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ABSTRACT

Inferring dynamics from population snapshots is a core challenge in machine
learning and biology. In scRNA-sequencing (scRNA-seq), destructive measure-
ments yield irregular, high-dimensional samples of cell states, obscuring how pop-
ulations evolve. Existing trajectory inference methods either use graph heuristics
or cast alignment as an Optimal Transport (OT) problem. However, they treat
cells as independent points, ignoring intercellular interactions. In this work, we
ask whether incorporating cell–cell interactions can improve the reconstruction of
cellular dynamics from scRNA-seq snapshots. We introduce IADOT (Interaction-
Aware Dynamic Optimal Transport), which integrates cell-cell interaction net-
works into an OT objective and then learns a time-continuous vector field via Con-
ditional Flow Matching. Across a synthetic task and diverse scRNA-seq datasets,
we find that incorporating interaction structure can improve snapshot alignment
and inference of cellular dynamics versus feature-only baselines. IADOT also
supports in-silico ligand–receptor perturbation analyses: we show on lung cancer
data that inferred trajectories are sensitive to edits of the ligand–receptor catalog,
consistent with known effects of targeted pathway inhibition.

1 INTRODUCTION

Single-cell technologies have turned the study of gene expression into a high-resolution, data-driven
science (Picelli, 2016). By exposing cellular heterogeneity directly, these methods are reshaping
how we approach complex biological systems (Cha & Lee, 2020). For instance, in embryonic de-
velopment, they have traced lineage bifurcations that give rise to distinct tissues (Qiu et al., 2022). In
oncology, they exposed how cancer populations branch and adapt (Yeo et al., 2022). More broadly,
the capacity to measure cellular states at scale calls for computational methods that can recover
the underlying dynamical rules of biology (Schiebinger et al., 2019). Importantly, such approaches
hold major implications for pharmaceutical research, where experimental campaigns to explore dis-
ease mechanisms or evaluate therapeutic interventions are prohibitively costly and time-consuming
(Sertkaya et al., 2024). By enabling in silico reconstruction and prediction of cellular dynamics,
computational models can guide experiment design, prioritize drug targets, and reduce the need for
exhaustive laboratory screening (Yue & Dutta, 2022).

Challenges of inferring cellular dynamics. Despite these advances, reconstructing cellular dy-
namics from single-cell measurements presents fundamental difficulties (Bunne et al., 2024). Mea-
surements are destructive: the same cell cannot be followed over time, so there is no one-to-one
correspondence between adjacent snapshots. Populations are imbalanced, with varying numbers of
cells in each state, making one-to-one mappings ill-suited (Schiebinger et al., 2019). Gene expres-
sion measurements are noisy and sampled irregularly, and the ambient dimensionality of thousands
of genes exacerbates statistical and computational difficulties (Adil et al., 2021). Reconstructing dy-
namics from such data means inferring smooth trajectories from noisy, unaligned population snap-
shots under partial observability.

Aligning snapshots with Optimal Transport. Classical trajectory inference constructs a cell–cell
kNN graph in a low-dimensional embedding and then extracts pseudotime and branches via prin-
cipal curves, diffusion distances (Haghverdi et al., 2016), or graph geodesics/spanning trees (Street
et al., 2018). These locality-based heuristics implicitly assume geometric proximity within a snap-
shot reflects temporal adjacency and differentiation proceeds along geodesics of the learned mani-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fold. This often results in biased pseudotimes and spurious lineage structure (Saelens et al., 2022).
More recent methods (Schiebinger et al., 2019; Bunne et al., 2023b) instead recast cell alignment as a
global, uncertainty-aware coupling between multiple distributions via Optimal Transport (OT). This
formulation has distinct advantages, as it produces soft correspondences, naturally handles unequal
sample sizes, and encourages low-action trajectories via its prior.

HBEGF / EGFR

CXCL12 / CXR4

Cell

Figure 1: Augmenting feature distances
with typed interactions improves align-
ment between snapshots D0 and D1

and encourages transport plans consis-
tent with communication patterns.

Cell-cell interactions. Conventional OT-based align-
ment matches cells by minimizing distances in gene-
expression space, effectively treating cells as independent
points and ignoring the interaction networks that connect
them. Consequently, they overlook potential smoothness
and directionality in cell–cell interactions (CCIs) unless
external structure (e.g., spatial coordinates) is provided
(Klein et al., 2025). This omission is at odds with the
central role of directed CCIs in many applications, in-
cluding pharmacological targeting (He & Xu, 2020; Liu
et al., 2023). This motivates the following question: Can
structure derived from CCIs provide useful information
to improve the reconstruction of cellular dynamics from
scRNA-seq snapshots only? To answer this, we introduce
IADOT (Interaction-Aware Dynamic Optimal Transport),
a framework that integrates gene-expression features and interaction networks into a single OT ob-
jective. IADOT constructs a directed CCI tensor from ligand–receptor expression at each snapshot,
and optimizes an OT objective with two components: a feature cost in expression space and a struc-
ture cost that favors couplings preserving specific CCI patterns across time. The resulting soft cou-
plings align snapshots while respecting the CCI structure, and we use them to learn continuous-time
dynamics by training a velocity field via Conditional Flow Matching (Lipman et al., 2022).

Contributions
Conceptually, we formalize trajectory inference as learning dynamics in interacting subsystems,
introducing a structure-regularized OT objective where the persistence of directed, typed interac-
tion networks (e.g., ligand–receptor signaling) serves as a prior. Technically, we propose IADOT
which learns couplings between snapshots by integrating feature similarity with interaction struc-
ture in a multi-dimensional Fused-Gromov Wasserstein objective. Based on these couplings, we
then learn continuous-time dynamics of cells by regressing velocity fields with Conditional Flow
Matching. Empirically, we find on synthetic and diverse single-cell datasets that incorporating
directed, typed CCI structure into the OT problem can improve trajectory inference. We also
perform in-silico interventions on the LR prior (ablating specific interactions) to assess the de-
pendence of inferred dynamics on the structural assumption.

2 BACKGROUND

Problem formulation: cell trajectory inference. We consider k population snapshots {Di}ki=1,
where each Di ⊂ Rd is a set of single-cell states measured at time ti. The goal is to learn a time-
continuous flow ψ : Rd × R+ → Rd such that ψ(x, t) returns the state obtained by evolving an
initial state x to time t. Because scRNA-seq is destructive, the same cell cannot be observed at two
times, so there is no one-to-one correspondence between cells inDi andDi+1. Classical time-series
and ODE-fitting methods that require repeated observations of the same object are thus not directly
applicable; trajectory inference must instead recover dynamics from unaligned snapshots.

Global alignment of snapshots. Rather than inferring trajectories from neighborhoods within a
single snapshot (Haghverdi et al., 2016), recent work aligns multiple snapshots at the population
level (Schiebinger et al., 2019), treating each snapshot as a probability distribution over cell states.
For two timepoints t0 < t1 with datasets D0 = {xi}n0

i=1 and D1 = {yj}n1
j=1, where xi, yj ∈ Rd

are gene-expression vectors, we form the empirical measures ρ0 =
∑n0

i=1 ai δxi and ρ1 =∑n1

j=1 bj δyj , with a ∈ Σn0 , b ∈ Σn1 , and Σn := {w ∈ Rn
+ :

∑n
k=1 wk = 1} (e.g., ai = 1/n0 for

uniform weights). The alignment problem seeks a coupling Γ⋆ between ρ0 and ρ1 that respects the
marginals, i.e.,
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Γ⋆ ∈ Π(a, b) :=
{
Γ ∈ Rn0×n1

+

∣∣ Γ1n1
= a, Γ⊤1n0

= b
}
, (1)

where 1n is the all-ones vector. Without additional structure, any Γ ∈ Π(a, b) is admissible and
the problem is underdetermined. Biological priors must therefore rule out implausible matchings.
A widely used prior is the principle of least action: cell states change smoothly over time, making
matchings that incur small feature-wise changes more likely. This recasts snapshot alignment as an
Optimal Transport (OT) problem (Villani et al., 2008).

