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ABSTRACT

The proliferation of online offensive language necessitates the development of ef-
fective detection mechanisms, especially in multilingual contexts. This study ad-
dresses the challenge by developing and introducing novel datasets for hate speech
detection in three major Nigerian languages: Hausa, Yoruba, and Igbo. We col-
lected data from Twitter and manually annotated it to create datasets for each of
the three languages, using native speakers. We used pre-trained language models
to evaluate their efficacy in detecting offensive language in our datasets. The best-
performing model achieved an accuracy of 90%. To further support research in
offensive language detection, we plan to make the dataset and our models publicly
available.

1 INTRODUCTION

Social networking sites has become one of the most powerful media for sourcing information, ex-
pressing opinions and feelings as well as posting of multimedia contents. People communicate freely
and anonymously with one another through these platforms irrespective of geographical locations
(Alsafari et al., 2020). However, the sharing of hateful content and online harassment is becoming
a menace in these online communities. Therefore, these social networks sites developed some reg-
ulations that prohibit the posting of offensive and hateful contents, but the lack of clear distinction
between freedom of speech and offensive or hate speech has rendered these regulations not very
effective (Chetty & Alathur, 2018; Alkiviadou, 2019). Furthermore, these platforms employ some
automatic and semi-automatic approaches using Artificial Intelligence to send warnings to users
against posting offensive and hateful contents, in addition to detecting and removing offensive and
hateful posts and comments Schneider & Rizoiu (2023).

The huge amount of data generated from these social networking sites has made the traditional
method of manually identifying and removing offensive and hateful contents almost impractical.
Hence, automatic approaches using Natural Language Processing (NLP) and using Artificial Intelli-
gence are employed to develop models that can be used not only to detect but remove offensive and
hateful contents from user posts and comments in social media.

According to Husain & Uzuner (2021), what constitutes offensive language depends on the con-
textual meaning and the intention of the author as well as the society. Offensive language has been
defined as any language that belittles, attacks, disparages, mocks, or insults and individual or a group
of people (Dı́az-Torres et al., 2020; Fieri & Suhartono, 2023). Offensive language can be expressed
as hate speech, cyberbully, sexism, abusive language and many other forms with hate speech as one
of the most research alongside offensive language (Caselli et al., 2020; Davidson et al., 2017; Dorris
et al., 2020).
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Hate speech has no universally accepted definition. Different authors have given similar opinions
on what constitutes hate speech (MacAvaney et al., 2019). Among the most common definition of
hate speech is that it is any form of communication, verbal or written that attacks an individuals or
groups based on characteristics like race, religion, gender, ethnicity, nationality, disability, political
affiliations, and more (Aliyu et al., 2022; Patil et al., 2023; Fortuna & Nunes, 2018; Alkomah & Ma,
2022). Hate speech has been reported to negatively affect the victim’s psychology and has translated
into physical crises in some cases (Saha et al., 2019; Bilewicz & Soral, 2020).

Nigeria is a multi-cultural country located in West Africa. There are more than 522 languages
are spoken in the country with Hausa, Yoruba and Igbo languages as the most dominants. Hausa
language is predominantly spoken in the North, Yoruba in the West and Igbo in the Eastern part of
the country (Orekan, 2010; Burns, 2023). The official language of the country is English, but these
three languages alongside the Nigerian Pidgin English have dominated conversions especially, on the
social networking sites. The country has recorded a number of communal, tribal and religious crises
which are believed to be fueled through the spread of hate speech on social media (Pate & Ibrahim,
2020). Twitter is one of the most used social media networking site by Nigerians. According
to a 2023 report by Statista1, there are over 4.9 million twitter users in Nigeria. Most Nigerian
communicate on twitter in native languages. These communications are full of hateful and offensive
comments which are detrimental to victim’s health and also can lead to physical confrontations.

