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ABSTRACT

A major challenge in causal inference from observational data is the absence of
perfect interventions, making it difficult to distinguish causal features from spu-
rious ones. We propose an innovative approach, Feature Matching Intervention
(FMI), which uses a matching procedure to mimic perfect interventions. We
define causal latent graphs, extending structural causal models to latent feature
space, providing a framework that connects FMI with causal graph learning. Our
feature matching procedure emulates perfect interventions within these causal
latent graphs. Theoretical results demonstrate that FMI exhibits strong out-of-
distribution (OOD) generalizability. Experiments further highlight FMI’s superior
performance in effectively identifying causal features solely from observational
data.

1 INTRODUCTION

Causal representation learning (Scholkopf et al., 2021) aims to uncover causal features from obser-
vations of high-dimensional data, and is emerging as a prominent field at the intersection of deep
learning and causal inference. Unlike traditional causal effect of a specific treatment variable, causal
representation learning does not treat any observed variable as a potential causal parent. Instead, it
focuses on transforming the observational space into a low-dimensional space to identify causal
parents.

However, despite its promise, recent years have witnessed notable shortcomings in effectively cap-
turing genuine causal features, particularly evident in tasks such as image classification. Numerous
experiments over the past decade (Geirhos et al.l [2020; [Pezeshki et al.l 2021; Beery et al., 2018;
Nagarajan et al.| |2020) have highlighted the failure of models to discern essential features, resulting
in a phenomenon where models optimized on training data exhibit catastrophic performance when
tested on unseen environments. This failure stems from the reliance of models on spurious features
within the data, such as background color in images, rather than the genuine features essential for ac-
curate classification, such as the inherent properties of objects depicted in the images. Consequently,
models are susceptible to errors, particularly when faced with adversarial examples.

The phenomenon described above is commonly known as out-of-distribution (OOD), with efforts
to mitigate it termed as out-of-distribution generalization or domain generalization. To tackle this
challenge, numerous approaches have been proposed. Among the most significant concepts is the
invariance principle from causality (Peters et al., 2016} [Pearl| |1995), which forms the basis of in-
variant risk minimization (IRM) (Arjovsky et al.l 2019). IRM was the first to operationalize this
principle, aiming to identify invariant features through data from multiple environments. The in-
variance principle dictates the optimal predictor based on invariant features, ensuring minimal risk
across any given environment (Rojas-Carulla et al.| | 2018;|Koyama & Yamaguchi,2020; Ahuja et al.,
2020). Additionally, several works have extended IRM by imposing extra constraints on the invari-
ance principle (e.g., [Krueger et al.[(2021)); /Ahuja et al.| (2021); Chevalley et al.| (2022)).

Despite the promise of IRM and the invariance principle under certain assumptions, subsequent
research has revealed their limitations (Rosenfeld et al.,[2020). Moreover, invariance does not nec-
essarily imply causality universally. All state-of-the-art methods struggle to distinguish between
spurious and true features without a perfect intervention. In other words, the absence of perfect
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interventions is the primary challenge for all current approaches, as it makes it difficult to reliably
distinguish between spurious and true features.

In this paper, we propose a very simple alternative approach to learning causal representations
through covariate matching. This approach attempts to emulate perfect interventions, which is
known to be a difficult problem. Our method eliminates the need for multiple environmental datasets
and does not rely on the use of an invariance algorithm. We make only the verifiable assumption
that spurious features are present in the training data, a scenario commonly encountered in practice.
While covariate matching is a traditional method in the statistics literature, it has been less explored
in causal representation learning. Leveraging the causal latent graph introduced later in the paper,
our matching algorithm offers an explicit interpretation of emulating perfect intervention on the
spurious feature. We demonstrate the effectiveness of our approach through unit tests (Aubin et al.,
2021)) and experiments on image datasets. Our main contributions can be summarized as follows:

Contributions. (1) We propose an innovative and straightforward algorithm — FMI based on co-
variate matching in the presence of spurious feature in the training data. By emulating perfect
intervention on the spurious feature, we are able to learn underlying causal feature (2) We propose
an approach to test the assumption of spurious feature being learned in the training environment. (3)
We validate our matching algorithm using a causal latent graph. (4) Our experiments on unit tests,
Colored MNIST, and WaterBirds datasets demonstrate the superior performance of our algorithm
compared to state-of-the-art methods.

2 PRELIMINARIES

Let {(z,y;)}?, be our training data where x; € X and y; € ). In the theory part of this paper, we
consider the case X = R% and ) = {0, 1}. Similar results still hold for other spaces (e.g., when )
contains more than 2 values). Let £(-, ) : X x ) — R be our loss function (e.g., cross-entropy or 0-1
loss), and R(-) : M — R be our risk function, where M is the model space. Suppose each (z;, y;)
follows the distribution Py(X,Y"). The major problem in domain generalization is that the test data
distribution P,(X,Y) differs from the training distribution P,(X,Y"), making it challenging and
crucial to identify causal features. To better describe the shift of the distribution, we can consider
a set £, namely the environment set. The joint distribution of (X,Y") can be indexed by this set
E ie., fore; # ey € €, PY(X,Y) # P°2(X,Y). In a similar fashion, we denote the risk of a
model f € M on a certain environment e by R¢(f). Note that in practice, we rarely observe all
environments, or even multiple environments. In this paper, the training data corresponds to only
one environment in &£.

To tackle this problem of domain generalization, we aim to learn causal feature from the training
data. To this end, we follow common techniques from the traditional causal inference literature
(Peters et al, 2017; |Pearl, [2009) to model the data generating process of our model using a causal
latent graph:

Definition 1 (Causal latent graph). For any environment e € &, the causal latent graph of a given
dataset is defined as a directed acyclic graph G¢ = (V¢, E°) with V¢ = (Zg, Zgye, Y ©) such that

pa(Y®) = {Zg} and Zg,, ¢ an(Y®), where pa(-),an(-) represent the parent set and the ancestor
set of a node, respectively.

Remark on Definition 1. By Reichenbach’s common cause principle (Reichenbach & Morrison,
1956), as long as Zg,, )L Y in environment e, then either (1) Zg,, € an(Y®), or (2) Y© € an(Z,,),
or (3) there is a common ancestor of Zg,, and Y°. Note that since we assume there is no hidden
variable in the latent graph and Zg,, ¢ an(Y©), we rule out all DAGs except for the two cases shown
in[Figure 1] In fact, these two types of causal graphs correspond to the two cases specified in|[Ahujal
et al| (2021) (See Appendix [C), namely fully informative invariant features (FIIF) and partially

informative invariant features (PIIF). We express them in a unified framework in our setting.

