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ABSTRACT

Fluid simulation is a long-standing challenge due to the intrinsic high-dimensional
non-linear dynamics. Previous methods usually utilize the non-linear modeling
capability of deep models to directly estimate velocity fields for future prediction.
However, skipping over inherent physical properties but directly learning superfi-
cial velocity fields will overwhelm the model from generating precise or physics-
reliable results. In this paper, we propose the HelmSim toward an accurate and
interpretable simulator for fluid. Inspired by the Helmholtz theorem, we design
a HelmDynamic block to learn the Helmholtz dynamics, which decomposes fluid
dynamics into more solvable curl-free and divergence-free parts, physically corre-
sponding to potential and stream functions of fluid. By embedding the HelmDy-
namic block into a Multiscale Integration Network, HelmSim can integrate learned
Helmholtz dynamics along temporal dimension in multiple spatial scales to yield
future fluid. Comparing with previous velocity estimating methods, HelmSim is
faithfully derived from Helmholtz theorem and ravels out complex fluid dynamics
with physically interpretable evidence. Experimentally, our proposed HelmSim
achieves the consistent state-of-the-art in both numerical simulated and real-world
observed benchmarks, even for scenarios with complex boundaries.

1 INTRODUCTION

Fluid is one of basic substances in the physical world. Its simulation is with immense importance
in extensive real-world applications, such as atmospheric simulation for weather forecasting and
airflow modeling for airfoil design, which has attracted significant attention from both science and
engineering areas. However, it is quite challenging to capture the intricate high-dimensional non-
linear dynamics within fluid due to the imperfect observations, coupled multiscale interactions, etc.

Recently, deep models have achieved impressive progress in solving complex physical systems (Kar-
niadakis et al., 2021; Wang et al., 2023). One paradigm is learning neural operators to directly predict
the future fluid field based on past observations (Lu et al., 2021a; Li et al., 2021; Wu et al., 2023).
These methods focus on leveraging the non-linear modeling capacity of deep models to approximate
complex mappings between past and future fluids. However, directly learning neural operators may
fail in generating interpretable evidence for prediction results and incurring uncontrolled errors. An-
other mainstreaming paradigm attempts to estimate the dynamic fields of fluid with deep models for
future simulation. It is notable that the superficial dynamics are actually driven by underlying phys-
ical rules. Directly estimating the velocity fields regarding less physical properties may overwhelm
the model from generating precise and plausible simulation results (Sun et al., 2018; Zhang et al.,
2022). As shown in Figure 1, it is hard to directly capture the complex dynamics of fluid, where the
learned dynamics will be too tanglesome to guide the fluid simulation.

To tackle the above challenges, we attempt to capture the intricate dynamics with physical insights
for accurate and interpretable fluid simulation. In this paper, we dive into the physical properties
of fluid and propose the Helmholtz dynamics as a new paradigm to represent fluid dynamics. Con-
cretely, Helmholtz dynamics is inspired from the Helmholtz theorem (Bladel, 1959) and attributes
the intricate dynamics into the potential and stream functions of fluid, which are intrinsic physical
quantities of fluid and can directly derive the curl-free and divergence-free parts of fluid respec-
tively. Comparing with superficial velocity fields, our proposed Helmholtz dynamics decompose
the intricate dynamics into more solvable components, thereby easing the dynamics learning pro-
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Figure 1: Comparison on dynamics learning and fluid prediction. Different from the numerical
method (Ruzanski et al., 2011) and optical-flow-based deep model (Sun et al., 2018), our proposed
HelmSim infers the dynamics from the inherent physics quantities: potential and stream functions.

cess of deep models. Besides, this new dynamics requires the model to learn inherent properties of
fluid explicitly, which also empowers the simulation with endogenetic physical interpretability.

Based on the above insights, we present the HelmSim model with HelmDynamic blocks to capture
the Helmholtz dynamics for interpretable fluid simulation. HelmDynamic is faithfully implemented
from the Helmholtz decomposition, which can separately estimate the potential and stream functions
of fluid from learned spatiotemporal correlations and further derive curl-free and divergence-free
velocities. As a flexible module, HelmDynamic can conveniently encode boundary conditions into
the correlation calculation process and adapt to complex boundary settings in multifarious real-world
applications. Further, we design the Multiscale Integration Network in HelmSim to fit the multiscale
nature of fluid, which can integrate Helmholtz dynamics learned by HelmDynamic blocks along
temporal dimension in multiple spatial scales to predict the future fluid. Experimentally, HelmSim
achieves the consistent state-of-the-art in various scenarios, covering both synthetic and real-world
benchmarks with complex boundary settings. Our contributions are summarized in the following:

• Inspired by the Helmholtz theorem, we propose the Helmholtz dynamics to attribute intri-
cate dynamics into inherent properties of fluid, which decomposes intricate dynamics into
more solvable parts and empowers the simulation process with physical interpretability.

• We propose the HelmSim with the HelmDynamic block to capture Helmholtz dynamics.
By integrating learned dynamics along temporal dimension through Multiscale Integration
Network, HelmSim can predict the future fluid with physically interpretable evidence.

• HelmSim achieves consistent state-of-the-art in extensive benchmarks, covering both syn-
thetic and real-world datasets, as well as various boundary conditions.

2 PRELIMINARIES

2.1 FLUID SIMULATION

As a foundation problem in science and engineering areas, fluid simulation has been widely ex-
plored. Traditional methods can solve Navier-Stokes equations with numerical algorithms, while
they may fail in the real-world fluid due to imperfect observations of initial conditions and inac-
curate estimation of equation parameters. Besides, these numerical methods also suffer from the
huge computation cost. Recently, owing to the great non-linear modeling capacity, data-driven deep
models for fluid simulation have attached substantial interests, which can be roughly categorized
into the following paradigms according to whether learning velocity fields explicitly or not.

Neural fluid simulator This paradigm of works attempts to directly generate future fluid with
deep models. One direction is formalizing partial differential equations (PDEs), initial and bound-
ary conditions as loss function terms, and parameterizing the solution as a deep model (Evans, 2010;
Raissi et al., 2019; 2020; Lu et al., 2021b). These approaches rely highly on exact physics equations,
thereby still suffering from imperfect observations and inherent randomness in real-world applica-
tions. Another branch of methods does not require the exact formalization of governing PDEs. They
attempt to learn neural operators to approximate complex input-output mappings in scientific tasks,
which enables the prediction of future fluid solely based on past observations. For example, Lu et al.
(2021a) proposed the DeepONet in a branch-trunk framework with proved universal approximation
capability. FNO (Li et al., 2021) approximates the integral operator through a linear transformation
within the Fourier domain. Afterward, U-NO (Rahman et al., 2023) enhances FNO with the multi-
scale framework. Later, Wu et al. (2023) proposed latent spectral models to solve high-dimensional
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PDEs in the latent space by learning multiple basis operators. However, these methods may fail
to provide interpretable evidence for prediction results, such as intuitive physics quantities or visi-
ble velocity fields. Going beyond the above-mentioned methods, we propose HelmSim as a purely
data-driven model but with special designs to enhance physical interpretability.

