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Abstract

Mixed Integer Linear Programming (MILP) is a fundamental tool for modeling1

combinatorial optimization problems. Recently, a growing body of research has2

used machine learning to accelerate MILP solving. Despite the increasing pop-3

ularity of this approach, there is a lack of a common repository that provides4

distributions of similar MILP instances across different domains, at different hard-5

ness levels, with standardized test sets. In this paper, we introduce Distributional6

MIPLIB, a multi-domain library of problem distributions for advancing ML-guided7

MILP methods. We curate MILP distributions from existing work in this area8

as well as real-world problems that have not been used, and classify them into9

different hardness levels. It will facilitate research in this area by enabling com-10

prehensive evaluation on diverse and realistic domains. We empirically illustrate11

the benefits of using Distributional MIPLIB as a research vehicle in two ways. We12

evaluate the performance of ML-guided variable branching on previously unused13

distributions to identify potential areas for improvement. Moreover, we propose14

to learn branching policies from a mix of distributions, demonstrating that mixed15

distributions achieve better performance compared to homogeneous distributions16

when there is limited data and generalize well to larger instances.17

1 Introduction18

Mixed Integer Linear Programming (MILP) is an essential technique for modeling and solving19

Combinatorial Optimization (CO) problems, covering a wide range of applications such as production20

planning and scheduling [83]. Many CO problems are NP-complete or NP-hard [61, 31, 51, 43, 86]21

and are thus inherently challenging to solve. Exact algorithms [79] and heuristics [72, 8] have been22

studied for MILPs. However, solving MILPs remains challenging as problems scale in size and23

complexity, coupled with the increasing demand for real-time solutions.24

Many algorithmic decisions in exact and heuristic algorithms for MILPs traditionally rely on intuition25

from problem structures and/or are manually made based on evaluation on specific instances [68,26

59]. However, manual tuning requires domain-specific knowledge and may fail to realize the full27

performance potential of algorithms. In recent years, Machine Learning (ML) has been proposed28

to address this shortcoming. There has been an increasing interest in enhancing MILP-solving29

frameworks with adaptable learning components that exploit the correlation between algorithmic30

patterns and the performance of the algorithm [22, 25]. For example, [46, 26, 33, 85, 37, 52] improves31

Branch-and-Bound (B&B), a tree search algorithm used in MILP solvers [35, 14], with ML.32

Despite the increasing popularity of ML-guided MILP solving, there is a lack of a common repository33

containing distributions of MILPs along with standardized test sets for ML approaches. Some34

researchers [63, 64] use MIPLIB, a library containing various MILP instances that differ in difficulties,35

structures, and sizes [29]. While MIPLIB has been traditionally used for benchmarking MILP solvers,36

its instances are heterogeneous, making it less suited for ML-based methods. As ML typically benefits37

from a large amount of data from a certain distribution, it remains a challenge for ML methods to38
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deliver state-of-the-art performance on MIPLIB instances [63, 64]. To leverage data in distributional39

settings, much of the existing work independently generates MILP distributions. This leads to two40

issues. First, the lack of standardized test sets makes it hard to benchmark and compare between41

different methods. Second, a small set of synthetic domains has been repeatedly used and there is42

a lack of evaluation on real-world domains, making the evaluation not comprehensive. In Table 1,43

we summarize problem domains used in representative papers for different learning tasks. Classical44

problems such as Set Covering (SC), Combinatorial Auction (CA), Maximum Independent Set (MIS),45

and Capacitated Facility Location Problem (CFLP) are commonly used. Although these problems are46

NP-hard, the instances are synthetic and less challenging compared to many real-world problems. A47

few papers [64, 75, 76] have used instances from real-world problems such as the production packing48

problem and electric grid optimization [64], but few of the real-world datasets are publicly accessible,49

making it hard to reproduce the results.50

Table 1: MILP distributions used in previous work. † indicates those that are not publicly available.
For each work, we mark whether the ML component is trained on distributions of Single Domain
(SD), Mixed Domain (MD), or MIPLIB. We also mark whether it is tested in problem domains that
are the same as training (ID), in the same domain but on larger distributions (ID(L)), or out of domains
(OD). The names of domains corresponding to the abbreviations are in Sec 3.1 and Appendix A.

Track Paper Training Testing Problem Domains
Learning for B&B

Branching

Khalil et al. [46] SD ID MIPLIB
Gasse et al. [26] SD ID(L) SC, CA, CFLP, MIS

Nair et al. [64] SD + MIPLIB ID + MIPLIB CORLAT, NNV, Google Production Packing†,
Electric Grid Optimization†, MIPLIB

Gupta et al. [33] SD ID(L) SC, CA, CFLP, MIS
Zarpellon et al. [85] MIPLIB MIPLIB MIPLIB

Gupta et al. [34] SD ID(L) SC, CA, CFLP, MIS
Scavuzzo et al. [74] SD ID(L) SC, CA, CFLP, MIS, MK

Lin et al. [56] SD ID(L) SC, CA, CFLP, MIS
Backdoor
prediction

Ferber et al. [24] SD ID NNV, CFLP, GISP
Cai et al. [15] SD ID(L) SC, CA, CFLP, MIS, GISP, NNV

Node
selection

He et al. [37] SD ID + OD CA, CORLAT, MK
Labassi et al. [52] SD ID(L) GISP, Fixed Charge Network Flow, MAXSAT

Cut
selection

Tang et al. [77] SD ID(L) + OD Packing, Production Planning, Binary Packing, MC
Huang et al. [44] SD ID SC, MK, Production Planning†

Li et al. [55] SD + MIPLIB ID + MIPLIB CA, CFLP, MIS, Packing, Binary Packing, MC
Run

heuristics
Khalil et al. [47] SD + MIPLIB ID + MIPLIB GISP, MIPLIB

Chmiela et al. [17] SD ID(L) GISP, Fixed Charge Network Flow
Learning for meta heuristics

LNS

Song et al. [75] SD ID CA, MVC, MC, Risk-Aware Path Planning†

Wu et al. [84] SD + MIPLIB ID(L) + MIPLIB SC, CA, MIS, MC, MIPLIB

Sonnerat et al. [76] SD + MIPLIB ID + MIPLIB NNV, Google Production Packing†, Electric Grid
Optimization†, MIPLIB, Google Production Planning†

Liu et al. [57] SD + MIPLIB + MD MIPLIB + OD SC, CA, MIS, GISP, MIPLIB
Huang et al. [41] SD ID(L) SC, CA, MIS, MVC

Solution
prediction

Ding et al. [22] SD ID(L) SC, CFLP, MIS, MK, Fixed Charge Network Flow,
TSP, VRP, Generalized Assignment

Nair et al. [64] SD + MIPLIB ID + MIPLIB CORLAT, NNV, Google Production Packing†,
Electric Grid Optimization†, MIPLIB

Khalil et al. [48] SD ID GISP, Fixed Charge Network Flow
Han et al. [36] SD ID(L) CA, MIS, IP, LB

Huang et al. [42] SD ID(L) CA, MIS, MVC, IP

This paper introduces Distributional MIPLIB (d-MIPLIB), a comprehensive, multi-purpose MILP51

library encompassing various MILP problem distributions to support the development of ML-guided52

MILP-solving methods. In this context, a distribution refers to MILPs of the same problem formula-53

tion constructed from data parameters sampled from a given distribution. We curate distributions54

from ten synthetic and real-world problems used in the existing literature on ML for MILPs and three55

real-world problems for which no ML methods have been attempted. For each problem, distributions56

are classified into multiple hardness levels. 100 test instances are pre-generated for each distribution,57

and 900 are pre-generated for training and validation 1. Additionally, a generator is provided for most58

problems to generate additional instances for training.59

1The number of test instances in 3 distributions is less than 100 due to limited available data.