The observed covariate X © is a mapping from latent space through a mixing function g, i.e., X°® =

9(Zgus Ziwe)- To learn the feature from a training environment, denoted as ep, the state-of-the-art
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(a) FIIF (Ahuja et al.; 2021) (b) PIIF (Ahuja et al.}[2021}; |Arjovsky et al., [2019)

Figure 1: Possible latent DAGs: (a) corresponds to the FIIF case and (b) corresponds to the PIIF
case.
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Figure 2: The workflow of FMI: Given training data, we can conduct a hypothesis test based on
another validation environment. If we get a rejection, we apply FMI to learn the true feature. Other-
wise, we can use the feature learned by ERM.

model would solve the following optimization problem so that it is able to find the Bayes classifer:

f = argmin R (f). (1)
fem

However, due to the shift in distribution, f° does not necessarily minimize the risk on a new en-
vironment (testing environment). In such scenarios, it is essential to train a model that performs
well across all possible environments. Equivalently, the ideal model we are seeking should solve the
following minimax problem:

f* = argminmax R°(f). (2)
fem e€€

Ideally, interventions are required for causal representation learning. Even if we aim to decide
directly in the high-dimensional space whether X is the cause of Y, intervention, especially perfect
intervention is needed. We will show in that we can emulate perfect intervention with
training data, thereby to achieve causal representation learning.

In this paper, we consider the model space M = {f o ¢|¢: X — H, f : H — Y}, where H is the
space of feature. It is worth noting that for a given model f o ¢ and any invertible transformation 1),
fop = (fop~1)o(1po¢). Thus, identifiability becomes an issue here. However, since our goal is
to learn f o ¢, this concern is not relevant. Henceforth, we assume ¢ and f are two neural networks
with fixed architecture. We assume ¢ is parameterized by 04 and f is parameterized by 6. We refer
to ¢(+;64) as the featurizer and f(-;6) as the classifier. For simplicity, we denote the entire model
parameterized by (6, 6,) as fo¢(6,0,). Our goal is to find a model that solves problem[(2)|under
certain conditions and the corresponding feature ¢ will then define a causal representation feature.
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3 RELATED WORK

We summarize below some relevant works from previous literature.

Invariance-based Domain Generalization Numerous works in the literature have studied do-
main generalization, a problem closely related to causal inference. Many of these works aim to
discover the invariant predictor, as demonstrated by studies such as |Arjovsky et al.| (2019); |Ahuja
et al.[(2021)); |Chevalley et al.|(2022)); 'Yuan et al.| (2023)). The concept of invariance originates from
causal inference as a necessary condition of causal variables (Peters et al., 2016; Biihlmann, [2020).
The fundamental idea behind these methods is the utilization of data from multiple environments
(domains), either through deliberate design or collection. For instance, |Arjovsky et al.| (2019) ne-
cessitates the environments to be in linear general position. However, these approaches exhibit a
voracious appetite for environments, and the invariance principle reduces the objective function to
that of the standard empirical risk minimization (ERM) (Vapnik,|1991)) when only one environment
is available.

Causal Representation Learning |Ahuja et al.| (2023) provided identifiability results of latent
causal factors using interventional data. Buchholz et al.| (2024) demonstrated identifiability results
under the assumption of a linear latent graphical model. Additionally, Jiang & Aragam| (2024)
established conditions under which latent causal graphs are nonparametrically identifiable and can
be reconstructed from unknown interventions in the latent space. These results motivated us to
emulate intervention with observational data and therefore achieve causal representation learning.

The most relevant works to ours are MatchDG (Mahajan et al., 2021) and |Chevalley et al.| (2022).
In MatchDG, the authors employ a matching function to pair corresponding objects across domains
and seek features with zero distance on these matched objects while minimizing the loss on the
training data. However, there are at least two distinctions between our approach and MatchDG: (1)
We do not require data from multiple domains; (2) Our approach matches training data based on
their classification results of the spurious features extracted by the subnetwork, eliminating the need
for any matching function.

In |Chevalley et al.| (2022)), the authors randomly partition each minibatch into two groups and pe-
nalize the distance between the latent features learned from each group. In contrast, our method
does not necessitate random separation; Instead, it emulates perfect intervention, a guarantee not
provided in the previous work.

4  SINGLE TRAINING ENVIRONMENT: FEATURE MATCHING INTERVENTION
(FMI)

In this section, we introduce a novel algorithm called Feature Matching Intervention (FMI) for causal
representation learning that solves problem[(2)] The idea behind FMI is that, since ERM builds the
model with the spurious feature, why not exploit this additional information and use the result of
ERM to control this spurious feature through a matching procedure? Matching has been a well-
known method in the causal inference literature for estimating treatment effects from observational
data (Stuart, 2010). Leveraging this concept, we aim to develop a method for matching the spurious
feature in the training environment and then training the model after this matching process. With
this matching procedure, we can emulate perfect intervention on the spurious feature. Example 1
demostrates this matching idea.

Example 1. Consider the task of classifying images containing the digits 0 and 1. Suppose a large
proportion of images with the digit O happen to be colored red, and a large proportion of images
with the digit 1 happen to be colored green. Then the Bayes classifier in the training environment
would be based on color. visualizes the classification result in the training environment
as well as the matching process. Clearly, after the matching process, the label and the color be-
come uncorrelated. Therefore, the matching corresponds to an intervention on the spurious feature
(color).
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To formally define our matching approach, suppose we have training data (X, i) ~ P (X,Y).
Let (05, 07°) be a solution to problem‘and (67,67) to problem That is,

(05°,05) = argmin R (f o ¢(0y,0)), 3)
(gfved))
and
(0%,07) = argmin max R(f o ¢(0f,04)). )
(05.05) ©€€

We can similarly define (0;, 9;) to be the Bayes classifier in environment e, i.e.,

(9?3 0;) = arg min Re(f © ¢(9f7 9¢))
05,64)

For simplicity, assume there are 2 classes (the formula for a general case with more classes can be
similarly derived). Now, we can define a new environment e,,, by subsampling from the training
data. More specifically, let f be the ERM solution in the training data, i.e., the predicted label. We
subsample from the training data so that the spurious feature is balanced in the matching environ-
ment e,,. Our matched samples satisfy the following:

Pem(Y =0|f =0) = -
Por(Y =0|f =1) =

N — N —
N — N~

Remark on Equation (5). This is a sample version of conditional independence. To make Y inde-
pendent of the learned feature in the training environment, ideally we need access to the population
version of f . Nevertheless, in this new environment e,,, Y and f are independent because it holds
Pem(Y = 0) = Pem(Y = 1) = P~(Y = i|f = j),i,5 € {1,2}. Also, this distribution of the
subsample is equivalent to an interventional distribution.

Proposed approach FMI solves the following optimization problem:

(M 0N = arg mi)n R (f o p(0f,04)), (EMI)
05,00

where the risk is with respect to the distribution P~ we defined before.

The rationale behind this formulation is that if we know the ERM classifier will converge to the
Bayes classifier in the training environment, then the classification result of the learned ERM clas-
sifier should be based purely on the spurious feature. Therefore, by subsampling from the training
data as in Formula [(5)] the true label and the predicted label (which depends only on the spurious
feature) in the subsample are independent. This property is also satisfied when there is perfect inter-
vention (See Appendix D)) on the spurious feature. In fact, this matching approach can be considered
a special kind of intervention and by doing so, we manage to emulate perfect intervention on the
spurious feature.