The static Optimal Transport problem. Optimal Transport (OT) provides a geometric frame-
work for comparing probability distributions, enforcing the principle of least-action. In the context
of cell trajectory inference, this principle assumes that the change between snapshots arises from the
smallest rearrangement of cellular states consistent with biology: states evolve smoothly in expres-
sion space. Given a cost matrix C ∈ Rn0×n1

+ , where Cij = c(xi, yj) is the cost of transporting a
unit of mass from xi to yj , the discrete Kantorovich formulation seeks a coupling

Γ∗ ∈ arg min
Γ∈Π(a,b)

⟨Γ, C⟩F (2)

where ⟨·, ·⟩F denotes the Frobenius dot product. The optimal coupling Γ∗ therefore represents the
most efficient mapping from a geometric standpoint, as it is defined based on the gene expression
profiles. However, this formulation is limited as it only considers the cost of displacing individual
points, ignoring any structural information encoded within the distributions.

Incorporating intra-snapshot structure. Beyond inter-snapshot distances, it is frequent to have
access to structural information in each snapshot. However, the optimization problem in Equa-
tion (2) does not account for it, as it is purely based on inter-snapshot distances. The Gro-
mov–Wasserstein (GW) problem extends OT to compare two distributions using their pairwise
relational structure. We assume that this relational structure can be represented by two matri-
ces G(0) ∈ Rn0×n0 (source) and G(1) ∈ Rn1×n1 (target). The GW problem seeks a coupling
Γ∗ ∈ Π(a, b) that minimizes the distortion between the intra-domain structure matrices, G(0) and
G(1). More precisely, the GW objective is the following quadratic program:

GW(G(0), G(1), a, b) = min
Γ∈Π(a,b)

n0∑
i,k=1

n1∑
j,l=1

L(G
(0)
ik , G

(1)
jl )ΓijΓkl (3)

where L denotes a pairwise distortion function. Finally, it is possible to compare distributions
based on both their features and their relational structures, combining the Kantorovich and the GW
formulations. For a given hyperparameter α ∈ [0, 1], the Fused Gromov-Wasserstein problem is
defined by:

FGWα(G
(0), G(1), C, a, b) = min

Γ∈Π(a,b)
(1− α)⟨Γ, C⟩F + α

n0∑
i,k=1

n1∑
j,l=1

L(G
(0)
ik , G

(1)
jl )ΓijΓkl (4)

The parameter α acts as a trade-off, balancing the importance of aligning individual cell features
against preserving the structure between cells (controlled by the Gromov-Wasserstein term): setting
α = 0 recovers the Kantorovich problem, while α = 1 recovers the GW problem.

3 RELATED WORK

Distributional alignment for trajectory inference. Classical trajectory-inference tools recon-
struct cellular progressions from neighborhood graphs with pseudotime and branching heuristics
(e.g., Monocle 2, DPT, Slingshot, PAGA) (Qiu et al., 2017; Haghverdi et al., 2016; Street et al.,
2018; Wolf et al., 2019), typically within a single snapshot. Optimal transport (OT) (Villani et al.,
2008; Peyré & Cuturi, 2019) provides an alternative that couples distributions across timepoints
rather than stitching local paths. Waddington-OT (WOT) extends OT to sequences of time-labeled
snapshots, estimating adjacent-time couplings (Schiebinger et al., 2019). Continuous-time coun-
terparts such as TrajectoryNet learn neural ODE flows constrained by transport to interpolate dis-
tributions over time (Tong et al., 2020). However, these families typically optimize match quality
primarily in expression space, treating each cell as an isolated point and overlooking intercellular
communication. Table 1 contrasts IADOT with other OT-based methods and an extended discussion
is provided in Appendix A.
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Table 1: Comparison of trajectory methods. Legend: ✓ supported, ˜ partial, ✗ not supported.

Method Dynamic Trajectories
In-silico

Perturbation Structure-Aware scRNA Data Sufficient Reference
PAGA (Scanpy) ✗ ✗ ✗ ✗ ✓ (Wolf et al., 2019)
Waddington-OT ✓ ˜ ✗ ✗ ✓ (Schiebinger et al., 2019)
SCOT ✗ ✗ ✗ ˜ ✗ (Demetci et al., 2022a)
CellOT ✗ ✗ ✓ ✗ ✗ (Bunne et al., 2023a)
OT-CFM ✓ ✓ ✗ ✗ ✓ (Tong et al., 2024)
TrajectoryNet ✓ ✓ ✗ ✗ ✓ (Tong et al., 2020)
Schrödinger Bridge ✓ ✓ ✗ ✗ ✓ (Hong et al., 2025)
scVelo ✓ ✗ ✗ ✗ ✓ (Bergen et al., 2020)
IADOT (ours) ✓ ✓ ✓ ✓ ✓ —

Structure-aware alignments. Gromov–Wasserstein (GW) compares samples via their intrinsic
geometry, and Fused GW (FGW) optimizes a joint feature+structure objective (Vayer et al., 2020a).
In single-cell settings, GW/FGW pipelines (e.g., SCOT for multi-omics) typically rely on undi-
rected kNN graphs that capture generic topology but lack communication semantics (Demetci et al.,
2022b). We instead inject a directed, typed prior derived from ligand–receptor (LR) expression
into an FGW objective. This encourages alignments that preserve signaling context and allows to
probe the effect of specific LR interactions on the inferred dynamics. Orthogonal lines of work
infer directionality from spliced/unspliced counts and propagate it on kNN graphs (Bergen et al.,
2020). CellRank further combines velocity with transcriptomic similarity to estimate fate probabil-
ities (La Manno et al., 2018; Bergen et al., 2020; Lange et al., 2022). Spatial OT approaches (e.g.,
SpaOTsc) instead exploit physical proximity to couple cells and infer possible communication, but
their structure term remains geometric rather than typed signaling (Cang & Nie, 2020). In contrast,
IADOT integrates directed, typed ligand–receptor pairs into a multi-dimensional FGW objective,
and links the static coupling to learned continuous dynamics via conditional flow matching.

4 IADOT: INTERACTION-AWARE OPTIMAL TRANSPORT

Overview. Our objective is to evaluate whether incorporating a structural prior on cell–cell interac-
tions (CCIs) (specifically, a bias toward transport maps that preserve CCI structure across snapshots)
can improve trajectory inference. Accordingly, we introduce Interaction-Aware Dynamic Optimal
Transport (IADOT), a framework that integrates gene-expression features and interaction networks
into a unified OT objective. Given source and target snapshots D0 and D1, IADOT proceeds in
two stages. It first computes a static cross-snapshot coupling representing a probabilistic assign-
ment from source cells to target cells. IADOT enforces two desiderata regarding this coupling: (D1)
Feature coherence— the coupling should reflect smooth cell evolution in expression space; (D2)
Communication preservation— the coupling should capture the persistence of some directed CCI
geometry based on ligand/receptor expression. IADOT satisfies these two desiderata by optimizing
a Fused Gromov–Wasserstein objective balancing feature similarity and CCI preservation, yielding
a coupling Γ⋆. In the second stage, IADOT fits a continuous-time velocity field from interpolants
derived from Γ⋆ using a Conditional Flow Matching loss. We can then integrate this velocity field
to obtain cell trajectories starting from any given initial state.
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Figure 2: Overview of IADOT. From a ligand–receptor catalogue, we build directed, multi LR-
pair CCI matrices. A structure-aware optimal transport problem balances feature similarity with
interaction structure to produce a cross-snapshot coupling, used to train a time-continuous vector
field learned via Conditional Flow Matching to recover cell trajectories.
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4.1 INTERACTION-AWARE TRANSPORT VIA MULTI LR-PAIR FGW

Modeling cell–cell interactions from scRNA. Given a ligand–receptor (LR) catalog P =
{(lk, rk) | k ∈ [K]} of K ligand-receptor pairs and a dataset of n cells, our aim is to construct
a directed and nonnegative CCI tensor G ∈ Rn×n×K that summarizes potential signaling from
any sender cell i to receiver cell j. Starting from raw expression counts, we first apply library-size
normalization to make cells comparable. Rather than a log(1+·) transform, which can suppress
biologically meaningful high-expression events, we keep normalized counts and map each gene to
[0, 1] using a Hill-saturation function. For gene g, we then define scg = x

hg
cg /(x

hg
cg + K

hg
g ), with

robust scale Kg (e.g., the q = 0.9 quantile of nonzero values in {xcg | c ∈ [n]} where xcg is the
normalized expression of gene g for cell c) and exponent hg .

This gives bounded activations where near-saturating expression contributes strongly. For an LR
pair pk = (lk, rk) and cells i (sender) and j (receiver), we score the interaction as q(pk)

i→j = siℓk sjrk ,
capturing the intuitive requirement that ligand availability and receptor readiness must co-occur. We
then define the value of G at (i, j, k) as Gijk = q

(pk)
i→j . The CCI tensor G then serves as the directed

structure we aim to preserve during cross-snapshot alignment.

