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Abstract

It is well understood that client-master communication can be a primary bottleneck in
federated learning (FL). In this work, we address this issue with a novel client subsampling
scheme, where we restrict the number of clients allowed to communicate their updates back
to the master node. In each communication round, all participating clients compute their
updates, but only the ones with “important” updates communicate back to the master. We
show that importance can be measured using only the norm of the update and give a formula
for optimal client participation. This formula minimizes the distance between the full update,
where all clients participate, and our limited update, where the number of participating
clients is restricted. In addition, we provide a simple algorithm that approximates the optimal
formula for client participation, which allows for secure aggregation and stateless clients, and
thus does not compromise client privacy. We show both theoretically and empirically that for
Distributed SGD (DSGD) and Federated Averaging (FedAvg), the performance of our approach
can be close to full participation and superior to the baseline where participating clients are
sampled uniformly. Moreover, our approach is orthogonal to and compatible with existing
methods for reducing communication overhead, such as local methods and communication
compression methods.

1 Introduction

We consider the standard cross-device federated learning (FL) setting (Kairouz et al., 2019), where the
objective is of the form

min
x∈Rd

[
f(x) :=

n∑
i=1

wifi(x)
]
, (1)

where x ∈ Rd represents the parameters of a statistical model we aim to find, n is the total number of clients,
each fi : Rd → R is a continuously differentiable local loss function which depends on the data distribution
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Di owned by client i via fi(x) = Eξ∼Di
[f(x, ξ)], and wi ≥ 0 are client weights such that

∑n
i=1 wi = 1.

We assume the classical FL setup in which a central master (server) orchestrates the training by securely
aggregating updates (Du & Atallah, 2001; Goryczka & Xiong, 2015; Bonawitz et al., 2017; So et al., 2021),
i.e., the master only has access to the sum of updates from clients without seeing the raw data.

1.1 Motivation: Communication Bottleneck in Federated Learning

It is well understood that communication cost can be a primary bottleneck in cross-device FL, since
typical clients are mobile phones or different IoT devices that have limited bandwidth and availability
for connection (Van Berkel, 2009; Huang et al., 2013). Indeed, wireless links and other end-user internet
connections typically operate at lower rates than intra-datacenter or inter-datacenter links and can be
potentially expensive and unreliable. Moreover, the capacity of the aggregating master and other FL system
considerations imposes direct or indirect constrains on the number of clients allowed to participate in each
communication round. These considerations have led to significant interest in reducing the communication
bandwidth of FL systems.

Local Methods. One of the most popular strategies is to reduce the frequency of communication and
put more emphasis on computation. This is usually achieved by asking the devices to perform multiple
local steps before communicating their updates. A prototype method in this category is the Federated
Averaging (FedAvg) algorithm (McMahan et al., 2017), an adaption of local-update to parallel SGD, where
each client runs some number of SGD steps locally before local updates are averaged to form the global update
for the global model on the master. The original work was a heuristic, offering no theoretical guarantees,
which motivated the community to try to understand the method and various existing and new variants
theoretically (Stich, 2019; Lin et al., 2018; Karimireddy et al., 2019; Stich & Karimireddy, 2020; Khaled
et al., 2020; Hanzely & Richtárik, 2020).

Communication Compression Methods. Another popular approach is to reduce the size of the object
(typically gradients) communicated from clients to the master. This approach is referred to as gradi-
ent/communication compression. In this approach, instead of transmitting the full-dimensional gradi-
ent/update vector g ∈ Rd, one transmits a compressed vector C(g), where C : Rd → Rd is a (possibly
random) operator chosen such that C(g) can be represented using fewer bits, for instance by using limited
bit representation (quantization) or by enforcing sparsity (sparsification). A particularly popular class of
quantization operators is based on random dithering (Goodall, 1951; Roberts, 1962); see Alistarh et al.
(2017); Wen et al. (2017); Zhang et al. (2017); Ramezani-Kebrya et al. (2019). A new variant of random
dithering developed in Horváth et al. (2019) offers an exponential improvement on standard dithering. Sparse
vectors can be obtained by random sparsification techniques that randomly mask the input vectors and
preserve a constant number of coordinates (Wangni et al., 2018; Konečný & Richtárik, 2018; Stich et al., 2018;
Mishchenko et al., 2019; Vogels et al., 2019). There is also a line of work (Horváth et al., 2019; Basu et al.,
2019) which propose to combine sparsification and quantization to obtain a more aggressive combined effect.

Client Sampling/Selection Methods. In the situation where partial participation is desired and a budget
on the number of participating clients is applied, a careful selection of the participating clients can lead to
better communication complexity, and hence faster training. In other words, some clients will have “more
informative” updates than others in any given communication round, and thus the training procedure will
benefit from capitalizing on this fact by ignoring some of the worthless updates (see Figure 1). We refer the
readers to Section 4.1 for discussions on existing client sampling methods in FL and their limitations.

1.2 Contributions

We address the communication bandwidth issues appearing in FL by designing a principled optimal client
sampling scheme with client privacy and system practicality in mind. We show that the ideas presented in
the previous works on efficient sampling (Horváth & Richtárik, 2019) and sparsification (Wang et al., 2018;
Wangni et al., 2018) can be adapted to be compatible with FL and can be used to construct a principled
optimal client sampling scheme which is capable of identifying the most informative clients in any given
communication round. Our contributions can be summarized as follows:
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Figure 1: Optimal client sampling: in each communication round, all participating clients compute their
updates, but only the ones with “important” updates communicate back to the master.

• Inspired by Horváth & Richtárik (2019), we propose an adaptive partial participation strategy for
reducing communication in FL. This strategy relies on a careful selection of clients that are allowed
to communicate their updates back to the master in any given communication round, which then
translates to a reduction in the number of communicated bits. We obtain this strategy by properly
applying the sampling procedure from Horváth & Richtárik (2019) to the FL framework.

• Specifically, building upon the importance sampling results in Horváth & Richtárik (2019, Lemma 1),
we obtain an optimal adaptive client sampling procedure in the sense that it minimizes the variance
of the master update for any budget m on the number of participating clients, which generalizes the
theoretical results in Zhao & Zhang (2015) that only applies to m = 1.

• Inspired by the greedy algorithm from Wangni et al. (2018, Algorithm 3) which was originally
designed for gradient sparsification, we obtain an approximation to our optimal sampling strategy
which only requires aggregation, fulfilling two core privacy requirements of FL: to our knowledge,
our method is the first principled importance client sampling strategy that is compatible with both
secure aggregation and stateless clients.

• Our optimal sampling method is orthogonal to and hence compatible with existing approaches to
communication reduction such as communication compression and/or local updates (cf. Section 3.2).

• We provide convergence guarantees for our approach with Distributed SGD (DSGD) and Federated
Averaging (FedAvg), relaxing a number of strong assumptions employed in prior works. We show both
theoretically and empirically that the performance of our approach is superior to uniform sampling
and can be close to full participation.

• We show both theoretically and empirically that our approach allows for larger learning rates than the
baseline which performs uniform client sampling, which results in better communication complexity
and hence faster convergence.

1.3 Organization of the Paper

Section 2 describes the proposed optimal client sampling strategy for reducing the communication bottleneck
in federated learning. Section 3 provides convergence analyses for DSGD and FedAvg with our optimal client
sampling scheme in both convex and non-convex settings. Section 4 reviews prior works that are closely or
broadly related to our proposed method. Section 5 empirically evaluates our optimal client sampling method
on standard federated datasets. Section 6 summarizes the paper and lists some directions for future work.
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2 Smart Client Sampling for Reducing Communication

This section describes the proposed optimal client sampling strategy for reducing the communication bottleneck
in federated learning.

Before proceeding with our theory, we provide an intuition by discussing the problem setting and introducing
the arbitrary sampling paradigm. In FL, each client i participating in round k computes an update vector
Uk
i ∈ Rd. For simplicity and ease of exposition, we assume that all clients i ∈ [n] := {1, 2, . . . , n} are available

in each round1. In our framework, only a subset of clients communicates their updates to the master node in
each communication round in order to reduce the number of transmitted bits.

In order to provide an analysis in this framework, we consider a general partial participation frame-
work (Horváth & Richtárik, 2020), where we assume that the subset of participating clients is determined by
an arbitrary random set-valued mapping S (i.e., a “sampling”) with values in 2[n]. A sampling S is uniquely
defined by assigning probabilities to all 2n subsets of [n]. With each sampling S we associate a probability
matrix P ∈ Rn×n defined by Pij := Prob({i, j} ⊆ S). The probability vector associated with S is the vector
composed of the diagonal entries of P: p = (p1, . . . , pn) ∈ Rn, where pi := Prob(i ∈ S). We say that S
is proper if pi > 0 for all i. It is easy to show that b := E [|S|] = Trace (P) =

∑n
i=1 pi, and hence b can

be seen as the expected number of clients participating in each communication round. Given parameters
p1, . . . , pn ∈ [0, 1], consider a random set S ⊆ [n] generated as follows: for each i ∈ [n], we include i in S with
probability pi. This is called independent sampling, since the event i ∈ S is independent of j ∈ S for any i 6= j.

While our client sampling strategy can be adapted to essentially any underlying learning method, we give
details here for DSGD as an illustrative example, where the master update in each communication round is of
the form

xk+1 = xk − ηkGk with Gk :=
∑
i∈Sk

wi
pki

Uk
i , (2)

where Sk ∼ Sk and Uk
i = gki is an unbiased estimator of ∇fi(xk). The scaling factor 1

pk
i

is necessary in order
to obtain an unbiased estimator of the true update, i.e., ESk

[
Gk
]

=
∑n
i=1 wiUk

i .

2.1 Optimal Client Sampling

A simple observation is that the variance of our gradient estimator Gk can be decomposed into

E
[∥∥Gk −∇f(xk)

∥∥2] = E

∥∥∥∥∥Gk −
n∑
i=1

wiUk
i

∥∥∥∥∥
2
+ E

∥∥∥∥∥
n∑
i=1

wiUk
i −∇f(xk)

∥∥∥∥∥
2
 , (3)

where the second term on the right-hand side is independent of the sampling procedure, and the first term
is zero if every client sends its update (i.e., if pki = 1 for all i). In order to provide meaningful results, we
restrict the expected number of clients to communicate in each round by bounding bk :=

∑n
i=1 p

k
i by some

positive integer m ≤ n. This raises the following question: What is the sampling procedure that minimizes (3)
for any given m?