Before matching After matching
Pred = 1 Y=0 Y=0Y=1| Pred=1
Predz0 |V 1 m Pred = 0
Figure 3: Illustration of the matching approach: The Bayes classifier classifies green images as 1
and red images as 0. Although it achieves a risk smaller than that of the true feature (digit shape),
it performs poorly in other environments. FMI subsamples according to another distribution from

the original training environment and therefore balances the spurious feature (color). In this new
distribution, we should expect the Bayes classifier to be based on the true feature.
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Algorithm 1 Feature Matching Intervention (FMI)

—_

Let n > 0 be the number of samples drawn at each step;
Let f1, f2 be two Neural Networks;
begin
Draw a batch b; of n samples;
if train f then
update the parameters of f; using this b;; {Use a variable to control whether train or not}
end if
subsample b, from b; following Formula|(5)
update the parameters of f5 using bs;
return loss;
end

TRYRIAIUNRLR

—_

Previous research has emphasized the crucial role of perfect intervention in identifying latent causal
representations (Ahuja et al., 2023} [Buchholz et al.}, 2024} Jiang & Aragam|[2024). In[Buchholz et al.
(2024), the authors demonstrated the significant impact of the number of perfect interventions on
latent variables to the identifiability of latent causal graphs. The proposed matching approach aims
to emulate a form of perfect intervention on the latent spurious variable, overcoming a limitation
of environment-based algorithms, as they often impose strong assumptions on the variability of the

environment (e.g., linear general position in|Arjovsky et al.|(2019)).

The algorithm of FMI is shown in In practice, we can train two neural networks at the
same time (one of them learns the spurious feature and will be used in[(3)) , as we show in[Appendix]|
[A] With the same number of steps, training them together can make FMI perform better.

5 THEORETICAL GUARANTEE OF FMI

5.1 MAIN RESULT

It turns out that, under appropriate assumptions we are able to learn ¢(X; 9;) = Zre through [((FMI)

In many scenarios, the feature learned in the training environment cannot perform equally well on
new environments. In those cases, it is highly plausible that the feature learned by solving [(T)]is the
spurious feature. Below, we introduce an assumption that accounts for this issue, which essentially
serves as an identifiability statement.

Assumption 1. Given training environment eg, the model f°° learned by solving is based on
Zspu

Although this is a requirement on the identifiability of the spurious feature, we will show in
that with some extra information about the environment, we are able to test whether this
assumption holds or not.

Below, we make two assumptions about the structural equation in the latent causal graph and the
environment set:

Assumption 2. In eache € €,

1
Y ¢ Wwypne * Zine) ® N¢,  N¢ ~ Bernoulli(g), g < 3 Ne 1 Zg.,
X« S(Z,, 2

spu? true) )

where Wywe With ||Wye || = 1 is the labelling hyperplane, Zg,, € R™, Zg, € R°, N€ is binary noise
with identical distribution across environments, ® is the XOR operator, S is invertible.

Now, Given the definition of the latent causal graph and structural equations, we assume that any
environment e € £ comes from a specific set of intervention in the graph:

Assumption 3. The environment set £ contains all interventions on Zsgy, Zye. For each environ-
ment e € &, the distribution P¢(X,Y") corresponds to the interventional distribution of G° (See

Appendix[D).
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Remark on Assumption 2. It is worth noting that neither Zp, nor Zy is known to us initially.
Additionally, since the solutions to and are not unique, we fix the classifier f to be the
indicator function (considering 2-class classification) and put everything else in the feature from
now on. Also, we only consider linear classifiers in our theory.

Remark on Assumption 3. This assumption is similar to the one made in |/Ahuja et al.| (2021).
However, our assumption encompasses both the fully informative invariant features (FIIF) and par-
tially informative invariant features (PIIF) cases, making it more general. Another crucial aspect of
this assumption is that Z,, in the causal latent graph is well-defined: it is the feature learned in the
training environment. This information proves valuable as it provides an opportunity to ’correct’
the mistake the classifier made in the training environment, thereby enhancing generalizability. Fur-
thermore, we assume that the causal latent graph we defined contains all information about the joint
distribution of the observations X through an invertible link function S.

We will show in Appendix [B] that, any classifier that achieves the optimal risk in a specific environ-
ment has the same risk and the same decision boundary. However, as readers will notice, it is the
dependence of the spurious feature and the true feature in that environment that allows the spurious
feature to achieve the optimal risk.

The last assumption we make is about the support of the features.

Assumption 4. The support of Zie and Zs,, both contain some circle centered at zero and do not
change across environments.

Remark on Assumption 4. This assumption is a regularity condition for the features. Note that
the zero-centering constraint can be relaxed, as it only requires an affine transformation.

Now, we are ready for our main result.

Theorem 1. Under Assumptions[I{d] any solution to[(FMI)|achieves the minimax risk as in Formula
Therefore, FMI offers OOD generalization.

Proof sketch. First, we prove that in any environment, the optimal solution in that environment
achieves an error of ¢ — the noise level — and also has the same decision boundary as I(wye - Zirue )-
Then we show that the optimal solution to only uses Z, in the decision boundary.

serves as the theoretical guarantee of FMI — it means the solution to [(FMI)| solves the
OOD generalization problem with respect to the entire set of environments.

5.2 ASSEMENT OF THE FEATURE LEARNED IN THE TRAINING ENVIRONMENT

In[Assumption 1] we assumed that the feature learned in the training environment is spurious. This
assumption might not hold in practice: the feature learned in the training environment could be
the true feature, or even the mixture of true feature and spurious feature. In order to verify our
assumption, we propose a method that facilitates a validation environment. Below, we give the
definition of a validation environment:

Definition 2 (Validation environment for feature). An environment e € & is a validation environment
Sor feature Z if the conditional distribution Y €| Z¢ is different from Y €| Z*0.

Clearly, if we can find this validation environment, then we have enough reason to reject the feature
learned in the training environment. In fact, under Assumptions [T] and [3] we have the following
result:

Proposition 1. Under|Assumption 1| and [Assumption 3| there exist validation environments for the
feature learned in the training environment.

One line proof. Let e € £ defined by an intervention on Zg,, such that V¢ 1L Zg, ., then e is a
validation environment for Zgy,.

In fact, there exist infinite number of environments in this case: since Y ¢ is discrete, we can find an

intervention e € & such that the distribution of Y¢|Zg,, differs from Y*°[Zg3, arbitrarily.
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In practice, given the access to an environment other than ey, we can validate whether there is
evidence to believe the assumptions we made. Specifically, with Y being discrete, we can apply
a goodness-of-fit test on Y¢|¢(X¢; 03°) and Y°[¢(X; 67°). To conduct this test, we only need
access to a sample from the new environment e. The details of the goodness-of-fit test can be
found in If the test result is significant, holds, and FMI is the better
choice for learning causal features. However, if the test result is insignificant, it suggests that the
features identified by an existing algorithm, such as ERM, are the causal ones, and there is no need
to implement FMI for improvement.

In[Section 6] we conduct experiments to show the effectiveness of this test.