Remark. For denoising purposes, cells can optionally be aggregated into metacells (e.g., by cluster-
ing in a low-dimensional embedding) before constructing the CCI tensors. We empirically evaluate
this variant in Section 5.5.

Interaction-aware transport via multi LR-pair FGW. Given the two snapshots D0 = {xi}n0
i=1

and D1 = {yj}n1
j=1 , we define a feature cost matrix C ∈ Rn0×n1

≥0 , such that for all i, j we have
Cij = c(xi, yj) , where c is typically the squared Euclidean distance. From the CCI construction
described above, we obtain directed, nonnegative tensors (G(0), G(1)) corresponding to the source
and target snapshots respectively. Our objective is to find a coupling Γ ∈ Rn0×n1

≥0 that aligns cells
while respecting the CCI structures. To jointly account for feature distances and multi-LR pair
CCIs, we optimize a Fused Gromov–Wasserstein objective that balances a feature term F(Γ) and a
structure-preservation term S(Γ) defined with a similarity measure φ:

min
Γ∈Π(a,b)

(1− α) ⟨Γ, C⟩︸ ︷︷ ︸
F(Γ)

+ α

n0∑
i,k=1

n1∑
j,ℓ=1

φ
(
G

(0)
ik , G

(1)
jℓ

)
ΓijΓkℓ︸ ︷︷ ︸

S(Γ)

.
(5)

The structure term S(Γ) favours couplings that preserve the CCI patterns encoded in G(0) and G(1).
Unlike the classical FGW setting (Vayer et al., 2020b), IADOT handles multi–typed interactions:
each entry Gij is a vector in RK rather than a scalar, allowing multiple LR pairs per cell–cell
relation. We compare these interaction vectors with a similarity φ. By default we use the squared
Euclidean norm φ(u, v) = ∥u − v∥2. Furthermore, Equation (5) is a non-linear and non-convex
problem because of the structure term S(Γ). Therefore, we optimize it using a conditional-gradient
solver (Braun et al., 2022), with more details provided in Appendix D.4.

Scale normalization. To balance the feature and structure terms in Equation (5), we normalize by
endpoints. Concretely, we first solve the feature-only problem (α = 0) and the structure-only prob-
lem (α = 1), obtaining Γ⋆

α=0 and Γ⋆
α=1. We then rescale the feature cost and the CCI tensors using

the corresponding objective values at these two optima, so that their magnitudes are comparable (see
Appendix D.5 for more details).

4.2 LEARNING CONTINUOUS DYNAMICS VIA CONDITIONAL FLOW MATCHING

Objective. The goal of IADOT is to learn a time–dependent velocity field that transports the source
dataset D0 to the target dataset D1, and can be integrated up to any time t > 0. We leverage the
optimal coupling obtained from Equation (5) to align the two snapshots and convert this static cor-
respondence into a time–dependent velocity field using Conditional Flow Matching (CFM) (Tong
et al., 2024; Lipman et al., 2022). Concretely, we first construct a coupling–induced probability path
{ρt}t∈[0,1] and then fit a velocity field to generate this probability path.
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Probability path. Let ρ0 and ρ1 denote the empirical distributions defined by D0 and D1, respec-
tively. Let Γ⋆ ∈ Rn0×n1

+ be the optimal coupling from Equation (5), with normalization constant

M =
∑

i,j Γ
⋆
ij . We define a joint distribution Π on D0 × D1 by Π =

∑n0

i=1

∑n1

j=1

Γ⋆
ij

M δ(xi,yj),

where δ(xi,yj) denotes the Dirac measure at (xi, yj). Therefore, the marginals of Π are ρ0 and ρ1.
For t ∈ [0, 1], we then consider the affine interpolation Zt = (1− t)X + tY , with (X,Y ) ∼ Π, and
let ρt = L(Zt) be the distribution of Zt, yielding a probability path {ρt}t∈[0,1]. By construction, ρ0
and ρ1 are the endpoints of this path.

Learning the vector field with CFM. Given the coupling–induced path {ρt}t∈[0,1], we learn a
time-dependent velocity field vθ : Rd × [0, 1] → Rd that generates it. For (X,Y ) ∼ Π and
Zt = (1− t)X + tY , the interpolation implies a constant drift across time ut(Zt | X,Y ) = Y −X ,
conditioned on (X,Y ).

We train vθ by regressing to this drift along the path, yielding the following CFM objective:

LCFM(θ) = E (X,Y )∼Π
t∼Unif[0,1]

[ ∥∥ vθ(Zt, t
)
− ut

(
Zt | X,Y

) ∥∥2
2

]
(6)

= E (X,Y )∼Π
t∼Unif[0,1]

[ ∥∥ vθ(Zt, t
)
− (Y −X)

∥∥2
2

]
. (7)

Thus, converting the coupling to a velocity field reduces to supervised regression. As shown in
(Lipman et al., 2024), the minimizer of this loss generates the probability path {ρt}t∈[0,1]. After
training, we can then sample trajectories starting from any point x ∈ Rd at time 0 by integrating the
ODE ż(t) = vθ(z(t), t) from 0 to t > 0, with the initial condition z(0) = x.

5 EXPERIMENTS

We evaluate whether incorporating the cell–cell interaction (CCI) structure improves cross-snapshot
alignment and continuous-time trajectory inference over feature-only baselines. In Section 5.1, we
present a controlled synthetic study, showing that the solution to the structure-aware OT problem
(Equation (5)) can exactly recover the ground-truth transport map. In Sections 5.2 and 5.3, we
benchmark IADOT on three scRNA-seq datasets spanning diverse tissues and observe consistent
gains over baselines in interpolation metrics, when incorporating the CCIs. We then provide biolog-
ical insights by performing targeted edits to the ligand–receptor catalog, and quantify the resulting
shifts in inferred dynamics in Section 5.4. Finally, we conduct a sensitivity analysis over the CCI
construction choices in Section 5.5 and discuss potential failure modes of IADOT in Section 5.6.

5.1 SYNTHETIC SETUP
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Figure 3: Structure-aware coupling recovers the ground-truth transport map. We show repre-
sentative couplings (left) and matching metrics (right). Feature-only OT (α=0) ignores structure and
misaligns clusters, structure-only (α=1) distorts geometry within the interaction types. A balanced
trade-off (α≈0.7) recovers the intended one-to-one mapping.

Setup. We consider two 2D snapshots, each composed of three clusters. The second snapshot is
obtained by translating each cluster by a distinct vector, inducing a known one-to-one ground-truth
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Figure 4: Interpolation error. We plot the W1 and W2 distances between the interpolated and
empirical t1 snapshots as α varies. Optimal performance occurs at dataset-specific α∗ > 0.

transport. We define an interaction structure with two types : the middle cluster points to the left
(Type 1) and to the right (Type 2), mirrored in the target snapshot (see Appendix C.1 for more
details). We then obtain a coupling for each α ∈ {0, 0.1, . . . , 1} by solving the FGW problem
defined in Equation (5) with the ground-truth interaction structures.

Results. Representative couplings across α are shown in Figure 3 (left). With α = 0 (feature-
only), the interaction structure is ignored and clusters are misaligned; with α = 1 (structure-only),
interaction types are satisfied but geometry is distorted. An intermediate setting (α ≈ 0.7) preserves
the directed relations while maintaining within-interaction geometry. We quantify these observations
by computing Hits@1, the fraction of source samples whose top-weighted target equals the ground-
truth match, and Transport Rank Error (TRE), the average fraction of targets ranked above the
ground-truth match. Figure 3 (right) shows that Hits@1 peaks and TRE is minimized at mid-range
α, indicating that a balanced mix of features and structure gives the most faithful transport map.

5.2 CROSS-SNAPSHOT INTERPOLATION FROM STRUCTURE-AWARE COUPLINGS

Datasets. We evaluate IADOT on real-world datasets whose characteristics are summarized in Ta-
ble 6. We selected these datasets because their temporal coverage provides a favorable window in
which ligand–receptor (LR) interactions are expected to remain approximately persistent. Following
standard preprocessing, we project gene-expression profiles onto the top d = 20 principal compo-
nents (Appendix D.2) and standardize them as in (Tong et al., 2024). Additional details on dataset
collection are provided in Appendix C, and results on further datasets are in Appendix E.