To answer this question, we connect Equation (3) to previous works on importance sampling (Horváth &
Richtárik, 2019) and gradient sparsification (Wangni et al., 2018; Wang et al., 2018)2. Despite difference in
motivation, these works solve up to a scale the equivalent mathematical problem, based on which we answer
the aforementioned question by the following technical lemma (see Appendix A for a proof):
Lemma 1. (Generalization of Horváth & Richtárik (2019, Lemma 1)) Let ζ1, ζ2, . . . , ζn be vectors in Rd
and w1, w2, . . . , wn be non-negative real numbers such that

∑n
i=1 wi = 1. Define ζ̃ :=

∑n
i=1 wiζi. Let S be a

proper sampling. If v ∈ Rn is such that

P− pp> � Diag(p1v1, p2v2, . . . , pnvn), (4)
1This is not a limiting factor, as all presented theory can be easily extended to the case of partial participation with an

arbitrary proper sampling distribution. See Appendix E for a proof sketch.
2Wangni et al. (2018) consider a slightly different problem, where they minimize the communication budget with constraints

on the variance.
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Algorithm 1 Optimal Client Sampling (OCS).
1: Input: expected batch size m
2: each client i computes a local update Uk

i (in parallel)
3: each client i sends the norm of its update uki = wi

∥∥Uk
i

∥∥ to the master (in parallel)
4: master computes optimal probabilities pki using equation (7)
5: master broadcasts pki to all clients
6: each client i sends its update wi

pk
i

Uk
i to the master with probability pki (in parallel)

then

E

∥∥∥∥∥∑
i∈S

wiζi
pi
− ζ̃

∥∥∥∥∥
2
 ≤ n∑

i=1
w2
i

vi
pi
‖ζi‖2

, (5)

where the expectation is taken over S. Whenever (4) holds, it must be the case that vi ≥ 1− pi.

It turns out that given probabilities {pi}, among all samplings S satisfying pi = Prob(i ∈ S), the independent
sampling (i.e., pij = Prob(i, j ∈ S) = Prob(i ∈ S) Prob(j ∈ S) = pipj) minimizes the left-hand side of
(5). This is due to two nice properties: a) any independent sampling admits the optimal choice of v, i.e.,
vi = 1− pi for all i, and b) (5) holds as equality for independent sampling. In the context of our method,
these properties can be written as

E

∥∥∥∥∥Gk −
n∑
i=1

wiUk
i

∥∥∥∥∥
2
 = E

[
n∑
i=1

w2
i

1− pki
pki

∥∥Uk
i

∥∥2
]
. (6)

It now only remains to find the parameters {pki } defining the optimal independent sampling, i.e., one that
minimizes (6) subject to the constraints 0 ≤ pki ≤ 1 and bk :=

∑n
i=1 p

k
i ≤ m. It turns out that this problem

has the following closed-form solution (see Appendix B for a proof):

pki =

(m+ l − n) ‖Ũk
i ‖∑l

j=1

∥∥Ũk
(j)

∥∥ , if i /∈ Ak

1, if i ∈ Ak
, (7)

where Ũki := wiUk
i , and

∥∥∥Ũk(j)∥∥∥ is the j-th smallest value in
{∥∥Ũki ∥∥}ni=1, l is the largest integer for which

0 < m+ l− n ≤
∑l

i=1‖Ũk
(i)‖/‖Ũk

(l)‖ (note that this inequality always holds for l = n−m+ 1), and Ak contains
indices i such that

∥∥Ũki ∥∥ ≥ ∥∥∥Ũk(l+1)

∥∥∥. We summarize this procedure in Algorithm 1. Intuitively, our method
can be thought of as uniform sampling with m̃ ∈ [m,n] effective sampled clients, while only m clients are
actually sampled in expectation, which indicates that it cannot be worse than uniform sampling and can be
as good as full participation. The actual value of m̃ depends on the updates.
Remark 2 (Optimality). Optimizing the left-hand side of (5) does not guarantee the proposed sampling
to be optimal with respect to the right-hand side of (5) in the general case. For this to hold, our sampling
needs to be independent, which is not a very restrictive condition, especially considering that enforcing
independent sampling across clients accommodates the privacy requirements of FL. In addition, since (5) is
tight, our sampling is optimal if one is allowed to communicate only norms (i.e., one float per client) as extra
information. We stress that requiring optimality with respect to the left-hand side of (5) in the full general
case is not practical, as it cannot be obtained without revealing, i.e., communicating, all clients’ full updates
to the master.

2.2 Ensuring Compatibility with Secure Aggregation and Stateless Clients

In the case l = n, the optimal probabilities pki = m‖Ũk
i ‖/∑n

j=1‖Ũk
j ‖ can be computed easily: the master

aggregates the norm of each update and then sends the sum back to the clients. However, if l < n, in order
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Algorithm 2 Approximate Optimal Client Sampling (AOCS).
1: Input: expected batch size m, maximum number of iteration jmax
2: each client i computes an update Uk

i (in parallel)
3: each client i sends the norm of its update uki = wi

∥∥Uk
i

∥∥ to the master (in parallel)
4: master aggregates uk =

∑n
i=1 u

k
i

5: master broadcasts uk to all clients
6: each client i computes pki = min{mu

k
i

uk , 1} (in parallel)
7: for j = 1, · · · , jmax do
8: each client i sends tki = (1, pki ) to the master if pki < 1; else sends tki = (0, 0) (in parallel)
9: master aggregates (Ik, P k) =

∑n
i=1 t

k
i

10: master computes Ck = m−n+Ik

Pk

11: master broadcasts Ck to all clients
12: each client i recalibrates pki = min{Ckpki , 1} if pki < 1 (in parallel)
13: if Ck ≤ 1 then
14: break
15: end if
16: end for
17: each clients i sends its update wi

pk
i

Uk
i to master with probability pki (in parallel)

to compute optimal probabilities, the master would need to identify the norm of every update and perform
partial sorting, which can be computationally expensive and also violates the client privacy requirements in
FL, i.e., one cannot use the secure aggregation protocol where the master only sees the sum of the updates.
Therefore, we create an algorithm for approximately solving this problem, which only requires to perform
aggregation at the master node without compromising the privacy of any client. The construction of this
algorithm is built upon the greedy algorithm from Wangni et al. (2018, Algorithm 3) which was originally
designed for gradient sparsification but solves up to a scale an equivalent mathematical problem. We first
set p̃ki = m‖Ũk

i ‖/∑n

j=1‖Ũk
j ‖ and pki = min{p̃ki , 1}. In the ideal situation where every p̃ki equals the optimal

solution (7), this would be sufficient. However, due to the truncation operation, the expected number of
sampled clients bk =

∑n
i=1 p

k
i ≤

∑n
i=1

m‖Ũk
i ‖/∑n

j=1‖Ũk
j ‖ = m can be strictly less than m if p̃ki > 1 holds true

for at least one i. Hence, we employ an iterative procedure to fix this gap by rescaling the probabilities
which are smaller than 1, as summarized in Algorithm 2. This algorithm is much easier to implement and
computationally more efficient on parallel computing architectures. In addition, it only requires a secure
aggregation procedure on the master, which is essential in privacy preserving FL, and thus it is compatible
with existing FL software and hardware.

Remark 3 (Extra communications in Algorithm 2). We acknowledge that Algorithm 2 brings extra commu-
nication costs, as it requires all clients to send the norms of their updates uki ’s and probabilities pki ’s in each
round. However, since these are single floats, this only costs O(jmax) extra floats for each client. Picking
jmax = O(1), this is negligible for large models of size d. We also acknowledge that engaging in multiple
synchronous rounds of communication (as in Algorithm 2) can be a bottleneck (Huba et al., 2022). This is
not an issue in our work, as we focus on reducing the total communication cost. However, Algorithm 2 may
be less useful under other setups or metrics.

Remark 4 (Fairness). Based on our sampling strategy, it might be tempting to assume that the obtained
solution could exhibit fairness issues. In our convergence analyses below, we show that this is not the case, as
our proposed methods converge to the optimal solution of the original problem. Hence, as long as the original
objective has no inherent issue with fairness, our method does not exhibit any fairness issues. Besides, our
algorithm can be used in conjunction with other “more fair” objectives, e.g., Tilted ERM (Li et al., 2021), if
needed.
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3 Convergence Guarantees

This section provides convergence analyses for DSGD and FedAvg with our optimal client sampling scheme
in both convex and non-convex settings. We compare the convergence results of our scheme with those
of full participation and independent uniform sampling with sample size m. We match the forms of our
convergence bounds to those of the existing bounds in the literature to make them directly comparable. We
do not compare the sample complexities of these methods, as such comparisons would be difficult due to their
dependence on the actual updates which are unknown in advance and do not follow a specific distribution in
general.

We use standard assumptions (Karimi et al., 2016), assuming throughout that f has a unique minimizer
x? with f? = f(x?) > −∞ and fi’s are L-smooth, i.e., fi’s have L-Lipschitz continuous gradients. We first
define convex functions and L-smooth functions.
Definition 5 (Convexity). f : Rd → R is µ-strongly convex with µ > 0 if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2
, ∀x, y ∈ Rd. (8)

f : Rd → R is convex if it satisfies (8) with µ = 0.
Definition 6 (Smoothness). f : Rd → R is L-smooth if

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rd. (9)

We now state standard assumptions of the gradient oracles for DSGD and FedAvg.
Assumption 7 (Gradient oracle for DSGD). The stochastic gradient estimator gki = ∇fi(xk) + ξki of the local
gradient ∇fi(xk), for each round k and all i = 1, . . . , n, satisfies

E
[
ξki
]

= 0 (10)

and
E
[∥∥ξki ∥∥2 |xki

]
≤M

∥∥∇fi(xk)
∥∥2 + σ2, for some M ≥ 0. (11)

This further implies that E
[ 1
n

∑n
i=1 g

k
i | xk

]
= ∇f(xk).