Fluid dynamics modeling Estimating velocity fields is a direct and intuitive way for predicting
the future fluid. Typically, optical flow (Horn & Schunck, 1981) is proposed to describe the motion
between two successive observations. Recently, many deep models have been proposed to estimate
optical flow, such as PWC-Net (Sun et al., 2018) and RAFT (Teed & Deng, 2020). However, since
the optical flow was originally designed for rigid bodies, it struggles seriously in capturing fluid mo-
tion and will bring serious accumulation errors in the prediction process. Especially for fluid, Zhang
et al. (2022) incorporate physical constraints from Navier-Stokes equations to refine the velocity
field predicted by PWC-Net (Sun et al., 2018) and further embed the advection-diffusion equation
into the deep model to predict the future fluid. Recently, Deng et al. (2023) ensemble the observable
Eulerian flow and the hidden Lagrangian vortical evolution to capture the intricate dynamics in the
fluid. Unlike previous, we propose to learn the inherent physics quantities of fluid for Helmholtz dy-
namics and further predict the future fluid with temporal integration, which decomposes the intricate
dynamics into more solvable components and facilitates our model with physical interpretability.

Computer graphic for fluid simulation Solving Navier-Stokes equations in computer graphics
with machine learning techniques often employs a stream function paradigm to enforce the incom-
pressibility condition (Ando et al., 2015). Kim et al. (2019) successfully synthesizes plausible and
divergence-free 2D and 3D fluid velocities from a set of reduced parameters and ground truth ve-
locity supervision, a rarity in real-world data. Recently, Liu et al. (2021) estimate the underlying
physics of advection-diffusion equations, incorporating ground truth velocity and diffusion tensors
supervision. Franz et al. (2023) simulate a realistic 3D density and velocity sequence from single-
view sequences without 3D supervision, but it is not designed for predictive tasks as it utilizes future
information to calculate current density. Unlike previous methods, our proposed method learns the
velocity solely from observed physics through Helmholtz dynamics, rather than single stream func-
tion, in an end-to-end fashion without ground truth velocity supervision, which enables our model
to capture more intricate fluid dynamics and extends its applicability to a broader range of scenarios.

2.2 HELMHOLTZ DECOMPOSITION

In fluid dynamics, the Helmholtz decomposition (Bladel, 1959) plays an important role, which can
decompose a dynamic field into a curl-free component and a divergence-free component for simpli-
fication, and is highly related to the solvability theory of Navier-Stokes equations (Faith A., 2013).

Given a 3D dynamic field F : V → R3 with a bounded domain V ⊆ R3, we can obtain the following
decomposition with the Helmholtz theorem:

F(r) = ∇Φ(r) +∇×A(r), r ∈ V. (1)

It is notable that Φ : V → R denotes the potential function, which is a scalar field with its gradient
field ∇Φ representing the curl-free part of F guaranteed by ∇ × (∇Φ) = 0. And A : V → R3 is
named as the stream function, which is a vector field with ∇×A represents the divergence-free part
of F underpinned by ∇(∇×A) = 0, thereby also indicating the incompressibility of the flow field.

Following previous well-acknowledged works and conventional settings in this area (Li et al., 2021),
we focus on the 2D fluid simulation in this paper and project the Helmholtz theorem into the 2D
space by restricting the z-axis component of F to be 0, i.e. F(r) = (Fx(r) ,Fy(r), 0)

T. This
reduction causes the vanishing of components of the stream function along the x-axis and y-axis,
namely A(r) = ((0, 0,Az(r))

T, indicating that the stream function is degenerated to a scalar field.

Inspired by the above theorem, we first define the Helmholtz dynamics to represent fluid dynamics
and faithfully implement Helmholtz decomposition as a built-in block, i.e. HelmDynamic block.

3 HELMSIM

As aforementioned, we highlight the key components of fluid simulation as providing physical in-
terpretability and handling intricate dynamics. To achieve these objectives, we present the HelmSim
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Figure 2: HelmDynamic block, which learns spatiotemporal correlations to estimate potential and
stream functions of fluid from past observations for simulating the Helmholtz dynamics.

model with HelmDynamic blocks to capture the Helmholtz dynamics for 2D fluid, which is inspired
from the Helmholtz theorem and attributes superficial complex dynamics into the inherent properties
of fluid. Further, we design the Multiscale Integration Network to integrate the learned dynamics
along the temporal dimension in multiple scales to attain the future fluid.

3.1 LEARNING HELMHOLTZ DYNAMICS

To tackle intricate fluid dynamics, we propose the HelmDynamic block to learn Helmholtz dynam-
ics instead of directly learning velocity fluid, which is faithfully implemented from the Helmholtz
theorem and can decompose the complex dynamics into more solvable components.

Helmholtz dynamics for 2D fluid According to the Helmholtz theorem (Eq. 1), the fluid dy-
namics can be equivalently decomposed into curl-free and divergence-free parts for simplification.
Thus, we define Helmholtz dynamics as the function of potential and stream functions, which are
inherent physics quantities of fluid. Concretely, for a 2D fluid defined in the domain V ⊆ R2, its
Helmholtz dynamics FHelm can be formalized by potential function Φ : V → R and stream function
A : V → R of fluid as follows:

FHelm(Φ,A) = ∇Φ+∇×A =

(
∂Φ

∂x
,
∂Φ

∂y

)
︸ ︷︷ ︸
Curl-free Velocity

+

(
∂A

∂y
,−∂A

∂x

)
︸ ︷︷ ︸

Divergence-free Velocity

.
(2)

Note that according to the Helmholtz theorem (Eq. 1), the function value of FHelm is equivalent to the
real dynamic field F but is more tractable. By incorporating Φ and A, Helmholtz dynamics naturally
decomposes the intricate fluid into more solvable components and ravels out the complex dynamics
into intrinsic physics quantities, thus benefiting the dynamics modeling (Bhatia et al., 2013).

Divergence-free Velocity

+

Velocity
Field

Stream function AA

∇∇ΦΦ

∇ × A∇ × A

Curl-free VelocityPotential function ΦΦ

Figure 3: Transform potential and stream func-
tions into the velocity field.

HelmDynamics block To obtain the Helmholtz
dynamics, we propose the HelmDynamic block to
estimate the potential and stream functions from past
observations. Technically, as shown in Figure 2, we
first embed input observations into two successive
deep representations to keep the temporal dynamics
information explicitly. Given a sequence of succes-
sively observed 2D fluid x = [x1, · · · ,xT ],xi ∈
RH×W , this process can be formalized as:

x̂T−1 = Embed
(
x1:(T−1)

)
x̂T = Embed (x2:T ) ,

(3)

where x̂T−1, x̂T ∈ Rdmodel×H×W and the temporal dimension of (T − 1) observations are projected
to the channel dimension dmodel by two convolutional layers with an in-between activation function.