2



Distributional MIPLIB will significantly accelerate research in MILP solving and data-driven algo-60

rithm design by providing distributional data for ML-based methods and enabling benchmarking. The61

set of distributions covers various hardness levels and a diverse set of application domains, making it62

suitable for different types of MILP algorithms (e.g., smaller problems for exact solving and larger63

problems for heuristic methods). Moreover, the standardized benchmark sets that d-MIPLIB provides64

not only enable better comparison analysis of different methods, but also enable evaluation across65

broader domains at different problem scales and on realistic problems, allowing researchers to identify66

gaps and open up new avenues of novel research.67

To demonstrate the potential of Distributional MIPLIB in facilitating research, we evaluate the68

performance of ML-guided variable branching [26] on previously unused distributions and uncover69

potential areas for improvement. Moreover, we propose to learn branching policies in B&B from a70

mix of distributions, demonstrating that mixed distributions achieve better performance compared71

to homogeneous distributions when there is limited data and generalize better to larger instances.72

Furthermore, we propose several additional directions for utilizing the dataset, highlighting its73

potential for opening up new research avenues. To encourage further research and facilitate the74

curation of future distributions, we provide a website for Distributional MIPLIB. The URL to the75

website will be included in the final version of the paper.76

2 Background and Related Work77

Formally, a MILP with n decision variables and m constraints is defined by a coefficient matrix78

A ∈ Rm×n, a vector b ∈ Rm, a cost vector c ∈ Rn, and a partition (B, I, C) of variables. B, I , C79

are the sets of indices of binary, general integer, and continuous variables, respectively. The goal is to80

find x such that cTx is maximized, subject to linear constraints Ax ≤ b and integrality constraints on81

binary decision variables xj ∈ {0, 1},∀j ∈ B and integer decision variables xj ∈ Z,∀j ∈ I .82

MILP solvers such as Gurobi [35] and SCIP [14] use Branch-and-Bound (B&B), an exact tree search83

algorithm, as the core component. B&B starts with the root node representing the original input84

MILP. It then repeatedly chooses a leaf node and creates two smaller subproblems by splitting the85

domain of a variable. This step is referred to as branching. Besides B&B, meta-heuristics, such as86

Large Neighborhood Search (LNS) and Predict-and-Search (PaS), are also popular MILP search87

algorithms that can find high-quality solutions to MILPs much faster than B&B for hard problems,88

but do not provide optimality guarantees.89

2.1 Machine Learning for MILP Solving90

ML has been proposed to accelerate MILP solving in different ways. A large body of research91

improves B&B by learning to select which variables to branch on [46, 26, 33, 85] or which nodes to92

expand in the search tree [37, 52]. There are also works on learning to schedule or execute primal93

heuristics [47, 17] and to select cutting planes [77, 66, 44] in B&B. ML has also been applied to94

improve meta-heuristics. [75, 76, 84, 41] apply learning techniques, such as imitation, reinforcement,95

and contrastive learning, to learn to select which subset of variables to reoptimize in LNS. [64, 36, 42]96

focus on PaS, where they learn to predict the optimal assignment for part of the variables to get a97

reduced-size MILP that is easier to solve. A comprehensive literature review is provided Appendix B.98

2.2 Existing Libraries and Software Packages99

MIPLIB [29] is a library that provides access to heterogeneous real-world MILP instances, containing100

1065 instances from various domains that are diverse in size, structure, and hardness. It has become101

a standard test set used to compare the performance of MILP solvers, and several ML methods for102

MILP solving have been tested on MIPLIB instances [76, 84, 55]. Despite some early success, it103

remains a challenge for ML methods to deliver state-of-the-art performance on MIPLIB instances,104

due to the heterogeneous nature [63, 64].105

There are also a few open-source software packages built to facilitate research in ML-guided CO.106

MIPLearn [73] is a software for ML-guided MILP solving that provides access to a complete ML107

pipeline, including data collection, training, and testing. MIPLearn provides generators for one108

real-world problem, which is a simplified formulation for Unit Commitment (UC). However, domain109

knowledge is required to generate realistic UC instances that are more complex and more challenging110
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to solve. Ecole [71] is a library designed to facilitate research on using ML to improve CO solvers. It111

exposes the sequential decision-making processes in MILP-solving as control problems over Markov112

Decision Processes. Currently, Ecole provides instance generators for four classical problems. OR-113

Gym [45] is a framework for developing RL algorithms to produce high-quality solutions for CO,114

without using MILP solvers. Ecole and OR-Gym are designed for augmenting solvers and finding115

high-quality solutions without solvers, respectively. MIPLearn supports both tasks.116

Comparison with Existing Datasets and Contributions. Distributional MIPLIB provides a coun-117

terpart for the MIPLIB that provides distributions of similar MILP instances of the same problem118

formulation, intended for the development and evaluation of ML-guided MILP methods. Similar119

to MIPLIB, it covers a broad range of application domains, allowing for a more comprehensive120

evaluation on problems with different structures, especially in real-world domains. All the instances121

are pre-compiled, and no domain knowledge is required to access complex real-world instances122

included in d-MIPLIB. It covers multiple hardness levels, making it suitable for a wide range of123

MILP methods (e.g., exact solving for easier instances and meta-heuristics for harder instances),124

compared to libraries designed for specific avenues.125

3 Distributional MIPLIB126

We pre-generate MILP distributions from both synthetic and real-world problem domains, classifying127

them into different hardness levels. Table 2 shows the sources where the distributions were initially128

used in existing work on ML for MILPs, along with instance statistics. While we pre-compile a129

fixed number of instances for consistency in comparing methods, an instance generator is available130

for generating additional training instances for all synthetic problems and one real-world problem131

(Optimal Transmission Switching).132

3.1 Data Sources133

We curate synthetic instances from domains that have been used in multiple ML tasks in existing134

work (Table 1). Among variants of a problem in synthetic domains, we choose the most representative135

one among the variants. As for real-world domains, as many problems used in existing work are136

proprietary and not publicly available, we cover the associated domain by including an available137

problem from the same area (e.g., Optimal Transmission Switching as a surrogate for Electric Grid138

Optimization used in [76]).139

Synthetic Problems. We curate synthetic instances from domains commonly used in the literature140

on ML for MILPs. As shown in Table 1, the most frequently used NP-hard problem domains141

are Combinatorial Auctions (CA) [53], Set Covering (SC) [5], Maximum Independent Set (MIS)142

[7], Capacitated Facility Location Problem (CFLP) [20], and Minimum Vertex Cover (MVC) [23].143

Additionally, we compile distributions of the Generalized Independent Set Problem (GISP), a graph144

optimization problem proposed for forestry management [39, 18]. We used the instance generators145

provided in the existing work to compile MILP distributions as described in their work and generate146

additional distributions covering different hardness levels for frequently used domains such as147

Minimum Vertex Cover (MVC). Finally, we include Item Placement (IP), which involves spreading148

items across containers to utilize them evenly [62], and Load Balancing (LB) [82], which deals149

with apportioning workloads across workers, used in the NeurIPS 2021 Machine Learning for150

Combinatorial Optimization Competition (ML4CO) [25].151

Real-world Problems. In addition to synthetic instances, we include MILP instances from five152

real-world domains. The Maritime Inventory Routing Problem (MIRP) [65] determines routes from153

production ports to consumption ports to minimize transportation costs and manages the inventory154

at these ports, covering both ship routing and inventory management. MIRP was used as a hidden155

test set in ML4CO [25]. Neural Network Verification (NNV) is an optimization problem in ML that156

verifies the robustness of a neural network on a given input example [16, 78]. The NNV instances we157

include were derived from verifying a convolutional network on MNIST examples, which was used158

in [64] for learning for branching and solution prediction.159

Furthermore, we compile distributions from problems where no ML method has been applied,160

covering applications in energy, e-commerce, and sustainability. In energy planning, the Optimal161