6 EXPERIMENTS

The details of all our experiments can be found in Appendix [Al

6.1 SYNTHETIC EXPERIMENT

We first conduct an experiment on a synthetic dataset. This dataset is from Example 2/2S of unit
tests proposed in |Aubin et al.| (2021) and originated from the famous cow-camel example (Beery
et al., 2018). The data generating process corresponds to Figure We compare FMI with four
approaches: ERM (Vapnikl [1991), ANDMask (Parascandolo et al., 2020), IGA (Koyama & Yam-
aguchi} 2020), and IRM (Arjovsky et al.,|2019).

Conclusion Although all methods except FMI and ERM benefit from multiple environments, the
classification errors on the testing data for all algorithms except FMI are approximately 50% as
shown in indicating that none of them successfully captures the causal feature from the
training data. Howver, FMI can capture the true feature from the training data and therefore achieves
Zero testing error.

Table 1: Performance Comparison of Various Methods on Example 2/2S. The lowest number in each
row, representing lowest classification error on testing data, is boldfaced. The oracle is obtained by
running ERM on testing data.

Method ANDMask ERM FMI IGA IRM Oracle

Example2.EO  0.43 £0.00 039=£0.01 0.00+0.00 043+0.01 043+0.01 0.00=+0.00
Example2. E1 049 £0.01 045+0.02 0.00+0.00 050+0.01 0.50=£0.01 0.00=+0.00
Example2. E2 041 £0.01 0.38+£0.02 0.00+0.00 041+0.01 041=£0.01 0.00=+0.00

Average 044 +£0.01 041=£0.02 0.00+0.00 045=£0.01 045+0.01 0.00=£0.00

Example2s.EO 0.43 £0.01 043 +£0.01 0.00+0.00 043+0.01 043+£0.01 0.00=+0.00
Example2s.E1 0.49 £0.02 049+£0.02 0.00£0.00 049+0.02 0.49=£0.02 0.00=+0.00
Example2s.E2 0.43 £0.01 043 £0.01 0.00+0.00 043+0.01 043+0.01 0.00=+0.00

Average 045+0.01 045+£0.01 0.00+0.00 045=£0.01 045+0.01 0.00=£0.00

6.2 IMAGE CLASSIFICATION: COLORED MNIST

For each digit in the MNIST dataset, define Y = 1 if the digit is between 0-4 and Y = 0 if it is
between 5-9. The label of each image is flipped with a probability 0.25 to create the final label. There
are three environments in the dataset, i.e., (0.1, 0.2, 0.9), where the number indicates the probability
of a digit with label 1 being red. We conducted this experiment using DOMAINBED (Gulrajani
& Lopez-Paz, 2020), which provides a standardized and fair testbed for domain generalization.
As highlighted in (Gulrajani & Lopez-Paz| (2020), it is essential for an algorithm to specify the
model selection method. In we present the comparative results on the Colored MNIST
dataset using the leave-one-domain-out cross-validation model selection method. Each column in
the table (0.1, 0.2, 0.9) represents a testing environment (other environments were used as training
environments). The workflow of FMI is shown in [Figure 4]
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Conclusion From([Table 2] we can clearly see that FMI surpasses all other methods by a significant
margin. Notably, FMI increases the accuracy by more than 20% when the testing environment is
0.9. This is precisely the scenario where the training environments (0.1 and 0.2) contain a strong
signal of the spurious feature (color) that is different from testing environment. By matching and
emulating perfect intervention on this spurious feature, FMI successfully learns the true feature (digit
shape). However, when the training data lacks a strong signal for the spurious feature, FMI shows
no advantage over other methods. In such cases, our assumptions are violated. Consequently, with
the same number of iterations, FMI might lose some samples in the subsampling process, potentially
leading to underperformance. We believe this issue can be resolved with more iterations.

Matching and
subsampling

Figure 4: The illustration of FMI workflow with Colored MNIST. Before matching, most digits are
green between 0-4 and red between 5-9. After matching, the correlation between color (spurious
feature) and digit class (target) disappears.

Table 2: Experimental results on the Colored MNIST dataset in terms of test accuracy for all al-
gorithms. The algorithm that achieves the highest average accuracy and the highest accuracy in
environment 0.9 is boldfaced, while the second highest is underlined. The model selection method
used is leave-one-domain-out.

Algorithm 0.1 0.2 0.9 Avg

ERM (Vapnik, |1991) 499+6.1 533+£22 100£00 37.7+23
IRM (Arjovsky et al., 2019) 470+3.8 53.0+£28 100+£0.1 367+1.6
IB-IRM (Ahuja et al., [2021) 499+02 514+£11 100£0.1 371+£04
IGA (Koyama & Yamaguchi, 2020) 452+45 500+£06 31656 423+24
ANDMask (Parascandolo et al.,[2020) 53.7+22 57.0+32 10.1+£0.1 403+1.1
CORAL (Sun & Saenko| [2016) 539+45 496+0.1 100+£0.0 378+1.5
DANN (Ganin et al.,[2016) 56.1+40 519+20 101+£01 394419
CDANN (Li et al.,|2018b)) 46.5+63 493+£0.7 102+0.1 354+20
GroupDRO (Sagawa et al.,|2019) 455+£6.0 51.8+15 99+£0.1 357 £ 2.1
MMD (Li et al.,[2018a) 50.1+£02 499+02 99+£0.1 36.6+0.1
VREX (Krueger et al.,[2021) 56.8+33 519+21 99+0.1 396+12
CausIRL (MMD) (Chevalley et al.L 2022) 47.1 +£3.0 53.2+2.8 10.1+0.1 368+14
FMI (OURS) 27.0+£57 475+£24 579+47 441+22

Test the feature learned in training environment We apply the method in on Colored
MNIST dataset to test if the feature learned in the training environment is spurious. More specif-
ically, we sampled n = 200 images from environment e = 0.9, while the training environment is
given by eg = 0.1. The p-values for testing Y¢| f ¢ = 0 in the training process are shown in
[l The red dashed line represents significance level 0.05. As we can see from the figure, in both
environments, the feature extracted by FMI passes this goodness-of-fit test with p-value above 0.05.
The feature learned in the training environment, although performs well in the training environment,
has extremely small p-value (close to 0) in the new environment (Figure 5(b)). We conclude that in
this example, the feature learned in the training environment is spurious, while FMI extracts the true
feature.

6.3 IMAGE CLASSIFICATION: WATERBIRDS

We conducted another experiment on a more complicated image dataset — WaterBirds (Sagawa et al.|
2019), which contains images of birds cut and pasted on different backgrounds. The target of the
dataset is to predict whether the bird in the image is water bird or land bird. In this experiment,
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Test the features learned in training environment (ERM) and FMI - Environment 0

Test the features learned in training environment (ERM) and FMI - Environment 1

o 7\\\\\\.\\\\\\\A\\‘ 'T1-7 rr — rr-144
S i
s R e
Training Steps. Training Steps

(a) Plot of p-values in the training environment (b) Plot of p-values in the validation environment
Figure 5: Plots of p-values for testing Y| fe = 0 in the training environment (g = 0.1) and
validation environment (¢ = 0.9) of Colored MNIST given different features. In each plot, the
feature learned in the training environment is colored orange and the feature learned by FMI is
colored blue. The y-axis in each plot represents the p-value of the goodness-of-fit test. The dashed
red lines represent significance level 0.05. The error bars are obtained by repeating the experiment
ten times.

we created two environments based on the background of the images and we used those with water
background as training environment and test the accuracy on images with land background.

