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Abstract001

Deaf or Hard-of-Hearing (DHH) individuals002
use Large Language Models (LLMs) in unique003
ways and request to incorporate sign language004
grammar and Deaf culture during the training005
of these models, in addition to video-based sign006
language input capabilities. Yet, developers of007
instruct-tuned LLMs have not paid attention008
to these requests. Instead, special translation009
models are developed for sign languages (SLs),010
diminishing the needs of signers to a simple011
lack of communication between hearing and012
Deaf communities. In this paper, we take an or-013
thogonal approach to these traditional methods014
of studying SLs. To meet the requests of Deaf015
users of LLMs, we look at the sign language016
processing (SLP) algorithm from a theoretical017
lens, then introduce the first text-based and mul-018
timodal LLMs. We propose new prompting019
and fine-tuning strategies for text-based and020
multimodal SLP, incorporating sign linguistic021
rules and conventions. We test the generaliza-022
tion of these models to other SLP tasks, show-023
ing LLMs can process signs while still being024
adept at spoken language tasks. Our code and025
model checkpoints will be open-source. We026
will update our model suite as newer open-027
source LLMs, datasets, and SLP tasks become028
available.029

1 Introduction030

Most Deaf and Hard-of-Hearing individuals have031

well-developed methods to navigate a hearing-032

centric world, and they adapt these strategies to033

newly emerging technologies in unique ways (De-034

sai et al., 2024). With the recent prevalence of035

public-facing LLMs, DHH users voice their dis-036

tinct challenges using these systems–such as con-037

fronting misconceptions and biases in English lan-038

guage use (Swisher, 1989), and Information Depri-039

vation Trauma (Schild and Dalenberg, 2012)–that040

are mostly left unaddressed by developers of LLMs.041

According to a recent seminal study by Huffman042

Figure 1: Deaf users have specific requests pertaining
to the development of LLMs, as shown above. We
show that text-based and multimodal open LLMs when
prompted or fine-tuned, can learn to perform sign lan-
guage processing tasks, and these requests can be miti-
gated. Further, multitasking fine-tuning on both spoken
(OpenOrca) and signed (PHOENIX-14T) corpora alle-
viates forgetting of spoken language capabilities (e.g.,
QA tasks in English).

et al. (2024), 44.1% of Deaf or Hard of Hearing 043

(DHH) individuals who use LLMs say that they 044

have challenges in asking questions to LLMs, and 045

22.1% are unsatisfied due to limited sign language 046

support in LLMs. In this paper, we acknowledge 047

these concerns and address them by first introduc- 048

ing a theoretical perspective to the sign language 049

processing algorithm, and introducing a family of 050

fine-tuned LLMs (both text-based and video-based 051

models) that are grounded in sign language linguis- 052

tics. 053

In more detail, our contributions are described 054

as follows. 055

1. With a user-centered design approach for 056

DHH (Potter et al., 2014), we identify the 057

needs and requirements of Deaf users of 058

LLMs and identify ways of incorporating sign 059

language knowledge into them. 060
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2. We theoretically and empirically study the061