Transmission Switching (OTS) problem under high wildfire ignition risk [70] is a type of Network162
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Topology Optimization problem. Transmission grids are represented as a series of buses (vertices)163

connected by power lines (edges). During high wildfire ignition risk, transmission lines can start164

wildfires; methods to mitigate this risk include de-energizing and undergrounding transmission lines.165

De-energizing lines prevent fires but interrupt power delivery to customers, whereas undergrounding166

lines can deliver power without the risk of igniting a fire but at a higher cost. OTS examines167

the optimal way to de-energize and underground transmission lines to reduce wildfire risk while168

minimizing power outages within a resource budget. In e-commerce, the Middle-Mile Consolidation169

Network (MMCN) [31] problem is a network design problem that creates load consolidation plans to170

transport shipments from stocking locations, including vendors and fulfillment centers, to last-mile171

delivery locations. It determines a minimum-cost allocation of transportation capacity on network172

arcs that satisfies shipment lead-time constraints. For MMCN, we include distributions containing173

binary and integer variables (denoted as BI) and distributions containing binary and continuous174

variables (denoted as BC) 2. The Seismic-Resilient Pipe Network (SRPN) Planning [40] is another175

network design problem in infrastructure resilience space that chooses which water pipes are to be176

upgraded in earthquake hazard zones to ensure water delivery to critical customers and households177

during disasters, while minimizing the cost. The SRPN instances in this library are generated based178

on earthquake hazard zones in Los Angeles.179

As shown in Table 2, most synthetic MILP instances contain only binary decision variables, except180

for CFLP, LB, and IP, which include continuous variables. The real-world problems, on the other181

hand, encompass diverse distributions with integer and continuous decision variables, enabling182

comprehensive benchmarking on more realistic and complex problems.183

3.2 Evaluation184

Instances Data Generation. For each synthetic distribution, we generate a total of 1000 instances,185

with 900 intended for training and validation in ML-guided methods and 100 for testing and evaluation.186

For the real-world problems OTS and MMCN, we follow the same practice as the synthetic problems,187

providing 100 test instances for each distribution. For NNV, since precompiled train, validation, and188

test splits are publicly available, we respect the established splits, including the same 588 instances in189

the test set. However, for MIRP and SRPN, the number of test instances is less than 100 as the total190

number of instances available is limited. MIRP contains 20 test instances. SRPN contains 22 and 20191

test instances in the Easy and Hard group, respectively 3.192

Performance Metrics and Problem Instance Statistics. We design a set of evaluation metrics that193

characterize performance well from easy to hard settings. We report the number of instances in the194

test set that are solved to optimality in 1 hour (# Opt). For instances solved to optimality, we report195

the average solving time in seconds (Opt Time). For instances not solved to optimality, we report196

the average primal-dual gap after 1 hour (NonOpt Gap). The primal-dual gap represents the gap197

between the lower and upper objective bounds. Specifically, let zP be the primal objective bound198

(i.e., the value of the best feasible solution found so far, serving as the upper bound for minimization199

problems), and zD be the dual objective bound (i.e., linear relaxation of the MILP, serving as the200

lower bound for minimization problems). The primal-dual gap is defined as gap = |zP − zD|/|zP |201

[35]. Additionally, we report the primal-dual integral (Integral), which is defined as the integral of the202

primal-dual gap over time [9], with lower values indicating faster (better) convergence. For instance203

statistics, we report the average number of binary (# Var B), integer (# Var I), and continuous (# Var204

C) variables, and the average number of constraints (# Constr).205

Hardness Levels. We classify distributions into 5 hardness levels based on the runtime statistics. For206

distributions with at least some instances solved to optimality within 1 hour, we classify them into207

three levels based on the average solving time. Distributions with average solving times under 100208

seconds are categorized as Easy, 100-1000 seconds as Medium, and those exceeding 1000 seconds209

as Hard. For distributions with no instances solved to optimality within 1 hour, we further classify210

them into Very hard and Extremely hard based on the primal-dual gap. Very hard and Extremely211

hard (Ext hard) distributions are groups where the primal-dual gap is less than 1 and greater than 1,212

respectively.213

2BI and BC distributions correspond to 2 variants of MMCN. In the BI variant, all arcs in the network have
the same transit mode. In the BC variant, multiple transit modes are allowed.

3As MIRP has been used in ML4CO, we adhere to the train, validation, and test split established by ML4CO.
For SRPN, we randomly selected 10% of the total instances as the test set for each distribution.
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Table 2: Synthetic and Real-world problems in Distributional MIPLIB. † indicates domains for
which generators are available. ‡ indicates distributions where # test instances is not 100. For the
performance metrics, we use Gurobi (v10.0.3) [35] with 1 hour time limit, on a cluster with Intel
Xeon Silver 4116 CPUs @ 2.10GHz, with a RAM allocation of 5G (For SRPN-Hard, MMCN-Very
Hard, and OTS-Hard instances, we increased the RAM to 15G, due to memory errors at 5GB.)

.

# Var B # Var I # Var C # Constr # Opt Opt
Time(s)

NonOpt
Gap Integral

Easy Gasse et al. [26] 1000 0 0 385.04 100 47.14 N/A 2.30
Medium Gasse et al. [26] 1500 0 0 578.07 100 358.14 N/A 7.29
Very hard Huang et al. [41] 4000 0 0 2676.32 0 N/A 0.10 400.28

Easy Gasse et al. [26] 1000 0 0 500 100 18.05 N/A 0.99
Medium Gasse et al. [26] 1000 0 0 1000 100 214.11 N/A 15.78
Hard Gasse et al. [26] 1000 0 0 2000 56 1603.66 0.04 180.25
Very hard Huang et al. [41] 4000 0 0 5000 0 N/A 0.20 847.11

Easy Gasse et al. [26] 1000 0 0 3946.25 100 50.52 N/A 0.86
Medium Gasse et al. [26] 1500 0 0 5941.14 88 470.44 0.01 11.28
Very hard Huang et al. [41] 6000 0 0 23994.82 0 N/A 0.30 1132.69

Easy New 1200 0 0 5975 100 27.26 N/A 0.27
Medium New 2000 0 0 9975 97 244.11 0.01 2.28
Hard New 500 0 0 30100 55 1821.04 0.02 102.74
Very hard Huang et al. [41] 1000 0 0 65100 0 N/A 0.12 454.02

Easy New 605.81 0 0 1967.05 100 43.09 N/A 15.59
Medium Ferber et al. [24] 988.81 0 0 3353.03 100 671.89 N/A 204.83
Hard Ferber et al. [24] 1317.03 0 0 4567.83 85 2623.16 0.08 866.16
Very hard Cai et al. [15] 6017 0 0 7821.87 0 N/A 0.44 2104.04
Ext hard Khalil et al. [47] 12675.83 0 0 16515.44 0 N/A 2.01 8139.33

Easy Gasse et al. [26] 100 0 10000 10201 100 44.44 N/A 0.57
Medium Gasse et al. [26] 200 0 20000 20301 100 103.51 N/A 0.88

LB † Hard Gasse et al. [25] 1000 0 60000 64307.17 9 2665.11 0.00 33.48

IP † Very hard Gasse et al. [25] 1050 0 33 195 0 N/A 0.44 1770.42

MIRP Medium Gasse et al. [25] 0 15080.57 19576.15 44429.70 10‡ 697.24 0.23 728.75

NNV Easy Nair et al. [64] 171.49 0 6972.60 6533.70 588‡ 37.98 N/A 21.81

Easy New 4181 0 17137 48582 100 45.86 N/A 3.72
Medium New 7525 0 33202 92992 100 419.55 N/A 25.80
Hard New 6546 0 46423 111804 52 2564.00 0.20 1926.19

