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Spot Check Equivalence: an Interpretable Metric for
Information Elicitation Mechanisms

Anonymous Author(s)
ABSTRACT
Because high-quality data is like oxygen for AI systems, effectively
eliciting information from crowdsourcing workers has become a
first-order problem for developing high-performancemachine learn-
ing algorithms. Two prevalent paradigms, spot-checking and peer
prediction, enable the design of mechanisms to evaluate and in-
centivize high-quality data from human labelers. So far, at least
three metrics have been proposed to compare the performances of
these techniques [2, 7, 29]. However, different metrics lead to di-
vergent and even contradictory results in various contexts. In this
paper, we harmonize these divergent stories, showing that two of
these metrics are actually the same within certain contexts and ex-
plain the divergence of the third. Moreover, we unify these differ-
ent contexts by introducing Spot Check Equivalence, which offers
an interpretable metric for the effectiveness of a peer prediction
mechanism. Finally, we present two approaches to compute spot
check equivalence in various contexts, where simulation results
prove the effectiveness of our proposed metric.
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1 INTRODUCTION
Eliciting precise and valuable information from individuals is be-
coming paramount, especially with the rising demands for data la-
beling in the realms of AI and machine learning. Recent advance-
ments, such as the Large Language Models (LLMs), have proven
the value of high-quality human-labeled data. For example, Meta is
estimated to have invested upwards of 25 million dollars collecting
preference data from human labelers to align Llama 2 with human
preferences [17].This raises a pressing question: how to incentivize
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human agents to provide high-quality information. E.g., without
the proper incentives, human labelers for LLM allignment may
not exert effort to distinguish between truthful LLM responses and
merely authoritative-sounding responses (i.e. hallucinations), even
when truthfulness is important for the task at hand.

Research from Amazon reveals that monetary compensation is
the principal motivator for Amazon Mechanical Turk workers [3],
and indeed the primary solution is to monetarily reward agents in
exchange for effortful and truthful labeling. Two distinct compen-
sation strategies, spot-checking [11] and peer prediction [19], each
rates the quality of user feedback with a score. This score can then
be transformed into a payment for an agent.

Spot-checking mechanisms reward agents by comparing their
reports with the ground truth on a small fraction of gold stan-
dard questions. When the ground truth information is expensive
or even infeasible to obtain, peer prediction mechanisms are pro-
posed, which reward an agent based on the correlation between
her reports and the reports of other agents.

To understand and compare the performance of mechanisms de-
veloped from these paradigms, there’s a need for standard met-
rics similar to accuracy, recall, and F1 score used in supervised
learning. Notice that all these metrics range from 0 to 1 where 1
is good/perfect and 0 is bad. While several studies have proposed
methods for comparing these mechanisms [2, 7, 29], there remains
a conspicuous gap for both a unified understanding of how these
metrics relate, and, if possible, a unified interpretable metric.

To this end, we introduce the concept of Spot Check Equiva-
lence (SCE), which uses a spot-checking mechanism as a bench-
mark to quantify the motivational proficiency of an arbitrary in-
centive mechanism. As introduced in [29], the motivational profi-
ciency is the minimum cost of budget to induce a desired effort
level in a symmetric equilibrium. Then, a SCE of 1 will indicate
that a mechanism does as well as a certain spot-checking mecha-
nism does when the spot-checking mechanism has access to the
ground truth of every task. A SCE of 0 will indicate that a mecha-
nism does as well as this same spot-checking mechanism when
it has no access to the ground truth of any task (essentially, it
is paying agents randomly). Note that accessing the ground truth
might be costly, e.g., hiring an expert to get the ground truth might
be much more expensive than hiring several non-expert crowd
workers.Thus, SCE can quantify the considerable cost savings that
might be achieved by employing a peer predictionmechanism over
a straightforward spot-checking mechanism.

By sufficiently harshly punishing the agents for the checked
low-quality reports, spot-checkingmechanisms can effectivelymo-
tivate effort, evenwhen only a small fraction of the tasks are checked.
However, inmost real applications, the payoff should be non-negative
which precludes this approach.

Gao et al. [7, 8] study a peer grading setting where agents are
modeled as having a binary choice for the effort to exert: low ver-
sus high. In their setting, the goal is to minimize the fraction of
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random questions that must be spot-checked to incentivize agents
to exert high effort (make choosing high effort a Nash equilibrium).
They find that, in their model, combining spot-checking with peer
prediction does not help reduce the spot-checking ratio required to
achieve the desired incentive properties, i.e. peer prediction makes
things worse. However, their results rest on several assumptions,
which we will discuss later in Section 6 and Appendix F.

Burrell and Schoenebeck [2] propose a metric called Measure-
ment Integrity to quantify the ex-post fairness of a peer predic-
tion mechanism. Mechanisms with high Measurement Integrity
can produce payments that are strongly correlated with the qual-
ity of the agents’ reports. Their motivation and definitions look
beyond incentives to fairness. They do not study spot-checking
mechanisms, but it is clear that the more agents are spot-checked
the more accurately their scores will reflect their true quality. For
example, with ground truth to all the tasks, an agent’s score could
exactly reflect the true quality of her responses. Moreover, they
model continuous effort but do not establish a clear link between
Measurement Integrity and the ability to incentivize effort.

Zhang and Schoenebeck [29] study incentivizing effort in a crowd-
sourcing setting where agents can choose their effort from a con-
tinuum. Their goal is to maximize the motivational proficiency by
rescaling the scores output by the incentive mechanism into the
practical payments.They suggest a tournament-based payment scheme:
first rank the agents based on their scores output by an incentive
mechanism, and then pay a predetermined reward for each rank-
ing. Under the tournament setting, they further propose a suffi-
cient statistic of a mechanism’s motivational proficiency, called
the Sensitivity. Intuitively, the Sensitivity measures how respon-
sive a score is to changes in an agent’s effort. For example, a spot-
checking mechanism that checks a larger fraction of tasks is more
sensitive to changes in an agent’s effort (intuitively, it has more
chances to detect a change), and thus has a larger motivational
proficiency. However, there is a lack of discussions on how to es-
timate Sensitivity in practice.

Here comes an apparently contradiction. Zhang and Schoenebeck
[29] empirically show that when agents exert a reasonably high
effort, peer prediction mechanisms have Sensitivity competitive
with spot-checking mechanisms that randomly check 20% of the
tasks. This seriously questions the aforementioned implication of
[7, 8] as it would seem to predict that the spot-checking mecha-
nisms are always superior to peer-prediction mechanisms.

Our contributions. First, we propose Spot Check Equivalencewhich
utilizes the equivalent spot-checking ratio as an interpretable way
to measure an information elicitation mechanism’s performance
under specified information elicitation contexts.We study the Spot
Check Equivalence based on Measurement Integrity and Sensitiv-
ity, and demonstrate its effectiveness as a metric for motivational
proficiency both theoretically and empirically.

Second, we unify Measurement Integrity (the metric for ex-post
fairness) and Sensitivity (the metric that serves as a proxy for mo-
tivational proficiency). In particular, we prove that Spot Check
Equivalence based on Measurement Integrity and Sensitivity are
sometimes exactly the same. We also show why these results dif-
fer somuch fromGao et al. [7, 8], and thus refute, or at least qualify,
the titular statement that “Peer-prediction makes things worse.”

Third, we present two approaches to compute Spot Check Equiv-
alence, which are suitable for settings with and without ground
truth data, respectively. Our method enables the comparison of
the motivational proficiency of different mechanisms across vari-
ous information elicitation contexts. Furthermore, our simulation
results show that both approaches result in similar estimations of
SCE, implying the robustness of our method.

2 MODEL
In this section, we will give a formal definition of the information
elicitation context (Figure 1), and then formally define the Spot
Check Equivalence.

Figure 1: Information Elicitation Context

2.1 Information Elicitation Context
Formally, as shown in Figure 1, an information elicitation context
(IEC) is defined as a tuple:

Information Elicitation Context (𝐼𝐸𝐶) := (𝐴𝑔𝑒𝑛𝑡,𝐴𝑝𝑝,𝑀𝑒𝑐ℎ)

where 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e) represents the agents and their proper-
ties, 𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷) represents an information elicitation
application abstraction, and 𝑀𝑒𝑐ℎ = (𝑀, 𝑃) represents a mecha-
nism. We assume that the information elicitation context is com-
mon knowledge for all the agents.

Agent. In 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e): 𝐼 is the set of agents; e = [𝑒𝑖 ]𝑖∈𝐼 ∈
[0, 1] |𝐼 | represents all agents’ effort levels. the cost function 𝑐 :
[0, 1] → R+∪{0}maps an effort level to a non-negative, increasing,
and convex cost. Notice agents are homogeneous and share the
same cost function.

Application Abstraction. 𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷) comprises the
task set 𝐽 , the ground truth space GT , the prior of the ground
truth𝜔 = ΔGT , the signal space Σ, and the data-generating process
𝐷 = (𝐷𝑎𝑠𝑠𝑖𝑔𝑛, 𝐷𝑠𝑖𝑔𝑛𝑎𝑙 ).
𝐷𝑎𝑠𝑠𝑖𝑔𝑛 describes how the tasks are assigned to the agents.

𝐷𝑎𝑠𝑠𝑖𝑔𝑛 : ΔG

whereG represents the space over𝐺 , and𝐺 = (𝐼∪𝐽 , 𝐸𝐺 ) represents
a bipartite graph between 𝐼 and 𝐽 , indicating how the tasks are
assigned to the agents.
𝐷𝑠𝑖𝑔𝑛𝑎𝑙 describes how the signals are generated: the distribution

of agent 𝑖’s signal on task 𝑗 conditioned on the effort 𝑒𝑖 ∈ [0, 1] and
task 𝑗 ’s ground truth 𝑔 𝑗 ∈ GT , given the edge (𝑖, 𝑗) ∈ 𝐸𝐺 :

𝐷𝑠𝑖𝑔𝑛𝑎𝑙 : [0, 1] × GT → ΔΣ

2
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Application Instance. With the specified 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e) and
𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷), we can generate an instance representing
a realized information elicitation application:

• For the given 𝐼 , 𝐽 , we sample an assignment graph 𝐺 ac-
cording to 𝐷𝑎𝑠𝑠𝑖𝑔𝑛 .

