Published as a conference paper at ICLR 2026

UNIFIED BIOMOLECULAR TRAJECTORY GENERATION
VIA PRETRAINED VARIATIONAL BRIDGE

Ziyang Yu'> Wenbing Huang®*:* Yang Liu':2*

'Department of Computer Science and Technology, Tsinghua University

Institute for AT Industry Research (AIR), Tsinghua University

3Gaoling School of Artificial intelligence, Renmin University of China

“Beijing Key Laboratory of Research on Large Models and Intelligent Governance
yu-zy24@mails.tsinghua.edu.cn, hwenbing@ruc.edu.cn, liuyang201l1@tsinghua.edu.cn

ABSTRACT

Molecular Dynamics (MD) simulations provide a fundamental tool for characteriz-
ing molecular behavior at full atomic resolution, but their applicability is severely
constrained by the computational cost. To address this, a surge of deep generative
models has recently emerged to learn dynamics at coarsened timesteps for efficient
trajectory generation, yet they either generalize poorly across systems or, due to
limited molecular diversity of trajectory data, fail to fully exploit structural infor-
mation to improve generative fidelity. Here, we present the Pretrained Variational
Bridge (PVB) in an encoder-decoder fashion, which maps the initial structure
into a noised latent space and transports it toward stage-specific targets through
augmented bridge matching. This unifies training on both single-structure and
paired trajectory data, enabling consistent use of cross-domain structural knowl-
edge across training stages. Moreover, for protein-ligand complexes, we further
introduce a reinforcement learning-based optimization via adjoint matching that
speeds progression toward the holo state, which supports efficient post-optimization
of docking poses. Experiments on proteins and protein-ligand complexes demon-
strate that PVB faithfully reproduces thermodynamic and kinetic observables from
MD while delivering stable and efficient generative dynamics.

1 INTRODUCTION

Molecular Dynamics (MD) simulations are indispensable ingredients in chemistry, materials, drug
discovery, and other fields (Van Gunsteren & Berendsen, (1990; [Lindorff-Larsen et al., 2011}
Hollingsworth & Dror, 2018} [Lau et al., 2018). Given the molecular system of interest within
a particular chemical environment, the essence of MD is to obtain the conformational ensemble that
follows laws of physics through in silico simulation, which provides accurate estimates of kinetic
(e.g., dissociation rate constant) and thermodynamic (e.g., free energy) observables (Shaw et al.|
2010; \Deng & Rouxl 2009; Wang et al., [2023} (Chipot} 2023).

Under certain conditions, the equilibrium measure of molecular ensembles follows the Boltzmann
distribution (Boltzmann, |1877). To obtain such equilibrium samples in practice, classical MD simu-
lations widely rely on Langevin dynamics (Langevin, |1908), which models the temporal evolution
of the system through a Stochastic Differential Equation (SDE) and induces a Markov-chain sam-
pling process whose stationary distribution corresponds to the Boltzmann distribution (Paquet &
Viktor, [2015). Although these methods have been firmly established in practice, the stability of
numerical integration requires exceedingly small time steps At (around 1 femtosecond), making the
computational cost prohibitively high for long-timescale or high-throughput simulations (Schlick,
2001).

Recently, the rise of deep learning methods has opened up new possibilities for boosting MD
simulations and ensemble generation. In contrast to directly fitting the Boltzmann distribution
that ignores temporal correlations, we focus on time-coarsened dynamics, which aims to fit the
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conditional distribution p (¢4, | z¢), defined as the transition density of the underlying MD process
that maps a current state x; to its distribution after a lag 7 > ¢, thereby enabling time-dependent
trajectory generation on a coarse-grained temporal scale (Schreiner et al., 2023} |Klein et al.| 2023}
Jing et al) [2024b; |Yu et all [2025). This paradigm achieves substantial efficiency gains while
preserving both the kinetic and thermodynamic properties of the system. However, several challenges
remain in the literature. First, the stability of trajectory generation over long timescales cannot
yet be reliably ensured. In addition, most existing methods are confined to one specific molecular
domain (e.g., proteins) and therefore fail to model cross-domain systems. In particular, UniSim (Yu
et al., 2025) employs 3D molecular pretraining to obtain a unified atomic representation model,
demonstrating strong generalization for cross-domain MD simulations. However, the inconsistency
between pretraining on single structures = and finetuning on trajectory pairs (¢, x4y, ) could result
in suboptimal transfer and hinder the effective use of pretrained knowledge. A further limitation of
most existing methods is their focus on single-molecule simulations, while multi-molecular systems
such as protein-ligand complexes have been much less explored.

To address the aforementioned issues, we pro-

pose the Pretrained Variational Bridge (PVB), @® initial state
a novel generative model that leverages an —— trajectory generation
encoder-decoder architecture to provide a uni- —— RL-accelerated transition

fied framework for both pretraining and fine-
tuning. Specifically, we first enhance the cross-
domain generalization by pretraining on a large
variety of high-resolution single-structure data z,
and then finetune on the paired data (z, Z+4)
drawn from MD trajectories to fit the condi-
tional density pu(x¢q, | @) with a predefined
time step 7. The key challenge is to elegantly
resolve the objective mismatch between uncon-
ditional generation during pretraining and con- .

ditional generation during finetuning. To this

end, we introduce two random variables, X Figure 1: Two variants of PVB. Blue arrows show
and Y1, and define a conditional probability ~coarse-grained sampling that traverses unfolded
measure ¢(dY; | Xj) to be learned across train- and folded states to reproduce the Boltzmann dis-
ing stages. For single-structure data x, this tribution, while purple arrows denote accelerated
measure is degenerate, assigning all probabil- transition that drives rapid access from the initial
ity mass to the point Y; = 2 given X, = z. state to the target folded state via reinforcement
For finetuning on paired MD data (z;,z;,,), learning.

q(dY; | Xo = ;) is defined such that its con-

ditional density matches the target transition density pu(z:+, | ;) of the underlying MD process.
Since the measure collapses to a point mass in the single-structure pretraining scenario, we fur-
ther introduce a latent random variable Y to decompose the measure and prevent the model from
degenerating into this trivial case:

. - target state
o

(Y1 € A|Xp) = /qd(Y1 € A|Y0)q.(dYo | Xo), for any measurable set A. (1

Here ¢g. and ¢4 denote the transition kernels of the Markov chain Xg — Yy — Y, which are
respectively parametrized by an encoder and a separate generative decoder using augmented bridge
matching (De Bortoli et al.,2023). The process of mapping the initial state to the noised latent space
and back-projecting it to target states enables the model to acquire cross-domain structural knowledge
in pretraining, which, due to objective consistency, greatly facilitates subsequent finetuning.

Furthermore, to better capture protein-ligand dynamics, we incorporate a finetuning procedure into
the generative framework based on Reinforcement Learning (RL). By following adjoint match-
ing (Domingo-Enrich et al}[2024), we provide a memory-efficient finetuning scheme with explicit
reward functions. The RL optimization is designed to modulate the generative distribution, guiding it
toward the holo state and thereby enabling rapid evolution from the apo state within short generated
trajectories. Figure[Iillustrates the two generative modes of PVB described above.

Overall, our contributions in this work are summarized as below:
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* We present PVB, a novel generative model that integrates the encoder-decoder architecture
with augmented bridge matching, offering a unified training framework for both single-
structure and paired trajectory data to leverage the rich knowledge from pretraining.

* We propose an RL-based finetuning procedure, applying the stochastic optimal control
paradigm to augmented bridge matching. For the protein-ligand flexible docking task, PVB
learns to bypass inefficient local exploration and rapidly evolve toward the holo state within
short simulations, making it an efficient tool for post-optimization of docking poses.

* For both protein monomers and protein-ligand complexes, PVB achieves comparable re-
sults to MD in terms of thermodynamic and kinetic metrics, while delivering substantial
improvements over the baseline in generation stability.

2 BACKGROUND

Ensemble Generation Deep learning techniques have introduced methodological innovations to
ensemble generation. One promising approach is to replace empirical force fields with accurate
all-atom neural network potentials to accelerate simulations of large biomolecular systems, with
representative work exemplified by AI>BMD (Wang et al., 2024b). This approach, however, does not
overcome the inherent limitations of sequential trajectory generation with small time steps. To move
beyond the framework of Markov chain sampling, a surge of methods leverage generative models to
fit the empirical distribution from MD trajectories (Jing et al.,2024a; |Wang et al., 2024a}; [Lewis et al.|
2025)), while Boltzmann generators further reproduce the Boltzmann distribution from the surrogate
model by importance sampling (Noé¢ et al.,[2019} Klein & Noé| 2024; Tan et al., | 2025). Such methods
enable highly efficient parallel generation of i.i.d. samples, yet the absence of temporal dependencies
blocks further estimation of kinetic observables.