problem of catastrophic forgetting during fine-062

tuning on sign language data, providing solu-063

tions to resolve this issue.064

3. We introduce multimodal and text-based065

LLMs fine-tuned on SLP tasks and analyze in066

detail whether they satisfy the requirements067

set by signers.068

Our results show that fine-tuning large, pre-trained069

models offers new generalization capabilities com-070

pared to previous sign recognition training strate-071

gies, e.g., via in-context learning. All code, data,072

and model checkpoints will be publicly available073

and will be regularly updated to reflect new devel-074

opments in LLMs and SLP data & tasks.075

2 Needs & Requests of the Deaf076

Community077

From the personal interviews presented in Huff-078

man et al. (2024), there are three major areas that079

DHH would like to see improvements with LLMs:080

1) LLMs should understand diverse spoken lan-081

guage use by the Deaf , 2) LLMs should have a082

deep understanding of the DHH community, and083

3) LLMs should accept visual sign language as in-084

put. Essentially, signers want LLMs to understand085

SL grammar order, or at least the gloss notation086

–an intermediary textual representation for signs–,087

(e.g., most of the time when Deaf individuals write088

in American Sign Language, hearing people can089

misunderstand it as “Deaf” English). Furthermore,090

signers want sign language-specific datasets to be091

used in the training of the LLMs. Also, video-based092

sign understanding is requested to be able to input093

a model in sign languages.094

Here, it is necessary to distinguish reading and095

writing in spoken versus sign languages. Most096

bilingual signers default to reading and writing in097

spoken languages or modified versions of them098

instead of SLs while interacting with LLMs due099

to lack of effective interfaces (Desai et al., 2024;100

Inan et al., 2024; Bragg et al., 2020; Glasser et al.,101

2020; Hariharan et al., 2018). We are specifically102

interested in the problem of interfacing with sign-103

ers using text-based or multimodal LLMs, which104

helps signers to read and write in SLs while also105

enhancing their reading and writing capabilities in106

spoken languages (Samuel J. Supalla, 2021). As a107

concrete example, we are aiming to create an LLM108

that DGS-bilingual signers use to converse with109

using text, or videos, instead of using German to110

chat with LLMs. 111

These concrete requirements by DHH motivate 112

our work and open up the following several impor- 113

tant scientific questions and research areas: 114

1. How can LLMs understand signers better? 115

2. What are some possible ways of including 116

Deaf knowledge and contexts into LLMs? 117

3. Does in-context learning or supervised fine- 118

tuning make LLMs more capable of under- 119

standing Deaf culture and signing? 120

4. Does pretraining with sign language knowl- 121

edge affect spoken language capabilities of 122

LLMs? 123

5. Can these effects be mitigated in post hoc 124

model training? 125

To answer these questions in more detail, in- 126

spired from all of the prior work, we first look at 127

the problem from a theoretical lens, and then we 128

apply large pre-trained language models to tasks 129

in SLP. To represent SLs in a textual environment, 130

we experiment with glosses (intermediary textual 131

representations of signs), which are also found to 132

be helpful with the spoken language reading skills 133

of signers (Luft, 2023a; Supalla, 2017)1. For the 134

visual modality of SLs, we use LLaVA-based mod- 135

els. This allows us to cover all modalities signers 136

use as input to an LLM. 137

Our results point to a future where language mod- 138

els can also be pre-trained on SLs without signifi- 139

cant degradation of their spoken language capabil- 140

ities, marking an essential step for the wider adop- 141

tion of SLs into LLM pipelines. This has broader 142

implications for creating LLM-based tools that 143

meet the requests of signers in a hearing-centric 144

world. 145

3 A Theoretical Sign Language Learning 146

Algorithm 147

Many current proprietary or open-source LLMs do 148

not consider sign language data during their train- 149

ing process (e.g., due to lack of signers or expertise 150

in Deaf culture). This is also noticed by Deaf users 151

and is requested to be mediated in (Huffman et al., 152

2024). We believe this lack of accessibility can be 153

mitigated in two ways: 1) including SL-specific 154

data in pretraining or 2) using techniques such 155

1Even though the Sign Language Translation community
does not recommended using glosses for model development
as it can lead to information loss, pedagogical literature in SL
suggests using glosses as an interface for signers (Heather Gib-
son, 2021) is advantageous. For further discussion of the
limitations of glosses, please refer to §9, and (Müller et al.,
2023))
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Figure 2: This figure presents a summary of all the inputs, outputs, tasks, and models we are using and introducing
in this paper. The box on the left contains a sample from the RWTH-PHOENIX-14T dataset. From top to bottom,
the sentences are English text, DGS glosses, intensified DGS glosses, and German text. Yellow knobs represent
tasks, in which the acronyms of the tasks are inlaid (please refer to Section §4 for detailed task names).

as prompt-tuning or fine-tuning with various SLP156

tasks. We present these two ways as an SLP learn-157

ing algorithm, for the first time from a theoretical158

perspective, to incorporate sign-language-specific159

information into LLMs.160

Specifically, in the case of LLMs learning how161

to process SLs, this algorithm contains two specific162

steps:163

1. Pre-Training: LLMs are trained on multiple164

tasks that do not include (many or any) sign-165

language-specific tasks. This step is not unique166

to SLP and is common for any state-of-the-art167

LLM that is used by both signed and spoken168

language users. Using the terminology of Sicilia169

and Alikhani (2022), this process picks weights170

to minimize a test divergence or “error” TDPT171

where PT is the pre-training data distribution:172

TDPT (θ) = E[|ℓ(D, D̂)|]
D ∼ LM(X; θ), D̂ ∼ ANOT(X)

(1)173

where LM is the language model, ANOT is a174

human annotation provided the same context X175

(e.g., a prompt), and X ranges over the dataset176

PT . The test ℓ compares any measure of the177

quality or other properties of the generated text178

between the LLM and the human; e.g., BLEU,179

ROUGE as well as human preference scores.180

Even though we advocate for an accessible train-181

ing setup for LLMs, it is not yet feasible to re-182

quire all proprietary and open-source models to183

have SL data during pretraining for this step.184

2. Fine-Tuning: Only in this latter stage, an LLM185

can be fine-tuned on SLP tasks such as transla-186

tion. For the sign-only fine-tuning, we call this187

data distribution DGS. So, abstractly, our sign- 188

only fine-tuning process described previously 189

attempts to minimize TDDGS(θ). 190

Given this learning setup, we follow up empirically 191

with experiments using multiple strategies to inject 192

SL knowledge into LMs (e.g. in-context learning, 193

supervised fine-tuning) during pre-training and fine- 194

tuning stages. We also experiment with and dis- 195

cuss the consequences of introducing SL-specific 196

data during fine-tuning with a spoken-language pre- 197

trained model and how they can be mitigated. 198

4 Methods 199

In this section, we introduce the details of the data, 200

tasks, and the text-based and multimodal LLMs we 201

use in the experiments (see Figure 2). 202

DGS Data Due to widespread adoption as a 203

benchmark in the SLP community, we use the 204

RWTH-PHOENIX-14T2 corpus of weather fore- 205

cast signs in German Sign Language (DGS). This 206

dataset contains around 7000 training samples, 500 207

validation samples, and 600 test samples. Each 208

sample has a video, a text in spoken German, and 209

a gloss – which is an intermediary textual repre- 210

sentation of signs – in German Sign Language. 211

Video samples consist of frames of multiple sign- 212

ers sampled at 25 fps, with a size of 210 by 260 213

pixels. We also include an enhanced version of 214

this dataset, which contains intensifier informa- 215

tion in its gloss representations as introduced by 216

(Inan et al., 2022). Intensifiers in SLs are depicted 217

through non-manual markers and can change the 218

2https://www-i6.informatik.rwth-aachen.de/
~koller/RWTH-PHOENIX-2014-T/

3
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meaning of a sign, and this dataset contains ad-219