Setup. We build CCI tensors by selecting dataset-specific ligand–receptor pairs via an automated
procedure that accounts for stability of expression levels across snapshots (cf. Appendix D.6 for
more details). We then assess the couplings produced by IADOT in an interpolation setup. Given
three time points t0 < t1 < t2, we hold out the snapshot at t1. Using only t0 and t2, and for a chosen
LR catalog P and hyperparameter α ∈ {0, 0.1, . . . , 1.0}, we obtain a coupling Γ(α,P) by solving
the OT problem defined in Equation (5). We define the marginal at t1 by affine interpolation and
denote it by ρt1(α,P). For each α and P , we compare ρt1(α,P) with the empirical distribution ρt1
observed at t1, computing the Wasserstein-1 and Wasserstein-2 distances W1(ρt1(α,P), ρt1) and
W2(ρt1(α,P), ρt1).
Results. We report these metrics in Figure 4. Across datasets, incorporating CCI structure improves
alignment, with optimal performance at a dataset-specific α∗ > 0. We observe two regimes: a U-
shaped curve with 0 < α∗ < 1, indicating that combining CCI with feature-only OT is best, and an
almost monotonic decrease with a minimum at α∗ = 1 for the Dendritic Stimulus dataset.

5.3 CROSS-SNAPSHOT TRAJECTORY INFERENCE VIA FLOW MATCHING

Setup. Having shown that incorporating structure yields better couplings for these datasets, we
now verify whether it also improves continuous-time dynamics learnt with IADOT. Starting from
an optimal coupling Γ, we fit a time-conditional vector field vθ using the conditional Flow matching
loss (Equation (6)). We integrate vθ to transport cells observed at t0 to the held-out time t1, and
compare the transported distribution to the empirical snapshot at t1 using Wasserstein-1 and -2
distances. We repeat this for α ∈ {0, 0.5, 1}. As baselines, we compare with TrajectoryNet (Tong
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Table 2: Interpolation error for continuous time dynamics (lower is better). IADOTwith varying
structure weight α vs. baselines across the three datasets. We report mean±std over 5 runs.

V1 cortex Dendritic Stimulus Lung tumor

Method α W1 W2 W1 W2 W1 W2

TRAJECTORYNET — 3.022 ( 0.061 ) 3.338 ( 0.056 ) 4.410 ( 0.102 ) 4.607 ( 0.107 ) 2.712 ( 0.090 ) 3.056 ( 0.099 )

DSB — 3.819 ( 0.152 ) 3.875 ( 0.143 ) 4.099 ( 0.155 ) 4.249 ( 0.153 ) 3.700 ( 0.116 ) 3.967 ( 0.102 )

IADOT
0 2.392 ( 0.005 ) 2.625 ( 0.007 ) 3.696 ( 0.007 ) 3.857 ( 0.009 ) 1.993 ( 0.004 ) 2.275 ( 0.005 )

0.5 2.381 ( 0.004 ) 2.618 ( 0.003 ) 3.679 ( 0.009 ) 3.835 ( 0.010 ) 1.989 ( 0.004 ) 2.272 ( 0.005 )

1 2.362 ( 0.003 ) 2.601 ( 0.005 ) 3.639 ( 0.021 ) 3.788 ( 0.021 ) 2.057 ( 0.005 ) 2.329 ( 0.005 )

et al., 2020) (Neural ODE dynamics) and Diffusion Schrödinger Bridges (DSB) (De Bortoli et al.,
2021) (diffusion-based trajectory inference).

Results. Table 2 reportsW1 andW2 at the held-out time t1 (lower is better). Results indicate that the
procedure used to fit the velocity field affects performance: conditional flow matching yields con-
sistently lower errors than TrajectoryNet and DSB across datasets. Second, within IADOT, structure
helps: settings with α > 0 outperform the feature-only case (α = 0), with the best results at
α ∈ {0.5, 1}. These findings align with Section 5.2, indicating that CCI structure benefits both
static alignment and the learned continuous-time dynamics.

5.4 PROBING TRAJECTORY SENSITIVITY TO LIGAND–RECEPTOR CATALOG EDITS
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Figure 5: In silico interventions. Ed-
its to the LR catalog (i.e. removing
EGFR/ALK/MET interactions in the
CCIs) reduce a Hallmark-based tumour
progression proxy.

Setup. The previous sections showed that incorporat-
ing interaction structure can improve trajectory infer-
ence. We now examine how modifying these structures
influences the inferred trajectories. Specifically, we fo-
cus on the Lung Tumor dataset and construct alternative
ligand–receptor catalogs in which signaling for selected
pathways is removed. From these modified catalogs, we
recompute the corresponding CCI tensors and resolve the
OT problem (Equation (5)) to obtain couplings. These
couplings define mappings from source to target cells,
which we then summarize using the 20 Hallmarks of Can-
cer gene sets (see Appendix D.9.1). We evaluate differ-
ences relative to the baseline (unmodified catalog) over a
24h interpolation window1.

Results. Figure 5 shows the relative decrease in tumour-
associated progression scores under different catalog edits. Attenuating signaling through EGFR,
ALK, or MET produces measurable reductions (up to 15.5%), indicating that the inferred trajectories
are sensitive to these pathways. This aligns with their established therapeutic relevance in non–small
cell lung cancer, where EGFR inhibitors (e.g., gefitinib, osimertinib), ALK inhibitors (e.g., crizo-
tinib, alectinib), and MET inhibitors (e.g., capmatinib, tepotinib) are used clinically (Domvri et al.,
2013). By contrast, edits to unrelated cardio–renal pathways (RAAS, vasopressin, natriuretic pep-
tides) yield negligible changes, suggesting that IADOT responds specifically to biologically relevant
ligand–receptor structure rather than arbitrary perturbations.

5.5 SENSITIVITY TO CCI CONSTRUCTION CHOICES

Table 3: Sensitivity analysis on the CCI con-
struction.

Method Tumor Dendritic Cortex
W1 W2 W1 W2 W1 W2

Shuffle 2.181 2.378 3.637 3.760 2.434 2.644
Random LR 2.186 2.408 3.587 3.722 2.441 2.646
Metacell 2.054 2.345 3.575 3.722 2.327 2.564

IADOT 2.028 2.298 3.585 3.732 2.350 2.587

Setup. Motivated by the previous observa-
tion that changing the CCI structure affects the
learnt dynamics, we now conduct a sensitiv-
ity analysis via three controlled perturbations of
the CCI construction process: Random LR cat-
alog—replace the curated ligand–receptor (LR)
catalog with a random subset of the same size
as the initial catalog; Shuffling—randomly per-

1Note this intervention edits the interaction prior used in the OT objective. We do not perturb gene expres-
sion or simulate drug pharmacodynamics.
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mute all entries of the CCI tensors, destroying coherent structure; Metacells—aggregate cells into
metacells before constructing CCIs and then lift interactions back to the cell level (see Appendix D.3
for details), thereby smoothing the signal. We evaluate all variants under the interpolation protocol
of Section 5.2 with α = 1 (structure-only OT) to isolate structural effects.

Results. Table 3 summarizes the results. Shuffling the CCI leads to a performance drop, confirming
that the structural organization of LR interactions drives the gains. Using a random LR catalog
also degrades the interpolation, highlighting the importance of ligand–receptor specificity. The CCI
constructed with metacells yields intermediate results, as it improves results on two of the datasets.
This can be attributed to its smoothing role, especially useful against dropout effect. However, it is
not always optimal, as oversmoothing can bias the CCI and degrade performance, an observation
consistent with previous spatiotemporal analyses (Klein et al., 2025).

5.6 DOES STRUCTURE ALWAYS IMPROVE CROSS-SNAPSHOT ALIGNMENT?
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Figure 6: Embryo dataset. Incorporating
CCIs does not improve performance over the
feature-only baseline (α = 0).

Setup. Our OT formulation penalizes couplings that
do not preserve the CCI structure between two snap-
shots. Therefore, it assumes that this structure is
at least approximately persistent across snapshots.
When the system undergoes rapid and large-scale re-
modeling, this assumption can fail and the induced
structure may no longer be informative. We illustrate
this with a developing mouse embryo dataset (Moon
et al., 2019), where tissue composition, size, and
function change quickly during development (Qiu
et al., 2024). Furthermore, the time interval between
consecutive snapshots is substantial (6 days). As
such, we expect the CCI structure at one stage to be
poorly related to the next.