Assumption 8 (Gradient oracle for FedAvg). The stochastic gradient estimator gi(yki,r) = ∇fi(yki,r) + ξki,r of
the local gradient ∇fi(yki,r), for each round k, each local step r = 0, . . . , R and all i = 1, . . . , n, satisfies

E
[
ξki,r
]

= 0 (12)

and
E
[∥∥ξki,r∥∥2 |yki,r

]
≤M

∥∥∇fi(yki,r)∥∥2 + σ2, for some M ≥ 0, (13)

where yki,0 = xk and yki,r = yki,r−1 − ηlgi(yki,r), for r = 1, · · · , R.

For non-convex objectives, one can construct counter-examples that would diverge for both DSGD and FedAvg
if the sampling variance is not bounded. Therefore, we need to employ the following standard assumption of
local gradients for bounding the sampling variance3.
Assumption 9 (Similarity among local gradients). The gradients of local loss functions fi satisfy

n∑
i=1

wi ‖∇fi(x)−∇f(x)‖2 ≤ ρ, for some ρ ≥ 0. (14)

3This assumption is not required for convex objectives, as one can show that the sampling variance is bounded using
smoothness and convexity.
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Remark 10 (Interpretation of Assumption 9). Some works employ a more restrictive assumption which
requires ‖∇fi(x)−∇f(x)‖ ≤ ρ, ∀i, from which Assumption 9 can be derived, since

∑n
i=1 wi = 1. Therefore,

Assumption 9 can be seen as an assumption on similarity among local gradients. Furthermore, this assumption
does not require wi’s to be lower-bounded, as clients with wi = 0 will never be sampled and thus can be
removed from the objective.

We now define some important quantities for our convergence analyses.
Definition 11 (The improvement factor). We define the improvement factor of optimal client sampling over
uniform sampling:

αk :=
E
[∥∥∥∑i∈Sk

wi

pk
i

Uk
i −

∑n
i=1 wiUk

i

∥∥∥2
]

E
[∥∥∥∑i∈Uk

wi

pU
i

Uk
i −

∑n
i=1 wiUk

i

∥∥∥2
] , (15)

where Sk ∼ Sk with pki defined in (7) and Uk ∼ U is an independent uniform sampling with pUi = m/n. By
construction, 0 ≤ αk ≤ 1, as Sk minimizes the variance term (see Appendix B for a proof). Note that αk can
reach zero in the case where there are at most m non-zero updates. If αk = 0, our method performs as if
all updates were communicated. In the worst-case αk = 1, our method performs as if we picked m updates
uniformly at random, and one could not do better in theory due to the structure of the updates Uk

i . The
actual value of αk will depend on the updates Uk

i . We also define the relative improvement factor:

γk := m

αk(n−m) +m
∈
[m
n
, 1
]
, k = 0, . . . ,K − 1. (16)

Definition 12 (Simplified notation). For simplicity of notation, we define the following quantities which
will be useful for our convergence analyses:

W := max
i∈[n]
{wi}, Zi := fi(x?)− f?i , rk := xk − x?, (17)

where f?i is the functional value of fi at its optimum, Zi represents the mismatch between the local and global
minimizer, and rk captures the distance between the current point and the minimizer of f .

We are now ready to proceed with our convergence analyses. In the following subsections, we provide
convergence analyses of specific methods for solving the optimization problem (1). The proofs of the theorems
are deferred to Appendices C and D.

3.1 Distributed SGD (DSGD) with Optimal Client Sampling

This subsection presents convergence analyses for DSGD (2) with optimal client sampling in both convex and
non-convex settings.
Theorem 13 (DSGD, strongly-convex). Let fi be L-smooth and convex for i = 1, . . . , n. Let f be µ-strongly
convex. Suppose that Assumption 7 holds. Choose ηk ∈

(
0, γk

(1+WM)L

]
. Define

β1 :=
n∑
i=1

w2
i (2L(1 +M)Zi + σ2), (18)

β2 := 2L
n∑
i=1

w2
iZi. (19)

The iterates of DSGD with optimal client sampling (7) satisfy

E
[∥∥rk+1∥∥2] ≤ (1− µηk)E

[∥∥rk∥∥2]+ (ηk)2
(
β1

γk
− β2

)
. (20)
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Remark 14 (Interpretation of Theorem 13). We first look at the best and worst case scenarios. In the best
case scenario, we have γk = 1 for all k’s. This implies that there is no loss of speed comparing to the method
with full participation. It is indeed confirmed by our theory as our obtained recursion recovers the best-known
rate of DSGD in the full participation regime (Gower et al., 2019, Theorem 3.1). To provide a better intuition,
we include a full derivation in this case. To match their (stronger) assumptions, we let M = 0 and wi = 1/n.
In full participation, we have γk = 1 for all k’s. Then, taking the same step size η for all k leads to

E
[∥∥rk+1∥∥2] ≤ (1− µη)E

[∥∥rk∥∥2]+ η2σ
2

n
. (21)

Applying the above inequality recursively yields

E
[∥∥rK∥∥2] ≤ (1− µη)KE

[∥∥r0∥∥2
]

+ η
σ2

µn
, (22)

which is equivalent to the result in Gower et al. (2019, Theorem 3.1). Similarly, in the worst case, we
have γk = m/n for all k’s, which corresponds to uniform sampling with sample size m, and our recursion
recovers the best-known rate for DSGD in this regime. This is expected as (15) implies that every update Uk

i is
equivalent, and thus it is theoretically impossible to obtain a better rate than that of uniform sampling in the
worst case scenario. In the general scenario, our obtained recursion sits somewhere between full and uniform
partial participation, where the actual position is determined by γk’s which capture the distribution of updates
(here gradients) on the clients. For instance, with a larger number of γk’s tending to 1, we are closer to
the full participation regime. Similarly, with more γk’s tending to m/n, we are closer to the rate of uniform
partial participation.
Theorem 15 (DSGD, non-convex). Let fi be L-smooth for i = 1, . . . , n. Suppose that Assumptions 7 and 9
hold. Let ηk be the step size and define

βk := L

2γk

(
(1 +M − γk)Wρ+

n∑
i=1

w2
i σ

2

)
. (23)

The iterates of DSGD with optimal client sampling (7) satisfy

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− ηk

(
1− (1 +M)L

2γk ηk
)

E
[∥∥∇f(xk)

∥∥2]+ (ηk)2βk. (24)

Remark 16 (Interpretation of Theorem 15). The iterate (24) recovers the standard form of the convergence
result of DSGD for one recursion step in the non-convex setting. Similar to the previous results, this convergence
bound sits between the best-known rate of full participation and uniform sampling (Bottou et al., 2018, Theorem
4.8).

3.2 Federated Averaging (FedAvg) with Optimal Client Sampling

Pseudo-code that adapts the standard FedAvg algorithm to our framework is provided in Algorithm 3.
This subsection presents convergence analyses for FedAvg with optimal client sampling in both convex and
non-convex settings.
Theorem 17 (FedAvg, strongly-convex). Let fi be L-smooth and µ-strongly convex for i = 1, . . . , n. Suppose
that Assumption 8 holds. Let ηk := Rηkl η

k
g be the effective step-size and ηkg ≥

√
γk∑
i
w2

i

. Choose ηk ∈(
0, 1

8 min
{

1
L(2+M/R) ,

γk

(1+W (1+M/R))L

}]
,

βk1 := 2σ2

γkR

n∑
i=1

w2
i + 4L

(
M

R
+ 1− γk

) n∑
i=1

w2
iZi, (25)

β2 := 72L2
(

1 + M

R

) n∑
i=1

wiZi. (26)

9
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Algorithm 3 FedAvg with Optimal Client Sampling.
1: Input: initial global model x1, global and local step-sizes ηkg , ηkl
2: for each round k = 1, . . . ,K do
3: master broadcasts xk to all clients i ∈ [n]
4: for each client i ∈ [n] (in parallel) do
5: initialize local model yki,0 ← xk

6: for r = 1, . . . , R do
7: compute mini-batch gradient gi(yki,r−1)
8: update yki,r ← yki,r−1 − ηkl gi(yki,r−1)
9: end for
10: compute Uk

i := ∆yki = xk − yki,R
11: compute pki using Algorithm 1 or 2
12: send wi

pk
i

∆yki to master with probability pki
13: end for
14: master computes ∆xk =

∑
i∈Sk

wi

pk
i

∆yki
15: master updates global model xk+1 ← xk − ηkg∆xk
16: end for

The iterates of FedAvg (R ≥ 2) with optimal client sampling (7) satisfy

3
8E
[
(f(xk)− f?)

]
≤ 1
ηk

(
1− µηk

2

)
E
[∥∥rk∥∥2]− 1

ηk
E
[∥∥rk+1∥∥2]+ ηkβk1 + (ηk)2β2. (27)

Theorem 18 (FedAvg, non-convex). Let fi be L-smooth for all i = 1, . . . , n. Suppose that Assumptions 8
and 9 hold. Let ηk := Rηkl η

k
g be the effective step-size and ηkg ≥

√
5γk

4
∑

i
w2

i

. Choose ηk ∈
(

0, 1
8L(2+M/R)

]
.

Define

βk :=
(
ρ

4 + σ2

γkR

n∑
i=1

w2
i

)
L. (28)

The iterates of FedAvg (R ≥ 2) with optimal client sampling (7) satisfy

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− 3ηk

8

(
1− 10ηkL

3

)
E
[∥∥∇f(xk)

∥∥2]+ ηk
ρ

8 + (ηk)2βk. (29)

Remark 19 (Interpretation of Theorems 17 and 18). The convergence guarantees from Theorems 17 and 18
sit somewhere between those for full and uniform partial participation. The actual position is again determined
by the distribution of the updates which are linked to γk’s. In the edge cases, i.e., γk = 1 (best case) or
γk = m/n (worst case), we recover the state-of-the-art complexity guarantees provided in (Karimireddy et al.,
2019, Theorem I) in both regimes. Note that our results are slightly more general, as Karimireddy et al. (2019)
assumes M = 0 and wi = 1/n.