• For each task 𝑗 ∈ 𝐽 , we independently sample its ground
truth 𝑔 𝑗 from the prior 𝜔 .

• For each pair (𝑖, 𝑗) ∈ 𝐸𝐺 , we independently sample agent
𝑖’s signal on task 𝑗 from the distribution𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (𝑒𝑖 , 𝑔 𝑗 ). We
then use 𝑜𝑖 𝑗 ∈ Σ to denote it.

• For each pair (𝑖, 𝑗) ∈ 𝐸𝐺 , as we assumed, the agent 𝑖’s re-
port 𝑟𝑖 𝑗 = 𝑜𝑖 𝑗 .

Themechanism introduced below takes the application instance
as input.

Performance Measurement. The performance measurement𝑀 is
a component of the mechanism𝑀𝑒𝑐ℎ = (𝑀, 𝑃). It maps the agents’
reports to their performance scores. Formally,

(Peer Prediction)𝑀 : Σ |𝐸𝐺 | →𝑟𝑎𝑛𝑑𝑜𝑚 R
|𝐼 |

(Spot-checking)𝑀 : Σ |𝐸𝐺 | × GT | 𝐽checked | →𝑟𝑎𝑛𝑑𝑜𝑚 R
|𝐼 |

Note that the spot-checking performance measurement can access
the ground truth of the checked tasks 𝐽checked ⊆ 𝐽 .

We use 𝑠𝑖 ∈ R to denote agent 𝑖’s score, and s = [𝑠𝑖 ]𝑖∈𝐼 to denote
the vector of all agents’ scores.

Payment Scheme. The payment scheme 𝑃 is the other compo-
nent of the mechanism. It maps the agents’ performance scores to
the payoffs, which are directly related to their utilities. Formally,

(Payment Scheme) 𝑃 : R |𝐼 | →
(
R∗ ∪ {0}

) |𝐼 |
Weuse 𝑝𝑖 ∈ R∗∪{0} to denote payoff of agent 𝑖 , and 𝛽 =

∑
𝑖∈𝐼 𝑝𝑖

to denote the total payment among all the agents. And we denote
the vector of all the agents’ payoffs as p = [𝑝𝑖 ]𝑖∈𝐼 .

For a better understanding of the readers, we then give two ex-
amples of the payment schemes:

Definition 2.1 (LineaR Payment Scheme). A linear payment
scheme pays a payoff 𝑝𝑖 = 𝑎 · 𝑠𝑖 +𝑏 to each agent 𝑖 , where 𝑎,𝑏 are the
constant parameters.

Definition 2.2 (TouRnament Payment Scheme). A tournament
payment scheme first ranks the agents according to their scores and
then pays the 𝑖-th ranked agent 𝑝𝑖 , where 𝑝1, 𝑝2, ..., ˆ𝑝 |𝐼 | are parame-
ters and they are monotonically decreasing, i.e., 𝑝𝑖 ≥ 𝑝𝑖′ when 𝑖 ≤ 𝑖 ′.
Without loss of generality, we assume 𝑠1 ≥ 𝑠2 ≥ ... ≥ 𝑠 |𝐼 | , and thus
𝑝𝑖 = 𝑝𝑖 .

Agents’ Report. We assume agents truthfully report the signals
they obtain from the application abstraction conditioned on their
effort levels. Further discussion will be provided in Appendix B.
And we denote the agent 𝑖’s report on task 𝑗 as 𝑟𝑖 𝑗 ∈ Σ.

Report quality. Given an instance, we can define the quality of
an agent’s report. The quality function 𝑄 for one report is a deter-
ministic loss function:

(Quality Function) 𝑄 : Σ × GT → R

Agent 𝑖’s overall report quality 𝑞𝑖 is defined as the average of his
reports’ qualities, i.e. 𝑞𝑖 =

∑
𝑗 | (𝑖, 𝑗) ∈𝐺 𝑄 (𝑟𝑖 𝑗 , 𝑔 𝑗 ). We denote the vec-

tor of all the agents’ qualities as q = [𝑞𝑖 ]𝑖∈𝐼 . Note that the report
quality is not a component of an information elicitation context.

Figure 2: An Agent’s Perspective of an Information Elicita-
tion Context

Equilibrium. We then define an equilibrium in the information
elicitation context.

Definition 2.3 (SymmetRic local eilibRium). Given IECwhere
all the agents exert effort 𝑒𝑖 = 𝜉 and

∑
𝑖∈𝐼 𝑝𝑖 ≥ |𝐼 | · 𝑐 (𝜉) (Individual

Rationality is satisfied), we say it is a symmetric local equilibrium if
the derivative of every agent’s utility is 0, i.e.

𝜕

𝜕𝑒𝑖
𝑢 (𝑒𝑖 , 𝑒−𝑖 = 𝜉) |𝑒𝑖=𝜉 = 0

Note that, at this equilibrium, 𝜕
𝜕𝑒𝑖
𝑢 (𝑒𝑖 , 𝑒−𝑖 = 𝜉) |𝑒𝑖=𝜉 = 0 is a

necessary condition for 𝜉 being a Nash equilibrium. Zhang and
Schoenebeck [29] show empirical evidence that local equilibrium
is very likely to be Nash equilibrium in the model we mainly dis-
cuss in our paper. In the rest of our paper, our discussion will focus
on this equilibrium if there’s no further explanation.

2.2 Motivational Proficiency
The motivational proficiency of a component (a mechanism, a per-
formance measurement, or a payment scheme) within an informa-
tion elicitation context 𝐼𝐸𝐶 represents its ability to incentivize ef-
fort. To quantify it, we fix all the other components of the 𝐼𝐸𝐶 and
quantify the expected total payment for eliciting a fixed effort level
at the equilibrium (Definition 2.3), lower expected total payment
implies higher motivational proficiency.

Definition 2.4 (Motivational pRoficiency). We say the mo-
tivational proficiency of a component (𝑀𝑒𝑐ℎ, 𝑀 , or 𝑃 ) within infor-
mation elicitation context 𝐼𝐸𝐶 where all the agents exert effort level
𝜉 is higher, if and only if applying the component in 𝐼𝐸𝐶 leads to a
lower expected total payment needed to realize the symmetric local
equilibrium (Definition 2.3) at effort level 𝜉 .

As we discussed in the introduction, Zhang and Schoenebeck
[29] show that tournament payment schemes have higher moti-
vational proficiency compared to linear payment schemes in cer-
tain settings, where limited liability is needed. Therefore, in the
following discussion, wewill focus on themotivational proficiency
of performance measurements in information elicitation contexts
with a tournament payment scheme. In Section 5, we quantify the

3
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total payment in an information elicitation context with tourna-
ment payment. A simple example (Example A) in Appendix A il-
lustrates the intuition behind many of the concepts of this paper
including how the sensitivity of a score relates to the motivational
proficiency of the corresponding mechanism.

2.3 Measure of Performance Measurements
In addition to motivational proficiency, there are other measures
of performancemeasurements, as we discussed in the introduction,
including Sensitivity [29] and Measurement Integrity [2]. We pro-
pose the general definition of a measure of performance measure-
ment𝑀 .

Definition 2.5 (MeasuRe of PeRfoRmanceMeasuRement). A
measure 𝑓 of performance measurement 𝑀 within information elic-
itation context 𝐼𝐸𝐶 maps the 𝐼𝐸𝐶 with 𝑀 to a real number, denoted
as 𝑓 (𝐼𝐸𝐶 ← 𝑀) ∈ R, where the leftarrow means we apply 𝑀 in the
information elicitation context 𝐼𝐸𝐶 .

We then show the two examples of measure 𝑓 , Sensitivity [29]
and Measurement Integrity [2].

Sensitivity. Zhang and Schoenebeck [29] propose the Sensitiv-
ity as a proxy of the motivational proficiency of a performance
measurement. They show that the motivational proficiency highly
depends on the Sensitivity (Definition 2.6, Lemma 2.7), which mea-
sures how an agent’s performance score changes when he deviates
from the equilibrium effort level.

Definition 2.6 (Sensitivity). When all other agents exert effort
𝜉 , we denote the mean of agent 𝑖’s score as 𝜇𝑠 (𝑒𝑖 ), and the standard
deviation as 𝜎𝑠 (𝑒𝑖 ). Then the Sensitivity of a performance measure-
ment within an information elicitation context 𝐼𝐸𝐶 at equilibrium
effort level 𝜉 is defined as

Sensitivity(𝐼𝐸𝐶 ← 𝑀) = 𝛿 (𝜉) =
𝜕
𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉
𝜎𝑠 (𝜉)

Lemma 2.7. When all other agents exert effort 𝜉 , we denote the
mean of agent 𝑖’s score as 𝜇𝑠 (𝑒𝑖 ), and the standard deviation as𝜎𝑠 (𝑒𝑖 ).
If the agent 𝑖’ score 𝑠𝑖 follows a normal distribution𝑁 (𝜇𝑠 (𝑒𝑖 ), 𝜎𝑠 (𝑒𝑖 )2),
the expected total payment to elicit 𝜉 effort will (weakly) decrease in
the Sensitivity 𝛿 (𝜉) in a specific information elicitation context with
any tournament payment scheme.

Measurement Integrity. To measure the ex-post fairness of a per-
formance measurement, Burrell and Schoenebeck [2] propose the
Measurement Integrity, which is defined as the expected correla-
tion between the quality of the agents’ reports and their perfor-
mance scores.

Definition 2.8 (MeasuRement IntegRity). Formally, the Mea-
surement Integrity of a performance measurement 𝑀 with respect
to a quality function 𝑄 and a correlation function corr, within an
information elicitation context 𝐼𝐸𝐶 is

MI
𝑄,corr

(𝐼𝐸𝐶 ← 𝑀) = E𝐼𝐸𝐶 [corr (s, q)]

2.4 Utilizing Spot-checking as Reference: Spot
Check Equivalence

Even though we have the measures of performance measurements,
there is still a need for an interpretablemetric.Therefore, we utilize
the checking ratio of the spot-checking performance measurement
with an equal value of 𝑓 measure as a reference.