Results. We report the interpolation results for this
dataset in Figure 6. In this setting, IADOT offers no additional gains over feature-only OT (α = 0),
confirming that the CCI structure is not transferable across these days-long developmental intervals
and thus becomes uninformative. This leads to an essentially flat curve with respect to α, with
worse degradations at larger α. It also yields a practical guideline: when cross-snapshot interaction
geometry does not persist over time, the structural term should be downweighted or omitted.

6 DISCUSSION

CCI structure can improve cellular trajectory inference. Across synthetic and real scRNA–seq
settings, we find that introducing typed, directed structure into the OT objective can lead to more
faithful cross-snapshot couplings, and hence better continuous-time dynamics. Because structure
is an explicit, editable prior, IADOT enables principled counterfactuals: we can quantify resulting
shifts in inferred trajectories when perturbing pathway-specific LR libraries in the CCI construction.
Finally, our ablation study shows that biologically meaningful interaction matrices are important and
drive the observed performance gains.

Limitations. We stress that IADOT is not a silver bullet. Our approach assumes that key interaction
structure is at least partly conserved between adjacent snapshots. In rapidly remodeling systems
(e.g. embryo development), we have shown that incorporating the structure does not necesarily
yield benefits. Furthermore, we evaluated IADOT on real scRNA-seq datasets from prior studies,
but broader scalability to atlas level datasets is an interesting avenue for future work. Finally, future
work might extend our OT formulation to an unbalanced setting (Séjourné et al., 2023) to explicitly
account for cell proliferation and death over longer time scales.

Broader impact. IADOT offers a simple recipe to inject typed interaction priors to disambiguate
alignments. Beyond biology, IADOT offers a principled path to modeling dynamics in systems of
interacting entities including financial markets, social networks and multi agent environments where
structure aware couplings can improve alignments.
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REPRODUCIBILITY STATEMENT

We specify the OT objective in Section 4.1, and detail the multi-channel FGW solver as well as
the normalization used to balance feature and structure terms in Appendices D.4 and D.5. Our
continuous-time dynamics and Conditional Flow Matching objective are described in Section 4.2,
with model architectures and all training hyperparameters listed in Appendix D.7. Datasets, sam-
pling timepoints, and sizes are summarized in Appendix C, and the end-to-end preprocessing
pipeline is documented in Appendix D.2. The construction of ligand–receptor catalogs is detailed
in Appendix D.6. Baselines use authors’ implementations with exact settings listed in Table 9 and
Table 10. Software versions and key libraries are reported in Table 7. Code will be released upon
acceptance.
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APPENDIX

A Extended related works

Inferring cellular trajectories. Methods for trajectory inference differ in both their assumptions
and the temporal scales they target. Pseudotime approaches order cells along low-dimensional em-
beddings (such as UMAP), capturing smooth expression trends but relying on manifold geome-
try rather than explicit dynamical models (Erbe et al., 2023). RNA velocity augments expression
with spliced and unspliced counts to estimate short-term directional change (typically minutes to
hours), but its accuracy degrades over longer horizons and in the presence of sparse signals (Chen
et al., 2022). More recent formulations use continuous-time models to interpolate between snap-
shots: Neural ODEs and dynamic optimal transport (OT) learn flows across cell states, with variants
tailored to gene-regulatory-network dynamics or intervention-aware recovery in scRNA-seq (Lin
et al., 2025), and others incorporating biological priors to regularize the inferred trajectories (e.g.,
PHOENIX) (Hossain et al., 2024). DeepVelo applies Neural ODEs to high-dimensional, sparse
measurements, yielding predictive flows without committing to a mechanistic model (Chen et al.,
2022). Related work couples dynamics with OT on learned manifolds to better respect transcrip-
tomic geometry during alignment (Huguet et al., 2022). A closely related line casts dynamics as a
Schrödinger bridge used for trajectory inference and generative modeling in single-cell RNA data
(Hong et al., 2025).

Optimal transport in biology. Optimal transport (OT) is widely used for static alignment of cellu-
lar populations in biology and has been extended to dynamic settings for modeling complex scRNA-
seq trajectories (Tong et al., 2020). High dimensionality is a central challenge, and remedies include
dimensionality reduction, regularization, and scalable solvers (Cuturi et al., 2023), often operat-
ing in learned or low-dimensional representations (e.g. PCA or manifold embeddings) to better
respect transcriptomic geometry (Huguet et al., 2022). OT-based frameworks have been applied
to recover cellular trajectories in development (Schiebinger et al., 2019), and incorporating induc-
tive biases (such as lineage information) can further improve identifiability and accuracy (Forrow &
Schiebinger, 2021). Recent work relates OT and continuous-time dynamics via flow matching Klein
et al. (2024) and explores multi-modal integration directly within the OT formulation (Klein et al.,
2025). An overview of different OT-based trajectory methods and their mathematical fomulation is
provided in Table 4.

Table 4: OT-based methods: objectives and assumptions. BB = Benamou–Brenier; FGW = Fused
Gromov–Wasserstein; SB/DSB = (Diffusion) Schrödinger Bridge.

Method Static / dynamic OT formulation Optimization objective (schematic) Structure used Timepoints Data assumed

Waddington-OT (Schiebinger et al., 2019) dynamic (discrete) Unbalanced entropic Kantorovich minΓ ⟨Γ, C⟩+ τ KL(Γ1∥a) + τ KL(Γ⊤1∥b) Growth priors (no LR) ≥ 2 scRNA-seq (+growth)
SCOT (Demetci et al., 2022b) static Fused GW minΓ ⟨Γ, C⟩+λ ⟨L(Dx, Dy),Γ⊗Γ⟩+ εH(Γ) k-NN geometry (untyped) 2 scRNA-seq
CellOT (Bunne et al., 2023b) static Kantorovich (dual/convex) maxf ming C − Eρc [⟨x,∇g(x)⟩ − f(∇g(x))]− Eρk

[f(y)] None 2 scRNA-seq
TrajectoryNet (Tong et al., 2020) dynamic (continuous) BB OT + neural ODE prior minθ −

∑
i logPti(xti) +

∫
∥vθ∥2dt+ bio priors None ≥ 2 scRNA-seq (often splicing)

OT-CFM (Tong et al., 2024) dynamic (continuous) Kantorovich + flow matching minΓ⟨Γ, C⟩ ; minθ E(x,y)∼Γ ∥vθ − vOT∥2 None 2 scRNA-seq
Schrödinger Bridge (DSB) dynamic (stochastic) SB/DSB minp(x0:T ) KL

(
p ∥ ref-diffusion

)
s.t. p0 = µ0, pT = µT None ≥ 2 scRNA-seq (+noise model)

IADOT (ours) dynamic (continuous) Multi-channel FGW + CFM minΓ (1− α)⟨Γ, C⟩+ α⟨φ(G(0), G(1)),Γ⊗Γ⟩; minθ CFM(θ | Γ) Typed, directed LR CCI 2 (extendable) scRNA-seq

Interaction modeling between cells A line of work seeks to infer cell–cell communication di-
rectly from single-cell gene expression, using curated ligand–receptor (LR) knowledge to score
putative interactions between sender–receiver pairs (Browaeys et al., 2019). Tools such as Cell-
PhoneDB systematically enumerate LR co-expression across cell types (Efremova et al., 2020), and
related approaches have been extended to spatial transcriptomics to incorporate physical proximity
as an additional constraint on feasible communications (Cang et al., 2023). Beyond purely geomet-
ric priors, multi-modal OT frameworks like MOSCOT can integrate diverse structure (e.g. spatial
adjacency) into the coupling itself (Klein et al., 2025). Finally, meta-frameworks like LIANA+ unify
and standardize CCI scoring across multiple LR resources and methods, facilitating method-agnostic
comparisons and consensus analyses (Dimitrov et al., 2024a).
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B Potential applications of IADOT

Snapshots of cellular systems using single-cell RNA sequencing are now pervasive across diverse ar-
eas of biology and medicine. A few representative longitudinal datasets are summarized in Table 5.
IADOT provides a principled framework to analyze such data by combining snapshot measurements
with biologically typed ligand–receptor structure. This enables the reconstruction of coherent cell-
state trajectories through optimal transport couplings and a learned continuous flow, as well as the
exploration of counterfactual scenarios by selectively re-weighting interaction channels. The result-
ing outputs (shifts in lineage fate, changes in pathway usage, and differences in progression timing)
offer interpretable readouts that can guide mechanistic hypotheses and help prioritize therapeutic
strategies before experimental validation.