Next, following the convention in dynamics modeling (Sun et al., 2018; Teed & Deng, 2020), we
adopt spatiotemporal correlations between fluid at the previous timestamp and the current timestamp
to represent the dynamics information. Especially as physics quantities of fluid are highly affected
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Figure 4: Multiscale Integration Network (left part), which integrates learned Helmholtz dynamics
of the fluid along the temporal dimension (right part) in multiple scales to generate future fluid field.

by boundary conditions, we also include boundary conditions S into the calculation of correlations:

c(r) = Concat

([
⟨x̂T (r), x̂T−1(r

′)⟩
]
r′∈Vr

,
[
1S(r

′) ⟨x̂T (r), x̂T−1(r
′)⟩

]
r′∈Vr

)
, r ∈ V (4)

where ⟨·, ·⟩ denotes the inner-product operation and Vr denotes the neighbors around position r.
1S(·) denote the indicator function, whose value is 1 when r′ ∈ S and 0 otherwise. c(r) ∈ R2|Vr|

represents the correlation map between the current fluid at r and its |Vr| neighbors in the previous
fluid, with additional consideration on the boundary conditions S. Thus, we obtain the extracted
dynamics information c ∈ R2|Vr|×H×W . Subsequently, we can decode the potential and stream
functions from the dynamics information and calculate the Helmholtz dynamics as follows:

Φ̂ = DecoderΦ (c) , Â = DecoderA (c) , F̂Helm = ∇Φ̂ +∇× Â, (5)

where Φ̂, Â ∈ RH×W and F̂Helm ∈ R2×H×W represent the learned 2D fields of curl-free velocity,
divergence-free velocity, and combined velocity respectively (Figure 3). DecoderΦ and DecoderA
are learnable deep layers instantiated as two convolutional layers with an in-between activation func-
tion. We summarize the above process as F̂Helm = HelmDynamic(x̂(T−1), x̂T ) for conciseness.

3.2 MULTISCALE INTEGRATION NETWORK

After tackling intricate dynamics with the HelmDynamic block, we further present the Multiscale
Integration Network to fuse the learned dynamics along the temporal dimension for predicting the
future fluid, which consists of a multihead integration block and a multiscale modeling framework.

Multihead integration To simulate the complex dynamics in fluid, we employ a multihead design
for temporal integration, which is widely used in the attention mechanism to augment the non-linear
capacity of deep models (Vaswani et al., 2017). As shown in Figure 4, given two successive deep
representations x̂(T−1), x̂T ∈ Rdmodel×H×W of fluid, we can firstly split them along the channel di-

mension for multiple heads and obtain x̂(T−1),i, x̂T,i ∈ R
dmodel
M ×H×W , i ∈ {1, · · · ,M}, where M is

a hyperparameter. Then we compute multiple Helmholtz dynamics from multihead representations:[
F̂Helm,i

]
i=1,··· ,M =

[
HelmDynamic(x̂(T−1),i, x̂T,i)

]
i=1,··· ,M , (6)

where F̂Helm,i ∈ R2×H×W . For conciseness, we omit the head index i and summarize the above
process by F̂Helm = Multi-HelmDynamic(x̂(T−1), x̂T ), where F̂Helm ∈ RM×2×H×W .

With these learned Helmholtz dynamics fields, we can estimate the future position of each pixel with
numerical integration methods. Especially, for a position r, we take the second-order Runge-Kutta
method (DeVries & Wolf, 1994) to estimate its position in the future dt time as shown in Figure 4,
which can be formalized as r′i = r+ F̂Helm,i(r+ F̂Helm,i(r)

dt
2 )dt. The above equation can directly

deduce the next step representation by moving the pixel at r to r′. Here we adopt the back-and-forth
error compensation and correction (BFECC, 2005) method to move representations and interpolate
them into a regular grid. We summarize the above numerical process as:

x̂(T+1) = Integration
(
x̂T , F̂Helm

)
= Concat

([
BFECC

(
x̂T,i, F̂Helm,i

)]
i=1,··· ,M

)
. (7)
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Multiscale modeling It is known in physics that the fluid exhibits different properties at different
scales. These multiscale dynamics mix and entangle with each other, making the fluid dynamics
extremely intractable. Thus, we adopt the multiscale modeling framework in HelmSim.

For fluid embeddings x̂(T−1), x̂T ∈ Rdmodel×H×W , we adopt the multiscale encoder to obtain deep

representations in L scales x̂l
(T−1), x̂

l
T ∈ Rdl

model×⌊ H

2(l−1)
⌋×⌊ W

2(l−1)
⌋
, l ∈ {1, · · · , L}. As the dynam-

ics from larger scales is less affected by noise and can provide a reliable background velocity field
for the small scales, we ensemble the learned dynamics from coarse to fine to ease the multiscale
dynamics modeling process as shown in Figure 4. Overall, the prediction process in the l-th scale is

F̂l
Helm = Multi-HelmDynamic

(
x̂l
(T−1), x̂

l
T

)
+ 2× F̂

(l+1)
Helm

x̂l
(T+1) = Integration

(
x̂l
T , F̂

l
Helm

)
,

(8)

where l is processed from L to 1 and F̂
(L+1)
Helm = 0. In each up-scaling, a scale coefficient of 2 is

multiplied to the coarser-scale dynamics to align the velocity values. Eventually, we progressively
aggregate the learned Helmholtz dynamics from large to small scales and obtain the final prediction
of the fluid field with a projection layer. More details are deferred to Appendix A.2.

4 EXPERIMENTS

We extensively evaluate our proposed HelmSim on four benchmarks, including both simulated and
real-world observed scenarios, covering known and unknown boundary settings (see Figure 5).

Sea Temperature

(b) Real World Data(a) Simulated Data

Spreading Ink (3 Subsets)Navier-Stokes Bounded N-S

Benchmark Boundary

Navier-Stokes Unknown
Bounded N-S Known

Sea Temperature Unknown
Spreading Ink Known

Figure 5: Summary of four experiment benchmarks, including (a) simulated and (b) real-world data.

Baselines We compare our proposed HelmSim with eight competitive baselines, including one
numerical method DARTS (Ruzanski et al., 2011), four neural fluid simulators: LSM (Wu et al.,
2023), U-NO (Rahman et al., 2023), WMT (Gupta et al., 2021), FNO (Li et al., 2021), two fluid-
dynamics-modeling solutions: Vortex (Deng et al., 2023), PWC-Net with fluid Refinement (Zhang
et al., 2022) and one vision backbone widely-used in AI4Science: U-Net (Ronneberger et al., 2015).
Here, LSM and U-NO are previous state-of-the-art models in fluid simulation. Note that due to the
inconsistent settings in fluid simulation, some of the baselines are not suitable for all benchmarks.
Thus, in the main text, we only provide comparisons to the baselines on their official benchmarks.
But to ensure transparency, we also provide the comprehensive results for all baselines in Table 15.

Implementations For fairness, we adopt the relative L2 as the loss function and train all the mod-
els for the same epochs in each benchmark, specifically, 500 epochs for Navier-Stokes (N-S), 200
epochs for Bounded N-S and Spreading Ink, 50000 iterations for Sea Temperature. For all bench-
marks, we report the relative L2 in the test set for comparison. In addition, we also use the VGG
perceptual loss (Johnson et al., 2016) for Spreading Ink to compare the visual quality of predictions.
A comprehensive description is provided in Appendix A.

4.1 SIMULATED DATA

Navier-Stokes with unknown boundary This dataset is simulated from a viscous, incompressible
fluid field on a two-dimensional unit torus, which obeys Navier-Stokes equations (Li et al., 2021).
The task is to predict the future 10 steps based on the past 10 observations. To verify the model
capacity in different resolutions, we generate three subsets ranging from 64× 64 to 256× 256 with
1000 training sequences, 200 validation sequences and 200 test sequences.

