torque limits u[⋅] ∈ U .

The complete formulation is the following:
argmin

x[⋅],u[⋅],c[⋅]
Jtotal

s.t. x[0] ∈ Xinit,x[N] ∈ Xgoal,

x[⋅] ∈ X ,u[⋅] ∈ U ,
Eqn. 2 holds,
Eqn. 8 holds. (if not using spline cost)

(9)

Note that c[⋅] represents the cubic spline control points for
all limbs.

IV. RESULTS

A. Robot and contact model

We use a Robosimian quadruped robot model for all the
experiments, shown in Fig. 1. We consider a 2D model where
only sagittal movement of Robosimian traversing soft terrain
presents. The robot has a total of 4 limbs and 12 revolute
joints, making nx = 30 (position and velocity of the joints
and torso) and nu = 12.

The contact model we consider here is the learned granular
contact model for sand from our previous work [5]. We
use radial basis function (RBF) interpolation as the learning
model for data gathered from physical experiments.

B. Desired gait and performance metric

Our experiment attempts to generate a walking gait that
follows a desired torso forward velocity on different terrains.
Since the cost of an optimized solution does not directly
reflect the quality of a gait, we define 2 metrics to quanti-
tatively evaluate it. The first metric measures how well the
desired torso velocity is tracked: Mv = ∑N

i�0∣xv,i − x̂v ∣/N ,
where xv,i is the torso forward velocity at grid point i, and
x̂v is the desired torso forward velocity. The second metric
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(a) (b) (c)

(d)

Fig. 2. (a): optimized gait on the 10○ slope. (b): non-optimized gait on the 10○ slope. (c): optimized gait on the -10○ slope. (d): optimized gait on the
wavy terrain. The torso centroid is traced in red, while the front right foot position in green. [Best viewed in color.]

Mc measures the cost of transport, which is ∑N
k�0∑nu

i�0∣(F ⋅
q̇k)[i] ⋅ u[k][i]∣/(smg), where (F ⋅ q̇k)[i] and u[k][i] are
the i-th joint velocity and joint control at grid k, s is the total
translation of the torso, and mg is the weight of the robot.
Note that for humans, the cost of transport of walking on
sand has been reported to be 1.6–2.5 times that of walking
on hard ground [24].

C. Parameter tuning

The optimization problem tackled here is very challenging,
and we found in practice that the convergence behavior
and trajectory quality are sensitive to parameters. Here is
a summary of all the parameters in our formulation:
● Total number of grid points N , time step dt.
● The quadratic state cost matrix Q is a diagonal matrix,

whose only nonzero diagonal entries are those for the
torso forward velocity, torso orientation, and torso height,
denoted by Qv,Qo,Qh.

● The nonzero entries of xref include the desired forward
velocity, torso height, and torso orientation, denoted by
x̂v, x̂o, x̂h.

● The quadratic control cost matrix R, which is diagonal.
● The period P and the periodic cost weight cp.
● Spline dimensions, and the number of control points Nc

for each limb. Whether to use spline constraints or cost. If
using constraint, constraint scaling for spline constraints.
If using spline cost, weight cs.

● µ, the log-barrier coefficient in lower-level optimization.
In our experiments, we manually pick the parameters

N,dt, x̄v, x̄o, x̄h, P,Nc, µ, which can be chosen based on
the desired properties of the robot gait. For the rest of
the parameters, we run a grid search, and pick the set of
parameters that generate the gait of highest quality.

D. Results on a horizontal terrain

In this experiment, the goal is to generate gaits for the Ro-
bosimian on a flat horizontal sandy terrain while maintaining
a desired forward torso velocity. The parameters (some of
which are from grid search) are: N = 181, dt = 0.05, Qv =

100.0,Qo = 0.01,Qh = 0.01, xv = 0.4, xo = 0.0, xh = 0.75,
R = 10−5I , P = 60, cp = 0.1, µ = 10e−3, all in standard units.
Instead of using both the positions and orientations for the
splines, we use only the orientations as constraints without
constraint scaling, and Nc = 30.

We use the Knitro NLP solver [23] for solving the TO. For
all the experiments, we set the feasibility and optimality tol-
erence to 10−3. All experiments are conducted on a standard
PC with a Xeon 20-core CPU. During experiments, we found
that the optimized results are sensitive to the initial guess. We
first experimented with a trivial initialization, where the robot
stands still. The optimized trajectory shows the robot sliding
and dragging its feet to move forward, without ever lifting
them off the terrain. To minimize manual tuning, we end up
using a simple trotting in place initialization, where the robot
walks in place for 3 steps. In particular, we manually design
the trajectory, track the trajectory with a PID controller at
500 Hz, down-sample the states and average the controls to
obtain the trajectory with dt = 0.05 s.

The cost and constraint violation over the iterations are
shown in Fig. 3, while the optimized trajectory is shown
in Fig. 1. The performance metrics are Mv = 0.0023 and
Mc = 14.6, showing that the desired velocity is tracked very
well. Visually, the robot has a smooth trajectory with little
jerkiness. This particular gait took 0.499 hr to compute.

1) Baseline comparison: Next, we compare with 2 base-
lines: standard trajectory optimization (iLQR) and reinforce-
ment learning (RL). We use the open source implementation
of the iLQR algorithm [17] at https://github.com/
anassinator/ilqr. For RL, we tested open source
implementation of the PPO [25] and TRPO [26] algorithms at
https://github.com/openai/baselines. Default
algorithm settings were used.