4 Related Work

This section reviews prior works that are closely or broadly related to our proposed method.

4.1 Importance Client Sampling in Federated Learning

Several recent works have studied efficient importance client sampling methods in FL (Cho et al., 2020;
Nguyen et al., 2020; Ribero & Vikalo, 2020; Lai et al., 2021; Luo et al., 2022). Unfortunately, none of

10
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these methods is principled, as they rely on heuristics, historical losses, or partial information, which can be
seen as proxies for our optimal client sampling. Furthermore, they violate at least one of the core privacy
requirements of FL (secure aggregation and/or stateless clients). Specifically, the client selection strategy
proposed by Lai et al. (2021) is based on the heuristic of system and statistical utility of clients, which reveals
the identity of clients; Ribero & Vikalo (2020) propose to model the progression of the model parameters
by an Ornstein-Uhlenbeck process based on partial information, where the master needs to process the raw
update from each client. The work of Cho et al. (2020) biases client selection towards clients with higher
local losses, which reveals the state of each individual client.

In contrast, our proposed method is the first principled optimal client sampling strategy in the sense that it
minimizes the variance of the master update and is compatible with core privacy requirements of FL. We note
that the client sampling/selection techniques mentioned in this section could be made compatible with our
framework presented in Section 2, but they would not lead to the optimal method as they are only proxies
for optimal sampling.

4.2 Importance Sampling in Stochastic Optimization

Importance sampling methods for optimization have been studied extensively in the last few years in several
contexts, including convex optimization and deep learning. LASVM developed in Bordes et al. (2005) is an
online algorithm that uses importance sampling to train kernelized support vector machines. The first
importance sampling for randomized coordinate descent methods was proposed in the seminal paper of
Nesterov (2012). It was showed by Richtárik & Takáč (2014) that the proposed sampling is optimal. Later,
several extensions and improvements followed, e.g., Shalev-Shwartz & Zhang (2014); Lin et al. (2014); Fercoq
& Richtárik (2015); Qu et al. (2015); Allen-Zhu et al. (2016); Stich et al. (2017). Another branch of work
studies sample complexity. In Needell et al. (2014); Zhao & Zhang (2015), the authors make a connection with
the variance of the gradient estimates of SGD and show that the optimal sampling distribution is proportional
to the per-sample gradient norm. However, obtaining this distribution is as expensive as computing the
full gradient in terms of computation, and thus it is not practical. For simpler problems, one can sample
proportionally to the norms of the inputs, which can be linked to the Lipschitz constants of the per-sample
loss function for linear and logistic regression. For instance, it was shown by Horváth & Richtárik (2019) that
static optimal sampling can be constructed even for mini-batches and the probability is proportional to these
Lipschitz constants under the assumption that these constants of the per-sample loss function are known.
Unfortunately, importance measures such as smoothness of the gradient are often hard to compute/estimate
for more complicated models such as those arising in deep learning, where most of the importance sampling
schemes are based on heuristics. For instance, a manually designed sampling scheme was proposed in Bengio
et al. (2009). It was inspired by the perceived way that human children learn; in practice, they provide
the network with examples of increasing difficulty in an arbitrary manner. In a diametrically opposite
approach, it is common for deep embedding learning to sample hard examples because of the plethora of easy
non-informative ones (Schroff et al., 2015; Simo-Serra et al., 2015). Other approaches use history of losses for
previously seen samples to create the sampling distribution and sample either proportionally to the loss or
based on the loss ranking (Schaul et al., 2015; Loshchilov & Hutter, 2015). Katharopoulos & Fleuret (2018)
propose to sample based on the gradient norm of a small uniformly sampled subset of samples.

Although our proposed optimal sampling method adapts and extends the importance sampling results from
Horváth & Richtárik (2019) to the distributed setting of FL, it does not suffer from any of the limitations
discussed above, since the motivation of our work is to reduce communication rather than reduce computation.
In particular, our method allows for any budge m < n on the number of participating clients, which generalizes
the theoretical results from Zhao & Zhang (2015) which only applies to the case m = 1.

5 Experiments

This section empirically evaluates our optimal client sampling method on standard federated datasets from
LEAF (Caldas et al., 2018).
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Figure 2: Distributions of the three modified Federated EMNIST training sets.

5.1 Setup

We compare our method with 1) full participation where all available clients participate in each round; and 2)
the baseline where participating clients are sampled uniformly from available clients in each round. We chose
not to compare with other client sampling methods, as such comparisons would be unfair. This is because
they violate the privacy requirements of FL: our method is the only importance client sampling strategy that
is deployable to real-world FL systems (cf. Section 4.1).

We simulate the cross-device FL distributed setting and train our models using TensorFlow Federated (TFF).
We conclude our evaluations using FedAvg with Algorithm 2, as it supports stateless clients and secure
aggregation4. We extend the TFF implementation of FedAvg to fit our framework. For all three methods, we
report validation accuracy and (local) training loss as a function of the number of communication rounds and
the number of bits communicated from clients to the master5 . Each figure displays the mean performance with
standard deviation over 5 independent runs for each of the three compared methods. For a fair comparison,
we use the same random seed for all three methods in a single run and vary random seeds across different runs.
Detailed experimental settings and extra results can be found in Appendices F.1 and F.2. Our code together
with datasets can be found at https://github.com/SamuelHorvath/FL-optimal-client-sampling.

5.2 Federated EMNIST Dataset

We first evaluate our method on the Federated EMNIST (FEMNIST) image dataset for image classification.
Since it is a well-balanced dataset with data of similar quality on each client, we modify its training set by
removing some images from some clients, in order to better simulate the conditions in which our proposed
method brings significant theoretical improvements. As a result, we produce three unbalanced training
sets6 as summarized in Figure 2. We use the same CNN model as the one used in (McMahan et al., 2017).
For validation, we use the unchanged EMNIST validation set, which consists of 40, 832 images. In each
communication round, n = 32 clients are sampled uniformly from the client pool, each of which then performs
several SGD steps on its local training images for 1 epoch with batch size 20. For partial participation, the
expected number of clients allowed to communicate their updates back to the master is set to m ∈ {3, 6}. We
use vanilla SGD optimizers with constant step sizes for both clients and the master, with ηg = 1 and ηl tuned
on a holdout set. For full participation and optimal sampling, it turns out that ηl = 2−3 is the optimal local
step size for all three datasets. For uniform sampling, the optimal is ηl = 2−5 for Dataset 1 and ηl = 2−4

for Datasets 2 and 3. We set jmax = 4 and include the extra communication costs in our results. The main
results are shown in Figures 3, 4 and 5.

4We compared the results of Algorithms 1 and 2 for all experiments as a subroutine. Their results are identical, so we only
show results for Algorithm 2 and argue that the performance loss caused by its approximation is negligible.

5The communication from the master to clients is not considered as a bottleneck and thus not included in the results. This is
a standard consideration for distributed systems, as one-to-many communication primitives (i.e., from the master to clients) are
several orders of magnitude faster than many-to-one communication primitives (i.e., from clients to the master). This gap is
further exacerbated in FL due to the large number of clients and slow client connections.

6The aim of creating various unbalanced datasets is to show that optimal sampling has more performance gains over uniform
sampling on more unbalanced datasets, since αk’s (defined in Equation (15)) are more likely to be close to zero in this case.
These datasets are created using the following procedure. Let s ∈ (0, 1) and a, b ∈ N+ with a < b. For a given client with nc

examples, we keep this client unchanged if nc ≤ a or nc ≥ b, otherwise we remove this client from the dataset with probability s
or only keep a randomly sampled examples in this client with probability 1− s.
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Figure 3: (FEMNIST Dataset 1, n = 32) Validation accuracy and (local) training loss as a function of the
number of communication rounds and the number of bits communicated from clients to the master.
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Figure 4: (FEMNIST Dataset 2, n = 32) Validation accuracy and (local) training loss as a function of the
number of communication rounds and the number of bits communicated from clients to the master.
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Figure 5: (FEMNIST Dataset 3, n = 32) Validation accuracy and (local) training loss as a function of the
number of communication rounds and the number of bits communicated from clients to the master.

5.3 Shakespeare Dataset

We also evaluate our method on the Shakespeare text dataset for next character prediction. Unlike in
the FEMNIST experiments, we do not change the number of examples held by each client in this dataset.
The vocabulary set for this task consists of 86 unique characters. The dataset contains 715 clients, each
corresponding to a character in Shakespeare’s plays. We divide the text into batches such that each batch
contains 8 example sequences of length 5. We use a two-hidden-layer GRU model with 256 units in each
hidden layer. We set n ∈ {32, 128}, m ∈ {2, 4, 6, 12}, jmax = 4, and run several SGD steps for 1 epoch on
each client’s local dataset in every communication round. We use vanilla SGD optimizers with constant step
sizes, with ηg = 1 and ηl tuned on a holdout set. For full participation and optimal sampling, it turns out
that the optimal is ηl = 2−2. For uniform sampling, the optimal is ηl = 2−3. The main results are shown in
Figures 6 and 7.

5.4 Discussions

As predicted by our theory, the performance of FedAvg with our proposed optimal client sampling strategy is
in between that with full and uniform partial participation. For all datasets, the optimal sampling strategy
performs slightly worse than but is still competitive with the full participation strategy in terms of the
number of communication rounds: it almost reached the performance of full participation while only less
than 10% of the available clients communicate their updates back to the master (in the cases m = 2, 3).
As we increase the expected number m of sampled clients, the performance of optimal sampling increases
accordingly, which is consistent with our theory (e.g., Theorem 18) and with the observations from Yang et al.
(2021), and quickly becomes almost identical to that of full participation. Note that the uniform sampling
strategy performs significantly worse, which indicates that a careful choice of sampling probabilities can go a
long way towards closing the gap between the performance of naive uniform sampling and full participation.
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Figure 6: (Shakespeare Dataset, n = 32) Validation accuracy and (local) training loss as a function of the
number of communication rounds and the number of bits communicated from clients to the master.
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Figure 7: (Shakespeare Dataset, n = 128) Validation accuracy and (local) training loss as a function of the
number of communication rounds and the number of bits communicated from clients to the master.