Firstly, we adopt the definition of spot-checking performance
measurement from Gao et al. [7], and assume it can access the
ground truth, thus, we call it idealized spot-checking.

Definition 2.9 (Spot-checKing peRfoRmance measuRement
(idealized)). A spot-checking performance measurement is denoted
as a tuple 𝑆𝐶 := (𝑋, 𝑆,𝐶), which checks 𝑋 percent of all the tasks
u.a.r.; then scores the agent 𝑖 with 𝑆 (𝑟𝑖 𝑗 , 𝑔 𝑗 ) for each checked task 𝑗 ,
and score 𝐶 ∈ R for each the unchecked tasks.

Intuitively, a higher checking ratio leads to less noise, so the
high effort is easier to notice, which is beneficial for both moti-
vational proficiency and ex-post fairness. Thus, we can use the
equivalent spot-checking ratio as a metric for both motivational
proficiency and ex-post fairness of a performance measurement.

Formally, for any measure of performance measurements 𝑓 , we
can define the Spot Check Equivalence as follows.

Definition 2.10 (SpotChecK Eivalence). For a performance
measurement 𝑀 within an information elicitation context 𝐼𝐸𝐶 =
(𝐴𝑔𝑒𝑛𝑡,𝐴𝑝𝑝,𝑀𝑒𝑐ℎ), at the symmetric local equilibrium e = 𝜉 , we
define the Spot Check Equivalence 𝑆𝐶𝐸 of 𝑀 , with respect to a spot-
checking mechanism 𝑆𝐶 as

𝑆𝐶𝐸 (𝐼𝐸𝐶 ← 𝑀) = sup𝑋 {𝑓 (𝐼𝐸𝐶 ← 𝑀) ≥ 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋, 𝑆,𝐶))}

In our following discussion, to make the spot-checking mech-
anism 𝑆𝐶 (𝑋, 𝑆,𝐶) non-trivial1, we use a quality function to score
the agents for checked tasks, i.e. 𝑆 = 𝑄 . And since we will apply
a payment scheme after the performance measurement, the value
of the constant score 𝐶 for unchecked tasks does not matter, thus,
we set 𝐶 = 0. We then use 𝑆𝐶 (𝑋 ) to denote 𝑆𝐶 (𝑋, 𝑆 = 𝑄,𝐶 = 0).

In the next section, we will theoretically prove the unification
of Sensitivity and Measurement Integrity in certain settings, and
consequently, we can show that the Spot Check Equivalence based
on the Sensitivity or Measurement Integrity can be used as an in-
terpretable metric for the motivation proficiency of an informa-
tion elicitation performance measurement. We will showmore em-
pirical evidence in our agent-based model simulations (Section 5)
when relaxing the theoretical assumptions.

3 UNIFICATION OF SENSITIVITY AND
MEASUREMENT INTEGRITY

In this section, we formally prove that the Spot Check Equiva-
lence based on Sensitivity or Measurement Integrity can be used
as a proxy for Spot Check Equivalence based on motivational pro-
ficiency in certain settings. Given that computing these three mea-
sures has different requirements, the unification allows us to com-
pute Spot Check Equivalence and consequently, measuring moti-
vational proficiency in more scenarios.

1An example of trivial spot-checking mechanism may be 𝑆 (𝑟𝑖 𝑗 , 𝑔𝑗 ) ≡ 0 and𝐶 ≡ 0.
4
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To show this, we formally propose and prove the unification of
Measurement Integrity and Sensitivity in our main theorem (Theo-
rem 3.4). Recall that Zhang and Schoenebeck [29] have shown that,
within certain settings, high Sensitivity leads to low expected to-
tal payment (Lemma 2.7) when applying a tournament payment
scheme. Combining them, we can have the Spot Check Equiva-
lence based on motivational proficiency, Sensitivity, and Measure-
ment Integrity are equal.

Figure 3: Theoretical Analysis Overview

Since the Sensitivity relies on the distribution of the performance
score, we make the following assumptions about the distributions
of the quantities in our model. We will further discuss the reason-
ability of the assumptions in Appendix C.

Assumption 3.1 (The Gaussian assumption foR the al-
ity). Given effort level 𝑒𝑖 , the quality 𝑞𝑖 follows a normal distribu-
tion 𝑁 (𝑒𝑖 , 𝜎𝑞 (𝑒𝑖 )2). And we further assume that 𝜎 ′𝑞 (𝑒𝑖 ) << 𝜎𝑞 (𝑒𝑖 ).

Assumption 3.2 (The Gaussian assumption foR the scoRe).
Given the report quality 𝑞𝑖 , the score 𝑠𝑖 follows a normal distribution
𝑁 (𝜇𝑠 |𝑞 (𝑞𝑖 ), 𝜎𝑠 |𝑞 (𝑞𝑖 )2).

Assumption 3.3 (The independent assumption foR scoRe).
When all agents have the same effort level 𝑒𝑖 = 𝜉 and the number
of agents |𝐼 | goes to infinity, the agents’ performance scores are inde-
pendent.

TheoRem 3.4 (Main TheoRem). For a given performance mea-
surement𝑀 within an information elicitation context 𝐼𝐸𝐶 where ev-
ery agent exert effort level 𝜉 , when Assumption 3.1 3.2 and 3.3 are sat-
isfied, there exists a linear bijection between theMI𝑄,corr (𝐼𝐸𝐶 ← 𝑀)
and the Sensitivity 𝛿 (𝜉), where corr is the sample Pearson correlation
coefficient and the number of agents goes to infinity.

Note that our main theorem (Theorem 3.4) relies on Assump-
tion 3.1, 3.2, and 3.3, thus, it is important to examine whether the
unification of motivational proficiency, Sensitivity, and Measure-
ment Integrity is still true with real scores calculated by various
performance measurements. In the section 5, we will demonstrate
some positive evidence from our agent-based model experiment,
where Assumption 3.1, 3.2, and 3.3 are relaxed.

4 COMPUTE SPOT CHECK EQUIVALENCE
Given the unification of Sensitivity and Measurement Integrity, if
we can compute the Sensitivity or Measurement Integrity of a per-
formance measurement, we can get the Spot Check Equivalence
respectively, and consequently, we can get the interpretable met-
ric for motivational proficiency.

If the measure 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋 )) is monotonic, we can use a
binary search algorithm (Algorithm 2 in Appendix D) to compute
the Spot Check Equivalence.

4.1 Computation with Ground Truth
We first propose a workflow to compute the Spot Check Equiva-
lence with the ground truth of the tasks. The Spot Check Equiv-
alence is like accuracy, recall, and F1 score in machine learning,
which can only be calculated on training or testing datasets rather
than real applications. Similarly, it is reasonable to create datasets
to evaluate the information elicitation performancemeasurements,
get a good sense of their motivational proficiency, and then decide
which performance measurement to apply in real applications.

With the ground truth of the tasks, we can calculate the quality
of the reports, and then, use the correlation between the agents’
scores and qualities to estimate the measurement integrity of the
performance measurement𝑀 and 𝑆𝐶 (𝑋 ).

Intuitively, as more tasks are checked, the score 𝑠𝑖 will be more
correlated to the quality 𝑞𝑖 . Our agent-based model experiment
also shows that theMeasurement Integritymonotonically increases
with the spot-checking ratio (Section 5.2). Therefore, we can apply
Algorithm 2 to estimate the Spot Check Equivalence based onMea-
surement Integrity.

4.2 Computation without ground truth
Considering the current lack of information elicitation dataset, we
propose another method to estimate the Spot Check Equivalence
without the ground truth.

Recall the definition of Sensitivity (Definition 2.6), both the de-
rivative of the performance score 𝜕

𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉 and the standard

deviation 𝜎𝑠 (𝜉) do not require access to the ground truth.The stan-
dard deviation 𝜎𝑠 (𝜉) can be estimated by the standard deviation of
{𝑠𝑖 } given that all the agents are homogeneous. However, in real
data, to estimate 𝜕

𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉 is tricky because the score after

deviating from 𝜉 is not accessible.
We adopt the idea of bootstrap sampling: we randomly select

an agent 𝑖 , and if we know how the effort impacts the report, we
can randomly manipulate his report and compute the difference
between his scores before and after the manipulation. For example,
if decreasing the effort brings uniform noise, we get the following
algorithm.

In Section 5, we present evidence demonstrating theAlgorithm 1
works in our agent-based model simulation.

5 EFFECTIVENESS OF THE SPOT CHECK
EQUIVALENCE: AGENT-BASED MODEL
EXPERIMENT

In this section, we present the results of agent-based model (ABM)
experiments to evaluate the effectiveness of the Spot Check Equiva-
lence based onMeasurement Integrity and Sensitivity inmeasuring
the motivational proficiency, without the assumptions we made
in our theoretical proof. We then further compare different peer
prediction performance measurements with spot-checking perfor-
mance measurements in different information elicitation contexts.
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Algorithm 1: Estimate SCE without Ground Truth
Input: Information Elicitation Context 𝐼𝐸𝐶 , Performance

Measurement𝑀 , Iteration Times 𝑇
Output: Spot Check Equivalence 𝑆𝐶𝐸
Function Estimate Δ𝜇 (𝐼𝐸𝐶 ← 𝑀):

Δ𝜇 = 0
for 𝑡 = 1 to 𝑇 do

Choose 𝑖 ∈ 𝐼 u.a.r.
Compute score 𝑠𝑖 with𝑀
for (𝑖, 𝑗) ∈ G do

if random(0, 1) > 𝜀 then
Choose 𝑟𝑖 𝑗 ∈ GT u.a.r.

end
end
Compute score 𝑠 ′𝑖 with𝑀
Δ𝜇 = Δ𝜇 + (𝑠 ′𝑖 − 𝑠𝑖 )/𝑇

end
return Δ𝜇

𝑆𝐶𝐸 = BinarySearchSCE(𝑀, 𝑓 = Δ𝜇/𝜎𝑠)

5.1 Model Setup
We first briefly introduce our agent-based model setup. The more
detailed experiment setup will be discussed in Appendix E. Accord-
ing to the definition of the information elicitation context in Sec-
tion 2, our agent-based model contains the following components:

Agents. We consider a population of |𝐼 | = 50 agents. Each agent
𝑖 has an effort level 𝑒𝑖 = 𝜉 ∈ [0, 1] with an associated cost function
𝑐 (𝑒𝑖 ) = 𝑒2𝑖 .