Table 5: Public longitudinal single-cell datasets. Each row lists an application area, a brief descrip-
tion, and representative studies/accessions (not exhaustive).

Area Dataset description (≥3 timepoints) References / accessions

Virology PBMC/tissue scRNA-seq across acute, peak critical or
challenge series (D0, D1–3, D7+).

Dengue virus: Zanini et al. (2018)
Influenza: Arunachalam et al.
(2021)

Neurology Brain single-cell timecourses including immune infil-
tration and glial responses.

Brain organoids: Camp et al. (2015)

Cardiology Heart/aorta scRNA-seq after myocardial infarction
(e.g., D1, D3, D7) or atherosclerosis progression
(early → intermediate → late).

Post-MI hear: Farbehi et al. (2019)
Atherosclerosis: Pan et al. (2020)

Immunology Tissue + immune scRNA-seq across baseline → active
disease → remission/recovery in model systems.

Lung: Goldfarbmuren et al. (2020)

Development Human iPSC/hPSC differentiation series (e.g., D0, D4,
D8, D12/15), tracking lineage commitment and matu-
ration.

Cardiomyocytes: Strober et al.
(2019)
Blood cells: Tusi et al. (2018)

Regeneration Liver/kidney/muscle injury timecourses (e.g., 0h, 24h,
48h/96h; or 0d, 2d, 5d, 7d) capturing repair trajectories.

Liver injury: Chen et al. (2023)

C Datasets

In addition to the synthetic dataset, we used 5 real-world scRNA datasets to showcase the effective-
ness and limitations of our method. Details on the number of genes and the number of cells in each
dataset can be found in Table 6.

Table 6: Datasets used in our experiments. Counts reflect the preprocessed objects used by
IADOT. “Timestamps (h)” lists observed hours.

Dataset Reference Timestamps #Cells #Genes

Tumour – 0, 8, 24, 168 (h) 31,536 22,681
V1 Cortex (Hrvatin et al., 2018) 0, 1, 4 (h) 6,505 17,008
Immune Stimulus (Wierenga et al., 2022) 0, 1, 2, 4, 6 (h) 2,382 10,972
Mouse embryo (Moon et al., 2019) 0, 6, 12, 18, 24 (d) 18,203 17,789
Macrophage Stimulus (Shalek et al., 2014) 0, 3, 5 (h) 223 478
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C.1 SYNTHETIC EXAMPLE

In this section we detail the synthetic setup used in Section 5.1. We construct D0 as three 2D
Gaussian clusters,

D0 =

2⋃
k=0

Sk, Sk = {X(k)
i }

35
i=1, X

(k)
i

i.i.d.∼ N (µk, 0.1 I2),

with centers µ0 = (−2, 2), µ1 = (0, 2), and µ2 = (2, 2). The target snapshot D1 =
⋃2

k=0 S ′k is
obtained by translating each cluster via

T0(x) = x+ (4,−4), T1(x) = x+ (0,−4), T2(x) = x+ (−4,−4),

so that S ′k = {Tk(X) : X ∈ Sk}.
For structure, we define two-channel, directed relation tensors G,G′ ∈ {0, 1}105×105×2 over D0

and D1, respectively. Writing G(c) for channel c, we set

G
(1)
ij = 1{Xi ∈ S1, Xj ∈ S0}, G

(2)
ij = 1{Xi ∈ S1, Xj ∈ S2},

with G′ defined analogously on D1. Thus, channel 1 encodes S1 → S0 and channel 2 encodes
S1→S2.

C.2 LUNG TUMOR

We use a scRNA-seq dataset to study rapid tumour progression driven by RAS–MYC signalling
using a KrasG12D lung tumour model with tamoxifen-inducible MycER. Samples were collected
at 0 h (vehicle), 8 h, 24 h (n = 8 biological replicates per condition; 0 h is time zero). Lungs
from LSL-KrasG12D (Jackson et al., 2001) and LSL-Rosa26MIE/MIE (MycERT2) mice (Murphy et al.,
2008) were dissociated to single cells, red blood cells removed, filtered (70 µm), and 6,000 cells per
sample were loaded for 10x Chromium 3′ v3 libraries. Libraries were sequenced on a NovaSeq 6000
and processed with Cell Ranger v6.1.1 against mm10. All animal work complied with institutional
ethical regulations.

C.3 CORTEX—LIGHT STIMULATION

Adult (6–8 week) mice were dark-adapted for 7 days, then either euthanized in darkness (0h, con-
trol) or exposed to ambient light for 1h or 4h (Hrvatin et al., 2017). The visual cortex was profiled
by scRNA-seq to capture early transcriptional responses to sensory input. We treat 0h as the source
snapshot, 4h as the target snapshot, and use 1h as an intermediate timepoint for interpolation/valida-
tion. After filtering and subsampling we are left with 6505 cells.

C.4 IMMUNE

To probe innate immune modulation, we use scRNA-seq of murine fetal liver–derived macrophages
exposed to LPS with or without 24 h pre-treatment by docosahexaenoic acid (DHA, 25µM)
(Wierenga et al., 2022). Cells were collected at 0 h (vehicle), 1 h, and 4 h after LPS (20 ng/mL)
and sequenced on the 10x Chromium platform. We use 0 h as source, 4 h as target, and 1 h for inter-
polation/validation; when comparing conditions, we stratify by DHA vs. vehicle and subsample to
balance groups.

C.5 EMBRYO DEVELOPMENT

In Section 5.6, we analyze a human embryoid body (EB) differentiation time course used in Moon
et al. (2019), which profiles human embryonic stem cells differentiating toward germ layers over
27 days by scRNA-seq. We use the first (Day 0) and third (Day 12) snapshot to infer the cellular
dynamics, reserving data at Day 6 for interpolation/validation.
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Table 7: Software stack (key Python packages).

Core scientific Python NumPy 2.2.6; SciPy 1.16.1; pandas 2.3.1; scikit–learn 1.7.1; numba 0.61.2; matplotlib 3.10.5; seaborn
0.13.2

Deep learning / training PyTorch 2.8.0; PyTorch Lightning 2.5.3; torchmetrics 1.8.1; Triton 3.4.0; Hydra–core 1.3.2; Omega-
Conf 2.3.0

Optimal transport / geometry POT 0.9.5; GeomLoss 0.2.6; Graphtools 1.5.3

Single–cell analysis Scanpy 1.11.4; anndata 0.12.2; scVelo 0.3.3; harmonypy 0.0.10; UMAP–learn 0.5.9.post2; PHATE
1.0.11; igraph 0.11.9; leidenalg 0.10.2; networkx 3.5; OmniPath 1.0.12; pypath–omnipath 0.16.20

C.6 MACROPHAGE STIMULUS

To evaluate robustness across experimental platforms, we deliberately included datasets generated
with multiple scRNA-seq technologies: 10x Chromium (droplet-based, whole-transcriptome) and
BD Rhapsody (microwell-based, often targeted or lower-depth whole-transcriptome). This cross-
platform design allows us to test whether our method generalizes despite differences in capture
chemistry, library preparation, and typical read depth, which can affect UMI yield and the number
of detected genes per cell. All datasets were processed through a consistent downstream pipeline to
ensure comparability. We use a macrophage stimulus–response time series that profiled single-cell
dynamics across three polarization states (M0, M1 via IFNγ, M2 via IL-4) responding to six immune
ligands (LPS, poly(I:C), CpG, PCSK3) (Shalek et al., 2014). Cells were sampled at 0 h (baseline)
and multiple post-stimulation time points (15/30 min, 1 h, 3 h, 5 h, 8 h), (BD Rhapsody). For our
alignment tasks we treat 0 h as the source snapshot, 5 h as the target, and use 3 h as intermediate
validation points. Experimental results for this dataset can be found in Appendix E.1.

D Experimental details

In what follows, we provide details about our experiments presented in Section 5. Code will be
released upon acceptance.

D.1 SOFTWARE AND LIBRARIES USED

We provide in Table 7 the main Python packages we used.

D.2 DATA PRE-PROCESSING

Raw scRNA-seq files for all datasets were converted to AnnData to standardize processing. We
applied basic QC, removing cells with < 300 detected genes and genes expressed in < 3 cells.
Counts were library-size normalized per cell (fixed total). We then selected the 2000 highly variable
genes and computed a 20-component PCA on these features. Finally, we performed Harmony batch
correction in PCA space (retaining both corrected and uncorrected embeddings for downstream
analyses).

