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Abstract

Large language models (LLMs) can help elu-001
cidate hate, violence, and other toxicity. How-002
ever, labeling harmful events is challenging003
due to the subjectivity of labels such as “toxi-004
city” and “hate.” Motivated by the rise of an-005
tisemitism, this paper studies the capability of006
LLMs to discover reports of antisemitic events.007
We pilot the task of hateful event classification008
on the AMCHA Corpus—a continuously up-009
dated dataset with expert-labeled instances of010
fine-grained types of antisemitism—and show011
that incorporating domain knowledge from fine-012
grained taxonomies is needed to make LLMs013
more effective. Our experiments find that pro-014
viding precise definitions from a taxonomy can015
steer GPT-4 and Llama-3 to somewhat improve016
on tagging antisemitic event descriptions, with017
GPT-4 achieving up to a 14% increase in mean018
weighted F1. However, LLMs are still far from019
perfect at understanding antisemitic events, sug-020
gesting avenues for future work on LLM align-021
ment and precise definition of antisemitism.022

1 Introduction023

Understanding hateful or harmful events from news024

reports can reveal broad societal trends (Pontiki025

et al., 2020) and harms toward marginalized com-026

munities.1 However, harm is a subjective concept027

that annotators operationalize differently (Breit-028

feller et al., 2019; Sap et al., 2022; Alkomah and029

Ma, 2022; Kansok-Dusche et al., 2023; Yin and Zu-030

biaga, 2021; Fleisig et al., 2023). LLMs may thus031

operationalize an “average” perspective when in032

reality one of two annotators sees a harmful stereo-033

type, erasing valuable disagreement (Pavlovic and034

Poesio, 2024; Richardson, 2021).035

This work investigates approaches to address036

these challenges by adding fine-grained prior037

knowledge to LLM prompts. We stress-test LLMs’038

1https://www.un.org/en/hate-speech/
understanding-hate-speech/hate-speech-and-real-
harm

ability to perform nuanced classification for de- 039

scriptions of antisemitic events. The case of anti- 040

semitism is fit for this investigation because of its 041

frequently debated definitions (Klug, 2023; Harri- 042

son and Klaff, 2021; Feldman and Volovici, 2023; 043

Herf, 2021; Penslar, 2022; Nexus, 2023; Jerusalem, 044

2021). Despite its controversial nature,2 studying 045

antisemitism is important due to increased hate 046

crimes against Jewish people3 as well as the general 047

harmful consequences that online hate can have 048

both online and offline (e.g. harassment, mental 049

distress, hate crimes, Räsänen et al., 2016; UN, 050

2018; Byman, 2021). 051

To study this task, we scrape and release the 052

AMCHA Corpus, a growing challenge set of 6,748 053

English-language contextualized descriptions of 054

antisemitic events that occurred on higher edu- 055

cation campuses, annotated for coarse- and fine- 056

grained categories of antisemitism. The typol- 057

ogy and dataset were created by the AMCHA Ini- 058

tiative through continuous monitoring, screening, 059

and consensus-coding of events according to their 060

coarse-grained categories and fine-grained types of 061

antisemitism.4 062

Our work asks the following questions: 063

1. How well do LLMs label the coarse-grained 064

categories and fine-grained types of anti- 065

semitism included in the AMCHA Corpus? 066
2. To what extent can we steer LLMs to use vari- 067

ous definitions of antisemitism? 068
3. Within texts labeled as antisemitic, which 069

types and categories of antisemitic events are 070

harder for LLMs to predict? 071

2While antisemitism is controversial due to events in the
Middle East, we take a descriptive stance to accommodate
disagreement on definitions of antisemitism.

3https://www.fbi.gov/news/press-releases/fbi-
releases-2022-crime-in-the-nation-statistics

4https://amchainitiative.org/categories-
antisemitic-activity. Note that we recognize that
differing taxonomies exist (JDA, 2021), but we employ this
taxonomy due to the corpus’ uniquely rich content, labels,
and metadata for event classification.
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4. How much can in-context learning improve072