Data-generating Process (for Application Instance). We consider
a context with |𝐽 | = 500 tasks. Each agent is assigned to 50 tasks,
while each task is assigned to 5 agents.

We adopt a generalizedDawid-Skenemodel from previouswork
[29].The ground truth𝑔 𝑗 ∈ GT of task 𝑗 is independently sampled
from a discrete prior distribution 𝜔 learned from a dataset of a
crowdsourcing task on Amazon Mechanical Turk [23, 29], where
GT is a finite set including all possible ground truths.

The agent 𝑖 will receive a signal 𝑜𝑖 𝑗 ∈ Σ on task 𝑗 given his
effort level and the task’s ground truth. In our experiment, we as-
sume that Σ = GT . Then, we can define two |GT | × |Σ| confusion
matrices, Γ𝑤𝑜𝑟𝑘 and Γ𝑠ℎ𝑖𝑟𝑘 .The (𝑟𝑜𝑤, 𝑐𝑜𝑙) entry of Γ𝑤𝑜𝑟𝑘 and Γ𝑠ℎ𝑖𝑟𝑘
represents the probability of getting the 𝑟𝑜𝑤-th signal conditioned
on the 𝑐𝑜𝑙-th ground truth when the agent exerts effort level 1 and
0 respectively. When the agent 𝑖 exert 𝑒𝑖 effort, the confusion ma-
trix is

Γ𝑖 = 𝑒𝑖 ∗ Γ𝑤𝑜𝑟𝑘 + (1 − 𝑒𝑖 ) ∗ Γ𝑠ℎ𝑖𝑟𝑘
where the confusion matrix Γ𝑤𝑜𝑟𝑘 is also learned from the above
dataset [23, 29], and we set Γ𝑠ℎ𝑖𝑟𝑘 as a matrix representing a uni-
form distribution.

Performance Measurement. We implement several peer predic-
tion mechanisms, including Output Agreement (OA) [24–26], Peer
Truth Serum (PTS) [6], Correlated Agreement (CA) [22], 𝑓 -Mutual

Information (𝑓 -MI) [15, 16], and Determinant-based Mutual Infor-
mation (DMI)2 [12], which yield different Spot Check Equivalences
within the above information elicitation context.

Payment Scheme. We now introduce the tournament Payment
scheme we use in our simulation.

Definition 5.1 (BoRda-count payment scheme.). The very in-
tuitive way to pay an agent according to his ranking is to pay him
how many agents he beats. When there’s a draw, we split the payoff
evenly. Formally, we have

𝑝𝑖 = 𝐶 · #beaten = 𝐶
∑

𝑖′∈ |𝐼 |,𝑖′≠𝑖

(
1[𝑠𝑖 > 𝑠𝑖′] +

1
2
1[𝑠𝑖 = 𝑠𝑖′]

)
where 𝐶 is a constant parameter and the total payment is 𝐶 ×

( |𝐼 |
2

)
.

To calculate the total payment3 in the Borda-count scheme for
a specific performance measurement𝑀 for the equilibrium where
every agent exerts 𝑒𝑖 = 𝜉 effort, we set the parameter 𝐶 as

𝐶 =
𝜕
𝜕𝑒𝑖
E[#beaten|𝑒𝑖 , 𝑒−𝑖 = 𝜉] |𝑒𝑖=𝜉

𝜕
𝜕𝑒𝑖
𝑐 (𝑒𝑖 ) |𝑒𝑖=𝜉

Note that to guarantee Individual Rationality (The agents’ ex-
pected utility is non-negative), when the calculated optimal pay-
ment is less than the total cost of all the agents, we set the total
payment as the total cost. We assume that if a payment scheme
can incentivize effort level 𝜉 using the optimal total payment, it can
also incentivize the same effort with any greater total payment.

5.2 Measurement-Integrity-based Spot Check
Equivalence.

We examine whether the Spot Check Equivalence based on Mea-
surement Integrity can indicate a performance measurement’s mo-
tivational proficiency. Recall that the motivational proficiency of
a performance measurement could be quantified by the amount of
the expected total payment we need to elicit a fixed effort level in
an information elicitation context. Thus, in the experiment exam-
ining the effectiveness, we mainly investigate the relationship be-
tween the Measurement Integrity and the expected total payment.

For several fixed effort levels, we enumerate the performance
measurements and estimate their Measurement Integrity and the
total payment needed to elicit that equilibrium with the Borda-
count payment scheme by iterating the data-generating process
5000 times.

Recall that to satisfy Individual Rationality, the total payment
needs to be at least the agents’ cost to exert the effort. Since the
minimal payment is the same for all performance measurements
when the effort level is the same, we visualize that as a horizontal
line in our result.

With the results in Figure 4, we can observe that:
(1) The Measurement Integrity monotonically increases with

the spot-checking ratio.

2Note that even though DMI demonstrates impressive theoretical properties, it per-
form badly in our simulation due to the considerable noise of its score (Figure 6).Thus,
we do not show it in the other figures.
3Note that the total payment of Borda-count is deterministic, thus, we use “total pay-
ment” in the rest of this section instead of “expected total payment”.
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(a) effort level 0.5 (b) effort level 0.6

(c) effort level 0.7 (d) effort level 0.8

Figure 4: Measurement Integrity v.s Total Payment of Borda-
count payment scheme: the 𝑥-axis is the Measurement In-
tegrity and the 𝑦-axis is the total payment needed to elicit
that equilibrium within the tournament payment scheme.
The horizontal line shows the agents’ cost to exert the effort
level, which implies the minimal payment to satisfy the In-
dividual Rationality.

(2) The Measurement Integrity and the total payment are sig-
nificantly negatively correlated.

This implies that, at a symmetric equilibrium, if a performance
measurement𝑀 hasMeasurement Integrity equal to spot-checking
𝑆𝐶𝐸%, then it has a similar motivational proficiency, i.e. similar
total payment, to that spot-checking performance measurement
within a tournament payment scheme. Therefore, a higher Spot
Check Equivalence indicates higher motivational proficiency.

Note that, even if considering IR, the motivational proficiency
is still monotonically increasing with the Spot Check Equivalence,
however, when IR is binding, more spot-checking does not further
decrease the total payment.

5.2.1 Measurement Integrity is a computationally efficient proxy.
In addition, we find that the Measurement Integrity converges sig-
nificantly faster than the total payment.The detailed result is demon-
strated in Appendix E.3 and Figure 8.This suggests that even when
it’s possible to compute the expected total payment (e.g. with agent-
basedmodel simulation), utilizingMeasurement Integrity as a proxy
offers better computational efficiency.

5.3 Sensitivity-based Spot Check Equivalence
Similarly, we then examine the effectiveness of the Spot Check
Equivalence based on Sensitivity as a metric of motivational profi-
ciency, when there’s no ground truth. We estimate the Δ𝜇/𝜎 (pro-
portional to the Sensitivity) of each performance measurement ac-
cording to Algorithm 1 instead of the Measurement Integrity. We
then compare the Δ𝜇/𝜎 with the total payment estimated in the

same way as the previous subsection. We then show the results in
Figure 5.

(a) effort level 0.5 (b) effort level 0.6

(c) effort level 0.7 (d) effort level 0.8

Figure 5: Sensitivity v.s Total Payment of Borda-count pay-
ment scheme: the𝑥-axis is theΔ𝜇/𝜎 and the𝑦-axis is the total
payment needed to elicit that equilibriumwithin the tourna-
ment payment scheme.Thehorizontal line shows the agents’
cost to exert the effort level, which implies theminimal pay-
ment to satisfy the Individual Rationality.

Similarly, With the results in Figure 5, we can observe that: (1)
The Sensitivity monotonically increases with the spot-checking ra-
tio. (2) The Sensitivity and the total payment are significantly neg-
atively correlated. This observation implies that the Spot Check
Equivalence based on Sensitivity can be used as a metric of moti-
vational proficiency

5.4 Spot Check Equivalence of Peer Prediction
5.4.1 Peer Prediction works better to elicit high effort. We then
apply the workflow in our agent-based model experiment to fur-
ther compare the Spot Check Equivalence of different performance
measurements in various contexts. Previous works [2, 7, 29] have
shown evidence in very specific contexts. To further study the mo-
tivational proficiency of the performance measurements, we calcu-
late the Spot Check Equivalence in various information elicitation
contexts.

We then enumerate the effort levels and calculate the Spot Check
Equivalence via the Measurement Integrity of each performance
measurement (Figure 6).

We find that when eliciting a low-effort equilibrium the Spot-
Checking Equivalence of peer prediction performance metrics is
low, however, the relative motivational proficiency of peer predic-
tion increases fast. That is because a peer prediction performance
measurement scores an agent according to the correlation between
his report and his peers’, when every agent exerts a low effort, his
peers’ reports are noisy so the score is quite noisy.
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Figure 6: Spot Check Equivalence on different effort levels

5.4.2 Mutual-information-basedmechanismswork better when #tasks
per agent increases. As the number of tasks per agent increases,
the SCE of OA and PTS remains the same, while for the mutual-
information-based mechanisms (CA, 𝑓 -MI), the Spot Check Equiv-
alence significantly increases. As the #tasks per agent increases,
the estimation of the joint distribution of two agents’ reports will
be more accurate, which leads to a more accurate score.

(a) effort level 0.5 (b) effort level 0.7

(c) effort level 0.9

Figure 7: #tasks per agent vs. the Spot Check Equivalence
based onMeasurement Integrity: the 𝑥-axis is the number of
tasks assigned to each agent and the𝑦-axis is the Spot Check
Equivalence calculated by Measurement Integrity.