ditional tokens to capture intensifier information.220

We also translate the German text to English text221

to provide data for a cross-lingual task (discussed222

next). We use Google Translate.3223

Tasks As RWTH-PHOENIX-14T is a parallel224

corpus between spoken German and DGS, most225

previous research has focused on translation tasks226

between these languages. In this paper, we focus227

on translating DGS to German (broadly consid-228

ered as a sign understanding or recognition task)229

and German to DGS (broadly considered as sign230

generation). In addition to these, we introduce ad-231

ditional tasks to test generalization. Specifically,232

we consider:233

• (G2T) DGS Gloss to German Text: a text-based234

translation task from textual intermediary repre-235

sentations of DGS (glosses) to German text.236

• (T2G) German Text to DGS Gloss: the inverse237

problem of the above and is text-based.238

• (V2T) DGS Videos to German Text: a multi-239

modal task where the input is a video of a signer240

signing in DGS, and the output is German text.241

• (I-G2T) Intensified DGS Gloss to German Text:242

a text-based task with augmented DGS tokens.243

Additional symbols <HIGH-INT> and <LOW-244

INT> are wrapped around glosses to depict inten-245

sity in the video that is not depicted in traditional246

gloss representations (Inan et al., 2022).247

• (T2I-G) German Text to Intensified DGS Gloss:248

the inverse problem of (I-G2T), still text-based.249

• (G2E) DGS Gloss to English Text: a novel task250

of cross-modal translation, where DGS glosses251

from the German Sign Language family are252

translated to English text from the spoken Indo-253

European language family. Without any pre-254

training, this is a difficult test of generaliza-255

tion and composition of contextualized meanings256

across traditional and SLs.257

To test generalizability and in-context learning,258

G2T is the only DGS task we use for any fine-259

tuning (see § 5.2). All the other tasks are used to260

evaluate the models’ performance.261

Models In this paper, we use two main founda-262

tion models: LLaMA-3 8B Chat (Touvron et al.,263

2023b) for text-based inputs and LLaVA 1.5 7B264

(Liu et al., 2023a,b) for multimodal inputs. To com-265

pare with traditional SLP approaches, which use266

smaller language models sans any foundational pre-267

3https://cloud.google.com/translate/

training, we also use a randomly initialized GPT-2 268

model (Radford et al., 2019) trained on the G2T 269

task of the RWTH-PHOENIX-14T dataset. This 270

controlled difference allows us to quantify the util- 271

ity of concepts learned during foundational training 272

(e.g., in LLama and LLaVA) on SLP. Lastly, for 273

G2T task, we use LLaMA-3 70B with 4-bit quan- 274

tization4 to show how the number of parameters 275

affects the results. 276

5 Experiments 277

5.1 In-Context Learning 278

Our initial set of experiments test whether SL- 279

specific information can be included in LLMs using 280

in-context learning. For this, we prompt language 281

models using linguistic and cognitive science rules 282

of glossing and signing. To evaluate their perfor- 283

mance, we use the tasks described in § 4. We 284

incorporate the following linguistic rules of SLs 285

into the design of the prompts that we provide to 286

the models: 287

• zero-shot prompt: The prompt is structured as, 288

"This is a sentence in German Sign Language 289

glosses: <glosses>. You MUST translate these to 290

spoken German. You MUST give the answer di- 291

rectly without any other text." It does not contain 292

any linguistic rules. 293

• rule-based prompt: The prompt is structured as 294

five rules of glossing semantics. These rules are 295

described in (Hanke et al., 2020). 296

• notation prompt: This is structured as a set of 297

rules about gloss morphologies. These rules are 298

borrowed from Stein et al. (2010). 299

• one-shot prompt: This prompt gives a single 300

example of a DGS gloss and a corresponding 301

German text. This example is formatted follow- 302

ing the semantic and morphological rules above. 303

All prompts are given in Appendix B. 304

For the multimodal foundation model, we pro- 305

vide a single chat template. We use a mixed prompt- 306

ing strategy, where the video of signers is sampled 307

at 50 frame intervals, fed into a CLIP-based Image 308

Encoder (Radford et al., 2019), and then incorpo- 309

rated into the prompt tokenization by the use of 310

<image> for each frame. Then, the image por- 311

tion of the prompt is succeeded by the text-based 312

prompt “This video is in German Sign Language. 313

What is the sentence being signed in German?” 314

4https://ollama.com/library/llama2:70b

4
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5.2 Supervised Fine-Tuning with LoRA315