As presented in table 1, HelmSim significantly surpasses other models, demonstrating its advance-
ment in fluid simulation. Especially in comparison with the second best model, HelmSim achieves
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Figure 6: Showcase study on the Navier-Stokes dataset under the 64× 64 input resolution. We also visualize
the Helmholtz dynamics learned by HelmSim.

12.1% relative error reduction (0.1261 vs. 0.1435) in the 64 × 64 resolution setting and achieves
consistent state-of-the-art in all time steps. Besides, HelmSim performs best for the inputs under
various resolutions, verifying its capability to handle the dynamics in different scales.

To intuitively present the model capability, we also provide several showcases in Figure 6. In com-
paring to U-NO and LSM, we can find that HelmSim precisely predicts the fluid motion, especially
the twist parts, which involve complex interactions among several groups of fluid particles. Besides,
HelmSim can also generate the learned velocity field for each step, which reflects the rotation and
diffusion of fluid, empowering simulation with interpretable evidence. These results demonstrate
the advantages of HelmSim in capturing complex dynamics and endowing model interpretability.

Table 2: Model performance compar-
ison on the Bounded N-S dataset.

Model Relative L2

DARTS (Ruzanski et al., 2011) 0.1820
U-Net (Ronneberger et al., 2015) 0.0846
FNO (Li et al., 2021) 0.1176
MWT (Gupta et al., 2021) 0.1407
U-NO (Rahman et al., 2023) 0.1200
LSM (Wu et al., 2023) 0.0737

HelmSim (Ours) 0.0652

Bounded N-S with known boundary In real-world ap-
plications, we usually need to handle the complex bound-
ary conditions in fluid simulation. To verify the model ca-
pacity in this setting, we adopt Taichi (Hu et al., 2019) en-
gine to generate 2D fluid sequences with complex bound-
aries. Specifically, the generated dataset simulates a wide
pipe scenario, where the incompressible fluid moves from
left to right, passing by several solid columns. Each se-
quence is started at a random initial condition with res-
olution of 128 × 128. We set an appropriate viscosity
and generate columns of different sizes. Note that this
task contains the Karmen vortex phenomenon (Bayındır
& Namlı, 2021) with many vortices of various sizes, making this problem extremely challenging.
We need to predict the future 10 steps based on the past 10 observations.

HelmSim also performs best in this challenging task and presents a consistent advantage in all pre-
diction steps. Although U-Net is kind of close to HelmSim in averaged relative L2, it fails to capture
the Karmen vortex phenomenon and results in blurry predictions (Figure 7), which will seriously
impede its practicability. In contrast, HelmSim precisely predicts the Karmen vortex around bound-
aries with eidetic texture. This result is benefited from the Helmholtz dynamics modeling paradigm.

Besides, we also provide the comparison of learned dynamics among HelmSim, DARTS (2011)
and PWC-Net (2022) in Figure 1. It is impressive that HelmSim can still capture the dynamics
accurately, even for vortices around solid columns. This capability may come from that instead
of directly learning velocities, HelmSim learns the potential and stream functions, thereby raveling

Table 1: Performance comparison on the Navier-Stokes dataset under different resolutions. Relative
L2 is recorded. For clarity, the best result is in bold and the second best is underlined. The timewise
error curve is recorded from the 64× 64 settings.

Model 64× 64 128× 128 256× 256

DARTS (Ruzanski et al., 2011) 0.8046 0.7002 0.7904
U-Net (Ronneberger et al., 2015) 0.1982 0.1589 0.2953
FNO (Li et al., 2021) 0.1556 0.1028 0.1645
MWT (Gupta et al., 2021) 0.1586 0.0841 0.1390
U-NO (Rahman et al., 2023) 0.1435 0.0913 0.1392
LSM (Wu et al., 2023) 0.1535 0.0961 0.1973

HelmSim (Ours) 0.1261 0.0807 0.1310 * + , - . / 0 1 2 *)
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Figure 7: Timewise error and showcases on the Bounded N-S dataset. For clarity, we highlight and
zoom in the key parts of fluid in red boxes.

out the intricate dynamics naturally. It is also notable that numerical method DARTS degenerates
seriously in both quantitative results (Table 2) and learned dynamics (Figure 1), which highlights
the challenges in this task and the advantage of the HelmSim.

4.2 REAL-WORLD DATA

Table 3: Comparison on Sea Temperature, both
MSE and relative L2 are reported.

Models Relative L2 MSE

DARTS (Ruzanski et al., 2011) 0.3308 0.1094
U-Net (Ronneberger et al., 2015) 0.1735 0.0379
FNO (Li et al., 2021) 0.1935 0.0456
MWT (Gupta et al., 2021) 0.2075 0.0506
U-NO (Rahman et al., 2023) 0.1969 0.0472
LSM (Wu et al., 2023) 0.1759 0.0389

HelmSim (Ours) 0.1704 0.0368

Sea Temperature with unknown boundary
Here we use sea water potential temperature
in the reanalysis ocean data (MDS) provided
by ECMWF. For experiments, we use cropped
64 × 64 temperature data in Atlantic, Indian,
and South Pacific for training and validation,
to be more exact, from 2000 to 2018 for train-
ing with 170,249 sequences and from 2019 to
2020 for validation with 17,758 sequences. Ad-
ditionally, we use the sea temperature in North
Pacific from 2000 to 2020 for testing, including
65,286 sequences. This task is to predict the fu-
ture 10 frames based on the past 10 observations, corresponding to predicting 10 future days based
on 10 past days. Since there exists the region shift between training and test sets, this benchmark not
only requires the model to capture complex dynamics in ocean but also maintain good generality.

The results in Table 3 demonstrate that HelmSim can handle real-world data well and outperform
all baselines. It is worth noting that the test set is collected from different regions with respect to the
training and validation sets. These results also verify the generality and transferability of HelmSim.

Spreading Ink with known boundary This benchmark consists of three videos collected by Deng
et al., each involving 150, 189 and 139 successive frames respectively. Following the experiment
setting in Vortex (2023), we split the training and test sets in chronological order by the ratio of 2:1
for each video. Given all the training parts, the goal is to predict all the testing frames at once. For
example, for the first video, we need to train our model on the first 100 frames and directly adopt
this model to predict the future 50 frames. Since the prediction horizon is much longer than other
tasks, this problem poses special challenges in handling accumulative errors.

The quantitative results are listed in Table 4. HelmSim still performs well in the long-term fore-
casting task. In addition to the relative L2 and MSE, it also consistently achieves the lowest VGG
perceptual loss, implying that the prediction results of HelmSim can maintain the realistic texture
and intuitive physics. As for showcases in Figure 8, we find that HelmSim can precisely capture the

Table 4: Model comparison on Spreading Ink. Perceptual loss, Relative L2 and MSE are reported.