Also, it can be seen that the performances of our optimal client sampling strategy with m = 6 and m = 12
match the performances of full participation in the cases n = 32 and n = 128, respectively, in terms of the
number of communication rounds. We therefore conjecture that m = O(

√
n) is sufficient for our optimal

client sampling strategy to obtain identical validation accuracy to that of full participation in terms of the
number of communication rounds.

More importantly, and this was the main motivation of our work, our optimal sampling strategy is significantly
better than both the uniform sampling and full participation strategies when we compare validation accuracy
as a function of the number of bits communicated from clients to the master. For instance, on FEMNIST
Dataset 1 (Figure 3), while our optimal sampling approach with m = 3 reached around 85% validation
accuracy after 26 × 108 communicated bits, neither the full sampling strategy nor the uniform sampling
strategy with m = 3 is able to exceed 40% validation accuracy within the same communication budget.
Indeed, to reach the same 85% validation accuracy, full participation approach needs to communicate more
than 29 × 108 bits, i.e., 8× more, and uniform sampling approach needs to communicate about the same
number of bits as full participation or even more. The results for FEMNIST Datasets 2 and 3 and for the
Shakespeare dataset are of a similar qualitative nature, showing that these conclusions are robust across the
datasets considered.

Finally, it is also worth noting that the empirical results from Sections 5.2 and 5.3 confirm that our optimal
sampling strategy allows for larger step sizes than uniform sampling, as the hyperparameter search returns
larger step sizes ηl for optimal sampling than for uniform sampling.

In Appendix G, we present an additional experiment on the Federated CIFAR100 dataset from LEAF. The
Federated CIFAR100 dataset is a balanced dataset, where every client holds the same number of training
images. In this setting, letting all clients perform 1 epoch of local training means that all clients have the
same number of local steps in each round. We show that our optimal client sampling scheme still achieves
better performance than uniform sampling on this balanced dataset.

6 Conclusion and Future Work

In this work, we have proposed a principled optimal client sampling strategy to address the communication
bottleneck issue of federated learning. Our optimal client sampling can be computed using a closed-form
formula by aggregating only the norms of the updates. Furthermore, our method is the first principled
importance client sampling strategy that is compatible with stateless clients and secure aggregation. We
have obtained convergence guarantees for our method with DSGD and FedAvg with relaxed assumptions, and
have performed empirical evaluations of our method on federated datasets from the LEAF database. The

14



Published in Transactions on Machine Learning Research (08/2022)

empirical results show that our method is superior to uniform sampling and close to full participation, which
corroborates our theoretical analysis. We believe that our proposed optimal client sampling scheme will be
useful in reducing communication costs in real-world FL systems.

Some directions for future work are as follows:

• A straightforward extension would be to combine our proposed optimal sampling approach with
communication compression methods to further reduce the sizes of communicated updates.

• In the settings where the communication latency is high, our proposed method may not be effective in
reducing the real communication time. It would be interesting to extend our optimal client sampling
strategy to take into account the constraints of local clients (e.g., computational speed, network
bandwidth, and communication latency).
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A Proof of Lemma 1

Proof. Our proof technique can be seen as an extended version of that in (Horváth & Richtárik, 2019). Let
1i∈S = 1 if i ∈ S and 1i∈S = 0 otherwise. Likewise, let 1i,j∈S = 1 if i, j ∈ S and 1i,j∈S = 0 otherwise. Note
that E [1i∈S ] = pi and E [1i,j∈S ] = pij . Next, let us compute the mean of X :=

∑
i∈S

wiζi

pi
:

E [X] = E
[∑
i∈S

wiζi
pi

]
= E

[
n∑
i=1

wiζi
pi

1i∈S

]
=

n∑
i=1

wiζi
pi

E [1i∈S ] =
n∑
i=1

wiζi = ζ̃.

Let A = [a1, . . . , an] ∈ Rd×n, where ai = wiζi

pi
, and let e be the vector of all ones in Rn. We now write the

variance of X in a form which will be convenient to establish a bound:

E
[
‖X − E [X]‖2

]
= E

[
‖X‖2

]
− ‖E [X]‖2

= E

∥∥∥∥∥∑
i∈S

wiζi
pi

∥∥∥∥∥
2
− ∥∥ζ̃∥∥2

= E

∑
i,j

wiζ
>
i

pi

wjζj
pj

1i,j∈S

− ∥∥ζ̃∥∥2

=
∑
i,j

pij
wiζ
>
i

pi

wjζj
pj
−
∑
i,j

wiwjζ
>
i ζj

=
∑
i,j

(pij − pipj)a>i aj

= e>((P − pp>) ◦A>A)e.

(30)

Since, by assumption, we have P − pp> � Diag(p ◦ v), we can further bound

e>((P − pp>) ◦A>A)e ≤ e>(Diag(p ◦ v) ◦A>A)e =
n∑
i=1

pivi ‖ai‖2
.

To obtain (5), it remains to combine this with (30). The inequality vi ≥ 1− pi follows by comparing the
diagonal elements of the two matrices in (4). Consider now the independent sampling. Clearly,

P − pp> =


p1(1− p1) 0 . . . 0

0 p2(1− p2) . . . 0
...

... . . . ...
0 0 . . . pn(1− pn)

 = Diag(p1v1, . . . , pnvn),

which implies vi = 1− pi.

B The Improvement Factor for Optimal Client Sampling

By Lemma 1, the independent sampling (which operates by independently flipping a coin and with probability
pi includes element i into S) is optimal. In addition, for independent sampling, (5) holds as equality. Thus,
letting Ũki = wiUk

i , we have

α̃Sk := E


∥∥∥∥∥∥
∑
i∈Sk

wi
pki

Uk
i −

n∑
i=1

wiUk
i

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥
∑
i∈Sk

1
pki
Ũki −

n∑
i=1

Ũki

∥∥∥∥∥∥
2
 = E

[
n∑
i=1

1− pki
pki

∥∥Ũki ∥∥2
]
. (31)

The optimal probabilities are obtained by minimizing (31) w.r.t. {pki }ni=1 subject to the constraints 0 ≤ pki ≤ 1
and m ≥ bk =

∑n
i=1 p

k
i .
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Lemma 20. The optimization problem

min
{pk

i
}n

i=1

α̃Sk ({pki }ni=1) s.t. 0 ≤ pki ≤ 1, ∀i = 1, · · · , n and m ≥
n∑
i=1

pki (32)

has the following closed-form solution:

pki =

(m+ l − n) ‖Ũk
i ‖∑l

j=1

∥∥Ũk
(j)

∥∥ , if i /∈ Ak

1, if i ∈ Ak
, (33)

where
∥∥∥Ũk(j)∥∥∥ is the j-th largest value among the values

∥∥Ũk1 ∥∥ ,∥∥Ũk2 ∥∥ , . . . ,∥∥Ũkn∥∥, l is the largest integer for

which 0 < m+ l−n ≤
∑l

i=1‖Ũk
(i)‖∥∥Ũk

(l)

∥∥ (note that this inequality at least holds for l = n−m+ 1), and Ak contains

indices i such that
∥∥Ũki ∥∥ ≥ ∥∥∥Ũk(l+1)

∥∥∥.
Proof. This proof uses an argument similar to that in the proof of Lemma 2 in Horváth & Richtárik (2019).
We first show that (33) is the solution to the following optimization problem:

min
{pk

i
}n

i=1

ΩSk ({pki }ni=1) := E
[

n∑
i=1

∥∥Ũki ∥∥2

pki

]
s.t. 0 ≤ pki ≤ 1, ∀i = 1, · · · , n and m ≥

n∑
i=1

pki .

The Lagrangian of this optimization problem is given by

L({pki }ni=1, {λi}ni=1, {ui}ni=1, y) = ΩSk ({pki }ni=1)−
n∑
i=1

λipi −
n∑
i=1

ui(1− pi)− y
(
m−

n∑
i=1

pki

)
.

Since all constraints are linear and the support of {pki }ni=1 is convex, the KKT conditions hold. Therefore, the
solution (33) can be deduced from the KKT conditions. Now, notice that α̃Sk ({pki }ni=1) and ΩSk ({pki }ni=1)
are equal up to a constant E

[∑n
i=1
∥∥Ũki ∥∥2]:

α̃Sk ({pki }ni=1) = ΩSk ({pki }ni=1)− E
[

n∑
i=1

∥∥Ũki ∥∥2
]
.

This indicates that (33) is also the solution to the original optimization problem (32).

Plugging the optimal probabilities obtained in (33) into (31) gives

α̃?Sk = E
[

n∑
i=1

1
pki

∥∥Ũki ∥∥2 −
n∑
i=1

∥∥Ũki ∥∥2
]

= E

 1
m− (n− l)

(
l∑
i=1

∥∥∥Ũk(i)∥∥∥
)2

−
l∑
i=1

∥∥∥Ũk(i)∥∥∥2
 .

With m
∥∥∥Ũk(n)

∥∥∥ ≤∑n
i=1
∥∥Ũki ∥∥, we have

α̃?Sk = E

 1
m

(
n∑
i=1

∥∥Ũki ∥∥
)2

−
n∑
i=1

∥∥Ũki ∥∥2

 = E

 1
m

(
n∑
i=1

∥∥Ũki ∥∥
)2(

1−m
∑n
i=1
∥∥Ũki ∥∥2(∑n

i=1
∥∥Ũki ∥∥)2

)
≤ n−m

nm
E

( n∑
i=1

∥∥Ũki ∥∥
)2
 .
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For independent uniform sampling Uk ∼ U (pUi = m
n for all i), we have

α̃Uk := E


∥∥∥∥∥∥
∑
i∈Uk

wi
pUi

Uk
i −

n∑
i=1

wiUk
i

∥∥∥∥∥∥
2
 = E

[
n∑
i=1

1− m
n

m
n

∥∥Ũki ∥∥2
]

= n−m
m

E
[

n∑
i=1

∥∥Ũki ∥∥2
]
.