Besides in-context learning via few-shot prompts,316

we also consider fine-tuning LLaMA3 and317

LLaVA1.5 models using Supervised Fine-Tuning 5,318

which is a supervised training method in addition319

to the RLHF algorithm (Ouyang et al., 2022) for320

chat-based model training, which aligns the mod-321

els’ representations with human judgments. In this322

case, the human annotations are either glosses or323

text. For fast model training and reduced memory324

consumption, we use Low-Rank Adaptation of Lan-325

guage Models (LoRA) as introduced by Hu et al.326

(2022). We give details of model hyperparameters327

and training details in Appendix A.328

Sign-Only Fine-Tuning As noted, for text-based329

models we fine-tune on the G2T task from § 4, and330

for multimodal we fine-tune on the V2T task. This331

provides the model a simple introduction to the332

meaning of signed glosses by grounding them to333

their parallel German language context. We discuss334

the results of these experiments, in detail, in § 6.335

5.3 Multi-Tasking Mitigates Forgetting336

As the last set of experiments, we conduct theo-337

retical analyses and describe their empirical impli-338

cations. We hypothesize that the sign-only tuning339

strategy can lead to catastrophic forgetting. Due to340

the shared token vocabulary, the model may over-341

write existing knowledge and semantics in the con-342

textualized representations of traditional language343

tokens. However, signers want SL information344

incorporated into the models. Then how can we345

realize that post hoc, without forgetting the spoken346

language tasks? Intuitively, we expect that forcing347

the model to “replay” spoken language tasks from348

pre-training will prevent forgetting.349

Motivated by neuroscience, experience replay350

has been suggested as a strategy to reduce forget-351

ting in machine learning, with positive results (Rol-352

nick et al., 2019). Moreover, replay has been stud-353

ied in mathematical theories of how language mod-354

els learn with similar success (Sicilia and Alikhani,355

2022).356

We re-frame our learning environment given in357

§ 3 to motivate our hypothesis. Namely, we show358

that multi-task fine-tuning (i.e., replay) can help359

mitigate forgetting in shared-vocabulary sign pro-360

cessing with LLMs.361

5https://huggingface.co/docs/trl/main/en/sft_
trainer

Problem When we write out the pre-training and 362

fine-tuning objectives in 1, it is clear that the two 363

processes optimize different objectives (e.g., over 364

different datasets). There is no way to ensure that 365

picking θ to minimize TDDGS will not have a neg- 366

ative impact (i.e., increase) TDPT . This potential 367

for increase in error on the pre-training tasks char- 368

acterizes the behavior we call “forgetting.” 369

Solution As mentioned, we consider a multi- 370

tasking fine-tuning strategy where DGS data and 371

tasks similar to the pre-training data are mixed. 372

This multi-tasking data can be represented by a 373

mixture distribution: 374

MIX = α PT + (1− α) FT (2) 375

where α ∈ (0, 1) is a weighing factor between the 376

probabilities assigned by two datasets. Instead of 377

sampling X from only PT or only FT, we flip an 378

α-weighted coin to pick from which we sample. 379

Holding all else constant, this implies the equality: 380

TDMIX = α TDPT + (1− α) TDFT . (3) 381

By this choice, we can see: 382

|TDMIX − TDPT | (4) 383

= (1− α)|TDFT − TDPT | (5) 384

< |TDFT − TDPT |. (6) 385

Since TDMIX is always closer in magnitude to 386

TDPT than TDFT , we can see that minimizing 387

TDMIX can better prevent large increases TDPT , 388

or “forgetting.” This simple inequality provides 389

a theoretical motivation for our multi-tasking sug- 390

gestion in § 5.2. Our empirical results in § 6 also 391

confirm our theoretical hypotheses. 392

Implementation To test the implications of this 393

theoretical analysis, in practice, we also train on an 394

additional dataset (OpenOrca6) randomly mixing 395

the sign and traditional data during tuning. This 396

dataset consists of system prompts, questions, and 397

responses, augmented from the FLAN collection 398

(Longpre et al., 2023). Our multi-tasking strategy 399

can be viewed as a type of experience replay since 400

many tasks from OpenOrca are presumed to be 401

similar to prior experience during pre-training.7 It 402

is commonly used to fine-tune smaller open mod- 403

els such as LLaMA for better task success, sur- 404

passing proprietary models such as GPT-3.5. The 405

6https://huggingface.co/datasets/Open-Orca/
OpenOrca

7Most open-source models do not share training data.
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dataset is mainly in English and consists of multi-406

ple tasks: entailment and semantic understanding,407

temporal and spatial reasoning, causal judgment,408

multilingual understanding, world knowledge, log-409

ical and geometric reasoning, and similar other410

tasks (Mukherjee et al., 2023). While the original411

dataset contains around 3 million samples, we use412

the same split sizes as RWTH-PHOENIX-14T to413

ensure balance in sign/traditional task prioritiza-414

tion.415

6 Findings416

In this section, we present our results and discuss417

our findings under five research questions. We out-418

line all of these questions in the following sections419

and give answers to them with our findings. For420

further discussion of these findings and their posi-421

tion in the SLP research literature, please refer to422

Appendix § F.423

6.1 Automatic Metrics424

For all the tasks, to compare the generated text425

with the ground truth, we make use of automatic426

metrics. We use both traditional n-gram metrics of427

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),428

and also use learned generation metrics such as429

BERTScore (Zhang* et al., 2020). To implement430

all of these, we use the Huggingface evaluate li-431

brary8. We do not include classification-based met-432

rics, as our language models generate full-textual433

responses rather than classes.434

Prompt Strategy BLEU1 ROUGE1 BS-F1

zero-shot prompt 24.5 0.277 0.841
rule-based prompt 22.8 0.255 0.836
notation prompt 24.3 0.277 0.840
one-shot prompt 27.1 0.309 0.851

Table 1: Preliminary evaluation of prompting strategies
on the validation set of RWTH-PHOENIX-14T using
LLaMA-3 8B. The prompts are given in Appendix § B.
BS-F1 refers to BERTScore-F1.

How do different prompting strategies affect435

the performance? When we look at the results436

of the in-context learning experiments evaluated437

using the non-finetuned LLaMA-3 8B model in438

Table 1, we see that an in-context example of sign439

knowledge performs best. These show that rule-440

based prompts and notation-based prompts perform441

8https://huggingface.co/docs/evaluate/

similarly to or less than zero-shot prompts. This 442

is an insightful finding, pointing to the realization 443

that just providing sign language grammar rules is 444

not necessarily enough to teach the model to un- 445

derstand better sign language, but an example can 446

be more effective. This influences the designing of 447

off-the-shelf LLM-based systems for the use of the 448

DHH community. 449

Gloss to Text Translation (G2T)

Models TEST SET
B1 ↑ B2 ↑ RLSum ↑ BSF1 ↑

one-shot GPT2 3.14 0.04 0.067 0.798
ft-LLaMA3 8B 27.1 11.4 0.275 0.851

multi-LLaMA3 8B 22.7 9.46 0.294 0.851

Table 2: This table shows the comparison of small fine-
tuned models with Large Language Models and mul-
titasking Large Language Models. It can be seen that
the performance of the larger LLaMA-based models
is higher overall compared to a smaller model (GPT2).
Also, multitasking to prevent forgetting does not affect
model performance.

How does supervised fine-tuning LLMs affect 450

the performance compared to a fine-tuned small 451

model? Inherently, most of the SLT models use 452

small transformer-based architectures9, and it is 453

important to investigate whether these models are 454

still viable given the presence of LLMs. To un- 455

derstand the performance difference, we present 456

results comparing the baseline of a small GPT-2 457

model fine-tuned on the G2T task with our larger 458

models LLaMA-3 8B and Multitasking LLaMA- 459

3 8B in Table 2. As is evident from the scores, 460

LLaMA-3 outperforms fine-tuned GPT2 by a large 461

margin. This implies that using larger models as 462

backbones for SLP instead of smaller transformer- 463

based models is an encouraging future direction, as 464

they contain more pretrained semantic information 465

that is helpful in sign language tasks as well. 466

How does the fine-tuned video-based model per- 467

form compared to a text-based model? We 468

show the performance differences between fine- 469

tuned and non-finetuned video-based LLMs in Ta- 470

ble 4. Here, unsurprisingly, the fine-tuned model 471

is performing the best across all metrics. Yet, if 472

we compare results in Table 2 and 4, the video- 473

based model is performing lower in a task that has 474

9some newer models exist that use LLMs such as (Wong
et al., 2024) and (Fang et al., 2024). Still, these are yet to be
accepted by the community as stable models.

