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Abstract

Mixed Integer Linear Programming (MILP) is a fundamental tool for modeling
combinatorial optimization problems. Recently, a growing body of research has
used machine learning to accelerate MILP solving. Despite the increasing pop-
ularity of this approach, there is a lack of a common repository that provides
distributions of similar MILP instances across different domains, at different hard-
ness levels, with standardized test sets. In this paper, we introduce Distributional
MIPLIB, a multi-domain library of problem distributions for advancing ML-guided
MILP methods. We curate MILP distributions from existing work in this area
as well as real-world problems that have not been used, and classify them into
different hardness levels. It will facilitate research in this area by enabling com-
prehensive evaluation on diverse and realistic domains. We empirically illustrate
the benefits of using Distributional MIPLIB as a research vehicle in two ways. We
evaluate the performance of ML-guided variable branching on previously unused
distributions to identify potential areas for improvement. Moreover, we propose
to learn branching policies from a mix of distributions, demonstrating that mixed
distributions achieve better performance compared to homogeneous distributions
when there is limited data and generalize well to larger instances.

1 Introduction

Mixed Integer Linear Programming (MILP) is an essential technique for modeling and solving
Combinatorial Optimization (CO) problems, covering a wide range of applications such as production
planning and scheduling [83]. Many CO problems are NP-complete or NP-hard [61} 31} 151} 43} |86]
and are thus inherently challenging to solve. Exact algorithms [79] and heuristics [72, 8] have been
studied for MILPs. However, solving MILPs remains challenging as problems scale in size and
complexity, coupled with the increasing demand for real-time solutions.

Many algorithmic decisions in exact and heuristic algorithms for MILPs traditionally rely on intuition
from problem structures and/or are manually made based on evaluation on specific instances [68],
59]. However, manual tuning requires domain-specific knowledge and may fail to realize the full
performance potential of algorithms. In recent years, Machine Learning (ML) has been proposed
to address this shortcoming. There has been an increasing interest in enhancing MILP-solving
frameworks with adaptable learning components that exploit the correlation between algorithmic
patterns and the performance of the algorithm [22125]]. For example, [46} 126l 133}[85,137,152]] improves
Branch-and-Bound (B&B), a tree search algorithm used in MILP solvers [135} [14], with ML.

Despite the increasing popularity of ML-guided MILP solving, there is a lack of a common repository
containing distributions of MILPs along with standardized test sets for ML approaches. Some
researchers [[63}164]] use MIPLIB, a library containing various MILP instances that differ in difficulties,
structures, and sizes [29]]. While MIPLIB has been traditionally used for benchmarking MILP solvers,
its instances are heterogeneous, making it less suited for ML-based methods. As ML typically benefits
from a large amount of data from a certain distribution, it remains a challenge for ML methods to
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deliver state-of-the-art performance on MIPLIB instances [[63164]. To leverage data in distributional
settings, much of the existing work independently generates MILP distributions. This leads to two
issues. First, the lack of standardized test sets makes it hard to benchmark and compare between
different methods. Second, a small set of synthetic domains has been repeatedly used and there is
a lack of evaluation on real-world domains, making the evaluation not comprehensive. In TableE],
we summarize problem domains used in representative papers for different learning tasks. Classical
problems such as Set Covering (SC), Combinatorial Auction (CA), Maximum Independent Set (MIS),
and Capacitated Facility Location Problem (CFLP) are commonly used. Although these problems are
NP-hard, the instances are synthetic and less challenging compared to many real-world problems. A
few papers [64, 75, [76] have used instances from real-world problems such as the production packing
problem and electric grid optimization [64], but few of the real-world datasets are publicly accessible,
making it hard to reproduce the results.

Table 1: MILP distributions used in previous work. T indicates those that are not publicly available.
For each work, we mark whether the ML component is trained on distributions of Single Domain
(SD), Mixed Domain (MD), or MIPLIB. We also mark whether it is tested in problem domains that
are the same as training (ID), in the same domain but on larger distributions (ID(L)), or out of domains
(OD). The names of domains corresponding to the abbreviations are in Sec 3.1 and Appendix [A]