Putting them together gives the improvement factor:

αk :=
α̃?Sk

α̃Uk

=
E
[∥∥∥∑i∈Sk

wi

pk
i

Uk
i −

∑n
i=1 wiUk

i

∥∥∥2
]

E
[∥∥∥∑i∈Uk

wi

pU
i

Uk
i −

∑n
i=1 wiUk

i

∥∥∥2
] ≤ E

[(∑n
i=1
∥∥Ũki ∥∥)2]

nE
[∑n

i=1
∥∥Ũki ∥∥2] ≤ 1.

The upper bound is attained when all
∥∥Ũki ∥∥ are identical. Note that the lower bound 0 can also be attained

in the case where the number of non-zero updates is at most m. These considerations are discussed in the
main paper.

C DSGD with Optimal Client Sampling

C.1 Proof of Theorem 13

Proof. L-smoothness of fi and the assumption on the gradient imply that the inequality

E
[∥∥gki ∥∥2] ≤ 2L(1 +M)(fi(xk)− fi(x?) + Zi) + σ2

holds for all k ≥ 0. We first take expectations over xk+1 conditioned on xk and over the sampling Sk:

E
[∥∥rk+1∥∥2] =

∥∥rk∥∥2 − 2ηkE

〈∑
i∈Sk

wi
pki
gki , r

k

〉+ (ηk)2E


∥∥∥∥∥∥
∑
i∈Sk

wi
pki
gki

∥∥∥∥∥∥
2


=
∥∥rk∥∥2 − 2ηk

〈
∇f(xk), rk

〉
+ (ηk)2

E


∥∥∥∥∥∥
∑
i∈Sk

wi
pki
gki −

n∑
i=1

wig
k
i

∥∥∥∥∥∥
2
+ E

∥∥∥∥∥
n∑
i=1

wig
k
i

∥∥∥∥∥
2



≤ (1− µηk)
∥∥rk∥∥2 − 2ηk

(
f(xk)− f?

)
+ (ηk)2

E


∥∥∥∥∥∥
∑
i∈Sk

wi
pki
gki −

n∑
i=1

wig
k
i

∥∥∥∥∥∥
2
+ E

∥∥∥∥∥
n∑
i=1

wig
k
i

∥∥∥∥∥
2

 ,

where

E


∥∥∥∥∥∥
∑
i∈Sk

wi
pki
gki −

n∑
i=1

wig
k
i

∥∥∥∥∥∥
2
 = αk

n−m
m

E
[

n∑
i=1

w2
i

∥∥gki ∥∥2
]

= αk
n−m
m

E
[

n∑
i=1

w2
i

(∥∥gki −∇fi(xk)
∥∥2 +

∥∥∇fi(xk)
∥∥2)]

= αk
n−m
m

E
[

n∑
i=1

w2
i

(∥∥ξki ∥∥2 +
∥∥∇fi(xk)

∥∥2)]

≤ αk n−m
m

n∑
i=1

w2
i

(
2L(1 +M)(fi(xk)− fi(x?) + Zi) + σ2)

≤ αk n−m
m

(
2WL(1 +M)(f(xk)− f?) +

n∑
i=1

w2
i (2L(1 +M)Zi + σ2)

)
,
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and

E

∥∥∥∥∥
n∑
i=1

wig
k
i

∥∥∥∥∥
2
 = E

∥∥∥∥∥
n∑
i=1

wig
k
i −∇f(xk)

∥∥∥∥∥
2
+

∥∥∇f(xk)
∥∥2

=
n∑
i=1

E
[∥∥wigki − wi∇fi(xk)

∥∥2]+
∥∥∇f(xk)

∥∥2

=
n∑
i=1

w2
iE
[∥∥ξki ∥∥2]+

∥∥∇f(xk)
∥∥2

≤
n∑
i=1

w2
i (2LM(fi(xk)− f?i ) + σ2) + 2L(f(xk)− f?)

= 2L (1 +WM) (f(xk)− f?) +
n∑
i=1

w2
i (2LMZi + σ2).

Therefore, we obtain

E
[∥∥rk+1∥∥2] ≤ (1− µηk)

∥∥rk∥∥2 − 2ηk
(
f(xk)− f?

)
+ (ηk)2

(
2L (1 +WM) (f(xk)− f?) +

n∑
i=1

w2
i (2LMZi + σ2)

)

+ (ηk)2αk
n−m
m

(
2WL(1 +M)(f(xk)− f?) +

n∑
i=1

w2
i (2L(1 +M)Zi + σ2)

)

≤ (1− µηk)
∥∥rk∥∥2 − 2ηk

(
1− ηk (αk(n−m) +m)(1 +WM)L

m

)(
f(xk)− f?

)
+ (ηk)2α

k(n−m) +m

m

(
n∑
i=1

w2
i (2L(1 +M)Zi + σ2)

)
− (ηk)22L

n∑
i=1

w2
iZi.

Now choose any 0 < ηk ≤ m
(αk(n−m)+m)(1+WM)L and define

β1 :=
n∑
i=1

w2
i (2L(1 +M)Zi + σ2), β2 := 2L

n∑
i=1

w2
iZi, γk := m

αk(n−m) +m
∈
[m
n
, 1
]
.

Taking full expectation yields the desired result:

E
[∥∥rk+1∥∥2] ≤ (1− µηk)E

[∥∥rk∥∥2]+ (ηk)2
(
β1

γk
− β2

)
.

C.2 Proof of Theorem 15

Proof. Using equation (2), we have

f(xk+1) = f(xk − ηkGk)

= f(xk)− ηk
〈
Gk,∇f(xk)

〉
+ (ηk)2

2
〈
Gk,∇2f(zk)Gk

〉
, for some zk ∈ Rd.

Since all fi’s are L-smooth, f is also L-smooth. Therefore, we have −LI � ∇2f(x) � LI for all x ∈ Rd.
Combining this with the fact that Gk is an unbiased estimator of ∇f(xk), we have

E
[
f(xk+1)

]
≤ f(xk)− ηk

∥∥∇f(xk)
∥∥2 + (ηk)2L

2 E
[∥∥Gk

∥∥2]
, (34)
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where the expectations are conditioned on xk. In Appendix C.1, we already obtained the upper bound for
the last term in equation (34):

E
[∥∥Gk

∥∥2] ≤ ((1 +M)αk n−m
m

+M

) n∑
i=1

w2
i

∥∥∇fi(xk)
∥∥2 +

(
αk
n−m
m

+ 1
) n∑
i=1

w2
i σ

2 +
∥∥∇f(xk)

∥∥2

=
(

1 +M

γk
− 1
) n∑
i=1

w2
i

∥∥∇fi(xk)
∥∥2 + 1

γk

n∑
i=1

w2
i σ

2 +
∥∥∇f(xk)

∥∥2
.

By Assumption 9, we further bound

n∑
i=1

w2
i

∥∥∇fi(xk)
∥∥2 ≤W

n∑
i=1

wi
∥∥∇fi(xk)

∥∥2

≤W

(
n∑
i=1

wi
∥∥∇fi(xk)−∇f(xk)

∥∥2 +
∥∥∇f(xk)

∥∥2
)

≤Wρ+
∥∥∇f(xk)

∥∥2
.

Combining the inequalities above and taking full expectation yields equation (24).

D FedAvg with Optimal Client Sampling

Lemma 21 ((Karimireddy et al., 2019)). For any L-smooth and µ-strongly convex function h : Rd → R and
any x, y, z ∈ Rd, the following inequality holds

〈∇h(x), z − y〉 ≥ h(z)− h(y) + µ

4 ‖y − z‖
2 − L ‖z − x‖2

. (35)

Proof. For any given x, y, and z, the two inequalities below follows by the smoothness and strong convexity
of the function h:

〈∇h(x), z − x〉 ≥ h(z)− h(x)− L

2 ‖z − x‖
2
,

〈∇h(x), x− y〉 ≥ h(x)− h(y) + µ

2 ‖y − x‖
2
.

Further, applying the relaxed triangle inequality gives

µ

2 ‖y − x‖
2 ≥ µ

4 ‖y − z‖
2 − µ

2 ‖x− z‖
2
.

Combining all these inequalities together we have

〈∇h(x), z − y〉 ≥ h(z)− h(y) + µ

4 ‖y − z‖
2 − L+ µ

2 ‖z − x‖2
.

The lemma follows by L ≥ µ.

D.1 Proof of Theorem 17

Proof. The master update during round k can be written as (superscript k is dropped from here onward)

ηg∆x = η

R

∑
i∈S,r

wi
pi
gi(yi,r−1) and E [ηg∆x] = η

R

∑
i,r

wiE [∇fi(yi,r−1)] .
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Summations are always over i ∈ [n] and r ∈ [R] unless stated otherwise. Taking expectations over x
conditioned on the results prior to round k and over the sampling S gives

E
[
‖x− ηg∆x− x?‖2

]
= ‖x− x?‖2−2η

R

∑
i,r

〈wi∇fi(yi,r−1), x− x?〉︸ ︷︷ ︸
A1

+ η2

R2 E


∥∥∥∥∥∥
∑
i∈S,r

wi
pi
gi(yi,r−1)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
A2

.