6 DOES PEER PREDICTION MAKE THINGS
WORSE?

We now delve into the results of Gao et al. [7], especially their
assertion that “peer prediction makes things worse”, a claim which
contradicts other studies. Aswe discussed in Section 1, their results
rely on some restrictive assumptions.

First, they assume that payments are additive across tasks. In
contrast, Zhang and Schoenebeck [29] uses tournaments, which
are not linear and typically have much better motivational profi-
ciency.

Second, they assume a fixed payment function 𝑓 for each task.
However, as we have seen, a decrease in the spot-checking ratio
can be offset by scaling payments.

Finally, themodel of Gao et al. [7] assumes ”cheap signals”, which
are signals that agents can coordinate on more easily than the sig-
nal the mechanism really desires. For example, when peer review-
ing an article, it is much easier to assess quality from the author
list than by meticulously reading the article to asses the quality
of its argument. By reporting this “cheap signal” instead of the in-
formation desired by the mechanism agents can coordinate more
with less effort and defeat certain peer-prediction mechanisms.

In response to this analysis, subsequent research has proposed
peer-prediction mechanisms that aim to be robust against “cheap”
signals Kong and Schoenebeck [14]. The essential idea is to ask
the agents to additionally provide the cheap signals, and then pay
them for coordination in addition to these signals.

A more thorough explanation is provided in Appendix F.

7 RELATED WORK
Besides the theoretical literature discussing peer prediction mech-
anisms, as highlighted in Section 5, there are empirical studies that
validate these mechanisms. For instance, Radanovic et al. [21] ex-
perimentally tested their peer prediction mechanism in both peer
grading and crowdsourcing scenarios to validate its theoretical prop-
erties. Similarly, Shnayder et al. [22] employed peer grading data
from the edX MOOC platform to assess the performance of their
proposed mechanisms. Spot checking in peer grading scenarios
has already been empirically examined in works such as [27, 28].
Additionally, Goel and Faltings [9] study combining peer predic-
tion and spot-checking, and introduce the Deep Bayesian Trust
Mechanism that utilizes peer reports to reduce the need for spot-
checking.

Furthermore, in forecasting contexts where agents are rewarded
afterward based on the agreement between their forecasts and the
outcomes, i.e. the ground truth is accessible and free, Hartline et al.
[10], Li et al. [18], Neyman et al. [20] study how to optimize proper
scoring rules to incentivize effort, and consequently, elicit high-
quality information. These works suggest a possibility of optimiz-
ing the spot-checking mechanisms by scoring the checked tasks
according to the optimal proper score rules, which indicates a fu-
ture direction of our research.

8 CONCLUSION AND DISCUSSION
In summary, our research provides a methodology for understand-
ing the performance, especially motivational proficiency, of infor-
mation elicitation mechanisms in various contexts, the Spot Check
Equivalence, and consequently offers valuable insights for the de-
sign of effective and efficient incentive mechanisms that promote
the acquisition of high-quality information.

Future research might be conducted to investigate motivational
proficiency in a non-monetary setting, e.g. in peer grading, we care
about how to elicit agents’ effort with the bounded individual pay-
off, since the students’ grades could only be A, B, C, F, etc. Another
future direction might be to study motivational proficiency in a
more sophisticated model where the agents have heterogeneous
cost functions.
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A ILLUSTRATIVE EXAMPLE
In this section, we provide a simple example that illustrates the
calculation of expected total payment in an information elicitation
context with a winner-take-all tournament payment scheme. We
then demonstrate the Sensitivity and the Measurement Integrity
in this example.

Example A.1. Consider a simple case where there are two agents
(1 and 2) working on a large number of tasks. Each agent 𝑖 ∈ {1, 2}
can choose to exert a non-negative effort level 𝑒𝑖 , which incurs a cost
𝑐 (𝑒𝑖 ). And we use a quadratic cost function, 𝑐 (𝑒𝑖 ) = 𝑒2𝑖 , which is one
of the simplest functions satisfying all properties of a cost function.

Since the signals are independent conditioning on an agent’s ef-
fort level and the spot-checking performance measurement checks
each task u.a.r., according to the central limit theorem, we use nor-
mal distributions to approximate the quality and performance score:
Agent 𝑖’s report quality is 𝑞𝑖 = 𝑁 (𝑒𝑖 , 1), and the performance score
is 𝑠𝑖 = 𝑁 (𝑞𝑖 , 𝜎2), where 𝜎 monotonically decreasing with the spot-
checking ratio.

The expected utility of agent 𝑖 is𝑢𝑖 (𝑒𝑖 ) = Pr[𝑖 wins the tournament]·
payoff − 𝑐 (𝑒𝑖 )

To achieve the symmetric equilibrium at effort level 𝜉 , we let the
derivative of agent 𝑖’s expected utility at 𝑒𝑖 = 𝜉 equal to 0.

𝜕

𝜕𝜉
𝑢𝑖 (𝜉) = 0⇒ payoff = 𝑝𝑑 𝑓𝑁 (𝜉,2𝜎2+2) (𝜉)

where 𝑝𝑑 𝑓𝑁 (𝜉,2𝜎2+2) is the probability density function of normal
distribution 𝑁 (𝜉, 2𝜎2 + 2).

In addition, we need to keep Individual Rational, i.e. the expected
utility for each agent should not be negative so that the rational
agents won’t leave our crowdsourcing. Therefore, we have that

payoff = max

(
2𝑐 (𝜉), 2𝜉

𝑝𝑑 𝑓𝑁 (𝜉,2𝜎2+2) (𝜉)

)
= max

(
2𝜉2, 4

√
𝜋 · (𝜎2 + 1) · 𝜉

)
In the above example, we can see that a higher spot-checking

ratio leads to a lower total payment when IR is not binding, and
consequently, a higher motivational proficiency.

Sensitivity in Example A.1. Recall that Zhang and Schoenebeck
[29] propose the Sensitivity, whichmeasures how sensitive the per-
formance score is to the effort change. They show that the total
payoff for eliciting effort level 𝜉 is monotonically decreasing with
Sensitivity (Lemma 2.7). Here, we show the Sensitivity 𝛿 (𝜉) in the
above example.

𝛿 (𝜉) =
𝜕
𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉
𝜎𝑠 (𝜉)

=
1

√
𝜎2 + 1

Measurement Integrity in Example A.1. In Example A.1, we can
see that the motivational proficiency highly depends on how an
agent’s performance score correlates with his report quality. In the
example, the Pearson correlation coefficient between the agent i’s
report quality and score is as follows.

𝜌 (𝑞𝑖 , 𝑠𝑖 ) =
E[𝑞𝑖 · 𝑠𝑖 ] − E[𝑞𝑖 ]E[𝑠𝑖 ]

𝜎𝑞𝑖 · 𝜎𝑠𝑖
=

1
√
𝜎2 + 1

Note that the total payment is inversely proportional to the Pear-
son correlation coefficient! And the Sensitivity has the same form
as the correlation in this example.

This example shows intuitions that the correlation between the
agents’ report qualities and scores can be a proxy for a perfor-
mance measurement’s motivational proficiency. And both the re-
port quality and score are accessible in real data.

Therefore, we employ Measurement Integrity [2] as our proxy,
which measures the expected correlation between the agents’ re-
port qualities and the performance scores in a specific model.

B DISCUSSION OF THE TRUTHFUL REPORT
ASSUMPTION.

In our Section 2, we assume that the agents will truthfully report
their signal. This assumption is reasonable when applying a lin-
ear payment scheme given the performance measurement is truth-
ful under certain settings (e.g. DG13 [4], CA mechanism [22], 𝑓 -
MI mechanism [15], DMI mechanism [12], etc). And Burrell and
Schoenebeck [2] examine such robustness with agent-based model
experiment. However, when applying a non-linear payment scheme,
e.g. winner-take-all, the agents may have incentive to strategically
report their signal, e.g. increasing the variance of their score to get
a higher probability of being the winner. Zhang and Schoenebeck
[29] propose a truthful winner-take-all payment scheme by adding
noise to the agents’ score which may hurt the incentive for effort.
However, further study needs to be conducted to study the robust-
ness of different performance measurements against strategic re-
ports with other non-linear payment schemes. This gap indicates
another potential future direction of our research.

C DETAILS IN THEORETICAL ANALYSIS
C.1 Discussion of Assumption 3.1, 3.2 and 3.3
Recall that the definition of Sensitivity relies on the distribution
of the performance score. Thus, we make the Assumption 3.1, 3.2,
and 3.3 to help us compute Sensitivity.

According to Central Limit Theorem, it is reasonable to make
the Assumption 3.1 and 3.2 when the number of agents and the
number of tasks per agent goes large. In addition, we adopt the as-
sumption that the shape of the score distribution does not change
when only deviating one agent’s effort from [29].

Assumption 3.1 (The Gaussian assumption foR the al-
ity). Given effort level 𝑒𝑖 , the quality 𝑞𝑖 follows a normal distribu-
tion 𝑁 (𝑒𝑖 , 𝜎𝑞 (𝑒𝑖 )2). And we further assume that 𝜎 ′𝑞 (𝑒𝑖 ) << 𝜎𝑞 (𝑒𝑖 ).

Assumption 3.2 (The Gaussian assumption foR the scoRe).
Given the report quality 𝑞𝑖 , the score 𝑠𝑖 follows a normal distribution
𝑁 (𝜇𝑠 |𝑞 (𝑞𝑖 ), 𝜎𝑠 |𝑞 (𝑞𝑖 )2).