Model Video1 Video2 Video3

U-Net (Ronneberger et al., 2015) 1.500 / 0.1544 / 0.0080 3.982 / 0.4780 / 0.0330 5.307 / 0.1535 / 0.0119
FNO (Li et al., 2021) 2.023 / 0.1709 / 0.0097 4.732 / 0.4864 / 0.0342 5.531 / 0.1756 / 0.0156
U-NO (Rahman et al., 2023) 4.210 / 0.1792 / 0.0106 6.204 / 0.5312 / 0.0408 6.397 / 0.1810 / 0.0166
Vortex (Deng et al., 2023) 1.704 / 0.1580 / 0.0083 4.171 / 0.4150 / 0.0249 5.973 / 0.1718 / 0.0150
LSM (Wu et al., 2023) 1.666 / 0.1592 / 0.0084 4.167 / 0.4890 / 0.0346 5.448 / 0.1611 / 0.0132

HelmSim (Ours) 1.464 / 0.1399 / 0.0065 3.296 / 0.3565 / 0.0184 5.208 / 0.1584 / 0.0127
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Observations VortexU-NetHelmSim (Ours) Numerical Velocity

Optical Flow

T = 1.20s 

T = 1.40s 

T = 1.50s 

Vortex VelocityHelmSim Velocity

Figure 8: Showcases of prediction results and learned velocity fields on the Spreading Ink dataset.

diffusion of ink. Even for the future 50 frames (T=1.50s), HelmSim still performs well in capturing
the hollow position and surpasses numerical methods, optical flow and Vortex in learning velocity.

4.3 MODEL ANALYSIS Efficiency comparison
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Figure 9: Efficiency compari-
son. Running time is evaluated
on the 64× 64 Naiver-Stokes.

Efficiency analysis To evaluate model practicability, we also pro-
vide efficiency analysis in Figure 9. In comparison with the second-
best model U-NO, HelmSim presents a favorable trade-off between
efficiency and performance. Specially, HelmSim surpasses U-NO
by 12.1% in relative L2 with comparable running time. See Ap-
pendix C for full results and comparisons under aligned model size.

Ablations To highlight the advantages of learning Helmholtz dy-
namics, we compare HelmSim with two variants: directly learning
velocity field and removing the boundary condition design in Helm-
Sim. For clarity, we provide both prediction results and learned ve-
locity fields in Figure 10. We can observe that compared to learning
Helmholtz dynamics, directly estimating the velocity field will overwhelm the model from capturing
complex fluid interactions. Without boundary conditions, learned velocities are perpendicular to the
boundary, leading to discontinuous predictions. See Appendix B for quantitative comparisons.

Potential function ΦΦ Velocity Learned 
from HelmDynamics

 Velocity Learned 
Directly

Error with 
HelmDynamic Block

Error without 
HelmDynamic BlockStream function AA

With Boundary Without Boundary

Test Relative L2: 0.1412 Test Relative L2: 0.1261

Error with Boundary
Test L2: 0.0652

Error without Boundary
Test L2: 0.0846

Ground Truth (T=10) Ground Truth 

Figure 10: Velocity field and error comparison between learning by HelmDynamic Block and learning directly.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present the HelmSim model towards an accurate and interpretable fluid simulator.
Instead of directly learning the velocity field, we propose to learn the Helmholtz dynamics, which
casts the intricate dynamics of fluid into inherent physics quantities. With HelmDynamic blocks
and Multiscale Integration Network, HelmSim can precisely estimate the potential and stream func-
tions for Helmholtz dynamics, which empowers the prediction process with physical interpretability.
HelmSim achieves the consistent state-of-the-art in both simulated and real-world datasets, even for
scenarios with complex boundaries. In the future, we will extend HelmSim to 3D fluid simulation
and verify its modeling capability in more challenging tasks.

9



Under review as a conference paper at ICLR 2024

6 ETHICS STATEMENT

Our work only focuses on the scientific problem, so there is no potential ethical risk.

7 REPRODUCIBILITY STATEMENT

In the main text, we have strictly formalized the model architecture with equations. All the imple-
mentation details are included in Appendix A, including dataset descriptions, metrics, model and
experiment configurations. The code will be made public once the paper is accepted.
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Table 5: A summary of experiment datasets. Note that the Spreading Ink dataset is different from
other benchmarks, which only contains three video sequences. We strictly follow the Vortex (Deng
et al., 2023) to split the video for training, validation and test. For example, in the training phase of
video 1, we use the first 70 frames for training and the subsequent 30 frames for validation. As for
the test, we use the first 100 frames as input and predict the following 50 frames.

Dataset (Input, predict length) (Training, validation, test) Observed state Reynold numbers

Navier-Stokes (10,10) (1000,200,200) Vorticity ∼ 104

Bounded N-S (10,10) (1000,200,200) Grayscale ∼ 300
Sea Temperature (10,10) (170249, 17758, 65286) Temperature Unknown
Spreading Ink video 1 (100, 50) One video sequence RGB Image Unknown
Spreading Ink video 2 (126, 63) One video sequence RGB Image Unknown
Spreading Ink video 3 (93, 46) One video sequence RGB Image Unknown

A IMPLEMENTATION DETAILS

A.1 DATASET

We summarize the experiment datasets in Table 5. More details can be found in the following.

Navier-Stokes Navier-Stokes equations describe the motion of viscous incompressible field. In
this paper, we follow (Li et al., 2021) and generate fluid on a 2D torus with the following equation:

∂u

∂t
+ (u · ∇)u− ν∇2u = −1

ρ
∇p+ g

∇ · u = 0

∇× u(x, 0) = ω0(x), x ∈ (0, 1)2,

(9)

where u ∈ R2 represents the velocity field, p denotes the pressure, and ρ is the fluid density, which
we assumed to be constant in the incompressible fluid field. ν ∈ R+ is the kinematic viscosity
representing the intrinsic nature of the fluid, which is assumed to be constant. g ∈ R2 represents the
summation of all the external forces applied on the fluid field. Vorticity is calculated by the velocity
field, ω = ∇ × u. At time zero, the initial vorticity field ω0 is given. The goal is to predict the
following vorticity fields from given observations.

We randomly sampled the initial vorticity w0 on a two-dimensional unit torus from a Gaussian dis-
tribution, and solved the equation with a numerical method to obtain the future velocity field. After
generating the fluid field with 256 × 256 spatial resolution and 10−4 second temporal resolution,
we downsampled it to a sequence of 1 second per frame and corresponding spatial resolution. Thus,
each sequence consists of 20 frames with a total duration of 20 seconds. We fixed the viscosity
ν = 10−5 for all three sub-datasets of different resolutions.

Bounded N-S Suppose a 512 × 512 sized two-dimensional space with top and bottom as bound-
aries, with free space outside the image. We let a randomly colored fluid flow from left to right. To
test the model performance under scenarios with complex boundaries, we randomly sampled fifteen
circles of different sizes as obstacles and uniformly placed them in the 512 × 512 space. Then we
used Taichi (Hu et al., 2019) as a simulator engine to generate fluid within top-down boundaries
with a numerical fluid solver for the advection equation (Baukal Jr et al., 2000), and generated a
sufficiently long sequence with one initial source condition.

Towards the flow field dataset, after the colored fluid field spreads over the space from left to right,
we sample frames in the frequency of 60 steps and add the sampled frames into the dataset. To
remove the noise from chromatic aberration, we transform all the samples into grayscale. Then
we downsample the image to 128 × 128, and split the long sequence into disjoint equal-length
subsequences. After randomly dividing them into train, validation, and test sets, we finally obtained
the training, validation, and test set, which contains 1000, 200, and 200 sequences, respectively.