Applying Lemma 21 with h = wifi, x = yi,r−1, y = x? and z = x gives

A1 ≤ −
2η
R

∑
i,r

(
wifi(x)− wifi(x?) + wi

µ

4 ‖x− x
?‖2 − wiL ‖x− yi,r−1‖2

)
≤ −2η

(
f(x)− f? + µ

4 ‖x− x
?‖2
)

+ 2LηE ,

where E is the drift caused by the local updates on the clients:

E := 1
R

∑
i,r

wiE
[
‖x− yi,r−1‖2

]
. (36)

Bounding A2, we obtain

1
η2A2 = E

∥∥∥∥∥∑
i∈S

wi
pi

1
R

∑
r

gi(yi,r−1)−
∑
i

wi
1
R

∑
r

gi(yi,r−1)
∥∥∥∥∥

2
+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

gi(yi,r−1)
∥∥∥∥∥

2


≤ αn−m
m

∑
i

w2
iE

∥∥∥∥∥ 1
R

∑
r

gi(yi,r−1)
∥∥∥∥∥

2
+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

gi(yi,r−1)
∥∥∥∥∥

2


= α
n−m
m

∑
i

w2
i

E

∥∥∥∥∥ 1
R

∑
r

ξi,r−1

∥∥∥∥∥
2
+ E

∥∥∥∥∥ 1
R

∑
r

∇fi(yi,r−1)
∥∥∥∥∥

2


+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

ξi,r−1

∥∥∥∥∥
2
+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

∇fi(yi,r−1)
∥∥∥∥∥

2
 .
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Using independence, zero mean and bounded second moment of the random variables ξi,r, we obtain

1
η2A2 ≤ α

n−m
m

∑
i

w2
i

 1
R2

∑
r

E
[
‖ξi,r−1‖2

]
+ E

∥∥∥∥∥ 1
R

∑
r

∇fi(yi,r−1)
∥∥∥∥∥

2


+
∑
i

w2
i

1
R2

∑
r

E
[
‖ξi,r−1‖2

]
+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

∇fi(yi,r−1)
∥∥∥∥∥

2


≤ αn−m
m

∑
i

w2
i

((
M

R2 + 1
R

)∑
r

E
[
‖∇fi(yi,r−1)‖2

]
+ σ2

R

)

+
∑
i

w2
i

(
M

R2

∑
r

E
[
‖∇fi(yi,r−1)‖2

]
+ σ2

R

)
+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

∇fi(yi,r−1)
∥∥∥∥∥

2


= σ2

Rγ

∑
i

w2
i +

(
M

R
+
(
M

R
+ 1
)
α
n−m
m

)∑
i

w2
i

1
R

∑
r

E
[
‖∇fi(yi,r−1)−∇fi(x) +∇fi(x)‖2

]

+ E

∥∥∥∥∥∑
i

wi
1
R

∑
r

(∇fi(yi,r−1)−∇fi(x)) +∇f(x)
∥∥∥∥∥

2


≤ σ2

Rγ

∑
i

w2
i +

(
M

R
+
(
M

R
+ 1
)
α
n−m
m

)∑
i

w2
i

(
2
R

∑
r

E
[
‖∇fi(yi,r−1)−∇fi(x)‖2

]
+ 2E

[
‖∇fi(x)‖2

])

+ 2E

∥∥∥∥∥∑
i

wi
1
R

∑
r

(∇fi(yi,r−1)−∇fi(x))
∥∥∥∥∥

2
+ 2E

[
‖∇f(x)‖2

]
.

Combining the smoothness of fi’s, the definition of E , and Jensen’s inequality with definition γ := m
α(n−m)+m ,

we obtain

1
η2A2 ≤

σ2

Rγ

∑
i

w2
i + 2

(
M

R
+
(
M

R
+ 1
)
α
n−m
m

)(
WL2E + 2WL(f(x)− f?) + 2L

∑
i

w2
iZi

)
+ 2L2E + 4L(f(x)− f(x?))

= σ2

Rγ

∑
i

w2
i + 2L2

(
(1−W ) + W

γ

(
M

R
+ 1
))
E + 4L

(
1
γ

(
M

R
+ 1
)
− 1
)∑

i

w2
iZi

+ 4L
(

(1−W ) + W

γ

(
M

R
+ 1
))

(f(x)− f?).

Putting these bounds on A1 and A2 together and using the fact that 1−W ≤ 1/γ yields

E
[
‖x− ηg∆x− x?‖2

]
≤
(

1− µη

2

)
‖x− x?‖2 − 2η

(
1− 2Lη

γ

(
W

(
M

R
+ 1
)

+ 1
))

(f(x)− f?)

+ η2

(
σ2

Rγ

∑
i

w2
i + 4L

(
1
γ

(
M

R
+ 1
)
− 1
)∑

i

w2
iZi

)

+
(

1 + ηL

(
(1−W ) + W

γ

(
M

R
+ 1
)))

2LηE .

Let η ≤ γ
8(1+W (1+M/R))L , then

3
4 ≤ 1− 2Lη

γ

(
W

(
M

R
+ 1
)

+ 1
)
,
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which in turn yields

E
[
‖x− ηg∆x− x?‖2

]
≤
(

1− µη

2

)
‖x− x?‖2 − 3η

2 (f(x)− f?)

+ η2

(
σ2

Rγ

∑
i

w2
i + 4L

(
1
γ

(
M

R
+ 1
)
− 1
)∑

i

w2
iZi

)

+
(

1 + ηL

(
(1−W ) + W

γ

(
M

R
+ 1
)))

2LηE . (37)

Next, we need to bound the drift E . For R ≥ 2, we have

E
[
‖yi,r − x‖2

]
= E

[
‖yi,r−1 − x− ηlgi(yi,r−1)‖2

]
≤ E

[
‖yi,r−1 − x− ηl∇fi(yi,r−1)‖2

]
+ η2

l (M ‖∇fi(yi,r−1)‖2 + σ2)

≤
(

1 + 1
R− 1

)
E
[
‖yi,r−1 − x‖2

]
+ (R+M)η2

l ‖∇fi(yi,r−1)‖2 + η2
l σ

2

=
(

1 + 1
R− 1

)
E
[
‖yi,r−1 − x‖2

]
+
(

1 + M

R

)
η2

Rη2
g

‖∇fi(yi,r−1)‖2 + η2σ2

R2η2
g

≤
(

1 + 1
R− 1

)
E
[
‖yi,r−1 − x‖2

]
+
(

1 + M

R

)
2η2

Rη2
g

‖∇fi(yi,r−1)−∇fi(x)‖2

+
(

1 + M

R

)
2η2

Rη2
g

‖∇fi(x)‖2 + η2σ2

R2η2
g

≤
(

1 + 1
R− 1 +

(
1 + M

R

)
2η2L2

Rη2
g

)
E
[
‖yi,r−1 − x‖2

]
+
(

1 + M

R

)
2η2

Rη2
g

‖∇fi(x)‖2 + η2σ2

R2η2
g

.

If we further restrict η ≤ 1
8L(2+M/R) , then for any ηg ≥ 1, we have

(
1 + M

R

)
2η2L2

Rη2
g

≤ 2L2

Rη2
g

1
64L2 ≤

1
32R ≤

1
32(R− 1) ,

and therefore,

E
[
‖yi,r − x‖2

]
≤
(

1 + 33
32(R− 1)

)
E
[
‖yi,r−1 − x‖2

]
+
(

1 + M

R

)
2η2

Rη2
g

‖∇fi(x)‖2 + η2σ2

R2η2
g

≤
r−1∑
τ=0

(
1 + 33

32(R− 1)

)τ ((
1 + M

R

)
2η2

Rη2
g

‖∇fi(x)‖2 + η2σ2

R2η2
g

)
≤ 8R

((
1 + M

R

)
2η2

Rη2
g

‖∇fi(x)‖2 + η2σ2

R2η2
g

)
= 16

(
1 + M

R

)
η2 ‖∇fi(x)‖2 + 8η2σ2

Rη2
g

.
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Hence, the drift is bounded by

E ≤ 16
(

1 + M

R

)
η2
∑
i

wi ‖∇fi(x)‖2 + 8η2σ2

Rη2
g

≤ 32
(

1 + M

R

)
η2L

∑
i

wi(fi(x)− f?i ) + 8η2σ2

Rη2
g

= 32
(

1 + M

R

)
η2L(f(x)− f?) + 32

(
1 + M

R

)
η2L

∑
i

wiZi + 8η2σ2

Rη2
g

≤ 4η(f(x)− f?) + 32
(

1 + M

R

)
η2L

∑
i

wiZi + 8η2σ2

Rη2
g

.

Due to the upper bound on the step size η ≤ 1
8L(2+M/R) , we have the inequalities

1 + ηL

(
(1−W ) + W

γ

(
M

R
+ 1
))
≤ 9

8 and 8ηL ≤ 1. (38)

Plugging these to (37), we obtain

E
[
‖x− ηg∆x− x?‖2

]
≤
(

1− µη

2

)
‖x− x?‖2 − 3

8η(f(x)− f?)

+ η2

(
σ2

γR

(
γ

η2
g

+
∑
i

w2
i

)
+ 4L

(
M

R
+ 1− γ

)∑
i

w2
iZi

)

+ η372L2
(

1 + M

R

)∑
i

wiZi.

Rearranging the terms in the last inequality, taking full expectation and including superscripts lead to

3
8E
[
(f(xk)− f?)

]
≤ 1
ηk

(
1− µηk

2

)
E
[∥∥xk − x?∥∥2]− 1

ηk
E
[∥∥xk+1 − x?

∥∥2]
+ ηk

(
σ2

γkR

(
γk

η2
g

+
∑
i

w2
i

)
+ 4L

(
M

R
+ 1− γk

)∑
i

w2
iZi

)

+ (ηk)272L2
(

1 + M

R

)∑
i

wiZi.

Plugging the assumption ηkg ≥
√

γk∑
i
w2

i

into the RHS of the above inequality completes the proof.

D.2 Proof of Theorem 18

Proof. We drop superscript k and write the master update during round k as:

ηg∆x = η

R

∑
i∈S,r

wi
pi
gi(yi,r−1) := η∆̃.
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Summations are always over i ∈ [n] and r ∈ [R] unless stated otherwise. Taking expectations conditioned on
x and using a similar argument as in the proof in Appendix C.2, we have

E [f(x− ηg∆x)] ≤ f(x)− η
〈
∇f(x),E

[
∆̃
]〉

+ η2L

2 E
[∥∥∆̃

∥∥2]
= f(x)− η ‖∇f(x)‖2 + η

〈
∇f(x),∇f(x)− E

[
∆̃
]〉

+ η2L

2 E
[∥∥∆̃

∥∥2]
≤ f(x)− η

2 ‖∇f(x)‖2 + η

2E
[∥∥∇f(x)− ES

[
∆̃
]∥∥2]+ η2L

2 E
[∥∥∆̃

∥∥2]
,

where the last inequality follows since 〈a, b〉 ≤ 1
2 ‖a‖

2 + 1
2 ‖b‖

2
, ∀a, b ∈ Rd. Since fi’s are L-smooth, by the

(relaxed) triangular inequality, we have

η

2E
[∥∥∇f(x)− E

[
∆̃
]∥∥2] = η

2E


∥∥∥∥∥∥ 1
R

∑
i,r

wi (∇fi(x)−∇fi(yi,r−1))

∥∥∥∥∥∥
2


≤ ηL2

2R
∑
i,r

wiE
[
‖x− yi,r−1‖2

]
= ηL2

2 E ,

where E is the drift caused by the local updates on the clients as defined in (36).