The results, averaged over five runs, are presented in[Table 3] Although ERM, trained on the training
environment, may capture some of the true features, FMI consistently outperforms other methods,
making it a compelling option in practice.

Table 3: Test accuracy of various algorithms on WaterBirds. The testing environment consists of
images with land backgrounds. The model selection method is training domain validation set. The
error bars are calculated by repeating the experiment 5 times.

Algorithm

Test Accuracy (%)

ERM
IRM

773 £23
73.5

IB-IRM

IGA
ANDMask
CORAL
DANN
CDANN
GroupDRO
MMD

VREx
CausIRL (CORAL)
FMI (OURS)

CoLWLWUIULRARRNWLL

7.
7.
1.
3.
2.
1.
1.
2.
2.
2.
1.
1.

\l\]\]\]\]\]\]\]\]\]d
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7 DISCUSSION AND FUTURE WORK

The success of FMI leads us to contemplate the root cause of poor generalizability in domain gen-
eralization. From our observations, the generalizability issue primarily arises from the bias of the
training data itself. While modern Al models can easily fit any complex functional relationship, they
can be 'misled’ by the training data. Whenever there is a strong spurious signal in the training data,
the model tends to rely on it. However, the intervention suggested by FMI can help the model elim-
inate the influence of such spurious features. Under these circumstances, FMI manifests superior
performance and there may be no need to collect data from multiple domains. It is worth noting that
the generalizability issues induced by covariate shift are not due to spurious features. Therefore, it
is doubtful whether FMI can be applied to cases where covariate shift is present. As future work, we
will explore scenarios where there are multiple spurious features, which could be challenging since
emulating perfect interventions on multiple spurious features is not straightforward.

10
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APPENDIX

A EXPERIMENTS DETAILS

In this work, we mainly relied on two packages — DOMAINBED (Gulrajani & Lopez-Paz, |2020) and
linear unit tests (Aubin et al.l [2021)).

A.1 DATASETS

We first describe the datasets (Example 2/2S) introduced in |Aubin et al.| (2021)). This example is
motivated by Beery et al.|(2018)) and |/Arjovsky et al.|(2019)).

Example 2/2S. Let

-2
Heow ™~ 1dim7 Heamel = —fbcows  Vanimal = 1077,
Mgrass ™~ ]-d,puy Msand = —Mgrass;  Vbackground = 1.
To construct the datasets D, foreverye € £and¢ = 1,...,n., sample:

ji ~ Categorical (p®s®, (1 — p©)s®, p*(1 — 5%), (1 = p°)(1 — s°));
28~ (Ndinv(o’ 1071) + Mcow) * Vanimal if ]f S {1, 2},
" (Ndmv (07 10_1) + /J«camcl) * Vanimal  1f jle S {3, 4},

e Na (0, 1071 + flgrass) - Vbackgromna  if j§ € {1,4}, v 1 if 14 25y > 0,
Sput (Nd\l)u (07 1071) + Msand) * Ubackground if jle S {2, 3}7 v 0 else;

e e e .
Z; — (zinv,i7 Zspu,i)v

(6)
where the environment foreground/background probabilities are p*=F0 = 0.95, p*=F1 = 0.97,
pe:E2 = 0.99 and the cow/camel probabilities are se=Fo = (.3, s=F1 = 0.5, s*=F2 = (.7. For
Neny > 3 and j € [3 : neyy — 1], the extra environment variables are respectively drawn according
to p¢=%i ~ Unif(0.9,1) and s=Fi ~ Unif(0.3,0.7). The scrabling matrix S is set to identity in
Example 2 and a random unitary matrix is selected to rotate the latents in Example 2S.

This Example corresponds to[Figure 1(a)

Next, we introduce the Colored MNIST dataset we used.

Colored MNIST We follow the construction in DOMAINBED (Gulrajani & Lopez-Paz, [2020),
where the task is binary classification — identify whether the digit is less than 5 (not including 5) or
more than 5. There are three environments: two training environments containing 25,000 images
each and one test environment containing 10,000 images. Define Y = 1 if the digit is between 0-4
and Y = 0 if it is between 5-9. The label of each image is flipped with probability 0.25 as final
label. The spurious feature Z¢,, in each environment is obtained by flipping the final label with
certain probability corresponding to each environment. For the three environments, we index them
by e = 0.1,0.2,0.9, each representing the probability of flipping final label to obtain the spurious
feature. Finally, if Zf.pu = 1, we color the digit green, otherwise, we color it red. For this dataset,
spurious feature is color and the true feature is the shape of the digit. To visualize this dataset, we
transform it to shape (3, 28, 28).

WaterBirds We downloaded WaterBirds dataset following the instructions given by |Sagawa et al.
(2019) and then divide the dataset set into two environments according to the background type.
After importing the dataset, we transform all the images to shape (3, 224, 224). Seefor an
example of images from the dataset.

A.2 TRAINING PROCEDURE

Example 2/2S We followed the same setting as in |Aubin et al.| (2021)). We use random hyperpa-
rameter search and use 2 hyperparameter queries and average over 10 data seeds. For Example 2/2S,
we generated 1000 samples each time and run each algorithm for 10000 iterations (each iteration use
the full data and the two networks of FMI are trained together). The evaluation of the performance
on Example 2/28 are reported using the classification errors and standard deviations.

13
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& i .
(a) Background: water (b) Background: land

Figure 6: Example images from WaterBirds. The environments in this dataset are water and land
backgrounds. The labels are waterbird and landbird. We use images with water backgrounds as the
training environment.

Colored MNIST As in DOMAINBED (Gulrajani & Lopez-Paz, 2020), the network is separated
into featurizer and classifier. For the featurizer, we used the default CNN architecture from DoO-
MAINBED. There are four convolutional layers with feature map dimensions 64, 128, 128, 128.
Each convolutional layer is followed by a ReLU activation and group normalization layer. The final
output layer of the CNN is an average pooling layer with output size 128. For the classifier, we used
an MLP architecture with three fully connected layers, with output sizes 64, 32, 2. The prediction
of the neural network were based on the last layer of the classifier. The hyperparameter search is in
accordance with DOMAINBED. In our experiment, we ran each algorithm 10 times with default hy-
perparameter. For FMI, we chose batch size to be 64, and conduct subsampling each time we collect
at least 32 inputs in each predicted group. For the evaluation, we reported accuracy and standard
deviations (averaged over ten trials except IGA, which is averaged over eight trials). We tried all
model selection methods given in DOMAINBED. More experimental results can be found in Section
A3.

