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Abstract

Over more than a decade there has been an extensive research effort on how to
effectively utilize recurrent models and attention. While recurrent models aim to
compress the data into a fixed-size memory (called hidden state), attention allows
attending to the entire context window, capturing the direct dependencies of all
tokens. This more accurate modeling of dependencies, however, comes with a
quadratic cost, limiting the model to a fixed-length context. We present a neural
long-term memory module that learns to memorize historical context and helps
attention to attend to the current context while utilizing long-past information. We
show that this neural memory has the advantage of fast parallelizable training. From
a memory perspective, we argue that attention due to its limited context but accurate
dependency modeling performs as a short-term memory, while neural memory due
to its ability to memorize the data, acts as a long-term, more persistent, memory.
Based on these two modules, we introduce a new family of architectures, called
Titans, and present three variants to address how one can effectively incorporate
memory into this architecture. Our experimental results on language modeling,
common-sense reasoning, and time series tasks show that Titans are effective
compared to baselines, while they can effectively scale to larger context window in
needle-in-haystack tasks.

1 Introduction

Transformers [1], have been firmly established as state-of-the-art models in sequence modeling,
mainly due to their in-context learning and ability to learn at scale [2]. The primary building blocks
of Transformers—attention modules—function as associative memory blocks [3], where they learn
to store key-value associations and retrieve them by computing pairwise similarity between queries
(i.e., search signals) and keys (i.e., contexts). Accordingly, by design, the output of a Transformer is
exclusively conditioned on the direct dependencies of tokens in the current context window. This
accurate modeling of dependencies, however, comes with quadratic time and memory complexity
in terms of the context length. In complex real-world tasks (e.g., language modeling [4], video
understanding [5], long-term time series forecasting [6]), the context window can become extremely
large, making the applicability of Transformers challenging in these downstream tasks.

To overcome the scalability issue of Transformers, recent studies aim to design different variants
of linear Transformers [7-9], where softmax is replaced by a kernel function in the attention (see
§A.1 for details), resulting in a significant drop in memory consumption. Despite efficiency and
the ability to scale to longer context, linear Transformers do not show competitive performance
compared to Transformers as the kernel trick makes the model a linear recurrent network, in which
the data is compressed into a matrix-valued states [7]. This, however, brings a contradictory fact
about linear recurrent (or linear Transformers) models: On one hand, we use these linear models to
enhance scalability and efficiency (linear vs. quadratic complexity), whose advantages is appeared
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for very long context; On the other hand, a very long context cannot be properly compressed in a
small vector-valued or matrix-valued states [10].

Furthermore, beyond efficiency, most existing architectures—ranging from Hopfield Networks [11]
to LSTMs [12] and Transformers [1]-face challenges when dealing with generalization, length
extrapolation, and/or reasoning [13, 14], all of which are inseparable parts of many hard real-world
tasks. Although these architectures draw inspiration from the human brain, each of which are missing:
(1) a crucial component for learning process—such as short-term memory, long-term memory, meta-
memory, attending to current context, etc. [15]; (2) how these components are interconnected systems
that can operate independently; and/or (3) the ability to actively learn from data and memorize the
abstraction of past history. We argue that in an effective learning paradigm, similar to human brain,
there are distinct yet interconnected modules, each of which is responsible for a component crucial to
the learning process.

Memory Perspective. Memory is a fundamental mental process and is an inseparable component of
human learning [16]. Without a properly functioning memory system, humans and animals would be
restricted to basic reflexes and stereotyped behaviors. Accordingly, memory has been the inspiration
for many seminal research in machine learning literature; e.g., Hopfield Networks [11], LSTMs [12],
and Transformers [1].

Taking inspiration from the common definitions of memory and learning in neuropsychology litera-
ture [17], most existing architectures consider memory as a neural update caused by an input, and
define learning as a process for acquiring effective and useful memory, given an objective. In this
perspective, Recurrent Neural Networks (RNNs) [18] can be defined as models with a vector-valued
memory module M (also called hidden state) with two main steps: Given a new input x; at time
t, the model (1) updates the memory using a function f(M;_1,x;) (with compression); and (2)
retrieves the corresponding memory of input using a function g(My, x,). Similarly, Transformers can
be seen as architectures with a growing memory and two similar steps. That is, the pair of key and
value matrices acts as the model’s memory, and the model: (1) updates the memory by appending the
key and value to the memory (without compression), and (2) retrieves query vectors’ corresponding
memory by finding the similarity of query and key vectors, which is then used to weight the value
vectors for the output.

This perspective, can help us better understand existing paradigms, their critical differences, and
design more effective architectures. For example, the main difference between Transformers [1]
and linear Transformers [7] is the memory structure as well as the memory updating step, in which
linear Transformers compress the historical data into a fixed-size matrix-valued memory while
Transformers keep all historical data (within the context length) without any compression. Therefore,
this perspective motivates us to ask: (Q1) What is a proper memory update mechanism? and (Q2)
What is a good memory retrieval process?

Human memory is neither a unitary process nor it serves a single function [15]. In fact, memory
is a confederation of systems—e.g., short-term, working, and long-term memory—each serving a
different function with different neural structures, and each capable of operating independently [19].
This motivates us to ask: (Q3) How to design an efficient architecture that incorporates different
interconnected memory modules. Finally, storing a memory is a neural process that requires to
encode and store the abstraction of the past. It can be over-simplification to assume a single vector or
a matrix, whose parameters are encoding the data in a linear manner, are enough for storing long-term
history. (Q4) Is a deep memory module needed to effectively store/remember long past?

Neural Memory (§2). We present a (deep) neural long-term memory that (as a meta in-context
model) learns how to memorize/store the data into its parameters at test time. Inspired by human long-
term memory system [20], we design this memory module so an event that violates the expectations
is more memorable. To better handle the limited memory, we present a decaying mechanism that
consider the proportion of memory size and the amount of data surprise, resulting in better memory
management.

Titans Architectures (§3). After designing the long-term neural memory, an important remaining
question is how to effectively incorporate memory into an architecture. We present Titans, a family
of deep models that consists of three hyper-heads: (1) Core: this module consists of the short-term
memory, and is responsible for the main flow of processing the data (we use attention with limited
window size); (2) Long-term Memory: this branch is our neural long-term memory module that



is responsible to store/remember long past; (3) Persistent Memory: this is a set of learnable but
data-independent parameters that encodes the knowledge about a task. Finally, as a proof of concept,
we present three variants of Titans, in which we incorporate memory as: (i) a context, (ii) a layer, and
(iii) a gated branch.

We provide an extensive list of related work and background concepts in Appendix A and Appendix B.

2 Learning to Memorize at Test Time

To overcome the lack of long-term memory and to enable the model to learn, forget, and retrieve
information, in this section, inspired by the concept of Test Time Training [21-23], we present a
neural long-term memory module, which is a meta models that learns to memorize at test time. In
Section 2.1, we first discuss the motivation and the design of the neural memory. In Section 2.2, we
discuss how our architecture design can benefit from a fast and parallelizable training. Finally, in
Section 2.3, we augment our architecture using persistent memory module, in which we use learnable
but data-independent parameters to learn meta information about the task.

2.1 Long-term Memory

To design a neural long-term memory, we need a model that can encode the abstraction of the past
history into its parameters. An example of this can be deep large models that are shown to be
memorizing their training data [24-26]. Therefore, a simple idea is to train a neural network and
expect it to memorize its training data. Memorization, however, has almost always been known as an
undesirable phenomena in neural networks as it limits the model generalization [27], causes privacy
concerns [24], and so results in poor performance at test time. Moreover, the memorization of the
training data might not be helpful at test time, in which the data might be out-of-distribution. We
argue that, we need an online meta-model that learns how to memorize/forget the data at test time. In
this setup, the model is learning a function that is capable of memorization, but it is not overfitting to
the training data, resulting in a better generalization at test time.