6
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Multimodal Sign Understanding (SignVideo2Text)

Models TEST SET
B1 ↑ B2 ↑ RLSum ↑ BSF1 ↑

LLaVA1.5 7B 2.140 0.006 0.022 0.658
ft-LLaVA1.5 7B 12.776 2.404 0.103 0.779

Table 4: This table shows the automatic metric results
for the translation task of German Sign Language video
to German Text. ft-LLaVA1.5 7B is the fine-tuned
model.

the same output. This shows that Deaf users’ re-475

quests for video input capabilities are not yet met476

and may require better modality modeling efforts.477

The main bottleneck of improving video LLMs in478

the task of sign understanding is the lack of high-479

quality data. However, human annotations for sign480

language glosses can also be costly to collect. We481

discuss more on this matter in the Appendix section482

§E. The implications of using videos rather than483

glosses mean that in the absence of signer annota-484

tions on the glosses, videos can be used as input485

as well, with a decrease in the overall performance.486

This opens the possibility of partially satisfying the487

requests of the signers.488

Given the theoretical background of forgetting,489

how does including multiple tasks during fine-490

tuning affect spoken-language performance?491

To answer this question, we use generic spoken492

language benchmarks by EleutherAI Evaluation493

Harness (Gao et al., 2023) and test the perfor-494

mance difference between the multitasking, fine-495

tuned, and non-finetuned models. We show the496

results in the bar plot in Figure 3. We can empir-497

ically observe that there is a drop in performance498

between non-finetuned and fine-tuned LLaMA3499

models. This shows the data shift that we have 500

outlined in Section §3 due to the differences in 501

data distribution between the pretrained LLaMA3 502

and the sign-finetuned LLaMA3. This strongly 503

suggests that there is forgetting of the original ca- 504

pabilities of the pretrained model. This verifies our 505

theoretical hypotheses, and the increase in perfor- 506

mance during multitasking suggests that signed and 507

spoken languages can be introduced to models post 508

hoc with minor forgetting of the original spoken 509

language tasks. 510

Figure 3: This is the bar plot showing the ablation
study on the multitasking/mixing model on the Open
Language Model Benchmarks of ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), and Wino-
Grande (Sakaguchi et al., 2019), all degrade (forgetting)
when LLaMA3 is fine-tuned on the sign language tasks,
and when trained on multiple tasks, it performs better.

Can the performance in G2T generalize to other 511

SLP tasks? To answer, we show the results for 512

all the sign language tasks in Table 3. Based on the 513

BLEU scores, the lowest-performing task is T2G 514

(the reverse of G2T, the task on which the model 515

was fine-tuned), and the best-performing task is 516

Performance of All Models on All Tasks

Finetuned GPT2 Not Finetuned LLaMA3 8B Multitasking LLaMA3 8B
Task Prompt

Strategy B1 RLSum BSF1 B1 RLSum BSF1 B1 RLSum BSF1

T2G one-shot 1.419 0.027 0.798 8.556 0.127 0.818 10.921 0.165 0.794
T2G zero-shot 1.879 0.030 0.810 8.335 0.122 0.802 10.485 0.161 0.794
G2E one-shot 3.604 0.066 0.822 9.226 0.084 0.807 3.104 0.034 0.828
G2E zero-shot 3.931 0.056 0.808 12.369 0.103 0.816 5.442 0.064 0.83

I-G2T one-shot 2.242 0.048 0.791 9.573 0.111 0.691 17.637 0.155 0.524
I-G2T zero-shot 1.642 0.043 0.768 11.589 0.143 0.769 21.157 0.279 0.845
T2I-G one-shot 1.305 0.054 0.815 42.277 0.576 0.897 43.636 0.156 0.778
T2I-G zero-shot 0.050 0.062 0.802 56.128 0.704 0.910 43.229 0.155 0.778

Table 3: This table shows the performance of all the models for all the tasks that we introduce in Section §4 for the
test set. The one-shot strategy contains an example for the task. B1 corresponds to BLEU-1, RLSum corresponds to
ROUGE, and BSF1 corresponds to BERTScore.
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T2I-G. It can be seen that, to a certain degree, there517