LLMs’ antisemitic event classification?073

2 Methods074

We experiment on gpt-4-1106-preview5 and075

llama3-8b-instruct.6 Our classification task is076

set up as follows: Given an input event descrip-077

tion along with the date and university of the event078

(collectively, input d), model M must classify the079

coarse-grained categorical label c of the event, the080

set of n fine-grained type labels t = t1, . . . , tn, as081

well as, optionally, the binary antisemitism label082

l. In some experiments, we provide additional in-083

puts such as definitions (DEF), in-context examples084

(ICE), and the antisemitism label l (AS).085

The M-NOCTX setup asks the model M for la-086

bels l, then c, then t. M-AS modifies M-NOCTX087

by only prompting the model for c and t. M-AS-088

ICE has the same task presentation as M-AS but089

prepends one randomly selected entry correspond-090

ing to each potential value of t from the corpus.091

M-DEF and M-AS-DEF use the same task setup092

as M-NOCTX and M-AS, respectively, but we also093

supply the definitions of each candidate for c and t,094

as well as Wikipedia’s definition of antisemitism.095

For M-NOCTX and M-DEF, we first compute096

the binary detection rate of antisemitic events, de-097

fined as the percentage of entries where the model098

predicts that the text describes an antisemitic event.099

Then, since not all types and categories have equal100

frequency in the dataset, we compute a WF1 met-101

ric, representing an F1 score weighted by category102

or type frequencies within the corpus’ gold labels.103

3 Results104

Overall, we find that LLM categorization of our105

events as antisemitic is quite poor (<0.4 for both106

LLMs in the zero-shot M-NOCTX setup), and cer-107

tain inputs improve performance more than others.108

From binary and coarse-grained perspectives, GPT-109

4 is less aligned with gold labels than Llama-3,110

but GPT-4 is more aligned on fine-grained labels111

(28.16% mean WF1 across types for GPT-4 vs.112

25.52% for Llama-3). Notably, two particularly113

poorly aligned types are those that are (a) con-114

tentious (e.g. describing BDS as antisemitic) or115

(b) reliant on historical knowledge (e.g. Historical116

antisemitism with swastikas painted on buildings)117

5https://platform.openai.com/docs/models/gpt-4-
turbo-and-gpt-4

6https://llama.meta.com/llama3/

are least aligned with AMCHA’s labels. Providing 118

category definitions (M-DEF) improves detection 119

of antisemitic BDS events, suggesting the need for 120

clarity and definitions for what falls under nuanced 121

concepts such as antisemitism. 122

The fine-grained Denigration and Destruction of 123

Jewish property types have lower precision than 124

recall, indicating that models mistake incidents 125

involving Historical antisemitism tropes as De- 126

struction of Jewish property and mistake incidents 127

targeting institutions or organizations as incidents 128

targeting and denigrating individuals, suggesting 129

the need for infusion of historical knowledge that 130

would help differentiate them. M-DEF corrects 131

several cases of Historical antisemitism and Geno- 132

cidal expression that GPT-4 initially mistakes for 133

Denigration or Destruction of Jewish property, in- 134

dicating that adding definitions helps models oper- 135

ationalize historical knowledge. However, compar- 136

ing M-AS-ICE to M-AS, we see that Llama-3’s 137

fine-grained type alignment is significantly worse 138

across the board, showing that few-shot learning 139

hurts fine-grained classification alignment. 140

4 Conclusion and Discussion 141

In this work, we extracted and released the AM- 142

CHA Corpus and studied LLMs’ abilities to de- 143

tect fine-grained harmful event types in the con- 144

text of antisemitism. Our findings show that while 145

Llama has higher binary detection rates and can be 146

steered to improve coarse-grained category align- 147

ment, GPT-4 appears to be more steerable toward 148

aligned fine-grained classification. We also ob- 149

serve that definitions tend to improve WF1 scores 150

more than in-context examples. Our findings sug- 151

gest that LLMs show promise for understanding 152

harmful events at scale, decreasing the human bur- 153

den of exposure to distressing news, and better 154

grasping real-world manifestations of harm toward 155

marginalized communities. However, our findings 156

showcase that models struggle with detection and 157

fine-grained categorization of nuanced concepts. 158

Future work should explore how to better set up 159

detection of categories that are contentious or that 160

rely on deep historical or group-specific knowledge. 161

Future work can also generalize our study to other 162

forms of hate with multiple stakeholders who have 163

differing perspectives, possibly through creating 164

annotator-specific taxonomies with definitions that 165

can steer LLMs to actively represent different an- 166

notators’ stances as in Deng et al. (2023). 167
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