Learning Process and Surprise Metric. The key idea to train a long-term memory is to treat its
training as an online learning problem, in which we aim to compress the past information x1, ..., zs—1
into the parameters of our long-term neural memory module M;. As discussed earlier, an event
that violates the expectations (i.e., is surprising) is more memorable for humans [20]. Inspired by
this, a simple definition of surprise for a model can be its gradient with respect to the input. The
larger the gradient is, the more different the input data is from the past data. Accordingly, using this
surprise score, we can update the memory as My = M;_1 — 6, VL(M;_1; x;). This surprise metric,
however, can result in missing important information that comes after a big surprising moment. That
is, the gradient can become extremely small after several surprising steps, leading to stocking in a
flat area (i.e., local minima), and missing information about some parts of the sequence. From the
human memory perspective, an event might not consistently surprise us through a long-period of
time although it is memorable. The reason is that the initial moment is surprising enough to get
our attention through a long time frame, leading to memorizing the entire time frame. To improve
the above surprise metric, we break the surprise metric into (1) past surprise, which measures the
surprise amount of a very recent past; and (2) momentary surprise, which measures the surprise of
incoming data:

My =M1+ 5, Sy = Nt Si_1 — 0, V¢ (Mt—l%l‘f,). (1)
—— —_——
Past Surprise Momentary Surprise

Interestingly, this formulation is similar to gradient descent with momentum, where .S; is the mo-
mentum element. Therefore, the momentum here act as a memory of surprise across time (sequence
length). In this formulation, the term 7; is a data-dependent surprise decay (a function of xy),
controlling how surprise decays over time, and the term 6; is controlling how much of momentary
surprise should be incorporated into the final surprise metric in a data-dependent manner. This
data-dependency is particularly important in this design: While surprise of previous tokens might be
needed to affect the surprise of the next token, it is mostly valid if all tokens are relevant and are in
the same context. Accordingly, a data-dependent 7 can control if memory needs to: (1) ignore the
last surprise by setting 17, — 0 (possibly due to the change of context), or (2) fully incorporate the
last surprise by setting 1, — 1 (possibly as the token is highly relevant to its recent past tokens).
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Figure 1: The illustration of how neural memory’s training can be done in parallel and using matmuls.

Objective. Our above surprise metric is based on a loss function £(.; .), which is the objective that
our memory is learning to act as it at test time. That is, our memory module is a meta model that
learns a function based on the loss function #(.; .). In this work, we focus on associative memory, in
which we aim to store the past data as the pairs of keys and values. Given x;, similar to Transformers,
we use linear layers to project x; into a key and value: k; = z;Wg, andv, = z; Wy, where Wi and
Wy € Rdnxdn_ Next, we expect our memory module to learn the associations between keys and
values. To this end, we define the loss as follows:

U My_1;3y) = [ Moy (k) — v 2 @)

By optimizing the above loss function in the inner-loop of our meta model (memory), the model
learns how to memorize the mapping between keys and values at test time. Note that, similar to
meta-learning models [28, 29], training of the memory is in the inner-loop, and so parameters Wy
and Wy, are hyperparameters in the above loss function. Accordingly, in the inner loop, we optimize
M'’s weights, while in the outer-loop, we optimize other parameters of the entire architecture.

Forgetting Mechanism. When dealing with very large sequences, it is crucial to manage which past
information should be forgotten—even with a deep or a very large matrix-valued memory. To this end,
we use an adaptive forgetting mechanism that allows the memory to forget the information that is not
needed anymore, resulting in better managing the memory’s limited capacity. That is, given the next
token x;, we modify the update rule as:

M= (1—ay) M1 + 5, St =neSp—1 — 0 VE(My_1;2¢), 3)

where a; € [0,1]%" is the gating mechanism that flexibly controls the memorys; i.e., decides how
much information should be forgotten. For example, it can update the memory without affecting the
past abstraction by letting oy — 0, and can clear the entire memory by letting o, — 1. Later in this
section, we show that this weight decay mechanism is closely related to the gating mechanism in
modern RNNs [30, 31].

Memory Architecture. In this paper, we focus on simple MLPs with Ly, > 1 layers as the
architecture of our long-term memory. The main reason behind this choice is that we want to focus
on better motivating the design of the long-term memory and ways that it can be incorporated into an
architecture. Recently, there has been a promising line of work to design architectures that are better
memorizers [32-34]; incorporating them into our framework (i.e., replacing simple MLPs with such
architectures) can be an interesting future work.

Retrieving a Memory. In the above, we discuss how one can design and train a long-term memory
module that learns to memorize at test time. A key remaining question is: How one can retrieve
information from the memory? We simply use the forward pass without weight update (i.e., inference)
to retrieve a memory correspond to a query. Formally, given an input x;, we use a linear layer W, to
project the input, i.e., q; = x;W( and retrieve the corresponding information from the memory y;

by yr = M(qy).
2.2 How to Parallelize the Long-term Memory Training

As discussed above, the design of our long-term memory module is equivalent to training a meta
model by optimizing associative memory loss function £(M;_1;x¢) = || M1 (ki) — vt||§ using
gradient descent with momentum and weight decay. Therefore, in theory, the training of long-term
memory module requires O (N) FLOPs, where N is the sequence length. However, in practice, we
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Figure 2: Memory as Context (MAC) Architecture. This architecture includes three branches of (1)
core, (2) contextual (long-term) memory, and (3) persistent memory. The core branch concatenates the
corresponding long-term and persistent memories with the input sequence. Attention then performs
on the sequence and decides what part of the information should be stored in the memory.

need to parallelize the training process and to fully take advantage of hardware accelerators (e.g.,
TPUs, GPUs), we need to tensorize the process and use more matmuls.

Similar to Sun et al. [21] and contrary to recent modern linear recurrent models [35, 36, 30], our
formulation of neural memory is not a linear recurrence. Therefore, it cannot be written as an
associative operator, and so be trained by parallel scan [37]. Accordingly, we use the idea of chunk-
wise recurrence [38, 21], and instead of V£ (M;_1; x¢), we use V£ (Mys; 2¢) in Equation 3, where
t’ is the last step in the previous chunk (see Figure 1).

To fully take advantage of accelerators, we need to use matmuls and sum. We build upon the work of
Sun et al. [21] that shows forward pass of a model optimizing with the mini-batch gradient descent
(with constant learning rate) can be calculated using matmuls. As discussed above, we split the
sequence into chunks of size b > 1, and write the mini-batch gradient descent as:

t
My = (L= )Moy = 09 EMesize) = BiMo = 3 05 VU Mo,
i=1 v

where t' =t — mod(¢,b), and 3; = H;Zl(l — o). For the sake of simplicity, we focus on the first
chunk, i.e., t = band so t’ = 0. Also, we explain the process for the case that M; = W, is linear.

The process for MLPs with N,, > 2 is similar. Using our loss function, we have:

b

VI(Wo; 1) = (Woks — vz, = Zei%w(wo;xi) =B, (WoK - V)X, (4
=1

where O, = diag([f1 02 ... 0p])and By is defined analogously on %s Note that, we do not

need to store all Oy, and By, for k = 1, ..., N/b, instead, we store these matrices for each chunk,

and so using less memory. Next, we extend this representation so we can incorporate the momentum
term. If we look at the momentum term, we have:

St = n:Si—1 — 0y uy, )
where u; = V¢ (My;x;). Note that, we can compute all u, at the same time, and so Equation 5

is a linear recurrence with u;s as inputs, S; as the state, and 7, as input-dependent transition value.
Accordingly, we can use parallel associative scan [37] to calculate S;s in each chunk.

2.3 Persistent Memory

Our long-term memory can also be seen as a contextual memory, meaning that the output is fully
depend on the context. Therefore, in addition to our long-term memory, we also use a set of learnable
but input-independent parameters to act as task-related memory. This type of memory has been
referred to as persistent or meta-memory in the literature [39, 40]. Given N, > 1, we use learnable

parameters P = [p1 P2 ... P N,J and append it to the start of our sequence: i.e., given a context
window size of N, we modify the input as:
Toew = [P1 P2 ... PN, 2 (6)

where || is concatenation. We discuss the other motivations for persistent memory in Appendix C.



3 How to Incorporate Memory?

An important question that remained unanswered is: How one can effectively and efficiently incorpo-
rate the designed neural memory into a deep learning architecture? In this section, we aim to answer
the above question by proposing three different variants of Titans. Later in our experiments, we show
that each of these variants has its own (dis)advantages and also can show a trade-off between the
efficiency and effectiveness in very long-contexts.

3.1 Memory as a Context

In the first architecture design (see Figure 2), we treat the memory as a context to the current
information. That is, given a long sequence = € R™ ¥4 we first divide the sequence into fixed-size
segments S() fori = 1,..., N/C. Given the incoming segment S(*), we consider it as the current
context and its past segment as the historical information. Therefore, let M;_; be the state of
long-term memory before segment S(*), we use the input context as the query to the memory M;_;
to retrieve the corresponding information from the long-term memory. That is, we retrieve the past
information that corresponds to S) as h; = M;_1(q;), where q; = S W,. Next, we use this
historical information along with our persistent memory parameters as the input sequence to the
attention module:

a()

$V=1[pm p2 o pn,] [ 8D A )

Yy = Attn (g(t)) . ®)

The structure of the attention map over the entire sequence is shown in Figure 4a. We then use y, to
update the long-term memory module for the next segment and the final output:

My =M1 (ye), 9)
or =Yt @ My (yr) - (10

This architecture has two key advantages: (1) Attention by having both historical and current context,
has the ability to decides whether given the current data, the long-term memory information is needed.
(2) The attention module helps the long-term memory to store only useful information from the
current context. That is, not all tokens in each segment are useful and memorizing all of them
can result in memory overflow. Therefore, attention is helping the memory to understand which
information is useful, better managing the memory capacity. At test time: (i) persistent memory
parameters are fixed as they encodes the knowledge about the task, which should not be changed; (ii)
the attention module weights are in-context learner; and (iii) the long-term memory module is still
learning (memorizing) the information at test time.