is some generalizability to different tasks, but most518

tasks do not reach the same level of performance as519

27.1 in the G2T task (Table 2). Curiously, T2I-G520

performs much better than the G2T task, which521

may indicate the importance of prosody and how522

LLMs can recognize intensifications better than523

they can generate translations directly. Another in-524

teresting observation is that the multitasking model525

performs better in all tasks except G2E than the526

non-finetuned model. This shows that forgetting of527

SLP and spoken language tasks is mitigated mostly,528

but sometimes forgetting may still occur. All in all,529

this analysis shows us that fine-tuning LLMs on an530

SLP task leads to better measurable performance531

and some generalization in similar SLP tasks. This532

is an encouraging result showing that the requests533

of signers can be satisfied by including sign lan-534

guage tasks in the fine-tuning stage without losing535

measurable performance on SLP or spoken lan-536

guage tasks.537

7 Related Work538

Besides text-based models like LLaMA (Touvron539

et al., 2023a), Mixtral (Jiang et al., 2024), QWEN540

(Bai et al., 2023), Orca (Mukherjee et al., 2023),541

Phi (Gunasekar et al., 2023), multimodal models542

have been gaining popularity, especially in com-543

puter vision communities. Large Vision-Language544

models such as LLaVA (Liu et al., 2023c), Video-545

LLaMA (Zhang et al., 2023), Video-LLaVA (Lin546

et al., 2023), LanguageBind (Zhu et al., 2024),547

MultiModal-GPT (Gong et al., 2023), Mirasol3B548

(Piergiovanni et al., 2023), LAVIS (Li et al., 2023),549

LaViLa (Zhao et al., 2023), and UniVL (Luo et al.,550

2020) propose to align representations of combina-551

tions of images, videos, text, and/or speech signals552

with human judgments. Further details of these553

and similar models have been discussed in a sur-554

vey paper by Yin et al. (2023). However, none of555

these models claim to include SLP tasks in their556

pre-training or fine-tuning data. Through our the-557

oretical and empirical studies, this paper aims to558

address this gap.559

The absence of literature using large models560

for SLP is mainly due to the low-resource nature561

of SLs (Yin et al., 2021). However, there have562

been several lines of research applying transformer-563

based language models to sign language translation564

(Camgoz et al., 2018; Yin and Read, 2020; Chen565

et al., 2023b), sign language understanding (Hu566

et al., 2023; Moryossef et al., 2021), sign gener- 567

ation (Stoll et al., 2020), SignWriting translation 568

(Jiang et al., 2023), incorporating facial expressions 569

(Viegas et al., 2023), modeling prosody (Inan et al., 570

2022), and sign language segmentation (Moryossef 571

et al., 2023). Lee et al. provides an early work that 572

leverages (smaller, but still large) language models 573

with shared vocabularies for SLP. They focus on 574

older models (without RLHF, Ouyang et al., 2022). 575

Further, Gong et al. (2024); Wong et al. (2024) 576

give a more recent application of LLMs as part of 577

a translation pipeline, and Fang et al. (2024) fine- 578

tunes diffusion-based LLMs for sign avatar gen- 579

eration. However, none involves instruct-tuning 580

large language models (text-based or multimodal) 581

with both spoken and signed capabilities, which we 582

introduce in this paper for the first time. 583

In addition to the SLP and LLM literature, SL ed- 584

ucation works are important for this work. In the SL 585

pedagogy literature, some works focus on case stud- 586

ies of gloss-based intermediary textual constructs 587

as ways of ASL to English literacy (Cripps et al., 588

2020), a formal distinction between sign and spo- 589

ken language reading (Supalla, 2017), and reading 590

assessments for DHH signers (Luft, 2023b). These 591

works have influenced our choice of glosses as in- 592

termediary representations for text-based LLMs. 593

We believe that text-based and video-based lan- 594

guage models can be helpful as reading and writing 595

companions that use glosses or videos to interface 596

with signers. 597

8 Conclusion 598

In this paper, we have prompted, fine-tuned, and 599

compared text-only and multimodal language mod- 600

els for sign language processing tasks, as requested 601

by Deaf users. We have provided theoretical 602

grounding and analyzed our results with implica- 603

tions on how much LLMs can meet the needs of 604

signers without losing capabilities in spoken lan- 605

guages. From our findings, it can be claimed that 606

LLMs can be fine-tuned to SLs, and in-context 607

learning can help to create an off-the-shelf LLM tai- 608

lored towards the Deaf and Hard-of-Hearing com- 609

munity, which can be accomplished without forget- 610

ting spoken language capabilities. 611

Moving forward, training bigger models with 612

larger multilingual corpora is a promising next step 613

for a broader set of novel sign language processing 614

tasks. We will make our code, data, and model 615

weights publicly available upon acceptance. 616
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9 Limitations617

The major limitation of our work has been the com-618

puting power required to fine-tune, test, and carry619

out inference. Even with the smallest large lan-620

guage models, it becomes quickly infeasible to test621

multiple independent variables. Hence, our tech-622

niques have been tested on the smaller end of the623

large language family of models. Larger models624

can have higher performance gains.625

An additional limitation of our models is the626

context length. With long linguistic rules added627

to the prompt, certain samples of glosses made628

the inference lengthy. The maximum number of629

generated tokens has been a limiting factor of the630

output of models as well, which resulted in poor631

performance metrics. These can be alleviated with632

higher computing powers.633

Another major limitation is the dataset size and634

number of available tasks in SLP. The SLP com-635

munity has focused on translation tasks so far, and636

not many other task definitions and datasets ex-637

ist that can be useful for signers. This affects our638

benchmarking, as the only tasks we can test the gen-639

eralization on are either other translation tasks or640

traditional NLP tasks that are non-specific to SLs.641

Having diverse tasks and accompanying datasets is642

needed for the future of SLP.643

Certain other SL datasets exist, such as644

How2Sign (Duarte et al., 2021), CSLDaily (Zhou645

et al., 2021), and BOBSL (Albanie et al.). These646

datasets are larger and have diverse domains com-647

pared to RWTH-PHOENIX-14T that we have used648

in this work. The main reason that we chose to649

focus on RWTH-PHOENIX-14T is because the650

glosses in it are annotated manually by signers651

while in other datasets automated ways are used or652

glosses are not available. Glossing is a core part653

of our paper, as we are focusing on new ways of654

interfacing with signers using LLMs instead of just655

translation. This currently can be accomplished by656

reading and writing in glosses.657

10 Ethical Statement658

We are using LLaMA3-based models for both our659

text-only and multimodal setups, which are trained660

on data acquired by Meta and are not made pub-661

licly available; even though the model itself is662

open-source, the pretraining dataset is not open.663

This leads to unaccountable biases that have been664

collected during the dataset formation and in the665

pretraining, our models may have inherent biases666

passed down from these pretraining setups. Our 667

RWTH-PHOENIX-14-T dataset contains the faces 668

of the signers, which is a piece of private informa- 669

tion. This private information is used in accordance 670

with the original dataset creator’s directions and 671

privacy concerns. Furthermore, sign language pro- 672

cessing can be a sensitive topic, especially when 673

the community-centric approach is not taken for 674

the design of systems. For this, we collaborate 675

with the Deaf and Hard-of-Hearing communities or 676

signers in general while developing such systems 677

as this one. 678
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A Hyperparameters & Training1095