WaterBirds As in DOMAINBED (Gulrajani & Lopez-Paz, 2020), the network is separated into
featurizer and classifier. For the featurizer, we used the default ResNet18 architecture from DoO-
MAINBED. For the classifier, we used an MLP architecture with three fully connected layers, with
output sizes 64, 32, 2. The prediction of the neural network were based on the last layer of the
classifier. The hyperparameter search is in accordance with DOMAINBED. In our experiment, we
ran each algorithm 5 times with default hyperparameter. For FMI, we chose batch size to be 64,
and conduct subsampling each time we collect at least 32 inputs in each predicted group. For the
evaluation, we reported accuracy and standard deviations. The model selection method is training
domain validation set.

A.3 SUPPLEMENTARY EXPERIMENTS

Colored MNIST 1In(Table 4] and[Table 3| we provide the supplementary experiments for Colored
MNIST with a different model selection methods , i.e., training-domain validation set and test-
domain validation set (oracle), which are specified in|Gulrajani & Lopez-Paz[(2020).

Learn two features together v.s. Learn spurious feature first. We provide the supplementary
experiments to study the difference of training strategies. Previously in all our experiments, we train
two neural networks together for 5000 steps. One of them is used to learn the spurious feature, which
is called the subnetwork. Then, we subsample from the training data based on the subnetwork and
mand then use this subsample to train the other network (the main network). However, we can also
train the subnetwork for enough steps and then train the other network while fixing the subnetwork.
We tried three strategies in this experiment:

1. Train subnetwork and the main network together for 5,000 steps. In each step, we update
both subnetwork and main network and use the classification result of the subnetwork to
conduct subsampling;

2. Train subnetwork for 4,000 steps to warm up. Then we use the classification result of the
subnetwork to conduct subsampling and train the main network for 4,000 steps;

3. Train subnetwork for 5,000 steps to warm up. Then we use the classification result of the
subnetwork to conduct subsampling and train the main network for 5,000 steps;

14
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Table 4: Experimental results on Colored MNIST in terms of test accuracy for all algorithms. The
algorithm that achieves the highest average accuracy and the highest accuracy in environment 0.9
is boldfaced, while the second highest is underlined. The model selection method used is training-
domain validation set.

Algorithm 0.1 0.2 0.9 Avg

ERM 71.6+02 729+0.1 103+£0.1 51.6+0.1
IRM 652+12 63.7+0.8 100+£0.1 463+£0.5
IB-IRM 650+14 687+08 100+£01 479=£05
IGA 451+£45 503+£06 224+£5.6 392+£2.1
ANDMask 713+02 732+0.1 102+£0.1 51.6+0.1
CORAL 71601 730+0.1 101+£01 51.6=+0.1
DANN 71.9+0.1 73.0+0.1 102+0.1 51.7+0.1
CDANN 72.7+02 732+02 102+£0.1 521+0.1
GroupDRO 729+£0.1 730+02 101+£01 52.0=£0.1
MMD 512+04 524+10 100+£0.1 379+04
VREXx 728+02 733+0.1 100+£0.1 52.0+£0.0

CausIRL (MMD) 482 +3.1 526+09 100£0.1 37.0+1.2
FMI (OURS) 223+29 513+x1.6 28.0+£6.0 338+23

Table 5: Experimental results on Colored MNIST in terms of test accuracy for all algorithms. The
algorithm that achieves the highest average accuracy and the highest accuracy in environment 0.9 is
boldfaced, while the second highest is underlined. The model selection method used is test-domain
validation set.

Algorithm 0.1 0.2 0.9 Avg

ERM 634+03 679+02 241+£08 51.8+£0.3
IRM 584+18 576+12 498+02 553+09
IB-IRM 529+20 562+25 331456 474+23
IGA 50.1+0.1 503+02 504+0.1 502=+0.1
ANDMask 69.0+05 726+02 184+£10 533+04
CORAL 63.6+0.8 675+05 253+1.0 521+03
DANN 703+04 719+03 18.0+£1.5 534+£05
CDANN 723+£04 727+02 160£09 53.7£03
GroupDRO 65.7+05 674+05 319+15 550+04
MMD 503+02 512+05 106+£05 374+£03
VREXx 69.8+05 722+0.1 249+13 557+04

CausIRL (MMD) 503 +£0.2 504=+0.1 103+£02 37.0=+0.1
FMI (OURS) 224£51 508£43 609+26 447+24

Below in we show the comparison of different training strategies. In general, strategy 1
gives better results.

Table 6: Performance of FMI on Colored MNIST with different training strategy

Strategy =~ Model Selection Method 0.1 0.2 0.9 Avg
Training-domain validation set 223+£29 513+£16 280+60 33.8+23
Strategy 1  Leave-one-domain-out cross-validation 27.0 +£5.7 475+24 579147 441+22
Test-domain validation set (oracle) 2244+51 508+43 609+26 447+24
Training-domain validation set 262+53 537+£09 104+£04 30.1£1.8
Strategy 2 Leave-one-domain-out cross-validation 29.7 £54 53.8+27 17.14+19 335+23
Test-domain validation set (oracle) 431422 51.7+1.1 1564+08 36.8+0.9
Training-domain validation set 586+£13 693+£06 10.1+0.1 46.0+0.5
Strategy 3  Leave-one-domain-out cross-validation 45.0 24 47.0+£4.5 225+4.6 382+27
Test-domain validation set (oracle) 574+15 68.6+06 11.64+0.6 458+0.7
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FMI when there is single training environment In the following tables, we show the testing
accuracy of FMI when there is only one training environment in ColoredMNIST. In Table 7, The
training environment we use is e = 0.1 and the testing environment is e = 0.9. In Table 8, the
training environment we use is e = 0.05 and the testing environment is e = 0.95, which is more
imbalanced compared to previous setting. Notice that the difference of testing accuracy across
different model selection methods is huge. In fact, the model selection method is crucial in the
experiment. Nevertheless, under any model selection method, FMI surpasses others by a large
margin.

Table 7: Experimental results on the Colored MNIST dataset in terms of test accuracy for all al-
gorithms (two environments). Each column represents a different model selection method. The
training environment here is 0.1 and the testing environment is 0.9

Algorithm Training-domain  Test-domain
validation set validation set
ERM 10.1 £0.1 12.1 £0.8
IRM 10.0 0.0 10.0 £0.0
IB-IRM 10.0 £ 0.0 42.0+4.2
IGA 10.0£0.1 11.3£0.5
ANDMask 10.0 0.0 11.0 +0.2
CORAL 10.0 +0.1 11.2+0.5
DANN 9.9+0.1 10.0 0.1
CDANN 9.9+0.1 10.0 0.1
GroupDRO 10.0 £ 0.0 11.3+0.4
MMD 10.1 £0.1 12.1 £0.8
VREXx 10.0 £ 0.0 12.3 + 0.5
CausIRL (MMD) 10.0 £ 0.0 10.0 £0.0
FMI (OURS) 30.7 £ 5.9 71.1+ 0.3

Table 8: Experimental results on the Colored MNIST dataset in terms of test accuracy for all al-
gorithms (two environments). Each column represents a different model selection method. The
training environment here is 0.05 and the testing environment is 0.95