It is notable that we use chunk and segment for two different concepts. Chunks are subsequence that
we use to accelerate the training process of the memory. In fact, for each chunk, we take the gradient
with respect to the last state of the previous chunk. On the other hand, we use segment to refer to the
larger subsequence that we perform attention on (as discussed above).

3.2 Gated Memory

In the next variant (see Figure 5), in one branch, we directly use the long-term memory, and in the
second branch, we use a sliding window attention (SWA):

i=[p p2 - pn,] || =, (11)
y = SW-Attn* (I), (12)
0=y M(Z), (13)

where SW-Attn* is sliding window attention with prefix (see Figure 4b). Note that, contrary to
the previous design, we are not segmenting the input data. Also, we abuse the notation and use
M () to refer to the final output of the memory after all recursion over the tokens of the sequence.
In the above equation, ® can be any non-linear gating. In our experiments, we normalize the
outputs y and M (Z) using learnable vector-valued weights, followed by a non-linearity. We provide
additional motivations/interpretations for this design as well as the visualization of its attention mask
in Appendix D.



The last variant is Memory as Layer (MAL), in which we sequentially use neural memory module and
attention as the layer of the model. In our experiments, we use a similar architecture as Samba [41],
where we replace the the sequence model with our neural memory module (LMM). Additional details
are provided in Appendix D.

3.3 Architectural Details

Memory Architecture. For the memory architecture, we use an MLP with £, layers (default
is L = 2) with expansion factor of 4 and GELU activation function [42]. We also use residual
connections and layer norm: M(x) = x + LN(W,0(Wax)).

Token Mixer. We follow previous studies [38, 35], and replace the attention with Titans in Llama’s
macro architecture with MLPs with SwiGLU(.) activation, rotary positional encodings (RoPE) [43],
and RMSNorm [44]. Following the recent modern linear recurrent models [35, 45], we incorporate a
1D convolution layer with size 4 after each of the query, key, and value projections. For the sake of
training stability, we also use /2 normalization to ¢ and k. We also follow the recent architectures
that use normalization and gating with a linear layer before the final output projection [46].

Additional details about the architecture and dimensions of models are in Appendix E.

4 Experiments

Next, we evaluate the performance of Titans and its variants in language modeling, commonsense
reasoning, needle in haystack, DNA modeling, and time series forecasting tasks. In more details, in
this section, we answer the following empirical questions: (1) How do Titans perform compared to
baselines in downstream tasks? (see §4.2, §G.5, and §G.6); (2) What is the actual context length of
Titans? (see §4.3 and §G.1); (3) How do Titans scale with respect to context length? (see §G.4); (4)
How the depth of memory can affect both performance and efficiency? (see §4.4); and (5) What is
the contribution of each Titans’ component in its performance? (see §4.5).

4.1 Experimental Setup

Models. In our experiments, we focus on the four variants of Titans, which we refer to as: Titans with
(1) Memory as a Context (MAC), (2) Memory as a Gate (MAG), and (3) Memory as a Layer (MAL)
as well as (4) neural memory module alone. For each of these models, we consider four scales with:
(1) 170M, (ii) 340M, (iii) 400M, (iv) 760M, and (v) 1.3B parameters. While the first three are trained
on 15B tokens sampled from FineWeb-Edu dataset [47], the last two are trained on 30B and 100B
tokens from the same dataset.

Baselines. We compare our models with the state-of-the-art linear recurrent models, Transformers,
and hybrid models (recurrent + attention). More specifically in language tasks, we compare with
Transformer++ [48], RetNet [49], Gated Linear Attention (GLA) [9], Mamba [45], Mamba?2 [30],
DeltaNet [38], TTT [21], and Gated DeltaNet [35]. In needle in haystack tasks, we also compare
with GPT4 [50], Llama3 with RAG [48], RecurrentGemma2-9B [51], and Mistral [52] models, all of
which are provided in the benchmark [53]. In time series tasks, we compare with Mamba-based [54],
Transformer-based [55-57], and linear models [58—61].

Training. In the training, we follow the training procedure of Yang et al. [35], and use LLama 2
tokenizer with a vocabulary size of 32K and use training length of 4K tokens (2K for SWA). We fixed
the persistent memory size (# tokens) to 128, and use 256 memory tokens to encode the past data
(i.e., output of the long-term memory). We employ AdamW optimizer with learning rate of 4e-4 with
cosine annealing schedule with batch size of 0.5M tokens, and weight decay of 0.1.

4.2 Language Modeling

We first focus on the perplexity in language modeling and also commonsense reasoning tasks. The
results for Titans’ variants and also baselines with three different sizes of 340M, 400M, and 760M
are reported in Table 1 (Table 6). Among non-hybrid models, including Transformer++, our neural



Table 1: Performance of Titans and recurrent- and Transformer-based baselines on language modeling
and common-sense reasoning tasks. Hybrid models are marked with *. The best results among

simple and hybrid models are highlighted.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppld  ppll accT acctT accn? acct accT accn?tT acc? acc T T

760M params / 30B tokens

Transformer++ 2521 27.64 | 3578 6692 4219 5195 60.38 3246  39.51 6037  48.69
Mamba 28.12 2396 | 3280 66.04 39.15 5238 61.49 3034 3796 57.62 4722
DeltaNet 2437 24.60 | 37.06 6693 4198  50.65 64.87 31.39 39.88 59.02 4897
TTT 24.17 2351 | 3474 6725 4392 5099 64.53 33.81 40.16 59.58 47.32
Gated DeltaNet 21.18 22.09 | 3554 68.01 4495 50.73  66.87 33.09 3921 59.14  49.69
Samba* 20.63 2271 | 39.72  69.19 4735 5201  66.92 3320 3898 6124 51.08
Gated DeltaNet-H2* | 19.88 20.83 | 39.18 6895 4822 5257 67.01 3549 3939 61.11 5149
Titans (LMM) 20.04 2196 | 37.40 6928 4846 5227  66.31 35.84 40.13 6276 51.56
Titans (MAC) 19.93  20.12 | 39.62 7046 49.01 53.18 67.86 36.01 4187 6205 5251
Titans (MAG) 18.61 19.86 | 4098 70.25 4894 52.89  68.23 36.19 4038 62.11 5250
Titans (MAL) 19.07 2033 | 40.05 6999 4885 53.02 67.61 35.65 40.57 6172 5229
1.3B params / 100B tokens
Transformer++ 18.53 1832 | 42,60 70.02 50.23 5351  68.83 3510 40.66 57.09 5225
RetNet 19.08 1727 | 4052 70.07 49.16 54.14 67.34 33.78 4078 6039  52.02
Mamba2 16.56 1256 | 45.66 71.87  55.67 5524 7247 37.88 4020 60.13 54.89
DeltaNet 17.71 16.88 | 4246 70.72 5093 5335  68.47 3566 4022 5529 52.14
Gated DeltaNet 16.42  12.17 | 46.65 7225 5576 5745 71.21 3839  40.63 6024 5532
Samba* 16.13 1329 | 4494 7094 5342 5556  68.81 36.17 3996 62.11 54.00
Gated DeltaNet-H2* | 1591 12.55 | 48.76  72.19 56.88 57.77 71.33 39.07 4191 6155 56.18
Titans (LMM) | 1560 1141 | 49.14 73.09 56.31 59.81 7243 40.82 4205 6097 56.82

Table 2: Performance of Titans and baselines on S-NIAH task from RULER benchmark. The best
results among simple and hybrid models are highlighted.

Model S-NIAH-PK S-NIAH-N S-NIAH-W
2K 4K 8K 16K 2K 4K 8K 16K 2K 4K 8K
TTT 98.4 988 98.0 884 602 366 102 44 788 280 44
Mamba2 98.6 614 310 54 984 558 142 00 422 42 00
DeltaNet 96.8 98.8 98.6 714 472 154 128 54 462 200 1.6
Titans (LMM) 99.8 984 982 962 100.0 99.8 934 802 904 894 858
Samba 98.8 980 974 972 988 98.6 962 956 968 90.0 84.0
Gated DeltaNet-H2*  99.2 978 974 984 98.0 978 962 958 974 968 884
Titans (MAC) 99.2 98.8 99.0 984 996 982 97.6 974 982 982 956
Titans (MAG) 994 980 974 974 992 988 972 986 98.0 98.0 902
Titans (MAL) 98.8 98.6 988 97.8 99.8 98.1 96.8 964 98.0 974 920

memory module achieves the best performance in both perplexity and accuracy measures. Comparing
our neural memory module and TTT, which is also a gradient-based recurrent model can show us the
importance of our weight decay as well as the momentum. As discussed earlier, the weight decay can
be interpreted as a gating mechanism to forget the past data, when it is needed. Also, momentum can
help us better manage the memory by providing additional memory for the surprise metric. While
some baselines also take advantage of gating mechanism, e.g., Mamba, Mamba2, and Gated DeltaNet,
the superior performance of our neural memory module shows the importance of both our surprise
mechanism and having deep and non-linear memory. We further discuss the later in Section 4.4.