In iLQR, we use Jpath directly as the cost function, where
the weights and parameters are the same as our method.
Tests indicated that iLQR needs a feasible initial guess and is
numerically sensitive to the time step and planning horizon.
Any combination that would give a 9 s horizon would cause
the algorithm to fail completely, and could only achieve
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TABLE I
OPTIMIZED TRAJECTORY PERFORMANCE ON DIFFERENT TERRAINS (Mv : VELOCITY ERROR, Mc : COST OF TRANSPORT, NO: NON-OPTIMIZED)

Terrain 0○ 2.5○ 5○ 7.5○ 10○ 12.5○ 15○ 17.5○ 20○ -2.5○ -5○ -7.5○ -10○ -12.5○ -15○ -17.5○ -20○ wavy 10○ NO

Mv 0.0010 0.0023 0.013 0.0012 0.013 0.0031 0.036 0.0054 0.29 0.0056 0.0013 0.014 0.0044 0.046 0.040 0.010 0.22
Mc 14.6 12.5 14.8 14.0 17.6 24.5 25.4 27.6 97.3 7.58 12.6 21.5 29.2 48.1 73.2 fail fail 26.73 35.2
Time (hr) 0.50 2.52 0.25 0.48 0.57 1.03 0.55 1.17 1.1 0.90 0.58 0.36 1.1 3.9 8.2 0.51 NA

0 50 100 150 200 250 300 350 400
#Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Maximum Constraint Violation
Objective Function Value

0

20

40

60

80

100

120

140

Fig. 3. The cost and maximum constraint violation over the iterations for
optimizing a trajectory on the flat horizon terrain.

feasibility with a short horizon. Our tuning showed the best
results at dt = 0.005 s and 0.25 s horizon. We then apply
iLQR in an online fashion, where the trajectory is re-planned
after executing each optimized control. Because of the short
horizon, iLQR is only able to obtain trajectories that shift
the body slightly forward before tipping over.

For fairness of comparison, we implement a tuned PD
joint controller and have joint position command be the
action space, instead of torque for RL. The observation space
includes the robot state, ankle poses, and the PD controller
torques. The reward function is: −10∥xv −0.4∥2−0.2∥xo∥2−
0.001∥a∥2 − 10−5∥u∥2 + 1.0, where a is a vector of the 4
feet angles and u is the control. In addition, we terminate an
episode when xh < 0.25 ∨ xh > 1.5 ∨ ∣xo∣ > 1.1 ∨ ∥a∥1 > 1.2,
and give a termination reward of −10. The time step is 0.005 s
and we run the training for 1 M time steps. Overall, results
did not demonstrate stable gaits. The roll-out trajectories
from the trained controllers caused the robot to fall quickly,
and terminated in less than 50 time steps.

These comparisons demonstrate that locomotion on gran-
ular terrain is a challenging problem for standard trajectory
optimization and RL due to its long time horizons and sen-
sitivity to initial guesses and action choices. In comparison,
our method is numerically favorable for long horizons and is
fairly tolerant to infeasible initial guess for the NLP solver.
However, due to its long computation time it is only suitable
for offline gait generation.

E. Results on different terrain shapes

Next, we consider different terrain shapes. We test planar
terrains of different slopes, ranging from -20○ (downward
slope) to 20○ (upward slope), with 2.5○ apart, and a wavy
terrain. Our experiments find that steeper terrains are more
challenging for the NLP solver. However, since we already
have an optimized trajectory on a 0○ terrain, we can obtain

a high-quality initialization for similar terrains with minimal
effort. Using this idea, starting from a 0○ terrain, we track its
optimized trajectory on the next slightly steeper terrain and
use the tracked trajectory as initialization for this terrain. For
the wavy terrain, we use the gait generated on 0○ terrain as
the reference trajectory during tracking. The parameters used
here are the same as the 0○ terrain, except for the optimizer’s
parameters that are tuned using grid search. The performance
metrics of the optimized trajectories are summarized in Table
I. We also include the performance of a trajectory on the
10○ terrain where we simply track the gait optimized on
the 0○ terrain (denoted as 10○ NO). Selected optimized and
non-optimized gaits are also displayed in Fig. 2. Animated
results on all terrains are available in the supplement video.
Our method is able to find high-quality trajectories with small
velocity error, except for the 20○, -17.5○ and -20○ terrains (for
the -20○ terrain, we use the optimized gait on the -15○ terrain
as reference during tracking), where the NLP solver fail to
converge on the later two terrains. This is because these 3
steep terrains are the most challenging among all. We also
observe that the steeper the terrain is, the more energy it
consumes to cover the same distance, which matches our
intuition. It is interesting that going downhill is actually
more energy-consuming for the robot. In addition, looking
at the non-optimized trajectory in Fig. 2.b, the robot ankles
would slip, as shown by the foot position trace, which causes
the robot to have much larger Mv and Mc. Meanwhile,
the optimized gait in Fig. 2.a avoids slippage by optimally
orienting the feet when touching the ground.

V. CONCLUSION

In conclusion, we propose a bilevel TO framework for
generating locally optimized trajectories with learned contact
models. We demonstrate through our experiments that we
can generate high-quality trajectories offline with a small
amount of parameter tuning effort. In addition, by leverag-
ing optimized results on easier tasks, we are able to find
trajectories on challenging terrains. One drawback is that we
generate the trajectories offline for a specific contact model,
while there exist a wide variety of contacts in the real world,
and any variation in the composition of a granular terrain
would lead to a different contact model. In future work, we
could first generate a database of trajectories offline with
different wrench spaces and learn a model that generates
trajectories given a contact model. During online execution,
we could first identify the contact model from gathering a
small amount of data, query a trajectory from the learned
model, and execute it. This follows the general idea of
trajectory learning and meta-learning. In addition, we would
like to test the trajectories on a physical robot.
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