Sea Temperature As we stated in Section 4.2, we downloaded daily mean sea water potential
temperature from the reanalysis ocean data (MDS) provided by ECMWF. Then we selected several
areas from both the northern and southern hemispheres, specifically sub-regions of the Atlantic,
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Indian, and Pacific Oceans, and then cropped them into 64× 64 patches. For each 64× 64 cropped
area, we normalize it to ensure the observations are in a standard distribution, which can make the
task free from the noises of sudden change and observation errors, and mainly focus on the dynamics
modeling. The task is to predict 10 frames based on the past 10 frames.

Spreading Ink The dataset consists of three open source short videos from Deng et al. (2023). We
take each video as a subset and split it into training and test sets along the temporal dimension. This
means that the model is trained on the past observations in the training set and is required to predict
all the latest fluid in the test set at once, namely the long-term forecasting task.

A.2 IMPLEMENTATIONS

In this section, we describe the design in incorporating boundary conditions and the aggregation
operation of the multiscale integration network.

Boundary Conditions Here we detail the implementation of incorporating boundary conditions
as a supplementary of Eq. 4. For given boundary conditions S and the position r, we calculate the
correlation on the intersection between boundary S and r neighbour Vr. Concretely, we multiply
the boundary mask 1S to embedded neighbour feature x̂T−1(r

′), that is,

1S(r
′) ⟨x̂T (r), x̂T−1(r

′)⟩ = ⟨x̂T (r),1S(r
′) (x̂T−1(r

′))⟩ , r′ ∈ V. (10)

This will preserve the number of neighbour correlation channels, and for r′ /∈ S, the correlation
values will be set to be zero.

Aggregation Operation Given learned deep representations of prediction x̂l
(T+1), x̂

l+1
(T+1) at the

(l+ 1)-th and l-th scales, the aggregation operation integrates information between different scales,
which can be formalized as follows:

x̂l
(T+1) = Conv

(
Concat

[(
Upsample

(
x̂l+1
(T+1)

))
, x̂l

(T+1)

])
, l from (L− 1) to 1,

where we use bilinear interpolation for the operator Upsample(·).

A.3 METRICS AND STANDARD DEVIATIONS

In all four datasets, we report the mean value of relative L2 of three repeated experiments with dif-
ferent random seeds as a main metric. Experimentally, the standard deviations of relative L2 are
smaller than 0.001 for Navier-Stokes, Bounded N-S and Sea temperature and smaller than 0.003 for
Spreading Ink. For scientific rigor, we keep four decimal places for all results. For the Sea Temper-
ature dataset, we report the MSE loss following the common practice in meteorological forecasting.
For the Spreading Ink dataset, we used VGG Perceptual Loss (Johnson et al., 2016) to measure the
realism of the generated fluids. Given n step predictions {x̂i}i=1,··· ,n and corresponding ground
truth {xi}i=1,··· ,n, x̂i,xi ∈ RH×W , the above-mentioned metrics can be calculated as follows:

MSE =
1

n

n∑
i=1

1

H ×W
∥xi − x̂i∥22, Relative L2 Loss =

√∑n
i=1 ∥xi − x̂i∥22√∑n

i=1 ∥xi∥22
.

Especially, for Spreading Ink with given boundary conditions S, we only compute the loss function
of the area inside the boundary. Suppose that D represents the area inside the container, and the
above-mentioned metrics can be calculated as follows:

MSE =
1

n

n∑
i=1

1

|D|
∑

(j,k)∈D

(xijk − x̂ijk)
2, Relative L2 Loss =

√∑n
i=1

∑
(j,k)∈D(xijk − x̂ijk)2√∑n

i=1

∑
(j,k)∈D x2

ijk

,

where xijk represents the value at position (j, k) of i−th frame, and |D| represents the number of
grid points in D.
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A.4 MODEL AND EXPERIMENT CONFIGURATIONS

All the experiments are implemented in PyTorch(Paszke et al., 2019), and conducted on a single
NVIDIA A100 40GB GPU. We repeat all the experiments three times with random seeds selected
from 0 to 1000 and report the average results. We train the model with Adam optimizer (Kingma &
Ba, 2015) for all baselines. See Table 6 for details.

Here, we present the detailed model configurations for HelmSim. Since fluid in different resolutions
will present distinct dynamics, we increase the number of scales for larger inputs, as presented in
Table 7. For the Multiscale Integration Network, we follow the conventional design in U-Net (Ron-
neberger et al., 2015) to downsample, upsample and aggregate multiscale features.

Table 6: Experiment configurations in HelmSim for different benchmarks.

Benchmark Learning Rate Batch Size

Navier-Stokes 5× 10−5 10
Bounded N-S 5× 10−5 5
Sea Temperature 5× 10−5 10
Spreading Ink 5× 10−5 5

Table 7: Hyperparameter configurations of HelmSim for different resolutions.

Input Resolutions Hyperparameters Values

Number of scales L 3
64× 64 Number of heads M 4

Channels of deep representations {d1model, · · · , dLmodel} {64, 128, 128}
Number of neighbours to calculate spatiotemporal correlations |Vr| 81

Number of scales L 4
128× 128 Number of heads M 4
256× 256 Channels of deep representations {d1model, · · · , dLmodel} {128, 256, 512, 512}

Number of neighbours to calculate spatiotemporal correlations |Vr| 81

B ABLATION STUDY

We present comprehensive ablations here, including the sensitivity analysis to every hyperparam-
eter, key design in every component of HelmDynamics (stream, potential functions, and boundary
conditions), multiscale design in integration.

B.1 HYPERPARAMETER SENSITIVITY

We include a summary of hyperparameter experiments in Table 8 and conduct detailed ablations in
the quantitive aspect as a supplement to Figure 10 of the main text to verify the effect of learning
HelmDynamics and considering boundary conditions.

Order of Runge-Kutta for temporal integration Runge-Kutta methods are commonly used for
iteratively solving PDEs. The higher the number of orders, the more accurate results it will obtain
but it will also consume more computation time. In HelmSim, the prediction results also rely on
the accuracy of the velocity obtained by HelmDynamic blocks. According to our experiments, the
second-order Runge-Kutta method is already sufficient for temporal integration. Thus, we choose
the second-order Runge-Kutta for integration to trade off performance and efficiency.

Number of neighbours in correlation calculation Larger regional area will provide more infor-
mation for spatiotemporal correlation calculation. In this paper, we choose |Vr| as 9× 9.

Number of heads Adding heads is a convention to augment model capacity Vaswani et al. (2017).
In this paper, adding heads also means more operations in conducting integration. We set M as 4
for a good balance of running time and performance.
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Table 8: Model performances on Navier-Stokes Dataset of 64 × 64 resolution with different selec-
tions for order of Runge-Kutta, number of neighbours in correlations, number of heads and number
of scales. The red marked hyperparameter represents the final configuration of HelmSim.