Comparing the hybrid models, we found that all three variants of Titans (MAC, MAG, and MAL)
outperform both Samba (Mamba + attention) and Gated DeltaNet-H2 (Gated DeltaNet + atttention).
We attribute the superior performance of Titans (MAL) to the power of neural memory module as the
architecture design and used attention are all the same. Comparing Titans (MAG) and (MAC), we find
that while their performance are close, MAC performs better when dealing with longer dependencies
in the data. Interestingly, both MAG and MAC outperform MAL variant, which due to using the
same modules, we attribute this to the architecture design of these models. This finding is particularly
important as the current hybrid models (except Hymba [40]) in the literature are using MAL-style
combination of recurrent models and attention.
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Figure 3: The effect of memory depth on the perplexity. Deeper long-term memory results in better
scaling in longer sequences.

Table 3: The results of RULER benchmark on hybrid or Transformer-based models.
16K 32K 64K 128K Avg.

Transformer 814 792 634 498 68.5
Samba 832 80.8 694 346 670
LongRoPE (Phi3-3.8B) 90.8 87.7 79.8 653 809
EM-LLM 894 86.2 804 76.8 832
Titans (MAC) 920 89.2 852 804 86.7

4.3 Needle in a Haystack

Scaling a model to longer context window is not always equivalent to being effective for very long
sequences [62]. The needle-in-a-haystack (NIAH) task is designed to measure the actual effective
context length of models. In this task, we evaluate the model on retrieving a piece of information
(i.e., the “needle”) from long distractor texts (i.e., the “haystack”). In this part, we use Single NIAH
(S-NIAH) task from RULER benchmark [62] and evaluate Titans and baselines on sequences with
length 2K, 4K, 8K, and 16K. The results are reported in Table 2. Neural Memory module achieves
the best results compare to baselines in all three tasks. We attribute this superior performance to three
key differences of Titans with existing sequence models: (1) Compared to TTT, our Neural Memory
can better handle the memory capacity by using momentum and also the forgetting mechanism (i.e.,
weight decay). Therefore, with increasing the sequence length, the performance of Neural Memory
does not drop and show a consistent trend; (2) Compared to Mamba2, which has the gating (forgetting)
mechanism, Titans have deep non-linear memory, resulting in better memory management. Also,
contrary to our neural memory and DeltaNet, Mamba2 is not capable of removing a memory and so
we can see a significant drop in performance when increasing the sequence length; (3) Compared to
DeltaNet, although it is capable of removing memory using delta rule, it cannot erase the memory,
lacking forgetting mechanism. Finally, As expected we can see on par or better results when using
Titans variants, where the best results correspond to MAC.

Next, we compare the larger and hybrid MAC variant of Titans with other hybrid or long-context
enhance models on harder setups of RULER benchmark. The results are reported in Table 3.

4.4 The Effect of Deep Memory

In this section, we evaluate the effect of deep memory in both wall-clock training time and model
performance'. To this end, we focus on different variants of our neural memory module, where
La=1,2,3,4. We also use Mamba as a baseline for the model performance. For a fair comparison,
we use the same training process for all models and train them on a subset of the Pile dataset [63].

We report the perplexity of our models and baselines as the function of the sequence length in Figure 3.
Interestingly, with the increase of memory depth, L 14, the model can achieve better perplexity over
all sequence length. Also, deeper memory modules are more robust to the sequence length when the
model has less number of parameters. With the increase of the number of parameters, all models
show better performance on longer sequences.

'Note that, in this experiment, we only focus on the neural memory module to evaluate the effect of memory
depth in the memorization process. Combining neural memory with attention as we do in Titans variants, can
additionally enhance the performance of the model over long sequences.



Table 4: Ablation Study on Titans. All components of Titans are positively contributing to its
performance.

Model Language Modeling Reasoning Long Context

ppl 4 acc T acc T

LMM 27.01 47.83 92.68
+Attn (MAC) 26.67 48.65 97.95
+Attn (MAG) 25.70 48.60 96.70
+Attn (MAL) 2591 47.87 96.91
Linear Memory 28.49 46.97 85.34
w/o Convolution 28.73 45.82 90.28
w/o Momentum 28.98 45.49 87.12
w/o Weight Decay 29.04 45.11 85.60
w/o Persistent Memory 27.63 46.35 92.49

4.5 Ablation Study

Finally, we perform ablation studies on the different architectural choices in Titans. We consider our
neural memory module as a base model and then changing one component at a time: (1) replacing
deep memory with linear memory, removing (2) convolution, (3) momentum in the surprise measure,
(4) weight decay (or forgot mechanism), and (5) persistent memory. The results are reported in
Table 4. All components of neural memory design are positively contributing to its performance,
where the greatest contribution comes from weight decay, momentum, convolution, and persistent
memory, respectively.

The Effect of Architectural Design. To evaluate the effect of architecture design, we compare the
performance of three represented variants of Titans in three aspects of (i) language modeling, (ii)
commen-sense reasoning, and (iii) long context NIAH (BABILong) tasks. The results are reported in
Table 4. MAC and MAG have close performance in language modeling and common-sense reasoning
tasks, while MAC achieve significantly better performance in long-context NIAH. Both achieve better
performance than MAL. These results along with Figure 10, show a trade-off between fast training
and more expressive design.

We provide additional experimental results, including efficiency evaluation, BABILong benchmark,
the effect of deep memory as well as Titans performance on state tracking tasks in Appendix G.

5 Conclusion

In this paper, we present a neural long-term memory that, as a meta in-context learner, learns to
memorize at test time. The neural memory module is a recurrent model in nature, and is adaptively
memorizing tokens that are more surprising or are close to surprising tokens. Using this memory, we
present Titans architectures, and its three variants, in which we suggest to incorporate the memory
module as (1) a context, (2) gating, and (3) a layer. Our experimental evaluation on diverse tasks
tasks validate that Titans are more effective than Transformers and recent modern linear recurrent
models, specifically for long context.

Limitations. Next, we highlight some limitations and potential future directions:

* First, the long-term neural memory is a test time memorizer and so the in-context data is
compressed into its parameters. In some cases, this memorization can lead to security, safety,
and alignment challenges. Future study can be to understand if the long-term memory can
cause security, safety, and alignment issues, and if so, how one can mitigate it.

» The main focus of our paper has been on the design of long-term memory system that can
enhance the performance of the attention as a short-term memory. There are, however,
several important aspects that requires further study. For example, we leave the theoretical
guarantee on the capacity and memory management of Titans as a future study. It is notable
that after the initial public version of this work, Behrouz et al. [64] have provided theoretical
results on the memory capacity and memory management of deep memory modules.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To account for variability and support statistical validity, we report standard
deviations computed over multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: To facilitate reproducibility, we report accelerator type, memory capacity, and
runtime for key experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There are no violations of the NeurIPS Code of Ethics in this paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provided a discussion in the Appendix about the impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all external assets and explicitly acknowledge their licenses
and terms of use.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: This paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve any user studies.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No usage of LLMs in the methodology or experiments.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminaries

In this section, we discuss the notation and some background concepts that we use through the paper.
We let € RV *dn be the input, M be a neural network (neural memory module), Q, K, V be the
query, key and value of the attention mechanism, and M be the attention mask. When segmenting
the sequence, we use S(*) to refer to the i-th segment. Through the paper, we abuse the notation and
use subscripts to refer to a specific element of a matrix, vector, or segments. For example, we let S;Z)
be the j-th token in the i-th segment. The only exception is subscripts with ¢, which we reserved to
index recurrence over time, or the state of a neural network at time ¢. Given a neural network A and
a data sample x, we use N (z) (resp. N*(z)) to refer to the forward pass with (resp. without) weight
adjustment. Also, we abuse the notation and use NV'*) to refer to the k-th layer of the neural network.
In the following, we first, discuss the backgrounds for attention and its efficient variants followed by
areview of modern linear RNNs. Finally, we discuss a memory perspective of these architectures
that motivates us to design Titans.