Trajectory Generation The paradigm of trajectory generation, also referred to in the literature
as time-coarsened dynamics, seeks to learn the conditional distribution p(2¢1. | ;) at a coarse
time step 7 > At, enabling the recovery of observables of interest from relatively short generated
trajectories (Schreiner et al., 2023} [Klein et al., 2023} Jing et al.| 2024b; | Yu et al., |2025). Notably,
UniSim (Yu et al., 2025) first extends the task to cross-domain biomolecules, showcasing strong
generalizability with the pretrained atomic representation model and force-guided finetuning tech-
niques. However, due to the inconsistency in training objectives, the pretraining stage produces
only a unified atomic representation model, failing to explicitly capture cross-domain structural
information. In contrast, our approach integrates the generative model into pretraining via a noised
latent space, which provides a unified framework for training on both single-structure data and paired
MD trajectories, enabling the exploitation of rich structural knowledge across training stages.

3 METHOD

We now discuss the methodology and rationale of PVB, with its overall workflow illustrated in Fig-
ure 2] We first present the problem formulation with necessary notations in Section [3.1] Next,
in Section we discuss the overall generative framework of our pretrained variational bridge,
which provides a unified training interface for single-structure data and paired trajectory data. More-
over, in Section [3.3] we develop a memory-efficient RL-based finetuning framework grounded in
stochastic optimal control, which can be applied to accelerate exploration for the holo state of
protein-ligand complexes. Details of the model architecture are shown in Section [C|

3.1 TASK FORMULATION

In this work, the conformation of one molecular system is represented in a simplified triplet form
(z,C,z), where z € N¥ denotes the atomic numbers of N heavy atoms, C € N2xC represents C'
covalent bonds among heavy atoms in the molecular topology, and 2 € RY*3 corresponds to the
Euclidean coordinates of all heavy atom We consider two types of molecular systems: (I) systems
represented by one or a few independent conformations, denoted as (z, C, {z}); and (II) systems
represented by time-dependent MD trajectories, denoted as (z, C, {xa¢, Z2at, - -+ }), Where At is

"Lowercase is used for coordinates to distinguish them from random variable notations.
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Figure 2: Schematic of the overall PVB workflow. a. The unified framework for pretraining on
single-structure data and finetuning on paired trajectory data. The encoder ¢, maps the initial state
X to the latent variable Y, which the decoder ¢ then propagates to the stage-specific target Y,
via Equation @ b. RL finetuning with frozen ¢, and ¢ initialized from the finetuned (4, aiming to
accelerate exploration of protein-ligand holo states. Given the predicted next state Y generated by
e and @y, the lean adjoint state a; is first computed from the reward function (i.e., the root mean
square error to the holo state X.r), and then propagated backward to @; by solving Equation (T2)
with diffusion time ¢, which is subsequently used to update ¢}; according to Equation .

the integration time step, which may vary across datasets. Our tasks are: (i) to pretrain on type-I
high-resolution structural data to acquire cross-domain full-atom generative capability, and (ii) to
finetune on type-II MD trajectory data to learn dynamics for trajectory generation, with appropriate
framework and training objectives to maximally leverage the pretrained structural knowledge.

3.2 PRETRAINED VARIATIONAL BRIDGE

First and foremost, our primary objective is to endow the model with the cross-domain generalizability
of biomolecular trajectory generation. Breakthroughs are difficult to achieve by training solely on
MD data due to two key limitations: the high cost of generating accurate MD trajectories and the poor
accuracy/adaptability of data from empirical force fields across diverse molecular domains. Inspired
by UniSim (Yu et al.l 2025}, we aim to first pretrain on extensive high-resolution biomolecular
structures to fully exploit structural information within a generative framework, and then seamlessly
transfer this knowledge to trajectory generation through carefully designed finetuning objectives.

Formally, we model the generation process in both pretraining and finetuning as a Markov chain
Xy — Yo — Y. For single-structure data (type-I systems) used in pretraining, we set the initial and
target states as (X, Y1) = (z, x). For paired trajectory data (type-1I systems) used in finetuning,
we set (Xo,Y1) = (24, 2¢+-). The latent variable Y is introduced to prevent the conditional law
q(dY; | Xp) from collapsing to a Dirac measure for type-I systems.

According to Equation , the target conditional law ¢(dY; | X) is realized as the composition
of two Markov kernels: an encoder kernel ¢.(dYy | Xg) and a decoder kernel ¢4(dY; | Yo). We
employ an encoder-decoder architecture to parametrize these two distributions separately, as detailed
below.

Variational Encoder Given the initial state ¢, the conditional probability measure of the latent
variable Y is manually specified by q.(dYq | Xo = x¢) = N (20, 02I), where o, is the hyper-
parameter of deviation. Choosing an appropriate prior distribution is crucial for performance, as it
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should preserve sufficient structural information through encoding, and also avoid collapse of the
decoding process into trivial cases (e.g., a Dirac measure). To this end, we use o, = 1/0.5A in our
experiments, which is considerably larger than those typically adopted in 3D molecular pretraining
methods (Zaidi et al., 2023; J1ao et al., 2024} [Yu et al., [2025)).

Next, a neural network encoder ¢, is leveraged to minimize the distance between the learned distribu-
tion p.(dYo | Xo) and the prior ¢.(dYo | Xo) under the Kullback-Leibler (KL) divergence measure,
with its architecture discussed in Section [C] By applying the reparameterization trick (Kingma &
Welling} 2013), the encoder will yield the logarithm of the predicted variance log V = ¢.(Xj) € RY
Then the KL divergence loss is given by:

1 A\
Lxr = Ex, [Dic(pe (- | Xo)lae- | Xo)) = —3E[1 +1og V = 2logoe — —]. @

€

Augmented Bridge Decoder Given the latent variable Yo ~ p.(- | Xg), we utilize a separate
decoder ¢ to fit the transition kernel ¢4(dY; | Yy). Since the decoder stage is critical to model
performance, we adopt the augmented bridge matching framework (De Bortoli et al.,2023)), which
ensures preservation of the coupling between the latent variable Y and the target state Y, denoted
by HO,l .

Specifically, we consider the path measure Q : C([0, 1], RY¥*3) — R, associated with the Brownian
motion (0By)¢e(o,1), With ¢ € R, a predefined noise schedule. Next, we define the twisted path
measure [P = 1o 1Q)o,1, where the trajectory Yo.1 ~ P can be generated by first sampling (Yo,Y1)
from the coupling ITg 1, then sampling from the Brownian bridge Q9,1 (- | Yo, Y1) pinned down on
the two endpoints. As a well-studied case in the literature, the temporal marginal of P at diffusion
time ¢ and the associated forward SDE are given by:

Yo =tY1 + (1) Yo +oy/t(1— By, (Yo, Y1) ~ o, )
Y, - Y
dY, = ——dt+0dBy, (Yo, Y1) ~ oy @

De Bortoli et al.[(2023) show that one can preserve the coupling Il ; by first training a parameterized
vector field ¢4 conditioned on ¢, Y, and Y to minimize the quadratic loss:

2

H ; )

where U(0, 1) denotes the uniform distribution over [0, 1]. Afterwards, simulating the resulting
non-Markovian SDE ensures that the coupling Il ; is preserved:

dYt = @Z(t,Yo,Yt) dt + O'd]_j)t7 Y() ~ Ho, (6)

Y, - Y,
1—t

de(taY()aYt) -

Lasm = Et'\/z’{(oxl)’(Y07Yl)NHO,1

EYt’VQt\O,l U

where Il is the marginal probability measure of Y, and ¢} is the minimizer of Equation (5). Finally,
Proposition [T] demonstrates that our proposed encoder-decoder architecture provides an unbiased
estimate of the target conditional law ¢(dY | Xj) (see Section[B)):

Proposition 1. Denote by p}; the minimizer of Equation (2), P* the path measure associated with
Equation (6), and p}; the probability density function of the conditional measure PT\O‘ Then the

following equality holds:

q(Y1€ A|Xq) = /le(Yl € A|Yo)pi(dYy | Xo), for any measurable set A. @)

Overall, the objective £ = wky, - Lk + wasm - Lasm is employed for both pretraining and
finetuning, where wxkr, and wapn are hyperparameters that control the relative weights.