D.3 CONSTRUCTING CCIS USING METACELLS

We detail how we construct CCIs using metacells in the ablation presented in Section 5.5. Without
loss of generality and to keep the presentation simple (with matrix multiplications), we assume
K = 1 (i.e., one LR pair) reducing the CCI tensors to matrices. Before constructing the CCI
matrices, we cluster the cells in each snapshot using Leiden community detection on a k-nearest-
neighbour (kNN) graph built from the PCA representations with Euclidean distances and k = 10.
An example of the Leiden clustering with subsequent cell annotations is provided in Figure 7. We
select the resolution ρ⋆ by scanning a small grid of resolutions and choosing the value whose median
cluster size is closest to a target of n⋆ = 40 cells.

Let S ∈ Rn×g
≥0 be the membership matrix of the resulting g clusters (rows sum to 1, are correspond

to one-hot assignments). We obtain metacell-level activations by averaging the scg within clusters
and form the metacell CCI in Rg×g similarly as in the setting with individual cells.
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Having constructed the metacell CCI matrix Ḡ, we lift it back to the cell level via

G̃ = S (S⊤S)−1 Ḡ (S⊤S)−1 S⊤,

This lifting operation ensures S⊤G̃S = Ḡ. In contrast to G, the matrix G̃ is constrained to lie
in the subspace {SMS⊤ | M ∈ Rg×g}, i.e., cell–cell interactions in G̃ are entirely mediated by
metacell–metacell interactions.

Figure 7: Metacell construction example. UMAP visualization of the single-cell RNA-seq data of
the lung cancer dataset after Leiden clustering. Each point corresponds to an individual cell, colored
by its assigned cluster and annotated with the corresponding cell type based on marker genes.

D.4 OPTIMAL TRANSPORT SOLVER

We extend POT’s (Flamary et al., 2024) conditional-gradient (Frank–Wolfe) solver to handle multi-
channel interactions. Given structure tensors C1 ∈ Rns×ns×d, C2 ∈ Rnt×nt×d, marginals p, q
(uniform by default), and a matrix Σ ⪰ 0 ∈ Rd×d, we measure discrepancies with the Mahalanobis
norm ∥x∥Σ =

√
x⊤Σ−1x.

Let ⟨A,B⟩ =
∑

i,j AijBij and write C(r) for the r-th channel of a structure tensor C. The GW
quadratic term is

Q(Γ) =
∑
i,k,j,l

∥∥C1[i, k]− C2[j, l]
∥∥2
Σ
ΓijΓkl = ⟨constC,Γ⟩ − ⟨B(Γ),Γ⟩,

with

constCij =
∑
k

∥C1[i, k]∥2Σpk +
∑
l

∥C2[j, l]∥2Σql, B(Γ) =
d∑

r=1

C
(r)
1 Γ

(
C

(r)
2

)⊤
.

The gradient computed by the solver is

∇Q(Γ) = 2
(
constC− B(Γ)

)
(8)

We keep POT’s CG loop, stopping criteria, and line-search options unchanged.

We minimize
min

Γ∈Π(p,q)
(1− α) ⟨M,Γ⟩+ αQ(Γ),

with the same CG loop, where this objective is linearized using the gradient in Equation (8).

When d = 1 (scalar edges), the method reduces to the original POT solver.

D.5 NORMALIZATION

To balance the contributions of the feature term and the structure term in the objective described
at Equation (5), we rescale the feature cost matrix C and the CCI tensors G(0) and G(1). We first
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Table 8: Flow Matching hyperparameters.

Category Hyperparameter Setting / Notes

Model Architecture Velocity MLP (hidden dim 64, depth 3, no dropout)
Time conditioning Sinusoidal embedding (dim 16), concatenated to inputs

Training schedule Epochs 500
Minibatch size 128 (train loader), 2 048 for validation batches
Optimizer AdamW, lr = 10−3, weight decay 10−4, betas (0.9, 0.999)

compute the two endpoint couplings by solving the feature-only (α = 0) and structure-only (α = 1)
problems, yielding Γ⋆

α=0 and Γ⋆
α=1. We then define the scaling factors as follows:

∆F := F(Γ⋆
α=0)−F(Γ⋆

α=1) , (9)
∆S := S(Γ⋆

α=1)− S(Γ⋆
α=0) , (10)

(11)

and rescale the feature cost matrix and the CCI tensors:

C ← C

|∆F|
, (12)

G(0) ← G(0)

√
∆S

, G(1) ← G(1)

√
∆S

. (13)

This places the terms on comparable scales so that α meaningfully reflects the feature/structure
trade-off, and increasing α from 0 to 1 smoothly interpolates between the Kantorovich and the
Gromov–Wasserstein problems.

D.6 SELECTION OF LIGAND / RECEPTOR PAIRS

We apply LIANA’s (Dimitrov et al., 2024b) consensus rank aggregation with expr prop = 0.1 to
obtain per–cell-type interaction scores. We retain interactions with cellphone pvals ≤ 0.05
and lr logfc ≥ 0, then keep ligand–receptor pairs whose expr prod exceeds the median within
that significant set. We require the same significance criteria in each snapshot. For every surviving
pair, we aggregate LIANA results across significant edges to compute the mean expression product,
average specificity ranks, counts of significant source→target edges, and the numbers of unique
source and target cell types. We define coverage as coverage = n edges/Nsig edges and retain
only pairs with 0.10 ≤ coverage ≤ 0.40 and at least two sources and two targets. We compute
a standardized score s = 0.6 z(mean expr) + 0.4 z(−spec rank) and greedily select pairs in
descending s while preventing repeated ligands or receptors. We keep the top 10 pairs for each
dataset.

D.7 CONDITIONAL FLOW MATCHING HYPERPARAMETERS

We detail the hyperparameters used for the CFM stage in Table 8, which we kept fixed across the
datasets. Given a 0.9/0.1 train/val split, we keep the checkpoint that minimizes the validation loss
over the run.

D.8 BASELINES

TrajectoryNet. We use the implementation from the authors (Tong et al., 2020) available at
https://github.com/KrishnaswamyLab/TrajectoryNet. We summarize the hyper-
parameters used in Table 9.

Diffusion Shrodinger Bridges. We use the implementation from the authors (De Bortoli et al.,
2021) available at https://github.com/JTT94/diffusion_schrodinger_bridge.
We summarize the hyperparameters used in Table 10.
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Table 9: TrajectoryNet hyperparameters.

Category Hyperparameter Setting

Optimization Training iterations 1,000
Batch size 1,000
Learning rate 1× 10−3

Weight decay 1× 10−5

Model Hidden dimensions 64-64-64
Blocks / layer type 1 block, concatsquash layers
Activations Softplus layers with tanh control

Regularization sL2int 1× 10−3

ktop regularizer 1× 10−2

Training noise 0.1
ODE solver Time scale 0.4 (five integration points)

Solver dopri5
Tolerances rtol = atol = 1× 10−5

Table 10: Diffusion Schrödinger Bridge (DSB) baseline hyperparameters.

Category Hyperparameter Setting

Model Score network Dual-encoder MLP; encoders [16, 32], decoder [64, 64,
64], time embedding dim 16

Training schedule IPF rounds 10 outer IPF iterations
Optimisation steps 10 000 gradient updates
Langevin steps 12 steps per bridge trajectory
Batch size 128
Learning rate 1× 10−4

Regularisation γ schedule γmin = γmax = 10−3, linear spacing
Mean matching Enabled
Cache handling 2 048 cached particles, 2 048 plotting points, refresh every

200 iters
EMA Disabled

D.9 LUNG CANCER DATA EXPERIEMENT

For the experiment described in Section 5.4, We annotated the lung cancer dataset using canonical
lineage and state markers (Table 11); an overview of the full dataset is shown in Fig. 7. Because
whole-lung profiling dilutes treatment effects (the tumour comprises only a small fraction of total
cells), we constructed a focused tumour-niche subset to increase sensitivity and interpretability. Con-
cretely, we retained all tumour cells and subsampled an equal number of T cells, B cells, fibroblasts,
and endothelial cells from the same specimens to form a minimal viable tumour microenvironment.
We then reused the analysis pipeline described earlier with matched timepoints at 0 h, 8 h, and 24 h.
The only modification was to the ligand–receptor (LR) library: for pathway-specific probes, we tog-
gled custom LR pairs to mimic the presence or absence of a given ligand (e.g., EGFR) and quantified
the resulting changes in inferred communication and downstream dynamics. Marker definitions are
provided in Table 11, and a dot-plot confirming marker specificity and minimal cross-lineage leak-
age is shown in Fig. 8.