A.1 Backgrounds

Attention. Transformers [1] as the de facto backbone for many deep learning models are based on
attention mechanism. Given input z € R¥ > causal attention computes output y € R >4 hased
on softmax over input dependent key, value, and query matrices:

Q=2Wgq, K = xWk, V =a2Wy, (14)
yi = i €xXp (Q;FKJ/V din) VJ
j=1 22:1 exXp (QIKZ/ \% din) ’
where Wq, Wi, and Wy, € R% > are learnable parameters. Despite the power and effectiveness

in recall, transformers need at least N x d operators to calculate the output, resulting in larger memory
consumption and lower-throughput for longer sequences.

15)

Efficient Attentions. To improve the memory consumption and throughput of softmax attention
for longer sequences, various studies focused on I/O aware implementations of attention [65, 66],
designing more efficient attention mechanisms by sparsifying the attention matrix [67-69], approxi-
mating the softmax [70], or developing kernel-based (linear) attentions [8, 71, 9, 72]. In this part, we
focus on the later, i.e., linear attentions, where the softmax in standard attention is replaced with an
alternative kernel function ¢(., .), such that ¢(z,y) = ¢(x)d(y). Accordingly, the attention can be
written as:

9Q _ 4(Q To(k;) 9@ 0
YT Z QTK i Z qsczz)w(m)’ Q)T Yy $(Ke) 1o

resulting in a higher-throughput as terms 3" =1 ¢(K;) and S 1—1 O(K) are re-using in each step.

When choosing the kernel as identity matrix [49], the above formulation can also be written in a
recurrent format:

My =M1+ KV, (17)
=QiM,, (18)

which allows efficient inference for linear attentions.

Modern Linear Models and Their Memory Perspective. As discussed earlier, one can define
learning as a process for acquiring effective and useful memory. Building upon this, one can see
the hidden state of Recurrent Neural Networks (RNNs) as a memory unit, which the model aims
to compress the information into. Accordingly, in a general form of recurrent neural network, the
hidden state can be treated as a memory unit and the recurrence process can be split into the read and
write operations in the memory unit. That is, we let z € RY ¥4 be the input, M € R is the memory
unit, and y € Rdn is the output, then the general form of the recurrent neural network is defined as:

My = f(Mi—1,24), Write Operation (19)
ye = g(My, z), Read Operation (20)
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where f(.,.) is the read and g(., .) is the write corresponding functions. Note that here the subscript
of M, shows the state of the memory at time ¢.

In this perspective, the recurrence formula of linear Transformers (see Equation 17) is equivalent
to additively compress and write keys and values, (K¢, V;), into a matrix-valued memory unit M.
Therefore, when dealing with long context data, this additive nature of the process results in memory
overflow, significantly damaging the performance of the model. To address this, studies have focused
on two promising directions: (1) Adding forget mechanism: several studies have presented adaptive
(data-dependent) forgetting gate mechanisms for linear models, where it can erase the memory when
it is needed. As examples of such models, we refer to GLA [9], LRU [31], Griffin [73], xLSTM [74],
and Mamba2 [30], which the later is also connected to the discretized version of traditional state
space models [45].(2) Improving the write operation: To overcome the additive nature of memory
write operation in traditional recurrent models, Widrow and Hoff [75] presented Delta Rule, in which
before adding a memory (i.e., a pair of key and value), the model first removes its past value. To
enhance the parallelizable training and scaling, Yang et al. [38] present a fast paralellizable algorithm.
Finally, very recently, Yang et al. [35] improved the DeltaNets by adding a forget gate.

Memory Modules. Memory has always been one of the core parts of the neural network designs [76,
12,77, 32]. The idea of seeing linear layers as the key-value (associative) memory system backs to
fast weight programs, in which dynamic fast programs are incorporated into recurrent neural networks
to serve as writable memory [76]. The two learning rules of Hebbian [78] and delta [79] are the most
popular learning rules for fast weight programs, which have been extensively explored in various
studies [80, 76, 81, 71, 82, 38, 35]. All these models, however, are based on momentary surprise,
missing the token flow in the sequences (see Section 2.1), and most of them lacks a forgetting gate,
resulting in a poor memory management.

We further discuss the connection of our architectures with recent models in Appendix F. Additional
related work are discussed in Appendix B.

B Related Work

There are diverse perspectives that can independently lead to the design of Titans or its components.
Accordingly, to further situate our work in a broader context, we review three categories of studies:

B.1 Linear Recurrent Models

Recently, to address the computational cost of Transformers in both training and inference, linear
recurrent models have attracted much attention [83], mainly due to their fast inference and training.
The first generation of models—such as RetNet [49], LRU [31], RWKYV [84], S5 [37], and S4 [85]-uses
data-independent transition matrix/decay mechanism. The second generation of such models started to
incorporate gating mechanism, a widely used techniques in traditional RNNs [86-88], into such linear
architectures—e.g., Griffin [73], SSMs [89, 54, 30, 45], RWKV6 [90]. The third generation of linear
recurrent models are based on more complex memory updating rule based on meta-learning, online
learning, and/or delta-rule, resulting in more expressive and effective models such as: Longhorn [36],
Gated DeltaNet [35], TTT [21], and DeltaNet [71]. Our LMM model can be seen as the next
generation of such models, in which we incorporate the token flow into the memory updating
mechanism, having more powerful memory updating process. See Appendix F for a detailed
discussion of different recurrent models and Titans.

B.2 Transformer-based Architectures

Transformers. Transformers [1] as the de facto backbone for many deep learning models are based
on attention mechanism [91]. They, however, suffer from quadratic computational cost, limiting
their ability to scale to long context window. To improve the memory consumption and throughput
of softmax attention for longer sequences, various studies focused on I/O aware implementations
of attention [65, 66], designing more efficient attention mechanisms by sparsifying the attention
matrix [67-69, 92, 69, 93], approximating the softmax [70], or developing kernel-based (linear)
attentions [8, 71, 9, 72].
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Segment-based Transformers. Another line of research to improve the efficiency of Transformers
is segment-based or Chunk Transformers [68]. The main drawback of chunk Transformers is that
segments are fully separated and so the context window is limited to the length of the chunks. To
address this issue, various studies discuss the importance of a memory so it can help the model to
transfer information across chunks [94-99, 98, 100, 101, 96, 97]. The key differences of Titans with
these models are: (1) The memory in such models are simple small size vectors, lacking expressive
power to compress complex information; (2) The memory module lacks forget mechanism, leading
to a fast memory overflow; (3) only focus on momentary surprise, missing the information flow.
More specifically, recalling Recurrent Memory Transformers (RMT) [94, 95, 100], one can treat
Titans (MAC) as the generalization of RMT, where we use a neural memory module instead of
a vector-valued small size memory. In addition to models with fixed-size vector-valued memory,
MELODI [102] also discusses more expressive memory system where the memory is updated through
append operation over time. This model can be seen as a special case of Titans, where memory is
static.

Memory for Large Language Models. Another interesting research direction has been to incorporate
external memory modules to LLMs after training [103—105]. Such models are different from our
approach as we incorporate the memory as a part of initial architecture and so we train it in an
end-to-end manner. Also, most of these explicit memory modules suffer from the same limitations
as chunk-based Transformers (mentioned above). For a detailed discussion of such models, we
refer to the recent study of Wang et al. [106]. Several studies also discuss non-parametric memory
modules for Transformers [107, 108]. While these methods are fundamentally different from ours
(and potentially can be used as complementary components), we have provided experimental results
to compare such methods with Titans in long context tasks. Recently, Zancato et al. [109] also present
a hybrid model that uses state-space-models as the long-term memory for attention module. This
design is fundamentally different from ours as: (1) Memory: the fading memory is a Mamba, which
uses a vector-valued memory, but Titans use a neural deep architecture as the memory, resulting in
a potentially more powerful memory. (2) Token Selection: While we use a surprise metric based
on gradient descent with momentum (measures the encoding of tokens), B'MOJO uses a dictionary
and finds the shortest sequence that is currently unknown to assign. This selection is based on the
actual sequence not the encoding (conceptual representation), and so might face issue in memorizing
different words with the same concept. (3) In Titans, Memory helps attention to have access to
relevant long past, and then attention helps the memory to filter important information of current
context (inter-connected memory system), while in B'MOJO, only fading memory is helping attention.
(4) Forget gate, (5) Past surprise metric in Titans can consider the flow in the tokens.

B.3 Test Time Training and Fast Weight Programs

Memory Design and Augmentation with Memory. In the literature, a substantial research effort
have been toward designing memory modules that are capable of either memorizing the knowledge
abstraction (e.g., persistent memory) [39], or memorizing the data-dependent information (also
known as contextual memory), through recurrence [97, 94, 95], Transformers [110, 32-34, 111, 99],
gradient [81, 23], or other learning paradigms [112, 113]. These memory models, however, either (1)
are based on momentary surprise, missing the data flow and events, (2) lack forget mechanisms to
remove the memory, leading to a fast memory overflow (3) are fixed-size shallow (matrix valued)
memory, resulting in poor performance in long context, and (4) are based on fixed parameters at test
time, lacking test time adaption.