Algorithm Training-domain  Test-domain
validation set validation set
ERM 5.0+ 0.0 51£0.1
IRM 5.0£0.0 5.0£0.0
IB-IRM 5.0+ 0.0 45.6 +£4.3
IGA 5.0+ 0.0 5.0£0.0
ANDMask 5.0£0.0 5.1£0.0
CORAL 5.0+ 0.0 51+0.1
DANN 4.94+0.0 4.94+0.0
CDANN 4.94+0.0 4.940.0
GroupDRO 5.0+ 0.0 51+0.1
MMD 5.0£0.0 5.0£0.0
VREx 5.0£0.0 5.1£0.1
CausIRL (MMD) 5.0+ 0.0 5.0£0.0
FMI (OURS) 214+ 173 69.1+ 0.5

Does FMI extract the true feature? Although FMI demonstrates superior performance, it re-
mains a question whether the feature extracted by FMI is the true feature, i.e., the shape of the digit.
To address this, we applied Grad-CAM (Selvaraju et al.} [2017) to visualize the features of the CNN
used in this experiment. shows a comparison of features extracted by FMI and ERM. The
models producing the figure are FMI and ERM, trained in environments (0.1, 0.2), and the images
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are sampled from environment 0.9. ERM, with low accuracy, focuses on areas irrelevant to the shape
of the digit, whereas FMI concentrates on distinctive parts of the digits (e.g., the o parts in 6 and 8).

Pred: 0 Pred; 0 Pred: 0 Pred: 1

Pred: 1 Pred: 0 Pred: 0 Pred: 1

(a) Attention map of FMI (b) Attention map of ERM

Figure 7: Attention maps of FMI and ERM obtained by Grad-CAM. The highlighted areas are what
our model used to predict the class of the image.

A.4 COMPUTE DESCRIPTION

Our computing resource is one Tesla V100-SXM2-16GM with 16 CPU cores.
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B PROOF OF THEOREM 1

We restate [Theorem 1] for convenience.

Theorem 2. Under Assumptions[I{d] any solution to[[FMI)|achieves the minimax risk as in Formula
[2)] Therefore, FMI offers OOD generalization.

Before we prove we need the following lemma:

Lemma 1. With ((-) being zero-one loss, the lowest error of any linear classifier that is achievable
in any environment is q.

Proof of Lemma 1. This proof is similar to the proof of /Ahuja et al.[|(2021)[Theorem 4].

Consider any environment e, for any ® € R(™+°) we have the following decomposition

- X=0- S(Ztrum Zspu) = (I)true : Ztrue + q)spu : Zspu- (7)
Let

Z(E) (P L (e) P (e — I ) 8
{(Ztvuw 5pu) : ( true * Zgruye T spu Zspu) (wtrue Zt?“ue)} ®)
Z(E) {(Zt:1)w7 s;u) P I(@rye - Zt(:q)m + Popu - Zg;eazt) # l(wtrye - Zf(qew)w)} )

and assume P((Z%)_, 7)) € ZJ(:”)) = p. By definition of the risk, we have
Re(q)) =E [H(wt’f’u«e Zterue) ®N°o H((I)“’ue : Zti"ue + (I)SP’U« Zsepuﬂ (10)
=pE(1®N°) + (1 - p)E(N®) > ¢. (11)
O

The following Corollary gives the structure of the optimal classifier:

Corollary 1. In any environment e € &, the optimal predictor 1(®¢) should agree with 1(wiyye -
25 ue) €verywhere in the support.

Proof of Corollary 2. Check O

Next, we prove the following lemma:

Lemma 2. Suppose v, € R™ y, 8,7 € R° and ||| < 1, then
flay) =2"ay"y +y" By y >0 (12)

within some bounded ball centered at zero if and only if o = 0 and By is positive semi-definite.

Proof of Lemma 2. Without loss of generality, assume the radius of the bounded ball is 1.

If o = 0 and B47 is positive semi-definite, then f(x,y) = y? 3yTy > 0.

Now, assume f(z,y) > 0. If o # 0, assume 4 3 > 0, then take z = ca/||||? and y = —v/|7]?
with 7T B/||7/|> < ¢ < 1. We have

-

BB (13)

c —y
fla,y) = alay” ﬁv
[l x| ||7||2 ||“Y||2
vT'B

T e <° (o

We can similarly prove the case when v7'3 < 0. Therefore, we know o = 0 and therefore 37
must be positive semi-definite. O

With these in mind, we can prove [I'heorem
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Proof of Theorem 1. By Corollary 1, we know the solution ®¢™ to[(FMI)|must agree with I(wg; .-
zgm ). Suppose

(I)em X = (bem . S(Ztrue7 Zspu) (I)f;*r&e Ztrue + (I)i;)nu : Zspu7 (15)
it holds that
((bfrue Ztrue + ‘I’i})”u : Zspu) : (wtrue : Ztrue) Z 07 (16)

for any 2¢yye, Zspu in the support. In order to use[Lemma 2| we normalize @5, such that | @y || <
1, this can be done by transforming ®:  and z4,.,.. together.

true

Now, since Z¢m I Y by definition and Y °™ < I(wyrye - Zirue) ®NE, we know Zm 1L Z7m

spu spu true*
Hence, supp(2;,7,e, 25,) = SUpp(2¢e) X supp(z¢,) and by assumption, it contains the unit ball.

Further note that [(T9)]is equivalent to
spuq)izluwtrueztrue + Ztrueq)gﬁaewtrueztrue Z 0. (17)

By Lemma 2, we know ¢ = 0. Thus, the FMI solution uses only the true feature and is mini-max

optimal. O
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C INVARIANCE PRINCIPLE

C.1 INVARIANCE PRINCIPLE AND IRM

Invariance principle was defined in|Arjovsky et al.| (2019} Definition 3).

Definition 3. We say that a data representation ® : X — H elicits an invariant predictor w o ®
across environments £ if there is a classifier w : H — Y simultaneously optimal for all environ-
ments, that is, w € argming.;,_,y R(w o ®) forall e € £.

We can see from the definition that whenever there is only one environment in the training dataset,
the definition becomes nothing but minimizing the risk in the training data. Therefore, invariance
principle makes no effect on the classifier in that case.

Also, IRM requires the environment lie in a linear general position (Arjovsky et al.,[2019, Assump-
tion 8), which is formally defined as follows:

Assumption 5. A set of training environments & lie in linear general position of degree r if |Ey| >
d—r+ gfor some r € N, and for all non-zero x € R%:

dim (span ({Ex- [X*XT] 2~ Bxeo [X°}, o)) > d =

This assumption limites the exent to which the training environments are co-linear. Under this
assumption, the feature learned by IRM can be shown to generalize to all environments.

C.2 FULLY INFORMATIVE INVARIANT FEATURES AND PARTIALLY INFORMATIVE INVARIANT
FEATURES

In |Ahuja et al.| (2021), the authors categorized invariant features ®*(-) into two types: fully infor-
mative invariant features (FIIF) and partially informative invariant features (PIIF).

* FIIF: Ve € £, Y° I X¢|®*(X®);
« PIIF: 3e € £, Y U X°|®*(X°).