D.9.1 TUMOUR PROGRESSION QUANTIFICATION USING HALLMARK GENE SETS

There is no single, universally accepted definition of tumour progression. Clinical assessments typ-
ically use lesion size, extent of metastasis, and histopathology. While we observe distinct cellular
changes and invasion over our 24 h window, these measures are not applicable at single-cell reso-
lution. Instead, we construct an approximate tumour differentiation score based on the Hallmarks
of Cancer (Hanahan & Weinberg, 2011), using the MSigDB Hallmark gene sets (Liberzon et al.,
2015).
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Cell Type Positive Markers

Differentiated AT1 RTKN2, AGER
AT1 CLDN18
Tumour (AT2) SFTPD, LAMP3, SCGB3A2
Mucous Epithelial DNAH12, AZGP1
Endothelial SEMA3G
Low IEG Endothelial CDH5
Alveolar Capillary Endothelial EDNRB, RPRML
Lymphatic Vein Endothelial LYVE1, SELE, VWF
Fibroblasts COL1A2, PDGFRA
Smooth Muscle Fibroblasts ACTA2, LGR6
Fibroblast Subset DCN
Pericytes CSPG4
Megakaryocytes PPBP, PF4
Erythrocytes ALAS2
Lymphocytes CCL21A
Cycling TOP2A
Neutrophils S100A9, RETNLG
Basophils & Mast cells MCPT8, MS4A2
Macrophages MARCO
Monocytes LY6I
DC 1 and 2 CLEC9A, XCR1, C1QA, SIGLECH
DC 3 FSCN1, IL12B
NK cell like NCR1, EOMES, TBX21
ILC RORA, RORC, IL2RA
Adaptive T cells FOXP3, CD4, CD8A
B cells CD79A

Table 11: Curated panel of positive marker genes used for per-cell scoring and assignment in the
lung cancer dataset.

Figure 8: Dot-plot validation of curated marker genes across annotated cell types. Each column
corresponds to a marker gene and each row to a cell-type labe. Dot size encodes the fraction of cells
expressing that gene, while color intensity represents its standardized expression level.

For each hallmark, we compute a per-cell score as the median expression across its member genes
(chosen over the mean for robustness to sparsity and outliers). The overall progression score is then
the mean across the 20 retained hallmarks. The full hallmark definitions are available in MSigDB
(Liberzon et al., 2015); the selected hallmarks, their gene counts, and five example genes each are
listed in Table 12. Hallmarks not applicable to our tumour context (e.g., hormonal signalling for
breast/prostate, long-term metabolic programs) were excluded.
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As a baseline check, we verify that tumour cells exhibit coherent changes along the selected hall-
marks over 0 h→ 24 h; see Fig. 9.

Table 12: Hallmark gene sets used for trajectory summarization. We list each set’s size and five
randomly sampled member genes.

Gene set # Genes Random gene examples (5)

Angiogenesis 36 TIMP1, POSTN, VTN, THBD, NRP1
Apoptosis 161 ERBB2, IL1B, DPYD, NEDD9, MADD
DNA Repair 150 GTF2B, RAE1, ADCY6, POLA2, TAF1C
E2F Targets 200 MCM7, PCNA, MCM4, RFC2, GINS1
Epithelial–Mesenchymal Transition 200 SPP1, GPX7, LOX, THBS1, SLC6A8
G2M Checkpoint 200 RBM14, AMD1, CDC27, UCK2, NDC80
Glycolysis 200 SPAG4, PKP2, SLC25A13, PRPS1, ZNF292
Hypoxia 200 S100A4, CSRP2, DTNA, PIM1, TPST2
KRAS Signaling v1 200 FSHB, YPEL1, BARD1, SLC6A3, ATP6V1B1
KRAS Signaling v2 200 CIDEA, KIF5C, LAT2, PDCD1LG2, PIGR
MYC Targets v1 200 RAD23B, USP1, NAP1L1, NDUFAB1, SNRPA1
MYC Targets v2 58 PRMT3, AIMP2, SRM, EXOSC5, SUPV3L1
Myogenesis 200 EIF4A2, PDE4DIP, ANKRD2, EPHB3, ATP6AP1
Notch Signaling 32 SKP1, MAML2, HES1, FBXW11, DTX1
Oxidative Phosphorylation 200 NDUFS8, VDAC1, UQCRQ, NDUFB3, NDUFB2
p53 Pathway 200 TNNI1, SLC35D1, BTG1, FDXR, JAG2
Peroxisome 104 IDH2, FIS1, EPHX2, SLC23A2, SLC25A4
Reactive Oxygen Species Pathway 49 PRNP, OXSR1, SOD1, PDLIM1, TXN
TNFα Signaling via NFκB 200 DUSP2, CEBPB, OLR1, CCL20, IL1A
Xenobiotic Metabolism 200 SSR3, HACL1, ARPP19, AHCY, GSR

Figure 9: Hallmark changes. Changes in our dataset over 24 h following combined KRAS and
MYC signalling across the 20 selected Hallmark gene sets.

E Additional results

E.1 STIMULUS DATASETS

We reproduce the experimental setup described in Section 5.2 and Section 5.3 with the macrophase
stimulus-response dataset (Appendix C.6). We report the results in Figure 10 and Table 13, which
are consistent with the findings on the other datasets.
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Figure 10: Interpolation results for the macrophage stimulus datasets.

Table 13: Interpolation error for continuous time dynamics (lower is better). IADOT with
varying structure weight α vs. baselines for the macrophase stimulus datasets. We report mean±std
over 5 runs.

Stimulus PIC Stimulus CPG Stimulus LPS Stimulus PCSK3

Method α W1 W2 W1 W2 W1 W2 W1 W2

TRAJECTORYNET — 5.628 ( 0.055 ) 5.930 ( 0.049 ) 5.361 ( 0.085 ) 5.826 ( 0.080 ) 5.087 ( 0.109 ) 5.589 ( 0.078 ) 5.033 ( 0.051 ) 5.434 ( 0.051 )

DSB — 5.796 ( 0.574 ) 5.833 ( 0.571 ) 4.500 ( 0.128 ) 4.594 ( 0.114 ) 4.685 ( 0.533 ) 4.815 ( 0.528 ) 4.648 ( 0.328 ) 4.749 ( 0.324 )

IADOT
0 5.544 ( 0.038 ) 5.614 ( 0.036 ) 4.430 ( 0.019 ) 4.512 ( 0.020 ) 4.434 ( 0.052 ) 4.582 ( 0.058 ) 4.423 ( 0.020 ) 4.551 ( 0.018 )

0.5 5.490 ( 0.018 ) 5.555 ( 0.019 ) 4.427 ( 0.021 ) 4.502 ( 0.025 ) 4.380 ( 0.021 ) 4.517 ( 0.021 ) 4.396 ( 0.023 ) 4.531 ( 0.019 )

1 5.446 ( 0.018 ) 5.512 ( 0.016 ) 4.440 ( 0.041 ) 4.518 ( 0.044 ) 4.431 ( 0.126 ) 4.577 ( 0.141 ) 4.352 ( 0.020 ) 4.530 ( 0.033 )

E.2 SENSITIVITY OF COUPLINGS TO CATALOG EDITS

The experiment presented in Section 5.4 involved perturbing the LR catalog by removing specific
LR pairs. In Table 14, we show how the coupling changes, by computing the fraction of source cells
whose target argmax differs between ”active” vs. ”inactive” LR libraries for each pathway.

F LLM usage

We used large language models (LLMs) to assist with improving the clarity of writing and refining
the formatting of tables and figures. LLMs were not used for research ideation, experimental design,
analysis, or any substantive contributions that would merit authorship.
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Table 14: Coupling changes (argmax) at α = 1.0. Fraction of source cells whose target argmax
differs between “active” vs. “inactive” LR libraries for each pathway; N=2195 source cells. Tar-
geted pathways (EGFR/ALK/MET) show large shifts, while cardio–renal controls (RAAS, Vaso-
pressin, Natriuretic) show little or moderate effect, as expected.

Pathway / System Coupling changed (count / N ) Percent

EGFR (targeted) 2071/2195 94.35%
ALK (targeted) 2164/2195 98.59%
MET (targeted) 2154/2195 98.13%

RAAS (control) 0/2195 0.00%
Vasopressin (control) 0/2195 0.00%
Natriuretic (control) 1582/2195 72.07%
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