Fast Weight Programs. The idea of seeing linear layers as the key-value (associative) memory system
backs to fast weight programs, in which dynamic fast programs are incorporated into recurrent neural
networks to serve as writable memory [71, 76, 114]. The two learning rules of Hebbian [78] and
delta [79] are the most popular learning rules for fast weight programs, which have been extensively
explored in various studies [80, 76, 81, 71, 82, 38, 35]. All these models, however, are based on
momentary surprise, missing the token flow in the sequences (see Section 2.1), and most of them lacks
a forgetting gate, resulting in a poor memory management. In this context, deep memory has also
been discussed by Irie et al. [82], where they suggest a 2-layer MLP as the memory. However, there
are critical differences with Titans: (1) The update rule in Titans is based on both momentary and past
surprise, (2) The deep memory in Titans uses input-dependent per-layer parameters, which allows
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Figure 4: Attention masks for different variants of Titans.

each layer flexibly update its weights. Without this, the 2-layer memory do not show improvement in
larger scale; (3) the desing of Titans is parallelizable and can be trained in larger scales.

Test Time Training. The key ideas of learning at test time or learning to learn (i.e., [115]) backs to
very early studies on local learning [116], in which each test data sample is trained on its neighbors
before making a prediction [117, 22]. This approach further has shown promising performance in
vision tasks [118, 119], mostly due to their ability to mitigate out-of-distribution samples. The most
similar studies to ours in this direction are MNM [81] and TTT-layer [21], which we discussed the
key differences in Appendix F.

C Persistent Memory

Next, we discuss the motivation of persistent memory from three perspective:

Memory Perspective. As discussed earlier, our neural long-term memory is a contextual memory,
in which all parameters are input-dependent. An effective memory system, however, also needs
input-independent parameters to store the abstraction of the task knowledge. That is, mastering a task
requires the memorization of the knowledge that how the task can be done, and these parameters are
responsible for storing such knowledge.

Feedforward Network Perspective. In the Transformer architectures, there are fully connected
layers after the attention module, which are shown to be similar to attention weights but with
data-independent parameters. That is, Sukhbaatar et al. [39] showed that replacing the ReLU in
fully connected layers with Softmax can results in an attention-like weights, in which weights are
data-independent:

FFN(z) = Wy Softmax (Wgkx). (1)

In fact, Wi and Wy, are acting similar to K and V' matrices in attention module when they are
input-independent. The persistent memory weights are expected to have the same functionality,
meaning that using them in the first part of the sequence leads to having input-independent attention
weights [39].

Technical Perspective. Attention with causal mask has implicit bias toward initial tokens in the
sequence, and so attention weights are almost always highly active for initial tokens, resulting in

performance damage. From the technical perspective, these learnable parameters at the start of the
sequence can mitigate such effect by redistributing the attention weights more effectively [120, 121].

D How to Incorporate Memory

D.1 Memory as a Gate

The overall attention mask of this design is shown in Figure 4b. In this design, sliding window
attention acts as a precise short-term memory, while the neural memory module is acting as a fading
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Figure 5: Memory as a Gate (MAG) Architecture. This architecture, similarly, has the three
branches of (1) core, (2) contextual memory, and (3) persistent memory. It, however, incorporates
only persistent memory into the context and combine memory with the core branch using a gating
mechanism. At test time, the behavior is the same as Figure 2.
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Figure 6: Memory as a Layer (MAL) Architecture. In this architecture, the memory layer is
responsible to compress the past and current context before the attention module.

memory for the model. This architecture design can also be seen as a multi-head architecture where
the structure of heads are different [40].

D.2 Memory as a Layer

The last variant uses the neural Memory As a Layer (MAL) of a deep neural network (see Figure 6).
This architecture design is more common in the literature, where the hybrid models stack recurrent
models with full or sliding window attentions. Given input x, we have:

i=[p p2 ... pn,] || @ (22)
y = M(2), (23)
0 = SW-Attn (y), (24)

where SW-Attn is sliding window attention. The main drawback of this design is that the power of
the model is limited by each of the layers and so it cannot take advantage of the complementary data
processing of attention and neural memory module. In our experiments, for evaluating memory in
this design, we use a similar architecture as H3 [122], where we replace the the sequence model with
our neural memory module (LMM).

Memory Without Attention. Although in the above, we discussed MAL as the combination of
LMMs and attention in a sequential manner, one simple variant of MAL is to treat LMM as a sequence
model without any attention. From the memory perspective, as discussed in Section 1, we expect
each part of the memory system to work independently, even if other components are disturbed.
Therefore, a long-term memory module should still be a powerful model even without short-term
memory (i.e., attention). We refer to this variant as LMM or Titans (LMM) in our experiments. We
provide additional discussions on the connection of Titans and other modern recurrent models in
Appendix F.
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Table 5: Architectural Details.

Model Block Dim Head Peak LR Token

170M 12 768 16 3e-3 15B
340M 24 1024 16 1.5e-3 15B
760M 24 1536 16 1.25e-3 30B
1.3B 18 2048 8 Te-4 100B

E Experimental Details

E.1 Architecture Details

We report the number of blocks, heads, size of hidden dimension, and peak of learning rate in Table 5.
In the training, we follow the training procedure of Yang et al. [35], and use LLama 2 tokenizer with
a vocabulary size of 32K and use training length of 4K tokens (2K for SWA). We fixed the persistent
memory size (# tokens) to 128, and use 256 memory tokens to encode the past data (i.e., output of the
long-term memory). We employ AdamW optimizer with learning rate of 4e-4 with cosine annealing
schedule with batch size of 0.5M tokens, and weight decay of 0.1. We use: (1) chunk size: which is
16. The smaller the chunk is the better performance we can get but with the cost of slower model; (2)
segment size: in which, we follow previous studies and use 2048 as sliding window (when exists)
and 512 as segment size.

E.2 Language Modeling and Common-sense Reasoning Datasets

Following recent studies on linear recurrent models [35, 30, 38], we use Wikitext [123], LMB [124],
PIQA [125], HellaSwag [126], WinoGrande [127], ARC-easy (ARC-e) and ARC-challenge (ARC-
¢) [128], SIQA [129], and BoolQ [130]. Also, the baselines results for 400M models are from the
reported results by Yang et al. [35].

F Long-term Memory Module (LMM) as a Sequence Model

In this section, we discuss how LMM as a sequence model is connected to modern linear recurrent
models. For the sake of simplicity, we start with a linear memory, where M, = W, € R%*dn_In
this case, our objective function becomes £(M; z¢) = 5 [ Mk, — vy Hg, in which we use gradient
descent with momentum and weight decay for the optimization. Accordingly, revisiting the recurrent
formula in Equation 3:

Mt = diag (]. — Olt) Mt + St (25)
St = diag (7715) St—l — diag (975) (Mt_lk;rkt — VtTkt) . (26)

LMM is Generalized Gated DeltaNet. As discussed by Yang et al. [35], DeltaNet [38] can
alternatively be interpreted as an online learning problem that optimizes the £ = % ISik: — v Hg,
resulting in:

Sit1 =S¢ — 6, VL =S, (I-0kk/)+0,vik]. (27)

In this formulation, Gated DeltaNet is the same as above but with an additional weight decay term [35].
Comparing Equation 25 and Equation 27, we can see that setting 77, = 0 results in both formulations
to be equivalent. Accordingly, we can say LMM is generalizing the very recent study of Gated
DeltaNet [35] from three aspects:

e Momentum-based Rule: The Delta Rule is based on momentary surprise, meaning that
the flow of tokens cannot affect the memory update rule. LMM, however, is based on a
momentum rule, which consider both past and momentary surprise.

* Deep Memory: While Gated DeltaNet is limited to a linear (matrix-valued) memory as it
requires finding the closed recurrence form, LMM allows using deep memory module by
using a gradient-based formulation, resulting in higher expressive power.
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¢ Non-Linear Recurrence: While DeltaNet and Gated DeltaNet are based on linear recurrence,
our LMM is using inter-chunk non-linear recurrence and intra-chunk linear recurrence. This
design allows LMM having a higher expressive power.

* Channel-wise Forget Gate: Contrary to Gated DeltaNet, which uses a shared scalar forget
gate across all channels, LMM uses channel-wise forget gate, which is more expressive.

Here, we discussed Gated DeltaNet as a sample of recent generation of recurrent models. Similar
approaches such as RWKV-7 [131] are also using the same formulation and loss function, and so
LMM is generalizing all such models. Note that RWKV-7 is also using channel-wise forget gate and
so is similar to LMM in that manner.