3.3 MEMORY-EFFICIENT STOCHASTIC OPTIMAL CONTROL

In this section, we further explore the application of the generated trajectories to protein-ligand
flexible docking. Such tasks focus on locating the global minimum-energy conformation, rather

2For convenience, we omit z and C' from the neural network parameters, and the same applies hereafter.
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than reconstructing the full Boltzmann distribution. Notably, the protein-ligand interaction can occur
on the millisecond timescale or longer, making its simulation computationally prohibitive even for
models with coarsened timesteps. To address this limitation, we integrate an RL-based finetuning
procedure with an explicit reward function r(z), designed to adjust the generative distribution and
thereby accelerate the evolution of trajectories toward the holo state.

Formally, we first consider the following SDE with a control vector field u to be optimized:
dYt = (@2(1"’ YOa Yt) + Uu’(ta Y07 Yt)) dt +o dBta YO ~ HO' (8)

Denote by P* the path measure associated with Equation (8). We aim to solve the optimization
problem with a KL-regularized objective:

max Byt [Eyo, ~ep, (1v0) [M(Y1) = 8- D (Plo(Yoa | Yo)[Pjo(You [ Yo))ll, (9

fo
where 3 controls the regularization strength. Based on the Girsanov theorem, the KL divergence term
can be expressed by the control vector field u (see Section [B):

/8 1
mSXEYoNHO |:EYO=1~]P’76(‘Y0) |:T(Y1) - 5 /0 Hu(thth)Hth : (10)

Although this training objective is already applicable for model optimization, it requires gradient
accumulation during simulation along the SDE, which leads to prohibitive memory overhead. Hope-
fully, by first considering the inner expectation in Equation given that Y takes the value g, the
dependence on Yy in u(t, Yo, Y¢) can be treated as fixed, casting the optimization problem into the
standard Stochastic Optimal Control (SOC) paradigm (Bellman, [1966). Based on the conclusions of
adjoint matching (Domingo-Enrich et al.,[2024), we state the following proposition (see Section [B):

Proposition 2. Assume that the function class of w is rich enough so that the value of u(t, yo, -) can
be chosen independently for each vy, then the unique minimizer u* of the following objective is the
optimal control of Equation (10):

Ladj = ]EYoNHo [EtNU(O,l),Yo:lw]Pﬁj('IYO) [Hu(taY07Yt) + gd(t7YO:1)||2]:| , U= Sg(u)v (11)

d . . . . 1
where ga(s,Ym) = —a(s,Y0:1)TVYS<pd(s,Y0,YS), a(1,Yo1) = —BVYIT(Yl). (12)

Here sg(+) denotes the stop-gradient operator, and the random variable & is known in the literature
as the lean adjoint state. Denote by ¢} the neural network optimized during RL finetuning, with
parameters initialized from ;. In light of Equation @ and Equation , the control vector field can
be reparameterized by u = %(cp“j — ¢%). This formulation avoids the need to introduce any additional
networks. For clarity, we provide the pseudocode of RL finetuning in Algorithm I}

4 EXPERIMENT
In this section, we provide details on the application of PVB to trajectory generation and related tasks.

Dataset For pretraining, we use a variety of datasets covering different molecular domains:
PCQM4Mv2 (Hu et al., 2021) and ANI-1x (Smith et al., [2020) for small organic molecules,
PDB (Berman et al. |2000) for protein monomers, and PDBBind2020 (Wang et al., 2004; 2005}
Liu et al., 2015) for protein-ligand complexes. After pretraining, the model is finetuned on domain-
specific datasets: ATLAS (Vander Meersche et al.| 2024)) and mdCATH (Mirarchi et al., 2024) for
protein monomers, and MISATO (Siebenmorgen et al.|[2024) for protein-ligand complexes, enabling
trajectory generation in these domains. Additionally, we augment the PDBBind2020 protein-ligand
complex data with short MD simulations using OpenMM (Eastman et al.| 2023)), which are further
employed for RL finetuning to explore protein-ligand holo states. Comprehensive details of the
datasets and preprocessing procedures are provided in Section D}

Baselines The following deep learning-based models tailored for trajectory generation are selected
as baselines: (I) ITO (Schreiner et al., 2023), a conditional diffusion model that fits the transition
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kernel of molecular dynamics with varying temporal scales. (II) MDGEN (Jing et al., 2024b)), a
generative model based on torus and local frame representations of proteins, which can be applied to
diverse dynamics-related tasks. (III) UniSim (Yu et al., 2025)), a pretrained generative model with
force-guided finetuning modules, which exhibits cross-domain transferability. (IV) AlphaFlow (Jing
et al., 2024a)), a modification of AlphaFold (Jumper et al.,|2021) with the flow-matching objective
for finetuning, enabling the generation of independent and identically distributed (i.i.d.) protein
conformational ensembles. For a fair comparison, we follow the standard training procedures of each
baseline: ITO and MDGEN are trained from scratch, UniSim is initialized from its officially released
pretrained representation model, and AlphaFlow is initialized from the publicly released AlphaFold
pretrained weights, all subsequently finetuned on our dataset.

4.1 TRAJECTORY GENERATION

Proteins on ATLAS We now investigate the capability of the model to generate trajectories on the
protein domain. Building on the pretrained PVB parameters, we finetune on the ATLAS dataset to
capture dynamic patterns, with 790/14 systems for training and testing, respectively. Specifically, for
each 100 ns trajectory in the training set, we randomly sample 500 data pairs (x¢, ;) from the
first 80 ns for training and 100 data pairs from the last 20 ns for validation, with the coarsened time
step 7 = 100 ps. Given the finetuned model, we generate trajectories for the 14 test protein systems
by simulating Equation (6) via numerical discretization, with a chain length of 1,000.

To comprehensively evaluate the generated trajectory, we apply the following metrics: (I) the
Jensen-Shannon Divergence (JSD) calculated on projected feature spaces, including the radius of
gyration (Rg), the torsion angles ¢ and v of protein backbones (Torus), the slowest two Time-lagged
Independent Components (TICO and TIC1) (Pérez-Hernandez et al.,|2013)), and the state occupancy
estimated Markov state models (MSM). (I) The proportion of conformations without bond break
or clash between Car atoms, denoted as VAL-CA. (III) The root mean square error of contact maps
between generated trajectories and reference MD trajectories, denoted as RMSE-CONTACT. (IV) The
decorrelation fraction with respect to TICO observed in the generated trajectories, termed as Decorr-
TICO. The reference statistics for each metric are derived from three replicate MD trajectories of each
test system in ATLAS. Further details on how the metrics are computed can be found in Section [F]

To facilitate comparison, the first 10 ns of one selected MD trajectory was included in the analysis for
each test system. As presented in Table[I] PVB achieves performance comparable to the baselines
across most metrics, with clear superiority in the validity of generated ensembles. Furthermore, com-
pared to the 10 ns MD trajectories, PVB maintains equivalent physical plausibility and significantly
outperforms in distributional similarity for TIC and MSM, underscoring its capability to reliably
capture the long-term dynamics of large molecular systems.

Table 1: Results on the ATLAS test set, with each metric reported as mean/std across 14 test protein
monomers. The best and second-best results for each metric are shown in bold and underlined,
respectively. * denotes models that generate i.i.d. protein samples instead of trajectories.