Note 𝜇𝑠 |𝑞 is different from the 𝜇𝑠 in the definition of Sensitivity,
in particular,

𝜇𝑠 (𝑒) =
∫
𝑞
𝜇𝑠 |𝑞 (𝑞) Pr[𝑞 |𝑒] dq

We then discuss the Assumption 3.3. Note that different agents’
quality 𝑞𝑖 are independent. In addition, if all agents have the same
effort level 𝑒𝑖 = 𝜉 for all 𝑒𝑖 , the density of [𝑞𝑖 ]𝑖∈𝐼 will converge, as
the number of agents |𝐼 | goes to infinity. Formally, we have
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PRoposition C.1.

lim
|𝐼 |→+∞

∑
𝑖∈𝐼 1[𝑞𝑖 ≤ 𝑥]
|𝐼 | = 𝐹𝑁 (𝜉,𝜎𝑞 (𝜉)2) (𝑥) ∀𝑥

where 1[𝑞𝑖 ≤ 𝑥] is an indicator function and 𝐹𝑁 (𝜉,𝜎𝑞 (𝜉)2) (𝑥) is
the cumulative distribution function (CDF) of the normal distribu-
tion𝑁 (𝜉, 𝜎𝑞 (𝜉)2).The proof follows from the law of large numbers.

Assumption 3.3 (The independent assumption foR scoRe).
When all agents have the same effort level 𝑒𝑖 = 𝜉 and the number
of agents |𝐼 | goes to infinity, the agents’ performance scores are inde-
pendent.

Note that whenwe apply a peer-sensitive performancemeasure-
ment (e.g. peer prediction), an agent’s performance score relies on
his report quality as well as other agents’ report quality. However,
Proposition C.1 shows that the distribution of all agents’ report
quality will converge to a fixed distribution. Therefore, it is reason-
able to assume that an agent’s performance score only depends on
his only report quality and the fixed distribution, which implies
the independence (Assumption 3.3).

C.2 Proof of Theorem 3.4
TheoRem 3.4 (Main TheoRem). For a given performance mea-

surement𝑀 within an information elicitation context 𝐼𝐸𝐶 where ev-
ery agent exert effort level 𝜉 , when Assumption 3.1 3.2 and 3.3 are sat-
isfied, there exists a linear bijection between theMI𝑄,corr (𝐼𝐸𝐶 ← 𝑀)
and the Sensitivity 𝛿 (𝜉), where corr is the sample Pearson correlation
coefficient and the number of agents goes to infinity.

PRoof. Recall the definition of Measurement Integrity, we have
that

MI
𝑄,corr

(𝐼𝐸𝐶 ← 𝑀) = E𝐼𝐸𝐶 [corr (s, q)]

In the above definition, we apply the sample Pearson correlation
coefficient to corr, i.e.,

corr(s, q) = 𝑟 (s, q) =
∑
𝑖 (𝑠𝑖 − 𝑠) (𝑞𝑖 − 𝑞)√∑

𝑖 (𝑠𝑖 − 𝑠)2
√∑

𝑖 (𝑞𝑖 − 𝑞)2

where 𝑠 = 1
|𝐼 |

∑
𝑖 𝑠𝑖 (the average performance score); and analo-

gously for 𝑞.
Recall that we have the agents’ quality independent, and the per-

formance scores of the agents are independentwhen the number of
agents is large (Assumption 3.3). Thus, we can regard each agent’s
quality and performance score pair as a sample from a joint distri-
bution. In addition, the sample correlation coefficient 𝑟 is a consis-
tent estimator of the population Pearson correlation coefficient 𝜌 as
the sample size goes large, which is defined as

corr(𝑠, 𝑞) = 𝜌 (𝑠, 𝑞) = 𝐶𝑂𝑉 (𝑠, 𝑞)
𝜎𝑠 · 𝜎𝑞

where 𝑠, 𝑞 are random variables representing the score and quality
of one agent respectively.

Therefore, we will have the following proposition.

PRoposition C.2.
lim
|𝐼 |→+∞

E[𝑟 (s, q)] = 𝜌 (𝑠, 𝑞)

where 𝑠, 𝑞 are random variables representing the score and quality of
one agent respectively.

We then show that there exists a bijection between 𝜌 (𝑠, 𝑞) and
𝛿 (𝜉). Recall the definition of Sensitivity

𝛿 (𝜉) =
𝜕
𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉
𝜎𝑠 (𝜉)

We can find that there is 1
𝜎𝑠 (𝜉) in both the Sensitivity 𝛿 (𝜉) and

correlation coefficient 𝜌 (𝑠, 𝑞), so we only need to find a bijection
between 𝐶𝑂𝑉 (𝑠,𝑞)

𝜎𝑞
and 𝜕

𝜕𝑒𝑖
𝜇𝑠 (𝑒𝑖 ) |𝑒𝑖=𝜉 .

In the following discussion, since bias does not affect the corre-
lation coefficient, we can assume 𝜉 = 0 without loss of generality.

C.2.1 FromMI side. Here, every probability is conditioned on 𝑒 =
𝜉 .

𝐶𝑂𝑉 (𝑠, 𝑞) =E[𝑠 · 𝑞] − E[𝑠] · E[𝑞]

=
∫
𝑞,𝑠
𝑠 · 𝑞 · Pr[𝑠, 𝑞] ds dq (E[𝑞] = 𝜉 = 0)

=
∫
𝑞,𝑠
𝑠 · 𝑞 · Pr[𝑠 |𝑞] · 𝑃𝑟 [𝑞] ds dq

=
∫
𝑞
𝑞 · 𝑃𝑟 [𝑞]

(∫
𝑠
𝑠 · Pr[𝑠 |𝑞] ds

)
dq

=
∫
𝑞
𝑞 · 𝑃𝑟 [𝑞] · 𝜇𝑠 |𝑞 (𝑞) dq

C.2.2 From Sensitivity side.

𝜕

𝜕𝑒
𝜇𝑠 (𝑒) =

𝜕

𝜕𝑒

∫
𝑞
𝜇𝑠 |𝑞 (𝑞) Pr[𝑞 |𝑒] dq

=
∫
𝑞
𝜇𝑠 |𝑞 (𝑞)

𝜕

𝜕𝑒
Pr[𝑞 |𝑒] dq

Here, since 𝑞 follows normal distribution with mean 𝑒 and stan-
dard deviation 𝜎𝑞 , we have that

𝜕

𝜕𝑒
Pr[𝑞 |𝑒] = 𝜕

𝜕𝑒

1
√
2𝜋𝜎𝑞

exp− (𝑞 − 𝑒)
2

2𝜎𝑞 (𝑒)2

=
1

√
2𝜋𝜎𝑞 (𝑒)3

exp− (𝑞 − 𝑒)
2

2𝜎𝑞 (𝑒)2

(
(𝑞 − 𝑒) +

(𝑞 − 𝑒)2𝜎 ′𝑞 (𝑒)
𝜎𝑞 (𝑒)

)
=
1

𝜎2𝑞
· 𝑞 · Pr[𝑞 |𝑒] (Assumption 3.1)

Thus, by combining the above two equations, we will get

𝜕

𝜕𝑒
𝜇𝑠 (𝑒) =

∫
𝑞
𝜇𝑠 |𝑞 (𝑞) ·

1

𝜎2𝑞
· 𝑞 · Pr[𝑞 |𝑒] dq

=
1

𝜎2𝑞

∫
𝑞
𝑞 · 𝑃𝑟 [𝑞 |𝑒] · 𝜇𝑠 |𝑞 (𝑞) dq

Let 𝑒 = 𝜉 , we will have
11
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𝜕

𝜕𝑒
𝜇𝑠 (𝑒) =

1

𝜎2𝑞

∫
𝑞
𝑞 · 𝑃𝑟 [𝑞 |𝑒 = 𝜉] · 𝜇𝑠 |𝑞 (𝑞) dq

=
𝐶𝑂𝑉 (𝑠, 𝑞)

𝜎2𝑞

Therefore, we get the linear bijection between Sensitivity and
correlation is

𝛿 = corr(𝑠, 𝑞)/𝜎𝑞 .
□

D COMPUTE SPOT CHECK EQUIVALENCE
In this section, we present the detailed algorithm to compute the
Spot Check Equivalence when the measure 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋 )) is
monotonic with respect to 𝑋 .

Algorithm 2: Binary Search algorithm for 𝑆𝐶𝐸
Input: Information Elicitation Context 𝐼𝐸𝐶 , Performance

Measurement𝑀 , step size 𝜖
Output: Spot Check Equivalence 𝑆𝐶𝐸
Function BinarySearchSCE(𝑀, 𝑓 ):

low = 0, high = ⌊100/𝜖⌋
while low ≤ high do

mid =
⌊
low+high

2

⌋
if 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (𝑋 = mid ∗ 𝜖)) < 𝑓 (𝐼𝐸𝐶 ← 𝑀) then

ans = mid
low = mid + 1

end
else

high = mid − 1
end

end
return ans

Furthermore, a linear combination of the two spot-checking ra-
tios which has adjacent measure 𝑓 may be applied for a better ap-
proximation.

𝑆𝐶𝐸 = ans + 𝜖 · 𝑓 (𝐼𝐸𝐶 ← 𝑀) − 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (ans))
𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (ans + 𝜖)) − 𝑓 (𝐼𝐸𝐶 ← 𝑆𝐶 (ans))

E EXPERIMENT DETAILS
E.1 Agent-based Model Setup
In this subsection, we introduce our agent-based model setup. Ac-
cording to the formal definition of the information elicitation con-
text in Section 2, our agent-based model contains the following
components:

E.1.1 Agents. We consider a population of |𝐼 | = 50 agents.

Effort and Cost. Each agent 𝑖 has an effort level 𝑒𝑖 ∈ [0, 1] with
an associated cost function 𝑐 (𝑒𝑖 ) = 𝑒2𝑖 .

E.1.2 Data-generating Process (for Application Instance).

Tasks. To show the effectiveness of Spot Check Equivalence, we
consider an information elicitation applicationwith |𝐽 | = 500 tasks.
To compare the Spot Check Equivalence of different performance
measurements in various contexts, we vary |𝐽 | according to Ta-
ble 1.

Assignment graph. Thedata-generating process𝐷 will randomly
generate a bipartite graph between 𝐼 and 𝐽 : To show the effec-
tiveness of Spot Check Equivalence, each agent is assigned to 50
tasks, while each task is assigned to 5 agents. To compare the Spot
Check Equivalence of different performance measurements in var-
ious contexts, we vary the parameters according to Table 1.