LMM is Generalized Longhorn. Similar to DeltaNet, Longhorn [36] uses the same loss function
but it derives the closed form using implicit online learning:

St+1 = St (I — (Stktk;r) + 5tvtk:, (28)
04
140,k k;
flow. Therefore, in addition two the abovementioned aspects of (1) Momentum-based Rule,
(2) Deep Memory, and (3) Non-Linear Recurrence, LMM has the advantage of using an additional
(4) Forget Gate, leading to a better memory management.

where §; = It, however, lacks a forgetting gate, resulting in a faster memory over-

LMM is Generalized TTT Layer. To the best of our knowledge, TTT [21], is the only modern linear
recurrent models with a gradient-based updating rule. In addition to different architectural designs
and also objective functions, our LMM has three key differences with presented TTT layers [21]:

1. Forgetting Mechanism: TTT layers are updating memory at each time, without having the
chance to forget the past data. Accordingly, when fixing the memory size, the model cannot
manage the memory for long sequences. A forget mechanism, such as LMM’s, allows
clearing the memory when very past information is not needed anymore. We show that in a
general case, this forget mechanism is equivalent to weight decay and provide a fast method
to incorporate it into the parallel training.

2. Momentum-based Update Rule: TTT layers are based on momentary surprise, meaning that
the flow of tokens cannot affect the memory update rule. LMM, however, is based on a
momentum rule, which consider both past and momentary surprise. See Section 2.1 for the
motivation of this design.

3. Deep Memory: While TTT-layers allows for deeper memory, the advantages/disadvantages
of such deeper memory modules have not been experimentally evaluated. Also, we observed
that without our proposed layer-wise parameters, deep memory cannot show its advantages
over shallow memory.

To the best of our knowledge, our neural long-term memory module is the first linear recurrent model
with momentum-based update rule.

Finally, as a key difference with all the above and other recent linear recurrent studies, note that the
hybrid variants of modern linear models—such as Griffin [73], DeltaNet [38], Gated DeltaNet [35],
H3 [122], Mamba?2 [30], Samba [132], etc.—all are based on sequential layer-wise design. We present
Titans to show how effectively one can incorporate such memory modules into an architecture.

G Additional Experimental Results

G.1 BABILong Benchmark

In this section, we use a hard task from BABILong benchmark [53], in which the model needs to
reason across facts distributed in extremely long documents. We follow the original experimental
setup and training process in the benchmark. There are two settings: (1) Few-shot setting, in
which we use large pre-trained models, and (2) fine-tuning setting, where we fine-tune the MAC
variant of Titans to compare it with other fine-tuned baselines. The results for few-shot setting are
reported in Figure 9a. In this setup, we can see Titans outperform all baselines—i.e., Mamba2.8B [45],
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Figure 7: The effect of memory depth on the perplexity. Deeper long-term memory results in better
scaling in longer sequences.

RWKV-6-7B [90], RecurrentGemma-9B [51], Gemma-9B [133], Llama3.1-8B [48], GPT-4, and
GPT40-mini [50].

In the fine-tuning setup, we compare the small fine-tuned version of Titans (MAC) with: (i) the fine-
tuned version of small models (almost the same number of parameters as Titans) such as Mamba [45],
RMT [94], (ii) large models with Retrieval-Augmented Generation (RAG) [134] such as Llama3.1-
8B [48], and (iii) extremely large models such as GPT-4 [50], GPT40-mini, Qwen2.5-72B [135], and
Llama3.1-70B [48]. Baseline results are reported by [53]. The results of Titans and baselines are
reported in Figure 9b. Titans outperform all models even extremely large models like GPT4. Also,
compared to Transformer-based with memory models like RMT, Titans show better performance
mainly due to their powerful memory.

It is notable that, in the above we aimed to compare sequence modeling backbones as the choice
of different architectures can be orthogonal to this our work. However, there are other choices of
architectures that can provide even better performance than Titans in BABILong benchmark. For
example, ARMT [95] achieves 98, 98, 98, 98, 98, 98, 97, 95, 93, 77 for 2K, 4K, 8K, 16K, 32K, 64K,
128K, 512K, 1M, 10M sequence length respectively. This performance is better than Titans’ results.
However, one can simply incorporate our memory module into ARMT update and so achieve a better
performance. To validate this claim, we also added a new hybrid variant that uses GPT2 + MAC +
MAL. The results are 99, 99, 98, 97, 98,96, 96, 95, 94, 79 for the above sequence length, respectively.

G.2 Language Modeling and Common-Sense Reasoning
G.3 The Effect of Deep Memory

In this section, we evaluate the effect of deep memory in both wall-clock training time and model
performance’. To this end, we focus on different variants of our neural memory module, where
Ly =1,2,3,4. We also use Mamba as a baseline for the model performance. For a fair comparison,
we use the same training process for all models and train them on a subset of the Pile dataset [63].

We report the perplexity of our models and baselines as the function of the sequence length in Figure 3.
Interestingly, with the increase of memory depth, L 14, the model can achieve better perplexity over
all sequence length. Also, deeper memory modules are more robust to the sequence length when the
model has less number of parameters. With the increase of the number of parameters, all models
show better performance on longer sequences.

We also evaluate the effect of memory depth (L = 1,2, 3,4) on the training throughput. We report
the training throughput (the number of tokens per second) as the function of sequence length in
Figure 8. All models scale linearly with respect to the context length (i.e., constant trend in the
number of tokens per second with respect to sequence length). Also, by increasing the memory depth,
as expected, we can see a linear trend that a deeper memory results in a slower training. Therefore, it
is not always efficient to use deeper memory modules, showing a trade-off between effectiveness and
efficiency.

2Note that, in this experiment, we only focus on the neural memory module to evaluate the effect of memory
depth in the memorization process. Combining neural memory with attention as we do in Titans variants, can
additionally enhance the performance of the model over long sequences.
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Table 6: Performance of Titans and recurrent- and Transformer-based baselines on language modeling
and common-sense reasoning tasks. Hybrid models are marked with *. The best results among

simple and hybrid models are highlighted.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppll ppl L acc 1 acctT accnt acct acc accnt acct acc T 1