MediumBI New 1156.94 263.23 0 437.81 100 114.93 N/A 3.01
MediumBC New 4271.59 0 324.04 3171.23 100 468.17 N/A 37.30
HardBI New 2074.76 346.39 0 642.57 34 1998.57 0.01 79.79
Very hardBI New 21596.72 1127.29 0.00 3944.01 0 N/A 0.10 369.15
Very hardBC New 68345.21 0 2425.87 96272.60 0 N/A 0.61 2761.52

Easy New 3016.42 0 3016.42 5917.27 21‡ 77.91 0.02 10.00
Hard New 11485.33 0 11485.33 22430.84 9‡ 1321.43 0.03 134.12

Domain Hardness
Level

Dist. Source:
ML4MILPs

Instance Statistics Performance Metrics

Synthetic

CA†

SC†

MIS†

MVC†

GISP†

CFLP†

Real-world

OTS†

MMCN

SRPN

4 Computation Experiments214

We illustrate the value of Distributional MIPLIB through computational experiments on its MILP215

distributions. First, we identify distributions that are unexplored in previous work in ML-guided216

MILP solving and identify potential areas for improvement (subsection 4.1). Furthermore, we propose217

a novel setting where we learn ML policies from a diverse mix of domains, contrasting with existing218

work that either trains models on single distributions or completely heterogeneous distributions219

such as MIPLIB (Table 1) (subsection 4.2). We show that the proposed mixed-domain strategy is220

particularly effective in data-scarce settings.221

Most ML-guided MILP approaches discussed in subsection 2.1 require a computationally expensive222

data collection procedure before training ML models, as they replace computationally intensive223

algorithmic components with ML oracles. The output of the expensive algorithmic component224

(e.g., high-quality neighborhood candidate variables obtained via local branching in LNS) is used225

as the ground truth in supervised learning. Given that Distributional MIPLIB spans many problem226
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domains and hardness levels, complete benchmarking is beyond the scope of this paper. In this227

paper, we focus our experiments on Learning to Branch (Learn2Branch) [26], which imitates Strong228

Branching — a branching rule that effectively reduces the search tree size in B&B but is time-229

consuming. Learn2Branch encodes a MILP with a variable-constraint bipartite graph, employs230

a Graph Convolution Network (GCN) to learn variable representations, and trains a policy using231

imitation learning.232

Throughout the experiments, we use SCIP 6.0.1 [28] as the solver 4. Following existing work [56, 26],233

we compare the ML methods against Reliability Pseudocost Branching (RPB), a state-of-the-art234

human-designed branching policy in B&B. We report the mean and standard deviation over 5 seeds235

for all metrics. We briefly introduce the setup; details on data collection and hyperparameters are236

deferred to Appendix C.237

4.1 Learning on Previously Unused Distributions238

Table 3: Learn2Branch evaluated on previously unused domains. Note that the solving time differs
from Table 2 because results in 2 were evaluated with Gurobi and under different RAM allocations.

Dist. Method Integral # Opt Opt Time(s) NonOpt Gap # Nodes Infer Pct(%) Node Integral

SCIP 118.0 ± 1.5 100 376.6 ± 4.7 N/A 158866.1 ± 1693.4 N/A 38596.6 ± 508.0
ML 139.0 ± 5.8 98.0 ± 1.5 472.8 ± 16.2 0.121 ± 0.007 89354.6 ± 2622.5 21.2 ± 0.4 22636.5 ± 683.3

SCIP 20.0 ± 4.7 94.4 ± 2.2 179.4 ± 5.5 0.003 ± 0.002 1798.7 ± 242.9 N/A 5.8 ± 2.2
ML 27.9 ± 10.4 80.4 ± 7.7 129.7 ± 15.2 0.003 ± 0.002 4073.2 ± 1416.0 4.9 ± 1.1 20.6 ± 8.2

SCIP 47.0 ± 1.7 13.8 ± 0.4 54.8 ± 15.1 0.152 ± 0.006 15420.2 ± 1937.0 N/A 1594.2 ± 160.9
ML 52.3 ± 4.3 12.8 ± 0.7 41.8 ± 8.4 0.16 ± 0.011 13003.5 ± 1739.8 14.9 ± 1.9 1371.6 ± 93.6

GISP
(Medium)

OTS
(Easy)

SRPN
(Easy)

We evaluate the performance of Learn2Branch on three unused distributions. To our knowledge,239

GISP has not been used in learning variable branching (Table 1), and OST and SRPN have never240

been used in any ML-guided methods. We focus on Easy and Medium distributions as learning for241

branching is typically used on smaller instances in the literature.242

Setup. We use a train, validation, and test split of 80%, 10%, 10%, respectively. This results in 800243

MILP instances used for collecting training data for GISP and OTS and 175 for SRPN-Easy, as SRPN244

instances are limited. We collect 10 Strong Branching expert samples from each instance. We report245

the performance metrics described in 3.2 with a time limit of 800s.246

Results and discussions. As shown in Table 3, the trained ML policy did not outperform SCIP in247

any of the 3 distributions. We investigate the reason for failure by measuring the number of explored248

nodes in B&B (# Nodes), the integral of the primal-dual gap with respect to the nodes (Node Integral),249

and the % of time spent in ML inferences (Infer Pct (%)), which includes feature extraction, forward250

pass, and ranking. The reason why Learn2Branch did not work well on GISP and SRPN could be251

the overhead of the ML inference time, as they outperform SCIP on the number of Nodes and Node252

Integral. For OTS, the reasons why Learn2Branch fails to beat SCIP are less obvious and pose an253

open research question.254

4.2 Learning with Mixed Distributions255

Collecting expert samples for imitation learning in Learn2Branch is computationally intensive [56].256

While collecting a large number of expert samples from a large number of training instances can lead257

to stronger performance, it could be prohibitively costly. One simple strategy to make the best use of258

limited data is to pool data and train policies on mixed domains, as opposed to existing work that259

trains models on a single distribution, distributions from variants of a single problem family [11, 10],260

or completely heterogeneous distributions such as MIPLIB (Table 1). Empirically, we show that261

pooling data from a diverse mix of domains achieves better performance when limited training data262

is used.263

Setup. We collect samples from training instances from 5 different domains: MIS-Easy, GISP-easy,264

CFLP-easy, CA-Medium, and SC-Medium. We use the collected data in two different ways. First,265

4We use SCIP in the Experiments as opposed to Gurobi, since Gurobi does not provide needed API for
ML-guided branching
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Table 4: Performance comparison under two training strategies, evaluated on five domains. Under
the first strategy, a separate model is trained for each domain on expert samples collected from
instances drawn from homogeneous distributions from the corresponding domain: ML-MIS, ML-
GISP, ML-CFLP, ML-CA, and ML-SC. ML-mix5 is trained under the second strategy, where pooled
data collected from instances in the 5 domains are used to train one single model. We present results
when using different numbers n of training instances per domain: n = 80 (left) and n = 320 (right).