For different types of features, they gave different theoretical results on whether IRM fail or not.
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D BACKGROUND ON STRUCTURAL CAUSAL MODELS AND INTERVENTIONS

For completeness, we provide a more detailed background on structural causal models (SCMs) and
interventions. This section is borrowed from [Peters et al.| (2017, Chapter 6).
First, we provide the defintion of SCM and its entailed distribution.

Definition 4 (Structural causal models). A structural causal model (SCM) € := (S, Pn) consists of
a collection S of d (structural) assignments

Xj = fj(PAj,Nj), jZL...,d, (18)

where PA; C {X1,..., Xq}\{X,} are called parents of X;; and a joint distribution Py =
Py, ....n, over the noise variables, which we require to be jointly independent; that is, PN is a
product distribution.

The graph G of an SCM is obtained by creating one vertex for each X; and drawing directed edges
from each parent in PA  to X, that is, from each variable Xj, occurring on the right-hand side of

equation (21)[to X ;. We henceforth assume this graph to be acyclic.

We sometimes call the elements of PA ; not only parents but also direct causes of X, and we call
X; adirect effect of each of its direct causes. SCMs are also called (nonlinear) SEMs.

Definition S (Entailed distributions). An SCM € defines a unique distribution over the variables
X = (Xu1,...,Xq) such that X; = f;(PA;, N;), in distribution, for j = 1,...,d. We refer to it as
the entailed distribution Pg and sometimes write Px.

Next, we can define intervention on SCM.

Definition 6 (Intervention distribution). Consider an SCM € = (S, Pn) and its entailed distribution
Pg. We replace one (or several) of the structural assignments to obtain a new SCM €. Assume that
we replace the assignment for Xy, by

We then call the entailed distribution of the new SCM an intervention distribution and say that the
variables whose structural assignment we have replaced have been intervened on. We denote the
new distribution by

P§ = pyto(e=f(PALN),

The set of noise variables in ¢ now contains both some "new” N’s and some “old” N’s, all of
which are required to be jointly independent.

P)C(;do(Xk::a)

When f(ff’Xk, Nk) puts a point mass on a real value a, we simply write and call

this an atomic intervention. When f (PA, N, k) is a exogenous random variable €, we call this a
stochastic intervention. Atomic intervention, together with stochastic intervention, are called perfect

intervention. An intervention with PA = PAy, that is, where direct causes remain direct causes,
is called imperfect.

We require that the new SCM € have an acyclic graph; the set of allowed interventions thus depends
on the graph induced by €.

21



Under review as a conference paper at ICLR 2025

E GOODNESS-OF-FIT TEST FOR TESTING THE FEATURE LEARNED IN THE
TRAINING ENVIRONMENT

In this section, we introduce the specific hypothesis test used in this paper to check whether the fea-
ture learned in the training environment is spurious or not. By we have the following
null hypothesis given a environment e # eg:
d
Ho : Y| Z5,, = Y Zg,.
Since the classifier f maps different regions of the support of Zg,, into different values, we can
approximate Hj by the following hypotheses:

HEve|fe=kLye|fo=k k=12, K,
where K is the number of classes in the problem.

Now, for each HE, the distributions we are testing are discrete. Therefore, we can use traditional chi
square goodness-of-fit test.

In practice, we can use a sample from Y¢| f¢=kand Y | f¢ = k to conduct the test in order to
make it more efficient. In our experiment, we sampled n = 200 images from each distribution and
calculated the p-value using chi square distribution. Below in[Figure 7| we include the p-values of
testing Y¢| fe = 1 in our Colored MNIST example. Again, we can clearly see that e = 0.9 is a
validation environment that rejects the feature learned in the training environment, while the feature
learned by FMI remains valid.

We also include the plots for p-values in testing on WaterBirds dataset here. See[Figure 9|and |[Figure]
[10]

Additionally, for the ColoredMNIST experiment, if we use the mixture of e = 0.2 and e = 0.9 as
training environments, we would get a good enough feature based on ERM, as shown in [Figure T1]
[Figure 12]|and[Figure 13| In this case, there is no need to conduct FMI.

When we have only one training environment and the validation environment is relatively similar to
the training environment, as we will show in the following two experiments, the test usually would
not reject the feature learned in the training environment through ERM.

In|Figure 14| and |[Figure 15| we demonstrate the test results when e = 0.6 is training environment
and e = 0.4 is testing environment.

In [Figure 16|and [Figure 17, we demonstrate the test results when e = 0.8 is training environment
and e = 0.7 is testing environment.

As we can see, the feature learned in the training environment through ERM in both experiments
cannot be rejected, and our method suggests the feature learned directly through ERM is good
enough based on the data at hand.
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(a) Plot of p-values in the training environment
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(b) Plot of p-values in the validation environment

Figure 8: Plots of p-values for testing Y| f ¢ = 1 in the training environment and validation envi-
ronment of Colored MNIST given different features. In each plot, the feature learned in the training
environment is colored orange and the feature learned by FMI is colored blue. The y-axis in each
plot represents the p-value of the goodness-of-fit test. The dashed red lines represent significance
level 0.05. The error bars are obtained by repeating the experiment ten times.
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(a) Plot of p-values in the training environment
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(b) Plot of p-values in the validation environment

Figure 9: Plots of p-values for testing Y ¢ fe = 0 in the training environment and validation en-
vironment of WaterBirds given different features. In each plot, the feature learned in the training
environment is colored orange and the feature learned by FMI is colored blue. The y-axis in each
plot represents the p-value of the goodness-of-fit test. The dashed red lines represent significance
level 0.05. The error bars are obtained by repeating the experiment five times.
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Test the features learned in training environment (ERM) and FMI - Environment 0
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(a) Plot of p-values in the training environment
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(b) Plot of p-values in the validation environment

Figure 10: Plots of p-values for testing Y¢| fe = 1 in the training environment and validation
environment of WaterBirds given different features. In each plot, the feature learned in the training
environment is colored orange and the feature learned by FMI is colored blue. The y-axis in each
plot represents the p-value of the goodness-of-fit test. The dashed red lines represent significance
level 0.05. The error bars are obtained by repeating the experiment five times.
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Test the features learned in training environment (ERM) and FMI - Environment 0
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Figure 11: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.1 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.9) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 12: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.2 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.9) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Test the features learned in training environment (ERM) and FMI - Environment 2
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Figure 13: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.9 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (¢ = 0.9) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 14: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.4 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.6) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 15: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.6 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (¢ = 0.6) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 16: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.7 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.8) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 17: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.8 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (¢ = 0.8) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 18: Plots of p-values for testing Y| f ¢ = 0 in the environment e = 0.1 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.1) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 19: Plots of p-values for testing Y| f ¢ = 0 in the environment e = 0.3 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (¢ = 0.1) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Figure 20: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.1 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.1) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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Training Steps

Figure 21: Plots of p-values for testing Y| f ¢ = 1 in the environment e = 0.3 of Colored MNIST
given different features. In each plot, the feature learned in the training environment (e = 0.1) is
colored orange and the feature learned by FMI is colored blue. The y-axis in each plot represents
the p-value of the goodness-of-fit test. The dashed red lines represent significance level 0.05. The
error bars are obtained by repeating the experiment ten times.
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