# agents # tasks # tasks per agent # agents per task
50 50 5 5
50 100 10 5
50 50 × 𝐾 5 × 𝐾 5

where 𝐾 ∈ {3, 4, 5, 6, 7, 8, 9, 10}
Table 1: IEC parameter setups for ABM simulations

Ground truth and signals. For generating the ground truth and
signals, we will apply the generalized Dawid-Skene model from
previous work [5, 29], in which:

Each task 𝑗 ∈ 𝐽 has a ground truth 𝑔 𝑗 ∈ GT where GT is a
finite set including all possible ground truths.

Since GT is finite, we can use a vector to represent the prior
distribution of the ground truth 𝜔 , whose 𝑖th item represents the
probability of 𝑖th possible ground truth. For convenience, we also
denote that vector as 𝜔 .

In our experiment, we use the 𝜔 learned from a dataset of a
crowdsourcing task on Amazon Mechanical Turk [23, 29].

𝜔 = [0.19587629, 0.24054983, 0.24742268, 0.3161512]
The agent 𝑖 will receive a signal 𝑜𝑖 𝑗 ∈ Σ on task 𝑗 given his

effort level and the task’s ground truth. In our experiment, we as-
sume that Σ = GT . Then, we can define two |GT | × |Σ| confusion
matrices, Γ𝑤𝑜𝑟𝑘 and Γ𝑠ℎ𝑖𝑟𝑘 .The (𝑟𝑜𝑤, 𝑐𝑜𝑙) entry of Γ𝑤𝑜𝑟𝑘 and Γ𝑠ℎ𝑖𝑟𝑘
represents the probability of getting the 𝑟𝑜𝑤-th signal conditioned
on the 𝑐𝑜𝑙-th ground truth when the agent exerts effort level 1 and
0 respectively.

When the agent 𝑖 exert 𝑒𝑖 effort, the confusion matrix is
Γ𝑖 = 𝑒𝑖 ∗ Γ𝑤𝑜𝑟𝑘 + (1 − 𝑒𝑖 ) ∗ Γ𝑠ℎ𝑖𝑟𝑘

where the confusion matrix Γ𝑤𝑜𝑟𝑘 is also learned from the above
dataset [23, 29], and we set Γ𝑠ℎ𝑖𝑟𝑘 as a matrix representing a uni-
form distribution.

Γ𝑤𝑜𝑟𝑘 =


0.77056673 0.12157221 0.08409506 0.02376600
0.09083969 0.73511450 0.12977099 0.04427481
0.03326256 0.06157113 0.86624204 0.03892427
0.06785509 0.16388729 0.09890742 0.66935020


E.1.3 PerformanceMeasurement. Weconsider several performance
measurements 𝑀 to evaluate the effectiveness of the Spot Check
Equivalence. We implement several peer prediction mechanisms,
which yield different Spot Check Equivalences within the above
information elicitation context.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Spot Check Equivalence: an Interpretable Metric for Information Elicitation Mechanisms Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

𝑓 (𝑥) 𝑓 -divergence Notation

−𝑙𝑜𝑔(𝑥) KL-divergence KL
|𝑥 − 1| Total Variation Distance TVD
(
√
𝑥 − 1)2 Squared Hellinger 𝐻2

Table 2: 𝑓 -Mutual Information

Output Agreement (OA) [24–26]. In the OA mechanism, we pair
the agents who work on the same task, and compare their reports.
If the reports match, both agents receive a score of 1, and if they
don’t, the score is 0. One agent’s total score is the summation of
the scores on all the tasks assigned to him.

Peer Truth Serum (PTS) [6]. Similar to OA, we pair the agents
who work on the same task, and compare their reports. Instead of
scoring 1 for agreement, we score the inverse of the frequency of
the agent’s report, which means, intuitively, we reward more for
the agreement of the uncommon reports.

Correlated Agreement (CA) [22]. The CA mechanism is an ex-
tension of Dasgupta and Ghosh [4]’s mechanism for multi-signal
information elicitation. Without loss of generality, we denote the
signal (report) space as Σ = [1, 2, ..., 𝑛]. Given two agents 1 and 2,
let 𝑟1 and 𝑟2 denote the random variables of agent 1 and 2’s report
on all their tasks respectively.Then, we define an 𝑛×𝑛 delta matrix
Δ as

Δ𝑟𝑜𝑤,𝑐𝑜𝑙 = Pr[𝑟1 = 𝑟𝑜𝑤, 𝑟2 = 𝑐𝑜𝑙] − Pr[𝑟1 = 𝑟𝑜𝑤] Pr[𝑟2 = 𝑐𝑜𝑙]

We score the agent according to the agreement on positively
correlated reports, i.e. we score agent 1 and agent 2 the following
value. ∑

𝑟𝑜𝑤,𝑐𝑜𝑙

Δ𝑟𝑜𝑤,𝑐𝑜𝑙 · 1[Δ𝑟𝑜𝑤,𝑐𝑜𝑙 > 0]

𝑓 -Mutual Information (𝑓 -MI) [15, 16]. The 𝑓 -MImechanism scores
the agent with the mutual information between his and his peer’s
reports, the intuition is that any manipulation on the two random
variables will decrease the mutual information between them. We
define the 𝑓 -Mutual Information between agent 1 and 2’s report
as:

𝑓 -MI =
∑

𝑟𝑜𝑤,𝑐𝑜𝑙

Pr[𝑟1 = 𝑟𝑜𝑤, 𝑟2 = 𝑐𝑜𝑙] 𝑓
(
Pr[𝑟1 = 𝑟𝑜𝑤] Pr[𝑟2 = 𝑐𝑜𝑙]
Pr[𝑟1 = 𝑟𝑜𝑤, 𝑟2 = 𝑐𝑜𝑙]

)
where 𝑓 is a convex function and 𝑓 (1) = 0. For example, when
we take 𝑓 (𝑥) = − log(𝑥), then 𝑓 -MI is the Shannon Mutual Infor-
mation. Note that the 𝑓 -Mutual Information could be regarded as
the 𝑓 -divergence (𝐷 𝑓 =

∑
𝑥 𝑝 (𝑥) 𝑓

(
𝑞 (𝑥)
𝑝 (𝑥)

)
) [1] of the joint distribu-

tion and the product of the marginal distributions of the agents’
reports.

We then list all the 𝑓 -Mutual Information wewill use in our sim-
ulations in Table 2. Note that when applying a 𝑇𝑉𝐷-divergence,
the 𝑓 -MI mechanism is almost equivalent to the CA mechanism,
thus, we only show the result of the CA mechanism in our simula-
tions.

Determinant-basedMutual Information (DMI) [12]. Kong [12] gen-
eralize the ShannonMutual Information to the Determinant-based
Mutual Information (DMI). Let an 𝑛 × 𝑛 matrix U𝑋,𝑌 denote the
joint distribution of two random variables, the DMI of these two
random variables are defined as 𝐷𝑀𝐼 (𝑋 ;𝑌 ) = | det(U𝑋,𝑌 ) |.

Then, given two agents 1 and 2, the score of the DMImechanism
is defined as the product of the DMI of the two agents’ report on
two disjoint partitions of all the tasks. Specifically, we divide all
the common tasks of 1 and 2 into two parts, calculate their DMI in
these two parts respectively, and score each agent with the product
of the two DMI.

However, even though DMI demonstrates impressive theoreti-
cal property, it does not perform well in our simulation due to the
considerable noise of its performance score (Figure 6).

Spot-checking. In addition, to calculate the Spot Check Equiva-
lence, we also implement a spot-checking performance measure-
ment (Definition 2.9) as a benchmark, in which we use accuracy
as the quality function, i.e. 𝑄 (𝑟, 𝑔) = 1[𝑟 = 𝑔]. We denote this
spot-checking performance measurement as 𝑆𝐶𝐴𝐶𝐶 .

E.1.4 Payment Scheme. We now introduce the tournament Pay-
ment scheme we use in our simulation.

Borda-count payment scheme. The very intuitive way to pay an
agent according to his ranking is to pay him how many agents he
beats. When there’s a draw, we split the payoff evenly. Formally,
we have

𝑝𝑖 = 𝐶 · #beaten = 𝐶
∑

𝑖′∈ |𝐼 |,𝑖′≠𝑖

(
1[𝑠𝑖 > 𝑠𝑖′] +

1
2
1[𝑠𝑖 = 𝑠𝑖′]

)
where𝐶 is a constant parameter and the total payment is𝐶 ×

( |𝐼 |
2

)
.

To calculate the total payment4 in the Borda-count scheme for
a specific performance measurement𝑀 for the equilibrium where
every agent exerts 𝑒𝑖 = 𝜉 effort. We should set the parameter 𝐶 as

𝐶 =
𝜕
𝜕𝑒𝑖
E[#beaten|𝑒𝑖 , 𝑒−𝑖 = 𝜉] |𝑒𝑖=𝜉

𝜕
𝜕𝑒𝑖
𝑐 (𝑒𝑖 ) |𝑒𝑖=𝜉

Note that to guarantee Individual Rationality (The agents’ ex-
pected utility is non-negative), when the calculated optimal pay-
ment is less than the total cost of all the agents, we set the total
payment as the total cost. We assume that if a payment scheme
can incentivize effort level 𝜉 using the optimal payment, it can also
incentivize the same effort when the total payment is greater than
the optimal payment.

E.2 Method
E.2.1 Simulation forMeasurement-Integrity-based Spot Check Equiv-
alence. To show the effectiveness of the Measurement-Integrity-
based Spot Check Equivalence, we can plug different performance
measurements in the information elicitation context described in
the previous subsection, then calculate the Measurement Integrity
(which implies the Spot Check Equivalence) and the motivational

4Note that the total payment of Borda-count is deterministic, thus, we use “total pay-
ment” in the rest of this section instead of “expected total payment”.
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proficiency (i.e. the total payment) respectively, and finally, ob-
serve the correlation between the Spot Check Equivalence and the
motivational proficiency.