The existing studies on automatic offensive and hate speech detection are mostly in high resource
languages (Davidson et al., 2017; Mollas et al., 2022; Mathew et al., 2021; De Gibert et al., 2018)
with little studies covering low resource languages especially, African languages (Demilie & Salau,
2022). To the best of our knowledge, there is no study on offensive and hate speech detection in the
three major Nigerian languages. Consequently, we intend to create a novel dataset that can help in
the automatic detection of hateful and offensive contents in tweets that are written in Hausa, Yoruba
and Igbo languages.

The main contributions of the study are:

• We created the first manually annotated data for hate and offensive speech detection in
Hausa, Yoruba and Igbo languages.

• We conducted a baseline experiment for the detection of hate and offensive language in
Hausa, Yoruba and Igbo social media text.

2 LITERATURE REVIEW

The exponential growth of user generated data on social media has rendered the manual approach
of content moderation ineffective. Hateful and offensive contents sharing are in the rise on social
media partly because of the lack of clear definition of what constitute hate or offense and the user
anonymity. These Social Network Sites (SNS) like Facebook, YouTube and X (Twitter) have drawn
a line between offensive speech and freedom of speech as well as using different approaches to
detect and remove offensive and hateful contents. However, these measures by the SNS are not
adequate, especially for low resource languages. Consequently, there are remarkable number of
studies in the academia that have proposed solutions for the automatic detection of hate in social
media contents as contained in (Poletto et al., 2021; Fortuna & Nunes, 2018). Most of these research
are on high resource languages with English taking the lead (Swamy et al., 2019; Waseem & Hovy,
2016; Davidson et al., 2017). Recently, there has been a significant rise in the research on offensive
and hate speech detection in low resource languages like Arabic (Husain & Uzuner, 2021), Indonesia
(Ibrohim & Budi, 2018) and India (Bohra et al., 2018). Some authors treated the problem as a
binary classification task Risch et al. (2020); Pelicon et al. (2021); Mozafari et al. (2022), multi-class
Djandji et al. (2020); Plaza-del Arco et al. (2022) and multi-label Ibrohim & Budi (2019); Omar et al.
(2021); Azzi & Zribi (2023). In terms of approach, many have experimented with classical machine
learning algorithms (Pitenis et al., 2020; HaCohen-Kerner & Uzan, 2021; De Souza & Da Costa-
Abreu, 2020; Swain et al., 2022), deep learning models (Wei et al., 2021; Roy et al., 2022; Mahibha
et al., 2021) and the state-of-the-art transformer models (Molero et al., 2023; Elmadany et al., 2020;
Ranasinghe & Zampieri, 2021; Subramanian et al., 2022).

1https://www.statista.com/statistics/1325514/number-of-potential-twitter-advertising-audience-in-nigeria/

2



AfricaNLP workshop at ICLR 2024

Ali et al. (2021) used a combination of keywords and lexicons to collect tweets in Urdu. The tweets
were pre-processed and a final corpus of 16,000 tweets was obtained. They used Support Vector
Machine (SVM) and Multinomial Naive Bayes (MNB) to classify the tweets as either offensive or
not-offensive. Essefar et al. (2023) used machine learning and deep learning algorithms to classify
social media comments written in Moroccon Arabic Dialect as offensive or not. They observed
that emojis are mostly used to express offensiveness. In a related study, Pookpanich & Siribor-
vornratanakul (2024) explored the performance of five different transformer model in the task of
detecting offensive language in Thai sports comments. The authors observed that the models perfor-
mances are almost similar with XLM-ROBERTa outperforming the rest. Mazari & Kheddar (2023)
developed a dataset of 14150 Algerian Arabic comments from various online social media platforms.
The explored word2vec and FastText embedding with some classical and deep learning models to
detect offensive, hateful and cyberbullying comments and achieved the best performance with an
average of over 75% F1-score. Aliyu et al. (2022) created a dataset of English, Hausa and Nigerian-
Pidgin language for the detection of hate speech against the Fulani herdsmen in Nigeria. The dataset
comprises of about 6000 manually annotated tweets. They used mBERT, XLM-T and AfriBERTa
pretrained models to create baseline models and XLM-T performed best with and f1-score of 99.3%.
A related study was conducted by Ndabula et al. (2023), where they collected code-mixed tweets
in English, Hausa, Yoruba, Igbo and pidgin language posted during the EndSARS protest and 2023
general elections. They used bags-of-words and tf-idf features with Support Vector Machine (SVM)
and Random Forest (RF) to classify the tweets as positive (hateful) or negative (not-hateful). The
SVM obtained the best f1 score of 93.57%.