ISD (})

MODELS Re Torus TIC MSM VAL-CA (1) RMSE-CONTACT (}) Decorr-TICO (1)
MD (10ns)  0.379/0.115 0.148/0.016 0.684/0.072 0.596/0.179  0.926/0.093 0.040/0.010 -
AlphaFlow*  0.385/0.143  0.439/0.045 0.570/0.110 0.394/0.116  0.485/0.386 0.107/0.068 -

ITO 0.792/0.022  0.560/0.018  0.400/0.081  0.469/0.145  0.001/0.000 0.948/0.016 0.714
MDGEN 0.493/0.115  0.321/0.031  0.400/0.085 0.463/0.150  0.098/0.217 0.158/0.020 0.857
UniSim 0.538/0.135  0.344/0.012  0.372/0.078 0.344/0.097  0.106/0.050 0.129/0.019 0.786
PVB (ours)  0.457/0.087 0.336/0.030 0.371/0.087 0.333/0.105  0.975/0.023 0.143/0.031 0.929

Proteins on mdCATH We further evaluate the model on the mdCATH dataset, which encompasses
a wider range of protein domains. Following Janson et al.|(2025), we use a 5,049/40 split for training
and validation, with 20 domains selected from the original test set for evaluation. Training data
pairs (x4, x4+, ) are sampled every 5 ns, with the coarsened time step 7 = 1 ns. After finetuning,
we generate 500-step trajectories for each of the 20 test systems, matching the standard trajectory
length in mdCATH. For evaluation, four of the five replicate MD trajectories per system are used to
construct reference statistics, while the fifth serves as the MD oracle for direct comparison with PVB.

The evaluation results on mdCATH are shown in Table[2} Similarly, PVB achieves MD-level physical
plausibility in the generated conformations and shows good agreement with the slow modes (TIC)
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and metastable states (MSM) observed in the MD reference ensembles. Moreover, PVB outperforms
the baseline on most metrics and, compared to the ATLAS results, exhibits a greater disparity in
distributional similarity for projected features, thereby demonstrating enhanced generalization on a
broader-scope dataset.

Table 2: Results on the test set of mdCATH. Values of each metric are shown in mean/std of all 20
test protein domains. The best result for each metric is shown in bold.

JSD (})
MODELS Re Torus TIC MSM VAL-CA (1) RMSE-CONTACT (}) Decorr-TICO (1)
MD Oracle  0.264/0.085 0.182/0.037 0.316/0.071 0.282/0.069  0.942/0.154 0.067/0.039 -
UniSim 0.562/0.160  0.357/0.050  0.454/0.100 0.402/0.114  0.522/0.371 0.116/0.041 0.20
PVB (ours) 0.437/0.142 0.347/0.035 0.376/0.050 0.362/0.124  0.963/0.049 0.177/0.030 0.90

Figure [3 presents visualizations for four representative test systems, two from ATLAS and two from
mdCATH. It demonstrates that the generated trajectories faithfully recover the underlying free energy
landscapes, while the metastable state occupancies estimated by the MSM show strong agreement
with the reference values. Together, these findings highlight the reliability of PVB in reliably capturing
key dynamical properties during the long-time evolution of large molecular systems.
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Figure 3: Illustration of generated trajectories for PDB 2bjq (row 1), PDB 7rm7 (row 2), CATH
domain 3er0A02 (row 3), and CATH domain 1pyaAOO (row 4). Left: Representative structures
from the first 10 frames of the generated trajectories. Middle: Free energy surfaces projected onto
TICO and TICI1, respectively. Right: Probability differences between PVB and MD across the 10
metastable states estimated by MSM.

Protein-Ligand Complexes on MISATO Next, we investigate the application to protein-ligand
complexes using the MISATO dataset, with 13,765/1,595/20 systems for training, validation and
testing, respectively. For the 8 ns trajectory comprising 100 snapshots, all frames are utilized for
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finetuning, with a lag time of 7 = 80 ps. For consistency with the MD data, we generate trajectories
of length 100 for evaluation.

Considering the characteristics of protein-ligand complexes, we adopt more specialized evaluation
metrics: (I) the Wasserstein-1 distance (Villani et al.,2008)) of the ligand RMSD relative to the MD
initial state after superposition onto the pocket backbone (EMD-ligand), as well as the distances
between the center of mass of the pocket and the ligand (EMD-CoM). All distances are reported in
nanometers. (II) The root mean square error of the contact occupancy between heavy atoms of the
ligand and the pocket, also denoted as RMSE-CONTACT. Further details can be found in Section [F}

The results in Table 3] show that,

PVB achieves the closest match in lig- Table 3: Results on the test set of MISATO. Values of each
and poses and pocket-ligand center-of-  metric are shown in mean/std of all 20 test protein-ligand
mass distances compared to MD tra-  complexes. The best result for each metric is shown in bold.
jectories, while also reaching compa-

rable performance in heavy-atom con-  “yiopgrs EMD-ligand () EMD-CoM (|) RMSE-CONTACT (/)
tacts. Notably, the EMD corresponds

. ITO 0.494/0.240  0.479/0.258 0.987/0.001
to errors on the order of atomic resolu-  ynisim 0.196/0.137  0.128/0.111 0.049/0.009
tion, demonstrating the accurate char-  PVB (ours)  0.133/0.072 0.089/0.078 0.055/0.008
acterization of protein-ligand complex

interactions.

Meanwhile, Figure[d presents visualizations of ligand RMSD and pocket-ligand CoM distance for
two representative cases. It can be observed that the trajectories generated by PVB closely match
MD results in both distribution and temporal evolution, showing that the model accurately captures
the dynamical behaviors of the molecular system.

— w0
— rve

—
— v

0 1 2 3 4 5 6 7 8 0 1 2 3. 4 5
Time (ns) Time (ns)

0 1 7 8 0 1 7 8

3 4 5
Time (ns)

'Ia'imea(nsi
Figure 4: Illustration of ligand RMSD and CoM along the trajectories for PDB 2ww0 (top row) and
PDB 5n2f (bottom row). Left: Visualization of the complex, with the receptor shown in blue and the
ligand in green. Middle: Ligand RMSD over time. Right: Pocket-ligand CoM distance over time.

4.2 EXPLORATION FOR PROTEIN-LIGAND HOLO STATE

We further evaluate the model-generated trajectories for exploring the holo state of protein-ligand
complexes. Generating trajectories directly from the apo to the holo state is computationally pro-
hibitive, for which we employ two complementary strategies. First, we reformulate the task as a
post-optimization of docking poses: an existing docking model is used to generate a coarse docking
pose, which then initializes trajectory generation for refinement. Second, we employ the RL finetun-
ing procedure in Section [3.3]to guide the generation process toward the holo state. Specifically, for a
protein-ligand system with holo state X,.¢, the reward is defined as r(X) = —rmsd(X, X;cf).

The training data are constructed from the PDBBind2020 database, with 23 systems reserved for
testing, as detailed in Section [D| With the data prepared, we perform RL finetuning using the
algorithm in Algorithm T] initializing the model with weights from the version trained on MISATO.
For evaluation, we begin with the initial state constructed by docking the ligand into the apo protein
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structure via AutoDock Vina (Eberhardt et al.| 2021)), and generate trajectories of length 100 (8 ns).
The predicted holo state is identified as the conformation with the highest binding affinity, which is
estimated by EPT (Jiao et al.,|2024). Following [Zhang et al.|(2025)), we report the root mean square
error of the ligand (Ligand RMSD) and the pocket (Pocket RMSD) as evaluation metrics.

The evaluation results on the test set of PDBBind is shown in Table[d] Firstly, the holo state predicted
by PVB without RL finetuning deviates further from the reference than the initial state, likely due
to insufficient sampling from the vast conformational space within the short simulation window.
Meanwhile, RL finetuning delivers substantial gains over the non-RL model across all metrics and
consistently surpasses Vina-docked poses in ligand placement, suggesting that it learns to bypass
local free-energy minima and progress more efficiently toward the holo state through RL.

Table 4: Results on the test set of PDBBind.

Ligand RMSD Pocket RMSD
25% 50% 75% mean <5A  25% 50% 75% mean <2A  <4A

AutoDock Vina 4.771 6.268 8.479 6368 26.1% 0.707 1.021 1.380 1211 913% 95.7%
PVB w/o RL 4797 6.613 9515 6904 26.1% 2.106 2.683 3.121 2718 26.1% 87.0%
PVB w/RL 4.178 5.745 7500 5918 43.5% 1515 1962 2281 1965 56.5% 95.7%

MODELS

In addition, the predicted and co-crystal structures of PDB 6d15 and PDB 6j0g are displayed
in Figure 3] as two representative protein-ligand complex systems. Regardless of whether the initial
Vina-docked pose is close to the ground truth (e.g., PDB 6d15) or far from it (e.g., PDB 6j0g), PVB
with RL finetuning consistently evolves toward the correct binding pose within a short simulation
window, demonstrating the capability to perceive global interactions rather than local ones. Therefore,
we claim that PVB can serve as an efficient tool for post-optimization of docking poses.