Integral # Opt Opt Time(s) NonOpt Gap Integral # Opt Opt Time(s) NonOpt Gap

SCIP 4.412 ± 0.118 99.0 ± 0.0 145.4 ± 3.9 0.022 ± 0.004 4.412 ± 0.118 99.0 ± 0.0 145.4 ± 3.9 0.022 ± 0.004
ML-MIS 5.408 ± 5.309 82.6 ± 31.3 140.5 ± 66.5 0.016 ± 0.003 2.434 ± 0.074 99.0 ± 0.6 89.2 ± 5.1 0.015 ± 0.001
ML-mix5 2.781 ± 0.197 98.0 ± 1.1 107.3 ± 13.0 0.016 ± 0.004 2.545 ± 0.107 99.0 ± 0.6 97.4 ± 5.4 0.016 ± 0.003

SCIP 12.509 ± 0.242 100 40.0 ± 0.7 N/A 12.509 ± 0.242 100 40.0 ± 0.7 N/A
ML-GISP 11.299 ± 0.885 100 41.0 ± 3.4 N/A 10.700 ± 0.442 100 38.5 ± 1.6 N/A
ML-mix5 10.823 ± 0.383 100 39.1 ± 2.0 N/A 10.420 ± 0.279 100 37.3 ± 0.8 N/A

SCIP 0.644 ± 0.021 100 48.5 ± 0.5 N/A 0.644 ± 0.021 100 48.5 ± 0.5 N/A
ML-CFLP 0.642 ± 0.036 100 47.8 ± 3.4 N/A 0.606 ± 0.028 100 42.4 ± 1.9 N/A
ML-mix5 0.638 ± 0.020 100 46.7 ± 2.8 N/A 0.610 ± 0.021 100 42.1 ± 1.0 N/A

SCIP 2.347 ± 0.034 97.2 ± 0.4 157.4 ± 4.8 0.009 ± 0.001 2.347 ± 0.034 97.2 ± 0.4 157.4 ± 4.8 0.009 ± 0.001
ML-CA 1.927 ± 0.063 97.0 ± 0.0 144.9 ± 6.2 0.007 ± 0.001 1.775 ± 0.056 98.2 ± 0.7 136.8 ± 2.1 0.009 ± 0.003
ML-mix5 1.815 ± 0.015 98.2 ± 0.7 141.0 ± 3.2 0.009 ± 0.002 1.795 ± 0.199 98.6 ± 0.8 142.1 ± 12.5 0.011 ± 0.002

SCIP 6.465 ± 0.023 100 90.3 ± 0.6 N/A 6.465 ± 0.023 100 90.3 ± 0.6 N/A
ML-SC 5.602 ± 0.156 100 84.6 ± 2.2 N/A 4.965 ± 0.095 100 72.5 ± 1.7 N/A
ML-mix5 5.362 ± 0.131 100 79.8 ± 2.2 N/A 4.796 ± 0.104 100 68.4 ± 1.7 N/A

Dist. Policy
Collected samples from 80 instances per domain Collected samples from 320 instances per domain

MIS
(Easy)

GISP
(Easy)

CFLP
(Easy)

CA
(Med)

SC
(Med)

we train a separate model for each domain. Second, we pool expert samples collected for all domains266

and train a single model from the mixed distribution (denoted as ML-mix5). The number of training267

samples fed into ML-mix5 is five times the first strategy, but the data collection costs for the two268

strategies aggregated across the 5 domains are the same. We first start with n = 80 training instances269

per domain, which is 10% what we used in 4.1. We then quadruple the number of training instances270

to n = 320. Following 4.1, we collect 10 expert samples per instance. We compare the performance271

of the two training strategies (single domain vs. mixed domains) on each domain separately.272

Results and Discussions. As shown in Table 4, when the total number of instances used for data273

collection is small (80), ML-mix5 outperforms the models trained on homogeneous distributions and274

SCIP across multiple evaluation metrics for all domains. However, as the number of training instances275

increases (320), the models trained on a homogeneous distribution outperform ML-mix5 in some276

domains. This indicates that learning with mixed distributions can improve data collection efficiency277

in the case when we have a limited budget for data collection (e.g., under time or computational278

resource constraints), but does not surpass training on homogeneous distributions when training279

samples can be collected from a larger number of instances. Additionally, Table 4 suggests that when280

the number of training data points fed into the model is the same, using a training set where the data281

is drawn from mixed distributions is unlikely to surpass the performance of using a training set where282

the data is drawn from homogeneous distributions. The performance of ML-mix5 under 80 instances283

per domain, which was trained with samples collected from 400 training instances in total, did not284

outperform the separately trained models under 320 instances per domain. This underscores the285

benefits of having domain-specific distributional datasets as provided in our library.286

Table 5: Performance comparison under two training strategies when transferred to different hardness.
ML-MIS (trained on Easy), ML-SC (trained on Medium), and ML-mix5 are the ones presented in
Table 4 (under n = 320). The time cutoff is 800s, except for Very hard distributions where it is 3600s.

Policy Integral # Opt Opt Time(s) NonOpt Gap Integral # Opt NonOpt Gap Infer Pct(%) Node Integral

SCIP 23.4 ± 0.1 11.4 ± 1.0 483.2 ± 10.5 0.024 ± 0.0 1479.3 ± 2.3 0 0.393 ± 0.002 N/A 223.6 ± 41.7
ML-MIS 21.9 ± 2.4 10.2 ± 10.4 377.2 ± 20.0 0.023 ± 0.003 1461.5 ± 4.8 0 0.390 ± 0.002 0.1 ± 0.0 179.0 ± 56.4
ML-mix5 16.5 ± 0.2 24.2 ± 3.9 335.3 ± 19.6 0.017 ± 0.0 1459.0 ± 2.4 0 0.390 ± 0.001 0.1 ± 0.0 139.4 ± 42.9

SCIP 53.3 ± 0.2 35.0 ± 3.5 378.5 ± 10.8 0.066 ± 0.000 767.0 ± 1.0 0 0.239 ± 0.001 N/A 3853.6 ± 82.6
ML-SC 49.6 ± 0.4 37.8 ± 1.0 367.1 ± 7.3 0.062 ± 0.001 870.3 ± 13.6 0 0.297 ± 0.009 9.2 ± 1.6 2622.8 ± 579.1
ML-mix5 48.2 ± 0.3 40.2 ± 0.7 358.2 ± 3.3 0.062 ± 0.001 830.3 ± 19.5 0 0.275 ± 0.010 13.3 ± 4.7 4051.3 ± 1734.7

MIS (Medium) MIS (Very hard)

SC (Hard) SC (Very hard)
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Transferring to Different Distributions. We further evaluate the performance of trained models287

when applied to distributions of different hardness levels from the same domain, for MIS and SC.288

Table 5 shows that on MIS, ML-mix5 exhibits better generalization to harder instances compared to289

the model trained on homogeneous distributions, even though ML-mix5 did not outperform ML-MIS290

at the trained hardness level (Table 4). On SC, again ML-mix5 exhibits better performance than ML-291

SC on harder distributions of SC, however on the Very hard distribution neither is able to outperform292

SCIP, possibly due to the larger overhead of the GCN inference time on larger instances.293

5 Potential Research Paths294

Below we outline suggestions for potential research paths using Distributional MIPLIB to facilitate a295

significant step-change in the ability to solve hard real-world MILP problems.296

Faster Inference. Due to computational constraints, prior work has focused on training and testing297

on relatively small and/or easy MILP distributions. In addition to Learn2Branch, much of the existing298

work on ML for MILP focuses on replacing an expensive procedure with an ML oracle, such as ML299

for LNS. Our empirical results highlighted that often the advantage of the ML policy is outweighed300

by its cost of inference on large MILPs. This calls for investigations of ML model architectures or301

hardware solutions that specifically target this challenge.302

Synthetic Data Generation. Synthetic Data Generation (SDG) captures the underlying distribution303

of a dataset and synthesizes targeted data through a generative process [3]. SDG has been applied to304

finance [4] and healthcare [38] to address the problem of limited data or preserve the privacy of real305

data. SDG could also be used to improve ML-based methods for MILPs, as collecting algorithmic306

decision data from solving instances can be expensive, as discussed in Section 4. There has been307

existing work that uses data augmentation to generate MILP instances [58, 27, 80, 32] or algorithm308

decision data inside B&B [56]. Distributional MIPLIB could be used to develop theoretical and309

algorithmic frameworks that generate targeted data forming the same distributions.310

Foundation Model for Combinatorial Optimization. Deep learning foundation models that311

leverage vast amounts of data to learn general-purpose representation can adapt to a wide range of312

downstream tasks, which has drastically transformed the domains of language, vision, and scientific313

discovery [13]. [54] took a step towards foundation models for MILP by using a LLM-based314

framework to generate MILPs and training a single model on a diverse set of MILP problems.315