3 METHODOLOGY

This section discusses the method of tweets collection, annotation, and exploratory data analyses.

3.1 DATA SOURCE

Different Authors have used various data sources for data collection. A research by Jahan & Ous-
salah (2023) has shown that Twitter is the most used source of data for offensive and hate speech
detection task. This has been attributed to the huge amount of public data available from Twitter and
its free access. In Nigeria, Twitter has become one of the most used social media platforms were
people of different culture, religion and political affiliations interacts. Hence, our choice of Twitter
as the data source.

3.2 SEARCH STRATEGY

We employed the keyword approach to search for tweets in the three languages. Offensive and hate
keywords were collected through crowd-sourcing and validated by language experts. Queries were
developed using the keywords and the twitter academic API was used to crawl 20,000 tweets per
language. Keywords approach are used to increase the chances of collecting offensive and hateful
tweets (Warner & Hirschberg, 2012; Davidson et al., 2017). All the collected tweets were in the
original languages, that is, we collected tweets written in Hausa, Yoruba and Igbo language.

3.3 PRE-PROCESSING AND ANNOTATION

The tweets were pre-processed by removing duplicates and tweets that are written in other languages
or unintelligible. We replaced all mentions of usernames with ”@USER”, emails with ”@email”
and urls with ”@URL”. Three native speakers per language were employed and trained for the
annotation task. We drafted an annotation guideline similar to that of Sigurbergsson & Derczynski
(2019) with some modifications. The annotation task consists of two different levels:

Level 1: Tweet category At this level, each tweet is labeled as offensive, hate, indeterminate or
normal. A tweet is offensive if it contains any form of bad language against an individual or group.
A tweet is labeled as hate if it offensive and based on characteristics like religion, race, etc. A
tweet is labeled indeterminate if it is completely in a different language or unintelligible. A tweet is
labeled normal if it intelligible and no use of any bad language.
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Level 2: Hate Target identification Tweets labeled as hateful are further annotated to identify the
target of the hate. These targets include : religion, ethnicity, gender, disability, Politics, others. If an
annotator selects the ”others” category, he/she will be prompted with an input box to write down the
category.

After the first round of the training, the annotators were given a set of 100 tweets each to annotate
and the Inter-annotator agreement (IAA) was computed using Fleiss’ kappa (Fleiss, 1971). We
accepted an IAA of 60% and above. Where the IAA score is less than our threshold, the annotators
were re-trained and given another set of training sample to annotated. This process was repeated
until the annotators score an IAA above 60

A quick analysis of the manually annotated samples shows that most of the tweets were labeled as
normal across all the languages. We therefore, conducted another pre-annotation selection were we
sampled some potentially harmful tweets before the main annotation. This was done to increase the
possibility of having more offensive and hate classes. Our final datasets after dropping the tweets
labeled as ’Indeterminate’ contained a total of 6476, 4926 and 2974 tweets for Hausa, Yoruba and
Igbo languages respectively. Each of these datasets was experimented independently. Table 1 shows
the distribution of the datasets classes per language.

3.4 METHODS

3.4.1 DATA PREPARATION AND TRAIN/TEST SPLIT

In our study, we focused on analyzing tweet datasets in three major Nigerian languages: Hausa,
Igbo, and Yoruba. We adopted a systematic approach to manage these language-specific datasets.
A custom dataset class was developed, tailoring to the unique text characteristics of each language.
This class handled specific preprocessing requirements, such as normalization of text and handling
of unique language constructs, ensuring efficient feature extraction and embedding.