Order of Runge-Kutta 1 2 3 4

Relative L2 0.1298 0.1261 0.1268 0.1278

Training time (s / epoch) 80.04 81.20 88.30 90.49

Number of neighbours in correlation |Vr| 3×3 5×5 7×7 9×9

Parameter number 9,825,421 9,848,461 9,883,021 9,929,101

Relative L2 0.1337 0.1273 0.1272 0.1261
Number of heads M 1 4 8 16

Parameter number 11,063,245 9,929,101 9,812,653 9,762,205

Relative L2 0.1344 0.1261 0.1279 0.1249

Training time (s / epoch) 59.69 81.20 120.86 171.97

Number of scales L 2 3 4 5

Parameter number 9,283,977 9,929,101 15,906,193 29,820,309

Relative L2 0.1514 0.1261 0.1361 0.1330

Training time (s / epoch) 64.43 81.20 99.83 120.06

Table 9: Ablations on dynamics learning in 64× 64 Navier-Stokes Dataset.

Multihead version Single head version

Metrics Velocity HelmDynamics Velocity HelmDynamics

Relative L2 0.1412 0.1261 0.1461 0.1344
GPU memory (GB) 14.86 16.30 13.02 14.41
Training Time (s / epoch) 72.18 80.20 48.25 61.22

Number of scales This hyperparameter is highly related to the nature of fluid. Considering both
model efficiency and fluid dynamics, we choose L as 3 for 64× 64 inputs and 4 for larger inputs.

B.2 LEARNING HELMDYNAMICS OR DIRECTLY LEARNING VELOCITY

As we emphasized in the main text, directly learning the superficial velocity will overwhelm the
model. As presented in Table 9, without Helmholtz dynamics, the performance decreases from
0.1261 to 0.1412, demonstrating the effectiveness of our proposed Helmholtz dynamics. In addition,
the calculation of HelmDynamics only brings marginal extra computation costs.

B.3 USING OR OMITTING BOUNDARY CONDITIONS

As shown in Table 10, without input boundary condition, the performance drops seriously, indicating
the necessity of our design in HelmDyanmic. It is also notable that as a flexible module, it is quite
convenient to incorporate boundary conditions into the HelmDyanmic block, which is also a unique
advantage of our model in comparing with others.

B.4 LEARNING HELMDYNAMICS IN MULTIPLE SCALES

As presented in Eq. 8, we ensemble the learned HelmDynamics in multiple scales. Here we also
provide ablations on just employing HelmDynamics in one single scale in Table 11. We can find
that our multiscale design can facilitate the dynamics modeling.
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Table 10: Ablations on boundary conditions in the Bounded N-S dataset.

Metrics Omitting Boundary Conditions Using Boundary Conditions

Relative L2 0.0846 0.0652
GPU memory (GB) 26.98 29.48
Training Time (s / epoch) 226.20 267.63

Table 11: Ablations on learning HelmDynamics in multiple or single scales.

Metrics Multiple Scales Single Scale (Bottom) Single Scale (Top)

Relative L2 0.1261 0.1441 0.1798

GPU memory (GB) 16.30 8.80 11.68
Training Time (s / epoch) 80.20 30.69 45.32

B.5 ARE BOTH POTENTIAL AND STREAM FUNCTIONS EFFECTIVE?

As presented in Table 12, only learning potential function or stream function will cause a decrease
in the final performance, demonstrating the effectiveness of both components.

C EFFICIENCY COMPARISON

In the main text, we have plotted the efficiency comparison. Here, we detail the quantitive results in
Table 13 as a supplement.

Align model size Note that all of these baselines are reproduced from their official configurations
in their paper, which may result in an unbalanced model size problem. To ensure a fair comparison,
we also enlarge the parameter of FNO and compare it with HelmSim. See Table 14 for the results. It
is observed that, even enlarging the FNO to a size comparable to HelmSim, it still performs worse.

D ADDITIONAL RESULTS

Align baselines in all benchmarks As we stated in Section 4, some of the baselines are not
suitable for part of the benchmarks, specifically Vortex (Deng et al., 2023), DARTS Ruzanski et al.
(2011), PWC-Net with fluid Refinement (Sun et al., 2018) and MWT (Gupta et al., 2021), which
means their performance will degenerate seriously or the running time is extremely slow if we stiffly
apply them to all benchmarks. Specifically, due to the special design for temporal information in
Vortex, we only compare it in the Spreading Ink dataset in the main text. As for the DARTS, since it
is designed for the mass field and not applicable for videos with RGB channels, we do not include it
in Spreading Ink dataset. Besides, PWC-Net with fluid Refinement (Zhang et al., 2022) is proposed
to learn the optical flow for fluid, which suffers from the accumulative error, making it far inferior
to other methods. Thus, we only compare PWC-Net in learning velocity field in the main text.

But, we still provide the missing experiments in Table 15 to ensure transparency.

• Vortex (Deng et al., 2023) models multiple vortex trajectories as a function of time. Since
different video sequences have inherently different vortex trajectories, we need to re-train
Vortex to fit every video sequence. However, the other three benchmarks except Spreading
Ink, have more than 1000 different video sequences. It means that we need to train 1000+
Vortex models for these benchmarks, which is unacceptable. But we still implement this
experiment, where we train one vortex model on one single video sequence and generalize
it to others.

• Due to the slow movement of the spreading ink dataset, DARTS Ruzanski et al. (2011)
showed outstanding quantitive results. However, it fails to predict the correct future in the
other three datasets. Moreover, DARTS method solves the least squares problem in the
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Table 12: Ablations on learning HelmDynamics, single potential or stream function in 64 × 64
Navier-Stokes Dataset.

Metrics HelmDynamics Only potential function Only stream function

Relative L2 0.1261 0.1460 0.1305

GPU memory (GB) 16.30 16.29 16.30
Training Time (s / epoch) 80.20 79.57 79.60

Table 13: Efficiency comparison between six deep models on Naiver-Stokes 64× 64 dataset, where
running time are measured with batch size as 1.

Models HelmSim U-Net FNO MWT U-NO LSM

#Parameter 9,929,101 17,312,650 1,188,641 7,989,593 61,157,793 19,188,033

Training time (s / epoch) 80.20 46.29 18.91 90.02 103.82 44.49

Relative L2 0.1261 0.1982 0.1556 0.1586 0.1435 0.1535

frequency domain for every case, which will bring huge computation costs. In particular,
the other deep methods predict the whole sequence in less than 0.1 seconds, while DARTS
takes more than 10 seconds. Also, the changes in estimated velocity are very slight with the
change of time, which leads to incorrect location estimation. And the extrapolation causes
blurring in long-term prediction.

• PWC-Net (Sun et al., 2018) only estimates the velocity between adjacent observations. We
tried to extrapolate with the estimated velocity field to predict the following frames. But
this will lead to severe distortion. To better use the estimated velocity, we fed the velocity
with the observation into a U-Net (Ronneberger et al., 2015) and got a better result, which
is shown as PWC-UNet in table 15. Although enhanced by estimated velocity from PWC-
Net, U-Net is still not as good as HelmSim.

• MWT (Gupta et al., 2021) predict the future frames based on wavelet analysis. It fails in
long-term prediction. The prediction on video 3 of Spreading Ink (Figure 11) shows that as
the prediction time gets longer, the prediction image stays at the same position and appears
weird texture.