In Appendix D.1, we already obtained the upper bound for 1
η2A2 = E

[∥∥∆̃
∥∥2]:

E
[∥∥∆̃

∥∥2] ≤ σ2

Rγ

∑
i

w2
i + 2W

(
M

R
+
(
M

R
+ 1
)
α
n−m
m

)(
L2E +

∑
i

wi ‖∇fi(x)‖2

)
+ 2L2E + 2 ‖∇f(x)‖2

.

Together with Assumption 9 that∑
i

wi ‖∇fi(x)‖2 − ‖∇f(x)‖2 ≤
∑
i

wi ‖∇fi(x)−∇f(x)‖2 ≤ ρ,

we have

E
[∥∥∆̃

∥∥2] ≤ σ2

Rγ

∑
i

w2
i + 2W

γ

(
M

R
+ 1− γ

)(
L2E + ‖∇f(x)‖2 + ρ

)
+ 2L2E + 2 ‖∇f(x)‖2

.

Combining the above inequalities gives

E [f(x− ηg∆x)] ≤ f(x) + η2 σ
2L

2Rγ
∑
i

w2
i + ηL2

(
ηL

(
(1−W ) + W

γ

(
1 + M

R

))
+ 1

2

)
E

+ η

(
ηL

(
(1−W ) + W

γ

(
1 + M

R

))
− 1

2

)
‖∇f(x)‖2

+ η

(
ηL

(
(1−W ) + W

γ

(
1 + M

R

))
− ηL

)
ρ.

Now, applying inequality (38) gives

E [f(x− ηg∆x)] ≤ f(x) + η2σ2L

2Rγ
∑
i

w2
i + 5ηL2

8 E − 3η
8 ‖∇f(x)‖2 + η

8 (1− 8ηL)ρ.

In Appendix D.1, we also obtained the upper bound for the drift E :

E ≤ 16
(

1 + M

R

)
η2
∑
i

wi ‖∇fi(x)‖2 + 8η2σ2

Rη2
g

≤ 16
(

1 + M

R

)
η2(‖∇f(x)‖2 + ρ) + 8η2σ2

Rη2
g

.
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Since 8ηL ≤ 8ηL(1 + M/R) ≤ 1, we have

5ηL2

8 E ≤ 10η3L2
(

1 + M

R

)
(‖∇f(x)‖2 + ρ) + 5η3L2σ2

Rη2
g

≤ 5η2L

4 (‖∇f(x)‖2 + ρ) + 5η2Lσ2

8Rη2
g

.

This further simplifies the iterate to

E [f(x− ηg∆x)] ≤ f(x)− 3
8η
(

1− 10
3 ηL

)
‖∇f(x)‖2 + 1

8η (1 + 2ηL) ρ+ η2σ2L

2Rγ

(
5γ
4η2
g

+
∑
i

w2
i

)
.

Applying the assumption that ηg ≥
√

5γ
4
∑

i
w2

i

and taking full expectations completes the proof:

E [f(x− ηg∆x)] ≤ E [f(x)]− 3
8η
(

1− 10
3 ηL

)
E
[
‖∇f(x)‖2

]
+ η

ρ

8 + η2

(
ρ

4 + σ2

Rγ

n∑
i=1

w2
i

)
L.

E A Sketch of Results on Partial Participation

This section discusses how our analysis can be extended to the case where not all clients are available to
participate in each round. As an illustrative example, we consider Distributed SGD (DSGD), i.e., Uk

i = gki .

If not all clients are available to participate in each communication round, we will assume that there is a
known distribution of client availability Q such that in each step a subset Qk ∼ Q of clients are available to
participate in a given communication round k. We denote the probability that client i is available in the
current run by qi, i.e., qi = Prob(i ∈ Qk). Under this setting, we can apply twice tower property of the
expectation and obtain the following variance decomposition:

E
[∥∥Gk −∇f(xk)

∥∥2]
= E

E


∥∥∥∥∥∥Gk −

∑
i∈Qk

wi
qi

Uk
i

∥∥∥∥∥∥
2

|Qk


+ E


∥∥∥∥∥∥
∑
i∈Qk

wi
qi

Uk
i −

n∑
i=1

wiUk
i

∥∥∥∥∥∥
2
 + E

∥∥∥∥∥
n∑
i=1

wiUk
i −∇f(xk)

∥∥∥∥∥
2
 ,
(39)

where we update the definition of Gk

Gk :=
∑

i∈Sk⊆Qk

wi
qipki

. (40)

Note that Sk ⊆ Qk as we can only sample from available clients. Furthermore, in the particular case where
all clients are available, the above equations become identical to the ones that we present in the main paper.

Upper-bounding Equation (39) in an analogous way as we proceed in our analysis in Appendices C and D
would complete the proof of convergence for these settings.

F Experimental Details

F.1 Federated EMNIST Dataset

We detail the hyper-parameters used in the experiments on the FEMNIST datasets. For each experiment, we
run 151 communication rounds, reporting (local) training loss every round and validation accuracy every
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Figure 8: (FEMNIST Dataset 1, n = 32) current best validation accuracy as a function of the number of
communication rounds and the number of bits communicated from clients to the master.
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Figure 9: (FEMNIST Dataset 2, n = 32) current best validation accuracy as a function of the number of
communication rounds and the number of bits communicated from clients to the master.

0 20 40 60 80 100 120 140 160
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
Ac

cu
ra

cy

optimal sampling (m=3, n=32)
uniform sampling (m=3, n=32)
optimal sampling (m=6, n=32)
uniform sampling (m=6, n=32)
full participation (m=32, n=32)

22 24 26 28 210

Bits Communicated from Clients to the Master (×108)
0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
Ac

cu
ra

cy

Figure 10: (FEMNIST Dataset 3, n = 32) current best validation accuracy as a function of the number of
communication rounds and the number of bits communicated from clients to the master.
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Figure 11: (Shakespeare Dataset, n = 32) current best validation accuracy as a function of the number of
communication rounds and the number of bits communicated from clients to the master.
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Figure 12: (Shakespeare Dataset, n = 128) current best validation accuracy as a function of the number of
communication rounds and the number of bits communicated from clients to the master.

5 rounds. In each round, n = 32 clients are sampled from the client pool, each of which then performs
SGD for 1 epoch on its local training images with batch size 20. For partial participation, the expected
number of clients allowed to communicate their updates back to the master is set to m ∈ {3, 6}. We use
vanilla SGD and constant step sizes for all experiments, where we set ηg = 1 and tune ηl from the set of
value {2−1, 2−2, 2−3, 2−4, 2−5}. If the optimal step size hits a boundary value, then we try one more step
size by extending that boundary and repeat this until the optimal step size is not a boundary value. For
full participation and optimal sampling, it turns out that ηl = 2−3 is the optimal local step size for all three
datasets. For uniform sampling, the optimal is ηl = 2−5 for Dataset 1 and ηl = 2−4 for Datasets 2 and 3. For
the extra communications in Algorithm 2, we set jmax = 4.

We also present some additional figures of the experiment results. Figures 8, 9 and 10 show the current
best validation accuracy as a function of the number of communication rounds and the number of bits
communicated from clients to the master on Datasets 1, 2 and 3, respectively.

F.2 Shakespeare Dataset

We detail the hyper-parameters used in the experiments on the Shakespeare dataset. For each experiment,
we run 151 communication rounds, reporting (local) training loss every round and validation accuracy every
5 rounds. In each round, n ∈ {32, 128} clients are sampled from the client pool, each of which then performs
SGD for 1 epoch on its local training data with batch size 8 (each batch contains 8 example sequences of
length 5). For partial participation, the expected number of clients allowed to communicate their updates
back to the master is set to m ∈ {2, 4, 6, 12}. We use vanilla SGD and constant step sizes for all experiments,
where we set ηg = 1 and tune ηl from the set of value {2−1, 2−2, 2−3, 2−4, 2−5}. If the optimal step size hits a
boundary value, then we try one more step size by extending that boundary and repeat this until the optimal
step size is not a boundary value. For full participation and optimal sampling, it turns out that ηl = 2−2 is
the optimal local step size. For uniform sampling, the optimal is ηl = 2−3. For the extra communications in
Algorithm 2, we set jmax = 4.

We also present an additional figure of the experiment result. Figures 11 and 12 show the current best
validation accuracy as a function of the number of communication rounds and the number of bits communicated
from clients to the maste for the cases n = 32, 128, respectively.

G Additional Experiment on Federated CIFAR100 Dataset

We evaluate our method on the Federated CIFAR100 image dataset for image classification. The Federated
CIFAR100 dataset is a balanced dataset, where every client holds the same number of training images. In
each communication round, n = 32 clients are sampled uniformly from the client pool, each of which then
performs several SGD steps on its local training images for 1 epoch with batch size 20. This means that all
clients have the same number of local steps in each round. For partial participation, the expected number
of clients allowed to communicate their updates back to the master is set to m = 3. We use vanilla SGD
optimizers with constant step sizes for both clients and the master, with ηg = 1 and ηl tuned on a holdout
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Figure 13: (CIFAR100 Dataset, n = 32) Validation accuracy and (local) training loss as a function of the
number of communication rounds and the number of bits communicated from clients to the master.

set. For full participation and optimal sampling, it turns out that ηl = 1× 10−3 is the optimal local step size.
For uniform sampling, the optimal is ηl = 3× 10−4. We set jmax = 4 and include the extra communication
costs in our results. The main results are shown in Figure 13. It can be seen that our optimal client sampling
scheme achieves better performance than uniform sampling on this balanced dataset. The performance gains
of our method over uniform sampling come from the fact that the norms of the updates from some clients are
larger than those from other clients even if all clients run the same number of local steps in each round.
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