Implementation Details1096

We trained all of the models on an Apple MacBook1097

Pro with an M3 Max chip. Libraries used were Py-1098

Torch, Huggingface TRL, Transformers, Datasets,1099

Evaluate, and W&B. The hyperparameters for the1100

LLaMA models are: learning rate of 1e-3, lr sched-1101

uler type: "reduce lr on the plateau", per device1102

training batch size of 2, number of epochs of 5,1103

and weight decay of 0.01, and maximum sequence1104

length of 300 tokens. LoRA configuration for the1105

LLaMA model is: rank of 8, LoRA alpha of 32, and1106

LoRA dropout of 0.1. For the LLaVA model: mm1107

projector learning rate of 2e-5, one epoch, batch1108

size of 2, learning rate of 5e-5, linear lr scheduler1109

type, maximum sequence length of 2048. LoRA 1110

configuration for LLaVA model: LoRA rank: 128, 1111

and LoRA alpha: 256. 1112

B All Prompt Types 1113

Here we present all the prompt types that have been 1114

used in the experiments: 1115

• zero-shot prompt: This is a sentence in Ger- 1116

man Sign Language glosses: <glosses>. You 1117

MUST translate these to spoken German. You 1118

MUST give the answer directly without any 1119

other text. 1120

• rule-based prompt: "Instructions Here are 1121

some basic rules of German GLOSSES: 1) 1122

German signs correspond to meanings not to 1123

words. 2) Some GLOSSes are formed from 1124

more than one German word. In this case the 1125

words are joined by a hyphen. The hyphen 1126

indicates one single sign that is labeled with 1127

two or more German words. 3) Glosses com- 1128

bined with a plus sign are two separate signs 1129

that are joined together to make what appears 1130

to be a single sign 4) In DGS, some signs are 1131

repeated for specific meaning. for instance 1132

LEARN + LEARN changes the sign from the 1133

VERB “To Learn” to the NOUN “Learning.” 1134

5) Words that are to be Fingerspelled are in- 1135

dicated in one of two ways: - Separated by 1136

hyphens between each Fingerspelled letter: G- 1137

L-A-D-Y-S - Preceded by the initials FS in 1138

parenthesis: (fs) GLADYS. Task You MUST 1139

translate <glosses> of DGS to German with- 1140

out using any special characters, according to 1141

these rules." 1142

• notation-based prompt: "Instruction Below 1143

is a list of common symbols used in the writ- 1144

ing of DGS Glosses: - The Crosshatch: This 1145

symbol indicates a loan sign, a sign originat- 1146

ing from the fingerspelling of an English word. 1147

- Parentheses: ( ) Additional information about 1148

the production of a sign is can added to the 1149

written gloss between a set of parentheses. 1150

Such information can be abbreviated as in 1151

(2h)DO++, or it may appear as German in- 1152

structions to add information to a sign: GIVE 1153

(left), or to a Classifier CL:1 (man hurries 1154

past). - CL: The abbreviation CL: indicates 1155

a classifier. The information following the 1156

colon indicates the hand shape and number 1157

of hands. - The Umlaut (two dots above a 1158

13

https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2306.13549
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/2310.01852
https://arxiv.org/abs/2310.01852
https://arxiv.org/abs/2310.01852
https://arxiv.org/abs/2310.01852
https://arxiv.org/abs/2310.01852


Ground Truth Text Intensified Gloss Generated Text

woher soll die wärme derzeit auch kommen WOHER <HIGH-INT>WARM </HIGH-INT> wo es auch am wochenende warmer wird

where is the heat supposed to come from? WHERE WARM where it gets warmer on the weekend too

morgen gibt es mal sonne mal wolken in
der nordhälfte zeigt sich die sonne häufiger

MORGEN SONNE WOLKE WECHSELHAFT
NORD <HIGH-INT>SONNE </HIGH-INT>OFT

morgen wird es auch wieder sehr sonnig
und teils auch wolkig und auch hochintensiv

Tomorrow there will be clouds, in the north
half the sun will be more common

TOMORROW SUN CLOUD VARIABLE
NORTH <HIGH-INT>SUN </HIGH-INT>OFTEN

Tomorrow it will be very sunny and sometimes
also cloudy and also highly intensive

Table 5: This table shows three samples of German Text, DGS Gloss, and the generated text by the LLaMA2 7b+
model. Each sample includes a translation in English as well. LLaMA learns to depict intensifier tokens as emojis
without any instructions or training data examples.

given hand shape) ( indicate the bending of1159

the fingers of that hand. The 3 (called the1160

“bent three”) is the hand shape used in the1161

sign “INSECT”. This technique is only used1162

in reference to a specific handshape such as a1163

classifier.1164

Task You MUST translate <glosses> to Ger-1165

man according to these symbols."1166

• one-shot prompt: "Example ""Here’s a sam-1167

ple DGS gloss: “ORT REGEN DURCH1168

REGEN KOENNEN UEBERSCHWEM-1169

MUNG KOENNEN” which translates to1170

""mancherorts regnet es auch länger und1171

ergiebig auch lokale überschwemmungen sind1172

wieder möglich"" in German1173

Task You MUST translate <glosses> to Ger-1174

man according to this example. "1175

C The Effect of Model Size1176

TEST SET

Models B1 ↑ B2 ↑ RLSum ↑ BSF1 ↑

LLaMA3 8B 12.057 1.968 0.144 0.764
LLaMA3 70B 11.281 2.054 0.175 0.798

Table 6: This table shows the performance differences
between LLaMA3 8B, and LLaMA3 70B variants. The
bigger model generates more intelligible sentences, yet
fails to carry out the translation task.