AutoDock Vina: 6.133 A
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| | .| !‘ w ~ i//_‘ . !
| § FVv G |
""""" apoBEds  beoseiog

Figure 5: Comparison of the predicted holo state with the co-crystal structure for a. PDB 6d15 and b.
PDB 6j0g. The holo protein structure is shown in blue, and the displayed ligand pose is presented
after aligning the predicted protein to the holo structure, with the ligand transformed accordingly.

5 CONCLUSION AND FUTURE WORKS

In this work, we introduce the Pretrained Variational Bridge (PVB), a novel generative model for
trajectory generation for cross-domain biomolecular systems. By leveraging the encoder-decoder
architecture, PVB provides a unified framework for both pretraining on single-structure data and
finetuning on MD trajectories, thereby enabling seamless transfer of rich structural knowledge across
stages. Extensive experiments show that, with the unified training objective, the model reproduces
thermodynamic and kinetic observables consistent with classical MD and achieves substantial gains
in generative fidelity over baselines. Furthermore, to facilitate efficient exploration of protein-ligand
co-crystal structures, we integrate RL finetuning via adjoint matching, employing a reward function
to reweigh the generative distribution in favor of the holo state. Benchmarking on PDBBind suggests
PVB as an effective tool for post-optimization of docking poses.

Looking ahead, sequential trajectory generation remains a limitation despite the coarsened timestep,
and developing parallelized methods that maintain temporal correlations is an important avenue for
future work.
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APPENDIX

A REPRODUCIBILITY

Our code is available at https://github.com/yaledeus/PVB, which provides detailed
instructions for training and evaluation, along with released model weights for both pretraining and
downstream tasks.

B PROOF OF PROPOSITION

B.1 ProPOSITION(I]
Given the initial state z, the unique optimal solution to Equation (2) satisfies p? (- | Xo = x¢) =
ge(- | Xo = xo) almost surely. Further, according to De Bortoli et al. (2023), the path measure P*

associated with Equation @ preserves the coupling, i.e., Ilg 1 = Py 1 = PG ;. Therefore, we can
derive the following equalities:

Po(dyo) = /p:(dyo | o) px,(dxo) = /qe(dyo | 20) Px,(dzo) = Po(dyo), (13)

hence for Py-almost every g,

IP5.1 (dyo, dy1) _ 1o, (dyo, dy1)
P§(dyo) Po(dyo)

Plo(dyr [ yo) = = P1jo(dyr | vo)- (14)

By combining Equation (IJ), we complete the proof. O

B.2 PROPOSITION[Z]

We first provide the derivation of Equation from Equation (9). Given Y = yo, we consider the
following SDEs:

dY; = ¢j(t, Yo, Y¢)dt + 0dBy, Yo = yo. (15)
dY; = (¢;(t, Yo, Ye) + ou(t, Yo,Y:))dt + 0dBy, Yo = yo. (16)

Let P} and P} the probability measure of Equation and Equation (@, respectively. Assume

that the two SDEs admit strong solutions on [0, 1]. Since the drift terms are both adapted to filtration
of By, we can derive the Radon-Nikodym derivative by applying the Girsanov theorem:

dPyg

dPy

1 1 1
log (YO:l) = 7/ u(t,Y(),Yt) dBt — 5/ ||’U,(t7Y0,Yt)||2 dt. (17)
0 0
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Accordingly, the KL divergence can be simplified by:

i
|0

D (Pjo|Pfo) = Evonpe[log 7 (Your) | Yo = yo] (18)
0
= —Ev,,,~p[log dPLO (Yo:1) | Yo = yo (19)
0
1 1 1
= EYOJNP“ [/ u(t7 Yo, Yt) dBt + 5/ Hu<t7 y07Yt)||2 dt] (20)
0 0
1 [t )
— By, ey [ lulton YOI at, e
0

The last equality follows from the property that stochastic integrals are martingales. By substituting
this equality into Equation (9)), we obtain Equation (I0).

Next, we consider the optimization problem of the inner expectation conditioned on yg at ¢t = 0
in Equation (10):

1
max By, s [r(Y1) = 5 [ ult, Yo YOIt | Yo = ol @2)
“ 0

Since Yy = yp is fixed, the conditioning of the control vector field u on Y|, is absorbed, yielding
Uy, (6, Y ) == u(t,yo, Y,). Therefore, the optimization problem of Equation can be interpreted
as a Stochastic Optimal Control (SOC) problem, with its standard form given by:

1
. 1
o[ |3, (8 Yo dt 4 9(Y ), @)
0
S.t. dYt = (b(t,Yt) + O Uy, (t, Yt)) dt —+ O'dBt, YO ~ 6y0, (24)

where b(t, Y¢) = ¢5(t, Y0, Yy), (Y1) = —%T(Yl) in our case, and J,, represents the Dirac delta
measure centered on 2. Based on the theorem proposed by [Domingo-Enrich et al.[(2024), the optimal
cz{ltro.l uy,, of the SOC problem defined in Equation is the unique critical point of the following
objective:

: e _ _
ml}nEYo;wPﬂ[g/ Huyo (t7Yt) + Ua(t>Y0:1>||2 dt | Yo = yO]a u = Sg(”)’ (25)
0
d . N _
st 7-a(t, You) = —a(t, Yo1) ' Vy,b(t, Ye), a(1,Yo.1) = Vy,g(Y1). (26)

Assume that the function class for u is sufficiently expressive. Then there exists a function
u*(t,y0, Y¢) such that, for every yo € supp(Ily), the map Y; — u*(t,yo, Y¢) coincides with
the conditional minimizer uy (¢,Y;). We further prove that u* is the unique minimizer of Equa-
tion @]) which can be reformulated as:

Lot (1) = By, [Ryp (uy,)] = / Ry (uyo ) o (dyo), @7)
S.t. Ryo (1) = Epngr(0,1) oo~ [ tyo (8, Yi) + 0d@(t, Yo ) I | Yo = vo), @ =sg(u). (28)

By definition of u , for every yo € supp(Ilp) and every u, we have R, (u

over yo with respect to Iy, we have:

*
Yo

) < Ry, (u). Integrating

Logi(u") = / Ry () To(dyo) < / Ry (u)TTo (dyo), 29)

for every u. Thus u* is the global minimizer of L.qj.

Let v’ for any global minimizer of £,q;. Consider the set:

A= {yo : Ry (u') > Ry, (ug,)}- (30)
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If ITp(A) > 0 then:
Loy (') — Lagi(u®) = / (Ryo (1) — Ry (1%, )Mo (clyo) 31)

> / (Ryo (1) — Ry (u5,))To(dyo) > 0. 32)
A

This contradicts minimality of «’. Hence IIy(A) = 0. Therefore for ITy-almost every yo we have
Ry, (u") = Ry, (uy, ). Recall that uj, is the unique minimizer of Equation , thus v/ = u* almost
surely w.r.t. Ily. This completes the proof. O

C MODEL ARCHITECTURE

C.1 BLOCK-LEVEL REPRESENTATION

While atomic numbers offer a basic representation of molecular systems, different classes of molecules
are often characterized by domain-specific building blocks (e.g., amino acids in proteins). To enhance
the model’s ability to generalize across molecular domains, we aim to represent molecular systems in
a hierarchical manner based on these basic units. Inspired by |Kong et al.| (2024), We constructed a
vocabulary of building blocks that includes all atomic types with atomic numbers from 1 to 118, as
well as the 20 natural amino acids. Based on this vocabulary, we provide the block-level representation
b € NV for the molecular systems, where b[i] (0 < i < N) is defined as:

* the atom type of the i-th atom, if it is part of a small molecule;

* the amino acid type containing the ¢-th atom, if it is part of a protein.

The atomic type z and the block representation b will be projected into the same latent space
dimension H through two separate embedding layers. The two embeddings are summed to form the
initial atomic feature representation H € R > which is then passed to the subsequent network.

C.2 GRAPH-LEVEL REPRESENTATION

The molecular system is further represented as a graph G = (V, £), where V includes the invariant
features H and SO(3)-equivariant Euclidean coordinates of N nodes (i.e., heavy atoms), and &
comprises the edge index and associated edge features.