340M params / 15B tokens

Transformer++ 31.52  41.08 | 30.76 6298 3476  50.53 4521 2405 36.81 5824 4292
RetNet 3250 49.73 | 2824 62.61 34.15 50.91 44.27 23.62 36.79 59.72 4254
GLA 28.51 43.02 | 2873 6405 3596 50.00 54.19 2429  37.13 5839  44.09
Mamba 30.83 4021 | 2994 63.79 3588  49.82 49.24 2456 3541 60.07 43.59
DeltaNet 28.65 4730 | 2843 6352 3595 49.63  52.68 2537 3796 5879 44.04
TTT 2744 3419 | 30.06 6397 3571 50.08  53.01 26.11 3732 59.83 4451
Gated DeltaNet 27.01 3094 | 34.11 63.08 38.12 51.60 5528 2677 3489 59.54 4542
Titans (LMM) 26.18 2997 | 3498 6473  39.61 51.85  55.60 28.14 3452 5999 46.17
Titans (MAC)* 2543  28.13 | 36.00 6532 4035 51.21 58.17 29.00 38.63 60.18 47.36
Titans (MAG)* 25.07 2872 | 36.71 6488 40.56 5249 57.72 28.16  39.75 60.01 47.54
Titans (MAL)* 2469 2880 | 3574 6497 3944 5197 56.58 2821  38.14 5732 4655
400M params / 15B tokens
Transformer++ 30.63  37.37 | 29.64 6427 3772 5153 5495 2736  38.07 61.59 45.64
RetNet 2992 46.83 | 29.16 6523 3697 51.85 56.01 2755 3730 59.66 4547
HGRN2 3233  47.14 | 26.12 6452 3545 5224 5597 25.51 3735 59.02 4452
GLA 2796 36.66 | 27.86 6594 3741 49.56  56.01 2636 3894 59.84 4524
Mamba 2922 39.88 | 29.82 6572 3793 50.11 58.37 26770 3776 61.13 4594
Mamba2 2634 3319 | 32.03 6577 39.73 52.48  59.00 27.64 3792 60.72 4691
DeltaNet 27.69 44.04 | 2996 6452  37.03 50.82  56.77 27.13 3822 60.09 4557
TTT 26.11 3152 | 3325 6570  39.11 51.68  58.04 2899 3826 59.87 46.86
Gated DeltaNet 2547 2924 | 3440 6594 4046 5146  59.80 28.58 3743 60.03 47.26
Samba* 2532 2947 | 36.86 66.09 3924 5145 60.12 2720 38.68 5822 4723
Gated DeltaNet-H2* | 24.19 28.09 | 36.77 6643 40.79  52.17  59.55 29.09  39.04 58.56 47.69
Titans (LMM) 25.03 2899 | 3521 6585 40091 52.19 59.97 2920 38.74 60.85 47.83
Titans (MAC)* 25.61 2773 | 3692 6639 41.18 5280 60.24 29.69  40.07 6193 48.65
Titans (MAG)* 2359 2781 | 3724 66.80 4092 5321 60.01 2945 3991 6128 48.60
Titans (MAL)* 2393 27.89 | 36.84 6629 4074 5226  59.85 29.71 3892 5840 47.87
760M params / 30B tokens
Transformer++ 2521 27.64 | 3578 6692 42.19 5195 60.38 3246 3951 6037  48.69
RetNet 26.08 2445 | 3451 67.19 41.63 52.09 63.17 32778 3836 57.92 4846
Mamba 28.12 2396 | 32.80 66.04 39.15 5238 6149 3034 3796 57.62 4722
Mamba2 2294 2837 | 33.54 6790 4271 49.77  63.48 31.09 40.06 58.15 4834
DeltaNet 2437 2460 | 37.06 6693 4198 50.65 64.87 31.39  39.88 59.02 48.97
TTT 24.17 2351 | 3474 6725 4392 5099 64.53 33.81 40.16 59.58 47.32
Gated DeltaNet 21.18 22.09 | 3554 68.01 4495 50.73  66.87 33.09 3921 59.14  49.69
Samba* 20.63 2271 | 39.72 69.19 4735 52.01 66.92 3320 3898 6124 51.08
Gated DeltaNet-H2* | 19.88 20.83 | 39.18 6895 4822 5257 67.01 3549 3939 61.11 5149
Titans (LMM) 20.04 2196 | 3740 69.28 4846 5227  66.31 3584  40.13 6276  51.56
Titans (MAC) 1993  20.12 | 39.62 7046 49.01 53.18  67.86 36.01 41.87 6205 5251
Titans (MAG) 18.61 19.86 | 40.98 7025 4894 5289 68.23 36.19 4038 62.11 52.50
Titans (MAL) 19.07 2033 | 40.05 69.99 4882 53.02 67.54 3565 3098 61.72 50.97
1.3B params / 100B tokens
Transformer++ 18.53 1832 | 42.60 70.02 5023 53.51 68.83 35.10 4066 57.09 5225
RetNet 19.08 17.27 | 40.52 70.07 49.16 54.14 67.34 3378  40.78 6039  52.02
Mamba2 16.56 12.56 | 45.66 71.87 55.67 5524 7247 37.88 4020 60.13 54.89
DeltaNet 1771 16.88 | 4246 70.72 5093 5335  68.47 35.66 4022 5529 52.14
Gated DeltaNet 1642 12,17 | 46.65 7225 5576 5745 71.21 3839 40.63 60.24 5532
Samba* 16.13  13.29 | 4494 7094 5342 5556  68.81 36.17 3996 62.11  54.00
Gated DeltaNet-H2* | 1591 12.55 | 48.76  72.19 56.88 57.77 71.33 39.07 4191 6155 56.18
Titans (LMM) 15.60 1141 | 49.14 73.09 5631 59.81 72.43 40.82  42.05 60.97 56.82
Titans (MAC) 1498 11.19 | 49.72 73,56  57.10 5947 7295 4196 42,12 60.74 57.32
Titans (MAL) 1513 11.28 | 50.10 7329 56.74 59.52  73.09 41.37 4188 61.09 57.14

G.4 Efficiency

In this part, we compare the efficiency of our neural memory as well as Titans with state-of-the-art
sequence models. The training throughput of models for different sequence length x batch
size are reported in Figure 10. Comparing recurrent models, including our neural memory module,
we can see our memory module is slightly slower than Mamba2 and Gated DeltaNet, mainly due to:
(1) having deep memory and more expressive transition process (memory update), and (2) highly
optimized kernel in the implementation of Mamba2. Interestingly, Titans (MAL) are faster than
baselines as well as the memory module. The main reason for this better throughput is the highly
optimized kernel of Flash-Attention [66], which is used for implementing SWA and full attention
module in Titans.
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Figure 9: Performance of Titans and baselines on BABILong benchmark. Titans (MAC) outperforms
all baselines, including extremely large models, e.g., GPT4. We highlight the fact that ultra-large
architectures (i.e., Llama, Qwen, GPT-4) are perform in zero-shot setting, while other small models
(i.e., Titans, Mamba, RMT) are fine-tuned. For this, we have followed the original setup in BABILong
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Table 7: Performance on long-term forecasting. The best results are highlighted .
Neural Memory Simba iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTml | 0358 0387 | 0383 0396 | 0407 0410 | 0414 0407 | 0387 0400 | 0513 0496 | 0419 0419 | 0400 0406 | 0.403 0407
ETTm2 | 0261 0309 | 0271 0327 | 0288 0332 | 0286 0327 | 0281 0326 | 0.757 0610 | 0358 0404 | 0291 0333 | 0350 0.401
ETThl | 0420 0421 | 0441 0432 | 0454 0447 | 0446 0434 | 0469 0454 | 0529 0522 | 0541 0507 | 0458 0450 | 0456 0452
ETTh2 | 0336 0382 | 0361 0391 | 0383 0407 | 0374 0398 | 0387 0407 | 0.942 0.684 | 0.611 0550 | 0.414 0427 | 0559 0515
ECL 0162 0261 | 0169 0274 | 0.178 0270 | 0219 0298 | 0205 0290 | 0244 0334 | 0251 0344 | 0.192 0295 | 0212 0300
Traffic | 0415 0289 | 0493 0291 | 0428 0282 | 0.626 0378 | 0.481 0304 | 0550 0304 | 0.760 0473 | 0.620 0336 | 0.625 0383
Weather | 0231 0265 | 0255 0280 | 0258 0278 | 0272 0291 | 0259 0281 | 0259 0315 | 0271 0320 | 0259 0287 | 0265 0.317
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Figure 10: Training throughput comparison of Titans and baselines.
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Table 8: Downstream evaluation of pre-trained DNA models on GenomicsBenchmarks [136]. We
report top-1 classification accuracy (%).

Model Enhancer Cohn  Enhancer Ens  Human Reg.  Non-TATA Promoters Human OCR Ens.
CNN 69.5 68.9 93.3 84.6 68.0
DNABERT 74.0 85.7 88.1 85.6 75.1

GPT 70.5 83.5 91.5 87.7 73.0
HyenaDNA 74.2 89.2 93.8 96.6 80.9
Transformer++ 734 89.5 89.9 94.4 79.5
Mamba 73.0 - - 96.6 -

Based 74.6 89.5 89.5 96.8 79.0
Neural Memory Module 752 89.6 89.3 96.6 79.9

Table 9: The performance of our model compared to baselines.

SWDE NQ DROP FDA SQUAD TQA

Transformers 84.9 23.0 28.4 72.5 48.1 64.4
Gated DeltaNet 63.2 19.1 26.7 334 39.6 59.7

Titans (LMM) 65.1 207 272 3173 42.6 61.0

G.5 Time Series Forecasting

To show the effectiveness of our memory module in a broader tasks, we also evaluate its performance
in time series forecasting tasks. To this end, we use Simba framework [41] for time series forecasting,
and replace its Mamba module with our neural memory. We report the results on common time
series forecasting benchmark datasets—ETT, ECL, Traffic, and Weather [6]. The results are reported
in Table 7. Our neural memory module is outperforming all baselines, including Mamba-based,
linear-based, and Transformer-based architectures.

G.6 DNA Modeling

In order to understand the capability of Titans beyond natural language, we further evaluate the
performance of our neural memory module on DNA modeling tasks. To this end, we evaluate
pre-trained models on the downstream tasks in GenomicsBenchmarks [136]. We follow the same
experimental setups from Nguyen et al. [137], and re-use the reported results of baselines by Arora
et al. [70]. The performance of Titans (LMM) and baselines are reported in Table 8. We find that
LMM is competitive with state-of-the-art architectures across different downstream genomics tasks.

G.7 In-context Recall Tasks

In-context recall is one of the challenging benchmarks for recurrent neural networks. In this section,
we show that our Titan due to its design of surprise performs favorably compared to other recurrent
neural networks (note that Gated DeltaNet itself outperforms other modern recurrent neural networks),
achieving a closer performance to Transformers.

G.8 Synthetic Benchmark of MAD
We evaluate the performance of Titans (LMM) on MAD benchmark, a synthetic benchmark that

evaluate the performance of models in recall, memorization, compression, and copying tasks [138].
The results are reported in Table 10.
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Table 10: Performance of Titan and baselines on the synthetic benchmark of MAD [138]. Titan
outperforms all the baselines, including Transformers.

Selective

Compression  (Noisy) ICR  Fuzzy ICR Copying Memorization
Transformers 49.4 100 48.2 95.9 83.8
Gated DeltaNet 44.8 100 325 96.2 81.7
Titans 49.6 100 49.7 99.4 83.5
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