Moreover, Distributional MIPLIB contains MILPs from a wide range of domains and hardness levels,316

which can be suited for a wide range of tracks (B&B, LNS, and finding primal solutions). Much of the317

existing works (e.g., learning for backdoors, LNS, and branching) use a common subset of features to318

learn a representation of MILP variables, which could be unified as a shared latent representation.319

Distributional MIPLIB could be used to develop and train such foundation models for the discrete320

optimization world.321

6 Conclusion and Discussion322

We introduce Distributional MIPLIB, a curated dataset of more than 35 MILP distributions from 13323

synthetic and real-world domains, making it a large-scale resource for developing ML-guided MILP324

solving and comprehensive evaluation. Compared to existing datasets and generators, it provides data325

in distributional settings which is better suited for ML-guided methods. It provides MILP distributions326

from a wide range of applications and requires no domain knowledge to access these instances. We327

intend for the library to continue to grow with domain contributions from the community.328

We ran experiments on Learn2Branch focused on variable selection policies in B&B. We identified329

that in past research only a few distributions/domains were used to assess state of the art, and evaluated330

the performance of Learn2Branch on unused domains, identifying open challenges. Moreover, we331

propose to train a Learn2Branch model with mixed distributions and show that this offers advantages332

in the low-data regime. We also identified potential future directions that can benefit from this library.333

We also would like to acknowledge some limitations of our work. Due to computational constraints,334

we did not experiment with other GNN architectures, with a larger number of samples, or on better335

GPUs. These could change our empirical conclusions, but do not affect the value of the library.336
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The abbreviations for the domains are listed in Table 6.564
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Abbreviation Domain Reference

CA Combinatorial Auctions [53]
SC Set Covering [5]
MIS Maximum Independent Set [7]
MVC Minimum Vertex Cover [23]
GISP Generalized Independent Set Problem [39, 18]
CFLP Capacitated Facility Location Problem [20]
MK Multiple Knapsack [67]
MC Max Cut [69]
CORLAT Wildlife Management Problem [19, 30]
LB Load Balancing [82]
IP Item Placement [62]
MIRP Maritime Inventory Routing Problem [65]
NNV Neural Network Verification [16, 78]
OTS Optimal Transmission Switching [70]
MMCN Middle-Mile Consolidation Network [31]
SRPN Seismic-Resilient Pipe Network Planning [40]

Table 6: Abbreviation for domains.

B Literature Review565

Learning to Branch A series of papers have explored learning to branch by imitating the strong566

branching heuristic, a branching method that results in fewer search tree nodes but is expensive to567

compute [46, 60, 2, 6, 26, 33, 64, 56]. The strong branching heuristic computes a score for each568

branching candidate and these methods either learn to predict the variables’ score or learn to rank569

them according to their scores. For the features and ML models, [46] develop the first ML-based570

framework for learning to branch using a Support Vector Machine (SVM) with hand-crafted features.571

[26] extend the framework by using a bipartite graph to encode the MILP and Graph Convolution572

Networks (GCN) to learn variable representations.573

Learning Backdoors Backdoor for MILPs is a small subsets of variables such that a MILP can be574

solved optimally by branching only on the variables in the set [81]. Therefore, identifying backdoors575

efficiently and effectively can greatly improve the performance of B&B. [24] using ML to predict the576

most effective backdoor candidates generated by a LP relaxation-based sampling methods. More577

recently, [15] propose to use a Monte-Carlo tree search method [49] to improve the quality of training578

data and apply contrastive learning to directly construct backdoors.579

Learning Primal Heuristics Primal heuristics refer to routines that find good feasible solutions in580

a short amount of time [14] and deciding which heuristics to run and when is an important task. These581

decisions are mostly made by hard-coded frequency rules in MILP solvers, which are static, instance-582

oblivious, and context-independent. To tackle this challenge, [47] propose a data-driven approach to583

decide when to execute primal heuristics. [17] derive a data-driven approach for scheduling primal584

heuristics.585

Another line of research is to learn to predict solutions to MILPs. Both [64] and [36] learn to predict586

optimal solutions to MILPs and fix the values for a subset of variables based on the prediction to get587

reduced-size MILPs that are faster to solve.588

Large Neighbourhood Search (LNS) LNS is a meta-heuristic that can find high quality solutions589

faster than B&B on large-scale MILP instances but provides no optimality guarantees. It starts with590

a feasible solution to the MILP and iteratively selects a subset of variables to reoptimize. Local591

Branching (LB) is a heuristic that finds the variables that lead to the largest improvement over the592

current solution in each iteration of LNS. But LB is often slow since it needs to solve a MILP of the593

same size as input. To mitigate this issues, [76] and [41] replace LB with imitation-learned policies.594

Other ML techniques, such as reinforcement learning (RL), have also been applied to learn destroy595

heuristics for LNS [75, 84].596

Learning to Cut A cutting-plane is a constraint that is valid for feasible integer solutions but cuts597

into the feasible region of the linear programming (LP) relaxation, thus improving the bound on598

the optimal solution. Adding cutting planes has been shown to speed up B&B [12, 21]. Modern599

MILP solvers maintain a cut-pool that includes a large number of cutting planes of a diverse set of600

classes. The decisions regarding which classes of cutting planes to use, as well as the specific cutting601
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planes to select from each class, significantly impact solver performance. In recent advancements,602

[77] introduce a Reinforcement Learning (RL) framework tailored for the Gomory cutting-plane603

algorithm. Additionally, [44] develop a method to approach cut selection as a learning-to-rank task,604

while [66] devise a strategy to imitate a lookahead strategy for cut selection.605

C Experiment Details606

We used the Learn2Branch implementation from [26] in our experiments. Their code is publicly607

available at https://github.com/ds4dm/learn2branch.608

Setup. All experiments in Section 4 were conducted on a cluster with Intel Xeon Gold 6130 CPUs @609

2.10GHz and Nvidia Tesla V100 GPUs. Each method was run with 5 different seeds. For ML-based610

methods, we trained the model using 5 different seeds and solved the instances using the trained611

policies that correspond to the 5 training seeds. For the non-ML methods, we used SCIP to solve the612

instances with 5 different seeds. The results report the mean and standard deviation across these 5613

seeds.614

Data Collection. In the orginal implementation [26], expert samples were collected by sampling615

from a set of training instances with replacement and solving it with SCIP. They iterated this process616

until the desired number of expert samples was collected. Therefore, in their implementation, the617

whole set of training and validation instances was not necessarily used to collect samples. In our618

implementation, we collected a fixed number of expert samples (10) from each instances, to ensure619

that all instances in the training set were used.620

Hyperparameters. We used the same GCN architecture as described in [26] and trained the models621

in TensorFlow [1]. We used the Adam Optimizer [50] with a batch size of 32 and an initial learning622

rate of 0.001. In case the when the validation loss does not decrease over a period of 10 epochs, the623

learning rate was reduced to 20% of its previous value.624

D License of existing assets625

We curated new assets from the following existing assets. The NNV dataset was down-626

loaded from https://github.com/google-deepmind/deepmind-research/tree/master/627

neural_mip_solving, which is available under the terms of the Creative Commons Attribu-628

tion 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.629

0/legalcode. Datasets downloaded from ML4CO (LB, IP, MIRP) are under BSD-3-Clause li-630

cense https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE. CA, SC, MIS,631

CFLP instances were generated using code from [26], available at https://github.com/ds4dm/632

learn2branch?tab=readme-ov-file under the MIT license https://github.com/ds4dm/633

learn2branch?tab=MIT-1-ov-file.634
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NeurIPS Paper Checklist635

1. Claims636

Question: Do the main claims made in the abstract and introduction accurately reflect the637

paper’s contributions and scope?638

Answer: [Yes]639

Justification: This paper introduces a library developed for advancing ML-guided MILP640

methods and performed computational experiments using data in this library. The abstract641

and introduction (Section 1) reflects this.642

Guidelines:643

• The answer NA means that the abstract and introduction do not include the claims644

made in the paper.645

• The abstract and/or introduction should clearly state the claims made, including the646

contributions made in the paper and important assumptions and limitations. A No or647