Specifically, for each molecule in the system, we construct intra-molecular edges using the kNN
algorithm (Cover & Hart, (1967), linking each node to its k nearest atoms in the molecule. In
multi-molecule systems such as protein—ligand complexes, we further build inter-molecular edges by
connecting each ligand atom to its k£ nearest protein atoms. The constructed edge index is denoted by
E € N2%E where E is the number of edges. Moreover, from the covalent bond index C, we derive
the edge feature ¢ € {0, 1}, which explicitly encodes the molecular topological structure:

cli] = {17 if the i-th edge belongs to C,

0<i<FE. 33
0, otherwise. 05t < (33)

C.3 NEURAL NETWORK BACKBONE

With the molecular graph prepared, the well-known TorchMD-NET (Pelaez et al.,[2024) is leveraged
as the backbone model to preserve SO(3)-equivariance. We propose a simple modification in
which the topology edge feature c is concatenated to the default edge attributes in the network after
embedding.

In particular, to allow the decoder ¢, to condition on both Y and Y, we first construct the graph
G from Y,. Next, the equivariant coordinates of Y, Y, are converted into invariant interatomic
distances as edge features, and processed by a lightweight equivariant graph neural network to obtain
invariant node features of dimension H. These features are concatenated, fused through an MLP
with a single hidden layer, and then fed into the subsequent attention layers. Finally, the Geometric
Vector Perceptron (GVP) used in (Yu et al.,[2025)) is applied as the output layer to yield invariant
node features and SO(3)-equivariant vectors.
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D DATASET DETAILS

Firstly, the following datasets are used for pretraining:

* PCQM4Mv2 (Hu et al.,|2021). A quantum chemistry dataset comprising approximately
3M small molecules, with DFT-calculated 3D structures.

e ANI-1x (Smith et al} [2020). A dataset with 5M small organic molecules, consisting of
multiple QM properties from density functional theory calculations.

* PDB (Berman et al.| 2000). A large collection of experimentally determined 3D structures
of biological macromolecules, where we use a subset processed by Jiao et al.| (2024)),
comprising 58,576 protein monomers for training and 1,477 for validation.

* PDBBind2020 (Wang et al.,[2004; |2005; Liu et al., 2015). A curated collection of 19,443
crystal protein-ligand complex structures with experimentally measured binding affinities.
In this work, we adopt the data split proposed by (Lu et al.,[2024), which consists of 12,826
complexes for training, 734 for validation, and 334 for testing.

For datasets without a pre-defined split, we randomly partition them into training and validation sets
with a 4:1 ratio.

Next, we benchmark the trajectory generation task on proteins and protein-ligand complexes. We use
the following three datasets for the trajectory generation task:

* ATLAS (Vander Meersche et al.| 2024). The ATLAS dataset provides long-timescale
trajectory data for thousands of proteins generated from 100 ns all-atom MD simulations
performed with GROMACS (Abraham et al.,|2015) in explicit TIP3P water (Jorgensen et al.,
1983). Following |Yu et al.| (2025), we use the curated subset comprising 790 proteins for
training and 14 for evaluation, where the split is constructed by clustering sequences with
MMseqs2 (Steinegger & Soding, [2017) under a 30% sequence-identity threshold to ensure
non-redundancy between the training and test sets.

* mdCATH (Mirarchi et al.,2024). The dataset contains all-atom molecular systems for 5,398
CATH domains, each simulated using a modern classical force field. For every domain, five
independent MD trajectories are generated at each of five temperatures ranging from 320
K to 450 K, with the frame spacing of 1 ns. We follow the data split proposed by |Janson
et al.[(2025)), comprising 5,049/40/90 protein domains for the training, validation, and test
sets, respectively. To reduce the computational cost, we use only the trajectories simulated
at 320 K for training and evaluation. Training data pairs (2, €+, ) are sampled every 5 ns
from MD trajectories, with the coarsened time step 7 = 1 ns, yielding approximately 1.5M
training pairs and 18K validation pairs. The first 20 domains of the original test set are used
as our evaluation subset.

* MISATO (Siebenmorgen et al.,[2024). The MISATO dataset consists of over 10,000 pro-
tein—ligand complexes, each accompanied by a 10 ns explicit-solvent molecular dynamics
trajectory. Following the original protocol, the first 2 ns of each trajectory are discarded,
and the remaining 8 ns are provided as equilibrated conformational ensembles. In our exper-
iments, we adopt the original dataset split of 13,765/1,595/1,612 for training/validation/test,
respectively, while restricting the evaluation to the first 20 test complexes due to the substan-
tial computational cost of trajectory generation on large systems.

To explore the protein-ligand holo state, we benchmark on the PDBBind2020 database (Wang et al.,
2004; 20055 [L1u et al., |2015). To prepare data for RL finetuning and ensure the availability of apo
protein and unbound ligand structures for evaluation, we apply the following pre-processing pipeline
to the training and test sets, respectively.

* PDBBind-train. Given the sensitivity of protein-ligand interactions to structural accuracy,
we use only the refined set of PDBBind2020, which contains 5,316 diverse protein-ligand
complexes with high-resolution crystal structures. To prevent sequence-level overlap, we
first cluster complexes using MMSeqgs?2 (Steinegger & Soding), [2017) based on their bind-
ing pocket residue sequences with a 60% sequence identity threshold, retaining a single
representative from each cluster. Next, we adopt the time-based split used in previous
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studies (Corso et al.| 2022} [Stark et al., [2022; [Lu et al.| 2024), where structures deposited
before 2019 are randomly partitioned into training and validation sets in a 4:1 ratio, and
those deposited in 2019 are held out for testing. Furthermore, since RL finetuning requires
not only crystal structures but also binding intermediates of protein-ligand complexes, we
select a small subset from the training and validation sets for additional MD simulations,
yielding a 265/70 split. For each selected system, a short 20 ps MD simulation is performed
using OpenMM (Eastman et al.,[2023)) in the NVT ensemble at 300 K. The AMBER 14 force
field (Maier et al.,|2015) is applied, with explicit TIP3P water (Jorgensen et al.,|1983)) and 1.0
nm solvent padding. Long-range electrostatics are treated with PME, and all hydrogen bond
lengths are constrained. The system is integrated using LangevinMiddleIntegrator
with a friction coefficient of 0.5 ps~! and a 2 fs timestep. Finally, 10 snapshots are extracted
from each trajectory at 2 ps spacing for RL finetuning.

* PDBBind-test. For the test set, we first remove complexes that contain non-canonical amino
acids, and then exclude those overlapping with the training and validation sets of MISATO,
leaving a total of 33 test cases. For each test case, the unbound ligand and apo protein
structures are generated using MMFF94 (Halgren, [1996) and Boltz-1 (Wohlwend et al.
2025)), respectively. These structures are rigidly aligned to their corresponding parts of the
crystal structure via the Kabsch algorithm (Kabsch,|1976). The aligned structures then serve
as input for AutoDock Vina (Eberhardt et al., [2021)), which predicts a docking pose of the
ligand while keeping the apo protein structure fixed, using an exhaustiveness parameter of
32. After removing the cases where Vina-docked ligands fail rdkit (rdk) sanitization, 23
test systems are retained, where the Vina-docked complex structures will be used as the
initial states for trajectory generation.

E TRAINING DETAILS

E.1 POSITION PERTURBATION

Recall that our objective is to generate trajectories from the initial state of a molecular system, a
process prone to error accumulation due to the inherent instability of generative models. Consequently,
if the model is trained solely on reasonable conformations such as crystal structures or snapshots
from MD trajectories, even minor deviations during generation may cause the model to fall out of
distribution. To enhance the robustness of trajectory generation, we introduce a small perturbation to
the initial state X before feeding it into the encoder during both pretraining and finetuning. Formally,

)(0(*)(04’(’1;067 ENN(O,I), (34)

where o, is the hyperparameter of perturbation strength.

E.2 DATA AUGMENTATION FOR RL

Since the training data for reinforcement learning are limited and sampled only from short MD
trajectories, we apply data augmentation during RL finetuning. Specifically, for each training
iteration, we randomly sample a rotation angle 6 ~ U(—7%, Z) and a unit rotation axis, which can
be transformed to a random rotation matrix Q € SO(3) using Rodrigues’ rotation formula. Next,
we sample a translation vector ¢ from the standard Gaussian distribution. The SE(3)-transformation

(Q, t) is then applied to the ligand pose of the initial state X, which served as the new input.