For a given information elicitation context and a target equi-
librium effort level 𝜉 , we propose the following workflow for one
sample:

(1) Set all the agents’ effort levels at 𝜉 .
(a) Generate a sample for the application abstraction ac-

cording to the data-generating process 𝐷 .
(b) Use the performance measurement 𝑀 to produce all

the agents’ scores s.
(c) Use the quality function 𝑄 to calculate the quality of

the agents’ report, and then calculate the Pearson cor-
relation coefficient.

(2) Deviate agent 1’s effort level to 𝑒1 = 𝜉 − 𝜀
(a) Generate another sample for the application abstrac-

tion according to the data-generating process 𝐷 .
(b) Use the performance measurement 𝑀 to produce all

the agents’ scores s′.

Calculate the Measurement Integrity. We sample 5000 times. Use
the mean of the Pearson correlation coefficient in the samples5 as
the Measurement Integrity of performance measurement 𝑀 . We
apply the same workflow to all the performance measurement in
Section E.1.3, as well as spot-checking performance measurement
with different checking ratios.

Calculate the total payment. We sample 5000 times. Use the agents’
scores s and s′ to estimate the 𝜕

𝜕𝑒𝑖
E[#beaten|𝑒𝑖 , 𝑒−𝑖 = 𝜉] |𝑒𝑖=𝜉 , which

imply the total payment for the three payment schemes.

E.2.2 Simulation for comparing SCE in various contexts. To study
how themotivational proficiency of the performancemeasurements
changes as we vary the information elicitation context, we calcu-
late the Spot Check Equivalence in various contexts.

We apply the same method in Section E.2.1 which can give us
the Measurement Integrity of a performance measurement𝑀 and
the total payment needed to elicit a fixed effort level in an infor-
mation elicitation context.

E.3 Additional Results
E.3.1 Measurement Integrity is a computationally efficient proxy.
Figure 8 illustrates the variation in both theMeasurement Integrity
and total payment as the number of iterations goes up.

In the previous results of Figure 4 (b), we find that when elic-
iting effort level of 𝜉 = 0.6, the 𝑓 -MI(kl), 𝑓 -MI(𝐻2) and CA per-
formance measurements have a little less motivational proficiency
comparable to 50% spot-checking. Meanwhile, the OA and PTS per-
formance measurements are better than 60% spot-checking.

Figure 8 demonstrates that achieving the same outcome requires
significantly fewer iterations for the calculation of Measurement
Integrity compared to the total payment.

5It is a consistent estimator of the Measurement Integrity.

(a) Measurement Integrity (b) Total payment of Borda-count

Figure 8: Convergence speed of the Measurement Integrity
and the total payment: the 𝑥-axis is the number of the sam-
ples, and the 𝑦-axis is the estimated Measurement Integrity
and the estimated total payment of the Borda-count pay-
ment scheme at effort level 𝜉 = 0.6 respectively.

F DOES PEER PREDICTION MAKE THINGS
WORSE?

In this section, we provide a detailed discussion about why Gao
et al. [7, 8] have the result that “peer predictionmakes thingsworse”
which contradicts the other literature [29] and our main results
that show peer-prediction mechanisms can have non-zero Spot
Check Equivalence.

We first introduce the Information Elicitation Context in their
paper.

Agent. 𝐴𝑔𝑒𝑛𝑡 = (𝐼 , 𝑐, e). The agent can choose a binary effort
𝑒 ∈ {0, 1}, where exerting high effort has a cost 𝑐 (1) = 𝑐𝐸 and
exerting no effort has a cost 𝑐 (0) = 0.

Application Abstraction. In 𝐴𝑝𝑝 = (𝐽 ,GT , 𝜔, Σ, 𝐷), they also
model signal generation as a random function:

𝐷𝑠𝑖𝑔𝑛𝑎𝑙 : {0, 1} × GT → ΔΣ

however, importantly, the signals of agents are not i.i.d. across
agents. When the agent exerts high effort, she will get a high-
quality signal, which is drawn from a distribution conditional on
the task’s ground truth. When the agent exerts no effort, he will
get a low-quality signal that is uncorrelated with the task’s ground
truth, but, crucially, the no-effort signals are perfectly correlated
across no-effort agents—they all receive the same signal.

Performance Measurement. Firstly, they assume that the scor-
ing function in spot-checking performance measurement (Defini-
tion 2.9) can effectively incentivize high effort, i.e.

E
[
𝑆

(
𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (1, 𝑔 𝑗 ), 𝑔 𝑗

)]
− 𝑐𝐸 > E

[
𝑆

(
𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (0, 𝑔 𝑗 ), 𝑔 𝑗

)]
In addition to the spot-checking performancemeasurement (Def-

inition 2.9), they propose a spot-checking peer-prediction perfor-
mance measurement, where for the unchecked tasks, they apply a
peer-prediction performance measurement to score the agents.

Payment Scheme. They fix a function 𝑓 : GT × Σ → R∗. The
payment scheme is additive across tasks and pays agents according
to 𝑓 for answering spot-checked tasks, and according to a peer-
prediction mechanism for tasks that are not spot-checked.
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Agent reports. They allow the agents to strategically report their
signals.

Equilibrium. They focus on two possible equilibria. In the no-
effort equilibrium, each agent exerts no effort and uses the same
strategy to report his signal. In the truthful equilibrium, each agent
exerts high effort and truthfully reports his signal.

F.1 Comparing spot-checking mechanism and
spot-checking peer-prediction mechanism

Notice that, by assumption, with enough spot-checking, you will
get the truthful equilibrium.They use the minimum spot-checking
ratio that ensures the truthful strategy profile is an equilibrium
as a measure of the mechanisms’ performance. Formally, they use
𝑝𝑃𝑎𝑟𝑒𝑡𝑜 to denote theminimum spot-checking ratiowhere the truth-
ful equilibrium Pareto dominates the no-effort equilibrium when
applying the hybrid peer-prediction/spot-checkingmechanism.They
use 𝑝𝑑𝑠 to denote the minimum spot-checking ratio where the
truthful strategy profile is a dominant strategy in spot-checking
mechanism.

Then they propose a theorem for comparing the spot-checking
mechanism and the spot-checking peer-prediction mechanism:

TheoRem F.1 (Section 5 TheoRem 3 in Gao et al. [7]). For
any spot-checking peer-prediction mechanism, if the no-effort equi-
librium exists and Pareto dominates the truthful equilibrium when
the cost of effort is 0 (𝑐𝐸 = 0) and no task is checked (𝑝 = 0), then
𝑝𝑃𝑎𝑟𝑒𝑡𝑜 ≥ 𝑝𝑑𝑠 for any 𝑐𝐸 ≥ 0.

There are three differences between the models in Gao et al. [7]
and Zhang and Schoenebeck [29] that account for this stark differ-
ence.

The most obvious difference is that the payments in Gao et al.
[7] are restricted to be additive across tasks.This is rather similar to
assuming a linear payment rule when the score is additive across
tasks. However, Zhang and Schoenebeck [29] uses tournaments,
which are not linear and typically have much better motivational
proficiency.

Secondly, Gao et al. [7]’s assumption of a fixed payment func-
tion 𝑓 is extremely restrictive. As we discussed in Section 1, when
the spot-checking ratio decreases, it is possible to maintain the
same incentive properties by simply scaling up the payment func-
tion. Thus, if we scale up 𝑓 , we can make 𝑝𝑑𝑠 arbitrarily small, and,
conversely, by scaling down 𝑓 , we can make 𝑝𝑑𝑠 arbitrarily close
to 1. On the other hand, in Zhang and Schoenebeck [29] the mech-
anism is defined as a performance measurement and a payment
scheme, and the payment scheme is optimized to work with the
scoring function, rather than being artificially fixed.

Finally, Gao et al. [7]’ make a key assumption on the no-effort
signals being perfectly correlated. For example, in peer grading,
the writing and formatting quality is a signal that can be accessed
with very little effort while assessing the correctness both requires
more effort and will likely lead to less agreement.

Notice that the premise of Theorem F.1 is that when the cost
of effort is 0 (𝑐𝐸 = 0) and no task is checked (𝑝 = 0), the equilib-
rium where agents exert no effort Pareto dominates the truthful
equilibrium.

Let’s zoom in on this. First, consider the case where the cost
of the high effort signal 𝑐𝐸 = 0. Notice that any spot-checking
mechanism that checks any positive ratio of tasks will have the
high-effort profile as an equilibrium because agents will receive
some positive payoff, but have 0 cost.

Next, consider a peer-prediction mechanism (e.g. a hybrid peer-
prediction/spot-checking mechanism with spot-checking ratio 0).
Again, the theorem is vacuous, unless the profile where no agent
exerts effort Pareto dominates the high-effort equilibrium because,
in the former, all agents agree and receive a maximal payoff6, but,
in the latter, they do not all agree.

Together this shows that any peer prediction mechanisms will
have a Spot Check Equivalence of 0, since in this case, any spot-
checking ratio that is greater than 0 will inevitably lead to the
truthful equilibrium given that the effort cost is nonexistent.

Because having a Spot Check Equivalence of 0 is an assumption
of the theorem it is no wonder that such peer-prediction mecha-
nisms do not help!

However, this still potentially makes a very strong critique of
peer-prediction mechanisms because in many real-world settings,
there exists a cheap signal. For example, as mentioned in the in-
troduction, when humans are labeling LLM responses, it is much
easier to judge them on how authoritative-sounding the responses
are than on how truthful the responses are. However, such labels
may encourage hallucinations.

Indeed, Gao et al. [7] led to several papers trying to create peer-
prediction mechanisms that are robust against “cheap” signals (i.e.
the no-effort/low-effort signals that can bring higher agreement
than the high-effort signals).

Kong and Schoenebeck [14] propose a peer prediction mech-
anism called Hierarchical Mutual Information Paradigm (HMIP),
assuming a hierarchical information structure where high-effort
(or higher expertise) agents have access to the information of low-
effort (or lower expertise) agents. HMIP encourages agents to in-
vest effort and incentivizes truthful reporting by paying the high-
effort agents for correctly predicting the “cheap” signals from the
low-effort agents. An empirical study [13] has also been conducted
to show the evidence of the hierarchical information structure by
human subject experiments.

6They are assuming here that complete agreement brings a maximum payoff.
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