NA answer to this question will not be perceived well by the reviewers.648

• The claims made should match theoretical and experimental results, and reflect how649

much the results can be expected to generalize to other settings.650

• It is fine to include aspirational goals as motivation as long as it is clear that these goals651

are not attained by the paper.652

2. Limitations653

Question: Does the paper discuss the limitations of the work performed by the authors?654

Answer: [Yes]655

Justification: We discussed the limitations of the work in Section 6.656

Guidelines:657

• The answer NA means that the paper has no limitation while the answer No means that658

the paper has limitations, but those are not discussed in the paper.659

• The authors are encouraged to create a separate "Limitations" section in their paper.660

• The paper should point out any strong assumptions and how robust the results are to661

violations of these assumptions (e.g., independence assumptions, noiseless settings,662

model well-specification, asymptotic approximations only holding locally). The authors663

should reflect on how these assumptions might be violated in practice and what the664

implications would be.665

• The authors should reflect on the scope of the claims made, e.g., if the approach was666

only tested on a few datasets or with a few runs. In general, empirical results often667

depend on implicit assumptions, which should be articulated.668

• The authors should reflect on the factors that influence the performance of the approach.669

For example, a facial recognition algorithm may perform poorly when image resolution670

is low or images are taken in low lighting. Or a speech-to-text system might not be671

used reliably to provide closed captions for online lectures because it fails to handle672

technical jargon.673

• The authors should discuss the computational efficiency of the proposed algorithms674

and how they scale with dataset size.675

• If applicable, the authors should discuss possible limitations of their approach to676

address problems of privacy and fairness.677

• While the authors might fear that complete honesty about limitations might be used by678

reviewers as grounds for rejection, a worse outcome might be that reviewers discover679

limitations that aren’t acknowledged in the paper. The authors should use their best680

judgment and recognize that individual actions in favor of transparency play an impor-681

tant role in developing norms that preserve the integrity of the community. Reviewers682

will be specifically instructed to not penalize honesty concerning limitations.683

3. Theory assumptions and proofs684

Question: For each theoretical result, does the paper provide the full set of assumptions and685

a complete (and correct) proof?686
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Answer: [NA]687

Justification: Our paper does not include theoretical results.688

Guidelines:689

• The answer NA means that the paper does not include theoretical results.690

• All the theorems, formulas, and proofs in the paper should be numbered and cross-691

referenced.692

• All assumptions should be clearly stated or referenced in the statement of any theorems.693

• The proofs can either appear in the main paper or the supplemental material, but if694

they appear in the supplemental material, the authors are encouraged to provide a short695

proof sketch to provide intuition.696

• Inversely, any informal proof provided in the core of the paper should be complemented697

by formal proofs provided in appendix or supplemental material.698

• Theorems and Lemmas that the proof relies upon should be properly referenced.699

4. Experimental result reproducibility700

Question: Does the paper fully disclose all the information needed to reproduce the main ex-701

perimental results of the paper to the extent that it affects the main claims and/or conclusions702

of the paper (regardless of whether the code and data are provided or not)?703

Answer: [Yes]704

Justification: We provided the information needed to reproduce the main experimental705

results in Appendix C. This includes the setup, data collection procedure, and model training706

details.707

Guidelines:708

• The answer NA means that the paper does not include experiments.709

• If the paper includes experiments, a No answer to this question will not be perceived710

well by the reviewers: Making the paper reproducible is important, regardless of711

whether the code and data are provided or not.712

• If the contribution is a dataset and/or model, the authors should describe the steps taken713

to make their results reproducible or verifiable.714

• Depending on the contribution, reproducibility can be accomplished in various ways.715

For example, if the contribution is a novel architecture, describing the architecture fully716

might suffice, or if the contribution is a specific model and empirical evaluation, it may717

be necessary to either make it possible for others to replicate the model with the same718

dataset, or provide access to the model. In general. releasing code and data is often719

one good way to accomplish this, but reproducibility can also be provided via detailed720

instructions for how to replicate the results, access to a hosted model (e.g., in the case721

of a large language model), releasing of a model checkpoint, or other means that are722

appropriate to the research performed.723

• While NeurIPS does not require releasing code, the conference does require all submis-724

sions to provide some reasonable avenue for reproducibility, which may depend on the725

nature of the contribution. For example726

(a) If the contribution is primarily a new algorithm, the paper should make it clear how727

to reproduce that algorithm.728

(b) If the contribution is primarily a new model architecture, the paper should describe729

the architecture clearly and fully.730

(c) If the contribution is a new model (e.g., a large language model), then there should731

either be a way to access this model for reproducing the results or a way to reproduce732

the model (e.g., with an open-source dataset or instructions for how to construct733

the dataset).734

(d) We recognize that reproducibility may be tricky in some cases, in which case735

authors are welcome to describe the particular way they provide for reproducibility.736

In the case of closed-source models, it may be that access to the model is limited in737

some way (e.g., to registered users), but it should be possible for other researchers738

to have some path to reproducing or verifying the results.739

5. Open access to data and code740
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Question: Does the paper provide open access to the data and code, with sufficient instruc-741

tions to faithfully reproduce the main experimental results, as described in supplemental742

material?743

Answer: [Yes]744

Justification: The experimental results in this paper are based on the library that we intro-745

duced, which is made publicly available in this submission. The code and instructions for746

running the experiments is included in the supplemental material.747

Guidelines:748

• The answer NA means that paper does not include experiments requiring code.749

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/750

public/guides/CodeSubmissionPolicy) for more details.751

• While we encourage the release of code and data, we understand that this might not be752

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not753

including code, unless this is central to the contribution (e.g., for a new open-source754

benchmark).755

• The instructions should contain the exact command and environment needed to run to756

reproduce the results. See the NeurIPS code and data submission guidelines (https:757

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.758

• The authors should provide instructions on data access and preparation, including how759

to access the raw data, preprocessed data, intermediate data, and generated data, etc.760

• The authors should provide scripts to reproduce all experimental results for the new761

proposed method and baselines. If only a subset of experiments are reproducible, they762

should state which ones are omitted from the script and why.763

• At submission time, to preserve anonymity, the authors should release anonymized764

versions (if applicable).765

• Providing as much information as possible in supplemental material (appended to the766

paper) is recommended, but including URLs to data and code is permitted.767

6. Experimental setting/details768

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-769

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the770

results?771

Answer: [Yes]772

Justification: The data splits and how they were chosen are described in Section 4.1. The773

hyperparameters and optimizers used are described in Appendix C.774

Guidelines:775

• The answer NA means that the paper does not include experiments.776

• The experimental setting should be presented in the core of the paper to a level of detail777

that is necessary to appreciate the results and make sense of them.778

• The full details can be provided either with the code, in appendix, or as supplemental779

material.780

7. Experiment statistical significance781

Question: Does the paper report error bars suitably and correctly defined or other appropriate782

information about the statistical significance of the experiments?783

Answer: [Yes]784

Justification: All the experiments in Section 4 were ran with 5 random seeds, and the mean785

and standard deviation of results over 5 random seeds are reported in Table 3, Table 4, and786

Table 5. For ML-based methods, we trained the model using 5 different seeds and solved the787

instances using the trained policies that correspond to the 5 training seeds. For the non-ML788

methods, we used SCIP to solve the instances with 5 different seeds.789

Guidelines:790

• The answer NA means that the paper does not include experiments.791
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-792

dence intervals, or statistical significance tests, at least for the experiments that support793

the main claims of the paper.794

• The factors of variability that the error bars are capturing should be clearly stated (for795

example, train/test split, initialization, random drawing of some parameter, or overall796

run with given experimental conditions).797

• The method for calculating the error bars should be explained (closed form formula,798

call to a library function, bootstrap, etc.)799

• The assumptions made should be given (e.g., Normally distributed errors).800

• It should be clear whether the error bar is the standard deviation or the standard error801

of the mean.802

• It is OK to report 1-sigma error bars, but one should state it. The authors should803