E.3 ALGORITHM FOR RL FINETUNING

We present the RL finetuning algorithm for protein-ligand complexes in Algorithm [T} where the
operator data_augmentation is discussed in the previous section.
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Algorithm 1 RL finetuning for protein-ligand complexes with PVB

1: Input: a protein-ligand complex system with position g, the corresponding holo state z,.¢, the
reference models ., 4, the regularization strength £, discretized SDE steps 7.
freeze parameters of ¢, and ¢q
Pd < Pa
A L
for training iterations do
xo < data_augmentation(zg)
t ~U{0,A2A,---,1})
Yo ~ pe(- | Xo = xo) {reparameterization}
9: YO:l = [Yo,YA,Y2A7 s ,Yl] ~ pg( | YO = yo) {Equation }
10: a1 + —%Vylrmsd(Yl, Trof)

11: s+ 1

12:  while s > t do

13: ds-n =as+a] Vy.pa(s, Yo, Ys) - A
14: s+ s—A

15:  end while

16: »Cadj — ||¢3(th07Yt) - st(th()th) +O—2&t||2
17:  min L,gj

18: end for

E.4 HYPERPARAMETERS

The hyperparameters used for training and inference with PVB are summarized in Table [5]

Table 5: Hyperparameters of PVB.

Hyperparameters Values
Hidden dimension H 256
FFN dimension 512
RBF dimension 32
RBF cutoff 10A

# Attention heads 8

# Encoder layers 2

# Decoder layers 8

# Neighbors k 32
Variational noise scale 0. /0.5 A
SDE noise scale o 02 A
Perturbation Strength o, 0.2 A
KL loss weight wkr, 0.8

ABM loss weight wapm 1.0
Regularization strength 8 4e-4

Learning rate (pretrain) le-4

Learning rate (finetune) 5e-5

Optimizer Adam

Warm up steps 1,000

Warm up scheduler Lambdal.R

Training scheduler ReduceLLRonPlateau(factor=0.8, patience=5, min_lr=1e-7)

Discretized SDE steps T’ [8,10]
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F EVALUATION DETAILS

F.1 FEATURIZATION OF PROTEINS

To featurize trajectories of proteins in ATLAS, we select as collective variables the sine and cosine
of backbone 1/ and ¢ torsions and all side-chain torsions, and the Euclidean distances of contacting
heavy-atom pairs, which are defined as pairs of C, N, or S atoms separated by more than two bonds
in the molecular topology graph and lying within 4.5 A in the initial conformation of the MD
reference trajectory (Yuan et al. [2012)). In particular, since each trajectory in mdCATH contains
relatively few frames, we instead use only the backbone ¢ and v torsions as TICA features for
this dataset to avoid ill-conditioning. The extracted features are then projected onto the slowest
two time-lagged independent components (TICO and TIC1) (Pérez-Hernandez et al., 2013) using
deeptime (Hoffmann et al.,|2021)), with a lag time of 100 ps for ATLAS and 1 ns for mdCATH.

F.2 JENSEN-SHANNON DIVERGENCE

We compute the Jensen-Shannon Divergence (JSD) on various feature spaces using scipy (Jones
et al.,[2001). For 1-dimensional JSD, we discretize the range spanning the minimum and maximum
values from MD trajectories into 50 bins. For multi-dimensional features, we first compute the JSD
separately along each dimension and then report the mean value across all dimensions.

F.3 DECORRELATION

Following (Jing et al., 2024b), we report the decorrelation percentage for TICO to characterize the
kinetic properties of the generated trajectories. Firstly, we define the autocorrelation as follows:

El(ye — 1) (erae — p)]/0?, (35)

where 1 and o are the mean and standard values of TICO from the MD reference trajectory, re-
spectively. By computing the autocorrelation using statsmodels (Seabold & Perktold, [2010),
the generated trajectory is defined as decorrelated if its autocorrelation of TICO starts above and
falls below 0.5 within 1,000 frames (100 ns). Since all MD reference trajectories have been veri-
fied to decorrelate within 100 ns, the decorrelation fraction observed in the generated trajectories
(Decorr-TICO) serves as a quantitative indicator of the ability to capture dominant slow modes during
simulations.

F.4 MARKOV STATE MODEL

We employ Markov state models to assess the fidelity of metastable state reproduction. We first cluster
the two-dimensional features (TICO and TIC1) from the MD reference trajectory into 100 microstates
using the KMeans++ algorithm (Arthur & Vassilvitskii, [2006). Next, we construct the Markov state
model based on the microstates with a lag time of 100 ps, and apply the PCCA+ algorithm (Roblitz
& Weber, |2013) to coarse-grain the dynamics into 10 metastable states. Specifically, after the PCCA+
analysis, we reassign clusters corresponding to inactive microstates to the nearest active cluster,
thereby ensuring connectivity among all microstates. Finally, the clustering and PCCA models
are employed to assign metastable states for each frame of both the MD reference trajectory and
the generated trajectory, and JSD is computed between their probability distributions over the 10
metastable states.

F.5 ALIGNMENT OF PROTEIN-LIGAND COMPLEXES

To assess the protein-ligand complexes, the frames should be superimposed onto a reference con-
formation at first. Specifically, for the PDBBind dataset, the holo state is used as the reference
conformation, whereas for the MISATO dataset, the initial state of the MD reference trajectory is
selected. Given the reference conformation, the pocket of the complex is defined as the set of residues
containing at least one heavy atom within 20 A of the ligand center. Each frame in the trajectory
is then aligned to the reference conformation by applying an SE(3)-transformation based on the
backbone Ca, C, and N backbone atoms of residues in the pocket.
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F.6 CONTACT OCCUPANCY

Following [Janson et al.| (2023]), for a protein with R residues, we define the contact occupancy (4, j)
of the residue pair ¢, j as:

T
N | .
r(i,j) = T Z 1g.65)<10a 1 <1 <j <R, (36)
t=1

where 7' denotes the number of frames in the trajectory, and d; (4, j) denotes the Euclidean distance
between Ca atoms of residues ¢ and j in the ¢-th frame. Then the root mean square error of the
contact occupancy is computed by:

R L () = i), @

RMSE-CONTACT =
1<i<j<R

where 7¢¢ (7, j) is calculated from the MD reference trajectory.

Similarly, for protein-ligand complexes, we select the heavy-atom pairs between the ligand and the
pocket to calculate contact occupancy, and correspondingly compute the RMSE relative to the MD
reference trajectory.

F.7 VALIDITY

For the molecular system of proteins, we calculate the validity of generated conformations to assess
the stability in long timescale simulations. Following [Wang et al.|(2024a)), a conformation is defined
as valid if: (I) the Euclidean distance between Ca atoms of all residue pairs is no less than 3.0 A and
(IT) the Euclidean distance between Co atoms of adjacent residue pairs is no more than 4.19 A. The
proportion of valid conformations in the trajectory is reported, denoted as VAL-CA.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 FAST-FOLDING PROTEINS

In this section, we assess whether PVB can explore essential biological processes in long-timescale
MD simulations. As a case study, we focus on the well-established fast-folding proteins, which
capture protein folding and unfolding dynamics on the microsecond timescale (Lindorff-Larsen
et al., 2011). Among twelve fast-folders, we select NTL9 (an /8 protein), Protein B (a three-helix
bundle protein), Villin (an actin-associated mini-protein), the WW domain (a 3-sheet protein), and -
repressor (a helix-turn-helix DNA-binding protein) as five representative test systems, with reference
trajectories obtained from MD simulations ranging from 100 to 3000 ps, saved at a frame spacing of
200 ps.

In particular, global structural descriptors are more informative for characterizing folding and unfold-
ing processes. Therefore, we select as collective variables for TICA the sine and cosine values of
backbone ¢/ and ¢ together with all side-chain torsion angles, as well as the distances between Ca
atoms of all residue pairs separated by at least two residues. The lag time for TICA is taken as 20 ns.