RQ2: How does the number of parameters af-1177

fect the performance of the model in text-based1178

SLP tasks? We show the effects of the number1179

of parameters of the text-based model for the G2T1180

task in Table 6. A higher number of parameters1181

does not always correlate with better automatic1182

metric results. A higher number of parameters also1183

increases the fine-tuning duration.1184

D Towards Prosodic, Iconic and 1185

Semantically-Rich Sign Language 1186

Representations via LLMs 1187

SLs and the current machine learning setups for 1188

SLP systems have been constrained to multimodal 1189

translation systems mostly, as can be seen from 1190

our tasks as well. However, sign interpretation and 1191

production by humans are not translation-based 1192

processes between modalities. Cognitive science, 1193

neuroscience, and linguistics research into the SLs 1194

by Kubicek and Quandt (2019, 2021) show that 1195

prosody during signing affects interpretation and 1196

action recognition, and Karadöller et al. (2023); 1197

Chen et al. (2023a); Campisi et al. (2023) show 1198

that different SLs use different levels of iconicity 1199

and iconic signs can facilitate interpretation. In 1200

this section, we present a case study on the current 1201

iconicity characteristics that are developed during 1202

the fine-tuning of the LLaMA3 model by using 1203

emojis as placeholders for intensifiers. 1204

D.1 Iconicity Case Study: Emojis as 1205

Intensifiers 1206

During the fine-tuning of the LLaMA3 8b+ model, 1207

it has been observed in the generated outputs for the 1208

intensified tasks there are emojis, even though the 1209

model is not instructed to include emojis, and the 1210

training set does not contain emoji tokens for the 1211

RWTH-PHOENIX-14-T. Some samples are shown 1212

in Table 5. Here, it is observed that the model 1213

is mapping the intensifier tokens that exist in the 1214

intensified dataset to emojis. However, this is not 1215

a one-to-one mapping, and it is more so using the 1216

iconicity of the emoji to depict semantics that does 1217

not exist in the textual glosses. 1218

It can be claimed that iconicity, which is nor- 1219

mally depicted in the spatial modality during the 1220

signing, is now depicted with a different modality 1221

in a semantically rich textual form. Also, in the last 1222

sample, the generation directly includes "highly 1223
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intensive," which shows that sometimes the model1224

does not map the intensifier tokens directly to emo-1225

jis. Overall, it can be qualitatively claimed that this1226

mapping of semantics to icons via emojis is a prop-1227

erty of LLMs fine-tuned on multiple tasks. This1228

provides a paradigm shift in SLP, where including1229

prosodically-rich tasks of SLs can be accomplished1230

with the help of large foundation models instead of1231

seeing them as translation problems. Yet, new task1232

definitions and datasets specific to SLs should be1233

made available for further investigations of these1234

capabilities.1235

E The Glossing Trade-Off1236

This section presents a trade-off between using tex-1237

tual representations of signs such as glosses or Sign-1238

Writing that are linguistically-backed or directly1239

using video of signers. This trade-off may not be1240

an option most of the time, as having access to in-1241

termediary textual representations such as glosses1242

as part of the sign corpora is not prevalent across1243

all datasets available online. To decide whether to1244

use glosses or videos, we can use insights from the1245

linguistics literature and data collection experience1246

from the RWTH-PHOENIX-14-T dataset.1247

In the original data collection effort as described1248

by Forster et al. (2012) and Stein et al. (2010), the1249

annotations of glosses are done by a congenitally1250

Deaf person with no previous annotation experi-1251

ence. On average, they report that it took the an-1252

notator 24 hours to annotate 15 minutes of footage.1253

When we compare these statistics to the fine-tuning1254

statistics of the text-based and multimodal models,1255

we can observe the trade-offs better. This is pre-1256

sented in Table 7. It can be seen that the text-based1257

model has nearly double the performance of the1258

multimodal, and it needs less storage space and1259

leads to less carbon emissions, even though it takes1260

longer to annotate.1261

F Discussion of LLMs in SLP Research1262

After these detailed analyses, in our findings sec-1263

tion, we discuss the implications of these pretrained1264

and fine-tuned LLMs on SLP tasks. First, it is im-1265

portant to note that translation is not the only area1266

that needs attention under sign language processing.1267

With instruct-tuned end-to-end dialogue systems1268

like LLMs, it becomes ever more important to in-1269

clude SLs in the pretraining and fine-tuning if we1270

are to claim that they are truly universal large lan-1271

guage models. This can be achieved by including1272

Trade-off Statistics

TA

(h)
TFT

(h)
TI

(s/tok)
S

(GB)

Carbon
Emissions

(kg)

Perf.
(B1)

Annotator +
Text-Based

2400 8 4 0.1 0.211 22.85

Multimodal 0 8 8 50 0.240 13.62

Table 7: This table shows different statistics comparing
the human annotation with the text-based model and
video-based multimodal model. Carbon emissions are
calculated using the US EPA’s greenhouse gas equiv-
alencies calculator. TA: average time for annotation,
TFT : average time for fine-tuning, TI : average time for
inference, S: storage space needed for data.

SLP during the pretraining and fine-tuning stages 1273

without losing performance in spoken language 1274

tasks, as we have shown in this paper. 1275

As noted in the glossing trade-offs in section 1276

§ E, SLs have multiple ways of representation (text, 1277

image sequences, graphs, skeletal position coordi- 1278

nates), and deciding which modalities are linguis- 1279

tically relevant for language models to be trained 1280

on is important. Opening up the venue of fine- 1281

tuned LLMs for SLs allows more development on 1282

signed iconicity, phonology, prosody, and dialogue 1283

for the future versions of these LLMs (please see 1284

Appendix D for a case study on the representation 1285

of iconicity of SLs with LLMs), just like some cur- 1286

rent LLMs that are capable of some those aspects 1287

for spoken languages. 1288

The more we build separate translation systems 1289

for SLs, the more we lose the universality of LLMs, 1290

steal from the future integration of SLs into LLMs, 1291

and turn away from the needs of the Deaf and Hard- 1292

of-Hearing community. To prevent this, we pre- 1293

sented the first universal LLM suite, which can 1294

carry out language understanding tasks indepen- 1295

dent of its modality (spoken or signed). 1296
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