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis804

of Normality of errors is not verified.805

• For asymmetric distributions, the authors should be careful not to show in tables or806

figures symmetric error bars that would yield results that are out of range (e.g. negative807

error rates).808

• If error bars are reported in tables or plots, The authors should explain in the text how809

they were calculated and reference the corresponding figures or tables in the text.810

8. Experiments compute resources811

Question: For each experiment, does the paper provide sufficient information on the com-812

puter resources (type of compute workers, memory, time of execution) needed to reproduce813

the experiments?814

Answer: [Yes]815

Justification: The type of works CPU and GPU are detailed in Appendix C, and the execution816

time is detailed in Section 4.817

Guidelines:818

• The answer NA means that the paper does not include experiments.819

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,820

or cloud provider, including relevant memory and storage.821

• The paper should provide the amount of compute required for each of the individual822

experimental runs as well as estimate the total compute.823

• The paper should disclose whether the full research project required more compute824

than the experiments reported in the paper (e.g., preliminary or failed experiments that825

didn’t make it into the paper).826

9. Code of ethics827

Question: Does the research conducted in the paper conform, in every respect, with the828

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?829

Answer: [Yes]830

Justification: The library we provide has minimal privacy concerns and we respect the terms831

of existing datasets that have defined licenses. We also discuss the impact of our dataset in832

the supplemental materials.833

Guidelines:834

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.835

• If the authors answer No, they should explain the special circumstances that require a836

deviation from the Code of Ethics.837

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-838

eration due to laws or regulations in their jurisdiction).839

10. Broader impacts840

Question: Does the paper discuss both potential positive societal impacts and negative841

societal impacts of the work performed?842

Answer: [Yes]843
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Justification: We discuss the potential positive societal impacts and negative societal impacts844

of the work performed in the supplemental materials.845

Guidelines:846

• The answer NA means that there is no societal impact of the work performed.847

• If the authors answer NA or No, they should explain why their work has no societal848

impact or why the paper does not address societal impact.849

• Examples of negative societal impacts include potential malicious or unintended uses850

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations851

(e.g., deployment of technologies that could make decisions that unfairly impact specific852

groups), privacy considerations, and security considerations.853

• The conference expects that many papers will be foundational research and not tied854

to particular applications, let alone deployments. However, if there is a direct path to855

any negative applications, the authors should point it out. For example, it is legitimate856

to point out that an improvement in the quality of generative models could be used to857

generate deepfakes for disinformation. On the other hand, it is not needed to point out858

that a generic algorithm for optimizing neural networks could enable people to train859

models that generate Deepfakes faster.860

• The authors should consider possible harms that could arise when the technology is861

being used as intended and functioning correctly, harms that could arise when the862

technology is being used as intended but gives incorrect results, and harms following863

from (intentional or unintentional) misuse of the technology.864

• If there are negative societal impacts, the authors could also discuss possible mitigation865

strategies (e.g., gated release of models, providing defenses in addition to attacks,866

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from867

feedback over time, improving the efficiency and accessibility of ML).868

11. Safeguards869

Question: Does the paper describe safeguards that have been put in place for responsible870

release of data or models that have a high risk for misuse (e.g., pretrained language models,871

image generators, or scraped datasets)?872

Answer: [NA]873

Justification: The paper poses no such risks.874

Guidelines:875

• The answer NA means that the paper poses no such risks.876

• Released models that have a high risk for misuse or dual-use should be released with877

necessary safeguards to allow for controlled use of the model, for example by requiring878

that users adhere to usage guidelines or restrictions to access the model or implementing879

safety filters.880

• Datasets that have been scraped from the Internet could pose safety risks. The authors881

should describe how they avoided releasing unsafe images.882

• We recognize that providing effective safeguards is challenging, and many papers do883

not require this, but we encourage authors to take this into account and make a best884

faith effort.885

12. Licenses for existing assets886

Question: Are the creators or original owners of assets (e.g., code, data, models), used in887

the paper, properly credited and are the license and terms of use explicitly mentioned and888

properly respected?889

Answer: [Yes]890

Justification: We provide the license of the data sources in https://sites.google.com/891

usc.edu/distributional-miplib/license.892

Guidelines:893

• The answer NA means that the paper does not use existing assets.894

• The authors should cite the original paper that produced the code package or dataset.895
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• The authors should state which version of the asset is used and, if possible, include a896

URL.897

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.898

• For scraped data from a particular source (e.g., website), the copyright and terms of899

service of that source should be provided.900

• If assets are released, the license, copyright information, and terms of use in the901

package should be provided. For popular datasets, paperswithcode.com/datasets902

has curated licenses for some datasets. Their licensing guide can help determine the903

license of a dataset.904

• For existing datasets that are re-packaged, both the original license and the license of905

the derived asset (if it has changed) should be provided.906

• If this information is not available online, the authors are encouraged to reach out to907

the asset’s creators.908

13. New assets909

Question: Are new assets introduced in the paper well documented and is the documentation910

provided alongside the assets?911

Answer: [Yes]912

Justification: We document the details of the dataset in https://sites.google.com/913

usc.edu/distributional-miplib/home.914

Guidelines:915

• The answer NA means that the paper does not release new assets.916

• Researchers should communicate the details of the dataset/code/model as part of their917

submissions via structured templates. This includes details about training, license,918

limitations, etc.919

• The paper should discuss whether and how consent was obtained from people whose920

asset is used.921

• At submission time, remember to anonymize your assets (if applicable). You can either922

create an anonymized URL or include an anonymized zip file.923

14. Crowdsourcing and research with human subjects924

Question: For crowdsourcing experiments and research with human subjects, does the paper925

include the full text of instructions given to participants and screenshots, if applicable, as926

well as details about compensation (if any)?927

Answer: [NA]928

Justification: The paper does not involve crowdsourcing nor research with human subjects.929

Guidelines:930

• The answer NA means that the paper does not involve crowdsourcing nor research with931

human subjects.932

• Including this information in the supplemental material is fine, but if the main contribu-933

tion of the paper involves human subjects, then as much detail as possible should be934

included in the main paper.935

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,936

or other labor should be paid at least the minimum wage in the country of the data937

collector.938

15. Institutional review board (IRB) approvals or equivalent for research with human939

subjects940

Question: Does the paper describe potential risks incurred by study participants, whether941

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)942

approvals (or an equivalent approval/review based on the requirements of your country or943

institution) were obtained?944

Answer: [NA]945

Justification: The paper does not involve crowdsourcing nor research with human subjects.946

Guidelines:947
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• The answer NA means that the paper does not involve crowdsourcing nor research with948

human subjects.949

• Depending on the country in which research is conducted, IRB approval (or equivalent)950

may be required for any human subjects research. If you obtained IRB approval, you951

should clearly state this in the paper.952

• We recognize that the procedures for this may vary significantly between institutions953

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the954

guidelines for their institution.955

• For initial submissions, do not include any information that would break anonymity (if956

applicable), such as the institution conducting the review.957

16. Declaration of LLM usage958

Question: Does the paper describe the usage of LLMs if it is an important, original, or959

non-standard component of the core methods in this research? Note that if the LLM is used960

only for writing, editing, or formatting purposes and does not impact the core methodology,961

scientific rigorousness, or originality of the research, declaration is not required.962

Answer: [NA]963

Justification: LLM is used only for writing and editing for this paper.964

Guidelines:965

• The answer NA means that the core method development in this research does not966

involve LLMs as any important, original, or non-standard components.967

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)968

for what should or should not be described.969
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