Using the PVB model trained on ATLAS, we generate trajectories of length 100,000 for the five
test systems in a zero-shot manner, each corresponding to 10 us in wall-clock time. The results are
visualized in Figure[6] Here, contact occupancy is defined as the fraction of residue pairs separated
by at least two residues, whose Ca atoms are within 12 A (Kukic et al.,[2014). We observe that for
NTL9, PVB fluctuates mainly around the initial conformation during the 10 us simulations without
reaching the folded state, which is likely due to the limited simulation timescale and the system being
partly out of distribution for the model. For Protein B, although the limited simulation time precludes
a full recreation of MD findings, PVB nonetheless provides an initial characterization of metastable
states consistent with MD. Moreover, for Villin, the WW domain, and A-repressor, despite occasional
hallucinations in non-physical regions (e.g., for A-repressor), the model accurately reproduces the
essential free energy landscape and captures the rapid transition between folded and unfolded states,
highlighting its strong zero-shot generalization ability on fast-folders of varying secondary structures.
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Regarding contact occupancy, PVB remains stable within the first 10 ps for NTL9, Protein B,
Villin and the WW domain. Moreover, PVB typically achieves higher contact occupancy more
quickly than classical MD, which may be attributed to the training data being dominated by compact
protein structures. On the contrary, the contact occupancy shows a decreasing trend for A-repressor,
indicating a drift toward the unfolded state. These findings demonstrate the remarkable ability of
PVB to maintain stable simulations over extended timescales for small- to medium-sized proteins,
while its application to larger protein systems may still entail potential instabilities.
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Figure 6: Visualization of the generated trajectories of NTL9 (Row 1), Protein B (Row 2), Villin
(Row 3), the WW domain (Row 4), and A-repressor (Row 5). Column 1: Experimental determined
structures from Protein Data Bank (PDB). Column 2-3: Comparison of free energy surfaces projected
onto the slowest two time-lagged independent components (i.e., TICO and TIC1) for the entire MD
reference and PVB-generated trajectories. Column 4-5: Comparison of the contact occupancy during
the first 10 s of simulation for the MD reference and PVB-generated trajectories.

G.2 ABLATION STUDY

To validate the effectiveness of the proposed pretrained variational bridge in leveraging structural
prior knowledge, we perform the following ablation experiments on the ATLAS dataset under three
different configurations:

* PVB w/o finetuning. This setting corresponds to directly using the pretrained model to
generate trajectories on the test systems, without any finetuning on the training data.

* PVB w/o pretraining. This setting corresponds to training the model from scratch on the
ATLAS training set, without using any pretrained weights.
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* PVB-ITO. This setting replaces our bridge-matching-based decoder with the conditional
diffusion model used in ITO (Schreiner et al., 2023), while keeping the model backbone
unchanged.

The evaluation results are presented in Table[6] First, they show that PVB with pretraining achieves
substantial improvements across all metrics, with particularly pronounced gains in validity. This un-
derscores the critical role of the rich, cross-domain structural knowledge acquired during pretraining.

Second, directly evaluating the pretrained PVB model on ATLAS without finetuning reveals that
the fidelity of generated conformations largely stem from pretraining. While finetuning slightly
reduces residue contacts, it consistently improves distributional similarity, as reflected by lower JSD
values. Together, these findings provide strong evidence that PVB functions effectively as a unified
framework, benefiting from both pretraining and finetuning.

Finally, we also tested the scenario where the PVB decoder is entirely replaced with the conditional
diffusion model used in ITO, while fully replicating the PVB pretraining and finetuning scheme.
The experimental results show that the modified model performs poorly overall and fails to generate
physically plausible protein conformations. This suggests, to some extent, the limitations and
incompatibility of ITO’s generative framework in this setting. We also emphasize that, although
bridge matching is not necessarily irreplaceable, it does perform remarkably well under the current
experimental setup.

Table 6: Ablation results on the ATLAS test set, with each metric reported as mean/std across 14 test
protein monomers. The best result for each metric is shown in bold.

MODELS IJSD () VAL-CA (1) RMSE-CONTACT ()
Rg Torus TIC MSM

PVB 0.457/0.087 0.336/0.030 0.371/0.087 0.333/0.105 0.975/0.023 0.143/0.031

PVB w/o finetuning ~ 0.561/0.123  0.310/0.018  0.463/0.094 0.407/0.155 0.968/0.039 0.097/0.014

PVB w/o pretraining  0.710/0.063  0.481/0.011  0.408/0.072  0.581/0.127  0.022/0.007 0.223/0.033

PVB-ITO 0.676/0.082 0.577/0.014 0.487/0.072 0.460/0.158  0.000/0.000 0.269/0.042

G.3 PHYSICALITY OF GENERATED PROTEIN-LIGAND COMPLEXES

In the docking pose post-optimization task for protein-ligand complexes (Section {.2)), we relied
solely on RMSD as the evaluation metric, which may obscure the extent to which the generated
conformations are physically plausible. In this section, we introduce more fine-grained evaluation
criteria to analyze the physicality of both protein and ligand conformations produced along the
generated trajectories, and further compare how it changes before and after reinforcement learning.

Specifically, to evaluate the physicality of the generated complexes, we introduce the following
metrics:

* VAL-BL. A ligand conformation is bond-length valid if every covalent bond length deviates
by no more than 20% from the Distance Geometry (DG) reference bounds defined in
PoseBusters (Buttenschoen et al.| [2024)).

* VAL-BA. A ligand conformation is bond-angle valid if every bond angle stays within 20%
of the DG reference angular bounds defined in PoseBusters.

* SCF. A ligand conformation is steric clash-free if all non-covalent inter-atomic distances
are at least 80% of their DG lower bounds defined in PoseBusters.

» SI. A ligand structure satisfies stereochemical integrity only if (i) all topologically stere-
ogenic atoms possess well-defined CIP configurations, and (ii) all stereogenic double
bonds exhibit valid E/Z annotations without ambiguity. The analyses are carried out using
rdkit (rdk).

* VAL-CA. To assess the validity of protein conformations, we adopt the same metric defined
in Section |H considering a protein structure valid only if there are no broken bonds between
adjacent residues and no clashes between any residue pairs based on Ca distances.
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Note that for all the above metrics, we first compute each metric over the 100-frame generated
trajectories for each test system and take the average. We then report the mean and standard deviation
of these averages across all 23 test systems, which are shown in Table[7] Based on the comparison of
the experimental results, we draw the following observations.

First, the model trained on MISATO (i.e., PVB w/o RL) preserves a high degree of physical plausibility
in the generated all-atom conformations of both ligands and proteins. This further demonstrates
that large-scale pretraining on diverse single structures, followed by light MD finetuning, effectively
imparts domain knowledge applicable across molecular families.

Second, after reinforcement learning, the model exhibits slight improvements on ligand-related met-
rics and a notable enhancement in the validity of generated protein conformations. This indicates that
reinforcement learning preserves, and may even enhance, the model’s ability to generate physically
plausible trajectories supported by additional data.

Finally, we find that the two models perform identically on the stereochemical integrity metric. Upon
inspection, we determined that in 3 of the 23 test systems, the initial ligand conformations from
the original database already failed this test. Since the input specifies the molecular topology, the
generated trajectories do not alter stereochemistry of the ligand, leading all ligand conformations in
the trajectories to fail the check as well. This accounts for the unusual consistency observed for this
metric.

Table 7: Physicality of the generated protein-ligand complex trajectories on the test set of PDBBind.
The metrics are reported in mean/std over 23 test systems.

MODELS VAL-BL (1) VAL-BA (1) VAL-CA (})  SCF (1) SI (1)

PVB w/o RL  0.874/0.200  0.827/0.212  0.615/0.217  0.962/0.051  0.870/0.344
PVBw/RL  0.895/0.204 0.852/0.220  0.813/0.224  0.963/0.070  0.870/0.344

G.4 INFERENCE EFFICIENCY

We assess the inference efficiency for different models by computing the inference time per step on
the same GPU device. Results are shown in Figure[7} where PVB delivers approximately 5-10x
faster inference than the second-best model (MDGEN), while also exhibiting the lowest variance
across all baselines.
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Figure 7: Comparison of per-step inference time on the ATLAS test set for deep learning models,
evaluated on a single identical GPU.
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H COMPUTING INFRASTRUCTURE

All experiments were performed on NVIDIA GeForce RTX 3090 GPUs. During the pretraining
stage, we used five GPUs for approximately five days. To fully utilize GPU memory across molecular
systems of varying sizes, the mini-batch size was dynamically adjusted, maintaining an average of
about 2,500 atoms per batch. In addition, to balance the contribution of datasets with different sizes,
each training epoch randomly samples up to 60,000 mini-batches from each dataset. For smaller
datasets, all available samples are traversed within the epoch.

Following pretraining, finetuning was conducted on up to five GPUs, with training durations ranging
from one day to one week depending on the specific task and dataset size.

Finally, all model evaluations, including both baseline methods and our proposed approach, were
performed on a single GPU to ensure a fair and consistent comparison.
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