For each language dataset, we implemented a train/test split of 80/20. This means that 80% of the
tweets were used for training our models, while the remaining 20% formed the test sets. This split
ensured a comprehensive evaluation of the models’ performance on unseen data, reflecting their
real-world applicability.

3.4.2 MODELS AND FEATURE EXTRACTION

We trained four distinct models, each obtained from the Huggingface model repository, Huggingface
model repository:known for its extensive collection of advanced NLP models. The models used
were:

1. XLM-Roberta-Base: Served as a baseline for comparison. It provided a broad understand-
ing of multilingual context.

2. BERT-Base-Multilingual-Cased: Chosen for its enhanced language context capabilities,
offering a more nuanced understanding of multilingual nuances.

3. Morit/XLM-T-Full-XNLI: Selected for its expanded language context, having been trained
for hate speech detection outside our target languages.

4. Davlan/Naija-Twitter-Sentiment-Afriberta-Large: Originally trained on Nigerian Twitter
sentiment, we fine-tuned this model to focus specifically on offensive speech classification
in our target languages.

Each model, primarily encoder-based and akin to BERT architecture, underwent a fine-tuning pro-
cess on our specific datasets. This involved adapting the pre-existing knowledge of these pretrained
models to the linguistic contexts of Hausa, Igbo, and Yoruba tweets.

The feature extraction process was significantly enhanced by the use of AutoModel and AutoTo-
kenizer classes from Huggingface. AutoModel dynamically adapted to each chosen model’s ar-
chitecture, while AutoTokenizer ensured accurate and consistent tokenization and encoding of the
multilingual text data. This was especially crucial given the linguistic peculiarities of our target
languages.
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Table 1: Datasets label distribution
LABEL HAUSA YORUBA IGBO

Hate 75 221 231
Normal 4008 2221 715
Offensive 2384 2484 2028

Table 2: Models results with accuracy scores

MODEL HAUSA YORUBA IGBO

XLM-RoBERTa-base (Conneau et al., 2019) 0.79 0.82 0.69
Bert-based-multilingual-cased (Devlin et al., 2018) 0.83 0.83 0.87
morit/XLM-T-full-xnli (Barbieri et al., 2021) 0.81 0.85 0.90
Davlan/Naija-Twitter-Sentiment-Afriberta-Large 0.85 0.85 0.88
(Muhammad et al., 2022)

3.4.3 EVALUATION AND ANALYSIS

The performance of each model was evaluated on the separate test sets for Hausa, Igbo, and Yoruba
tweets. The primary metric for evaluation was model accuracy, which provided crucial insights into
each model’s effectiveness in accurately classifying language-specific tweets. This comprehensive
evaluation allowed us to ascertain the relative strengths and areas for improvement in our multilin-
gual classification approach. Table 2 shows the models and accuracy obtained on the tests sets. The
the morit/XLM-T-full-xnli model achieved the highest result of 0.85 and 0.90 for Yoruba and Igbo
language. The Devlan/Naija-Twitter-Sentiment-Afriberta-Large acheived a competitive results with
0.85 for Hausa, Yoruba and 0.88 for Igbo language. On average, this model gives the best accuracy
across all the three dataset. This may be because our data source is also twitter. The other two
models also achieved a reasonable accuracy scores. These shows the adaptability of these models in
detecting offensive comments in African language.

4 CONCLUSIONS AND FUTURE WORK

This paper presents datasets for offensive language detection in the three major Nigerian languages.
We used a crowd-sourcing approach to collect keywords which were used to collect tweets in these
languages. We developed guidelines that were used to manually annotated these data into offensive,
hate, normal and indeterminate. The indeterminate class was drop and the final datasets contain
three class. Using pre-trained language models, we developed baselines for each of the language
evaluated their performances using accuracy scores. Some of these models achieved a very good
results on all the three languages while others perform better on one language only. These has shown
the significance of taking into account linguistics diversity in creating and evaluating multilingual
models. As future work, we intend to use annotate more comments from YouTube and Instagram to
have larger datasets and also to detect the categories and targets of offensive and hateful tweet
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