T=5 T=10 T=15 T=20 T=25

Ground 
Truth

HelmSim

T=30 T=35 T=40 T=45

DARTS

MWT

Figure 11: Showcases of HelmSim, DARTS, and MWT on the Spread Ink dataset .

Performance on turbulence dataset To better present the model performance on turbulent fluid,
we evaluate HelmSim and other baselines on a 64× 64 sized turbulence dataset (Wang et al., 2019),
which consists of 6000 sequences for training, 1700 for validation and 2100 for testing. The target
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Table 14: Align model size in 64 × 64 Navier-Stokes.

Relative L2 FNO FNO (enlarged) HelmSim

64× 64 Navier-Stokes 0.1556 0.1524 0.1261
128× 128 Navier-Stokes 0.1028 0.1025 0.0807
256× 256 Navier-Stokes 0.1645 0.1474 0.1310
Bounded N-S 0.1176 0.1116 0.0652
Sea Temperature 0.1935 0.1958 0.1704
Video 1 0.1709 0.1872 0.1399
Video 2 0.4864 0.5250 0.3565
Video 3 0.1756 0.1676 0.1584
Model Parameter 1,188,641 10,633,265 9,929,101

Table 15: Align baselines in all benchmarks, including DARTS (Ruzanski et al., 2011), adapted
version of PWC-Net (Sun et al., 2018), MWT (Gupta et al., 2021), Vortex (Deng et al., 2023). We
report Relative L2 for Navier-Stokes dataset and Bounded N-S dataset, MSE and relative L2 for Sea
Temperature dataset, and Perceptual loss, Relative L2 and MSE for Spreading Ink.

Navier-Stokes Bounded N-S Sea Temperature Spreading Ink (Video 3)

DARTS 0.8046 0.1820 0.3308 / 0.1094 4.940 / 0.1601 / 0.0130
PWC-UNet 0.1765 0.0729 0.1805 / 0.0406 5.341 / 0.1591 / 0.0128
MWT 0.1586 0.1407 0.2075 / 0.0510 1.521 / 0.1775 / 0.0160
Vortex 8.1379 1.6259 4.9302 / 0.1796 5.973 / 0.1718 / 0.0150

HelmSim 0.1261 0.0652 0.1704 / 0.0368 5.208 / 0.1584 / 0.0127

is to predict the following velocity fields given previous observations. To test the best performance
on the dataset, we train all the models with an input sequence of 25 timesteps and evaluate for 20.
The results are provided in Table 16.

Table 16: Performance on turbulence dataset.

Turbulence dataset MSE

U-Net (Ronneberger et al., 2015) 1062.13
TF-Net (Wang et al., 2019) 1061.78
FNO (Li et al., 2021) 1187.44
U-NO (Rahman et al., 2023) 3276.09
LSM (Wu et al., 2023) 1069.26

HelmSim 1042.38

Sensitivity to the number of parameters We also add the sensitivity analysis to the number of
parameters on the 64× 64 Navier-Stokes dataset in Table 17. We report the results of changing the
channels of deep representations to a half, and twice the original channels. These results show that
the original configuration can achieve a favorable balance between performance of efficiency.

E DYNAMICS TRACKING

Our design is based on the Euler perspective of fluid. As a supplement, we also provide a Lagrangian
perspective comparison to the model predictions. We track one certain fluid particle predicted by
HelmSim and other baselines. Technically, we first locate the point with maximum value in a certain
area and then keep tracking the maximum-value point in the subsequent frames. As shown in Figure
12, we can find that the closer the trajectory of the point in the predicted image is to its real counter-
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Table 17: Ablations on the number of parameters.

Channels compared to the official configuration 1/2 1 2

Relative L2 0.1380 0.1261 0.1242
GPU memory (GB) 9.64 16.30 29.99
Running Time (s / epoch) 75.10 80.20 112.13
#Parameter 2,516,173 9,929,101 39,446,029

part, the better tracking of the point is indicated. The trajectory predicted by HelmSim is the closest
to the ground truth, verifying the advantage of HelmSim in dynamics modeling real trajectory.
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Figure 12: Tracking of the local maxima of Bounded N-S.

F FUTURE WORK: EXTEND HELMSIM TO 3D FLUID

Here we present the potential extension of HelmSim to 3D fluid simulation. According to the official
formalization of Helmholtz decomposition F(r) = ∇Φ(r) +∇×A(r), r ∈ V, the stream function
for a 3D fluid field is a 3D vector A(r) = (Ax(r),Ay(r),Az(r)). In 2D cases, the velocity
component on the z-axis is set to be zero, that is Ax(r) = Ay(r) = 0. To extend HelmSim to 3D
fluid simulation, the core is to change the HelmDynamic block into learning Φ̂ ∈ R1×D×H×W and
Â ∈ R3×D×H×W , where D is the additional depth dimension of 3D fluid. Then, following the
Helmholtz decomposition presented in Eq. 1, we can easily obtain the inferred 3D vector velocity
field, thereby enabling HelmSim to achieve the velocity-aware 3D fluid prediction.

G MORE SHOWCASES

As a supplement to the main text, we provide more showcases here for comparison.

Ground Truth 
(T=10)

Prediction
Error

LSM U-NOHelmSim (Ours) FNOU-Net MWT

Figure 13: Showcases of the Navier-Stokes Dataset with resolution of 64× 64.
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Figure 14: Showcases of the Navier-Stokes Dataset with resolution of 128× 128.
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Figure 15: Showcases of the Navier-Stokes Dataset with resolution of 256× 256.
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Figure 16: Showcases of HelmSim on Navier-Stokes Dataset with resolution 64×64 and 128×128.
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Ground Truth 
(T=10)

Prediction
Error
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Figure 17: Showcases of the Bounded N-S Dataset.
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Figure 18: Showcases of HelmSim on the Bounded N-S Dataset.
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Figure 19: Showcases of the Sea Temperature Dataset.
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Figure 20: Showcases of HelmSim on the Sea Temperature Dataset.

Observations U-NOU-NetHelmSim (Ours) 

T = 1.20s 

T = 1.40s 

T = 1.50s 

LSM FNO Vortex

Figure 21: Showcases of the Spreading Ink Dataset (Video 1).
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Figure 22: Showcases of the Spreading Ink Dataset (Video 2).
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U-NOU-NetHelmSim (Ours) 

T = 1.20s 

T = 1.40s 

LSM FNO VortexObservations

Figure 23: Showcases of the Spreading Ink Dataset (Video 3).


	Introduction
	Preliminaries
	Fluid Simulation
	Helmholtz Decomposition

	HelmSim
	Learning Helmholtz Dynamics
	Multiscale Integration Network

	Experiments
	Simulated Data
	Real-world Data
	Model analysis

	Conclusions and Future Work
	Ethics Statement
	Reproducibility Statement
	Implementation Details
	Dataset
	Implementations
	Metrics and Standard Deviations
	Model and Experiment Configurations

	Ablation Study
	Hyperparameter Sensitivity
	Learning HelmDynamics or Directly Learning Velocity
	Using or Omitting Boundary Conditions
	Learning HelmDynamics in Multiple Scales
	Are Both Potential and Stream Functions Effective?

	Efficiency Comparison
	Additional Results
	Dynamics tracking
	Future Work: Extend HelmSim to 3D fluid
	More Showcases