Track Paper Training Testing Problem Domains
Learning for B&B
Khalil et al. [46] SD D MIPLIB
Gasse et al. [26] SD ID(L) SC, CA, CFLP, MIS
Nair et al. [64] SD + MIPLIB m+mipLg  CORLAT, NNV, Google Prfd“"o“ Packing',
Branching Electric Grid Optimization', MIPLIB
Gupta et al. [33] SD ID(L) SC, CA, CFLP, MIS
Zarpellon et al. [85] MIPLIB MIPLIB MIPLIB
Gupta et al. [34] SD ID(L) SC, CA, CFLP, MIS
Scavuzzo et al. [74] SD ID(L) SC, CA, CFLP, MIS, MK
Lin et al. [56] SD ID(L) SC, CA, CFLP, MIS
Backdoor Ferber et al. [24] SD ID NNV, CFLP, GISP
prediction Cai et al. [15] SD ID(L) SC, CA, CFLP, MIS, GISP, NNV
Node He et al. [37] SD ID + OD CA, CORLAT, MK
selection Labassi et al. [52] SD ID(L) GISP, Fixed Charge Network Flow, MAXSAT
Cut Tang et al. [77] SD ID(L) + OD Packing, Production Planning, Binary Packing, MC
selection Huang et al. [44] SD ID SC, MK, Production PlanningJr
Li et al. [55] SD + MIPLIB ID + MIPLIB CA, CFLP, MIS, Packing, Binary Packing, MC
Run Khalil et al. [47] SD + MIPLIB 1D + MIPLIB GISP, MIPLIB
heuristics Chmiela et al. [[17] SD ID(L) GISP, Fixed Charge Network Flow
Learning for meta heuristics
Song et al. [75] SD 1D CA, MVC, MC, Risk-Aware Path Planningf
Wu et al. [84] SD + MIPLIB ID(L) + MIPLIB SC, CA, MIS, MC, MIPLIB
LNS o NNV, Google Production Packing’, Electric Grid
Sonnerat et al. [76] SD + MIPLIB 1D+ MIPLIB Optimization*, MIPLIB, Google Production Planning*
Liu et al. [57] SD + MIPLIB + MD MIPLIB + OD SC, CA, MIS, GISP, MIPLIB
Huang et al. [41] SD ID(L) SC, CA, MIS, MVC
X SC, CFLP, MIS, MK, Fixed Charge Network Flow,
Ding etal. [22] 5D D) TSP, VRP, Generalized Assignmeént
Solution . CORLAT, NNV, Google Production Packing®,
prediction Nair et al. {04 SD + MIPLIB ID +MIPLIB Electric Grid OptimizitionT , MIPLIB ¢
Khalil et al. [48] SD ID GISP, Fixed Charge Network Flow
Han et al. [36] SD ID(L) CA, MIS, IP, LB
Huang et al. [42] SD ID(L) CA, MIS, MVC, 1P

This paper introduces Distributional MIPLIB (d-MIPLIB), a comprehensive, multi-purpose MILP
library encompassing various MILP problem distributions to support the development of ML-guided
MILP-solving methods. In this context, a distribution refers to MILPs of the same problem formula-
tion constructed from data parameters sampled from a given distribution. We curate distributions
from ten synthetic and real-world problems used in the existing literature on ML for MILPs and three
real-world problems for which no ML methods have been attempted. For each problem, distributions
are classified into multiple hardness levels. 100 test instances are pre-generated for each distribution,
and 900 are pre-generated for training and Validationﬂ Additionally, a generator is provided for most
problems to generate additional instances for training.

'"The number of test instances in 3 distributions is less than 100 due to limited available data.
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Distributional MIPLIB will significantly accelerate research in MILP solving and data-driven algo-
rithm design by providing distributional data for ML-based methods and enabling benchmarking. The
set of distributions covers various hardness levels and a diverse set of application domains, making it
suitable for different types of MILP algorithms (e.g., smaller problems for exact solving and larger
problems for heuristic methods). Moreover, the standardized benchmark sets that d-MIPLIB provides
not only enable better comparison analysis of different methods, but also enable evaluation across
broader domains at different problem scales and on realistic problems, allowing researchers to identify
gaps and open up new avenues of novel research.

To demonstrate the potential of Distributional MIPLIB in facilitating research, we evaluate the
performance of ML-guided variable branching [26] on previously unused distributions and uncover
potential areas for improvement. Moreover, we propose to learn branching policies in B&B from a
mix of distributions, demonstrating that mixed distributions achieve better performance compared
to homogeneous distributions when there is limited data and generalize better to larger instances.
Furthermore, we propose several additional directions for utilizing the dataset, highlighting its
potential for opening up new research avenues. To encourage further research and facilitate the
curation of future distributions, we provide a website for Distributional MIPLIB. The URL to the
website will be included in the final version of the paper.

2 Background and Related Work

Formally, a MILP with n decision variables and m constraints is defined by a coefficient matrix
A e R™*™ avector b € R™, a cost vector ¢ € R™, and a partition (B, I, C) of variables. B, I, C
are the sets of indices of binary, general integer, and continuous variables, respectively. The goal is to
find o such that ¢* x is maximized, subject to linear constraints Az < b and integrality constraints on
binary decision variables z; € {0,1},V; € B and integer decision variables z; € Z,Vj € I.

MILP solvers such as Gurobi [35] and SCIP [14] use Branch-and-Bound (B&B), an exact tree search
algorithm, as the core component. B&B starts with the root node representing the original input
MILP. It then repeatedly chooses a leaf node and creates two smaller subproblems by splitting the
domain of a variable. This step is referred to as branching. Besides B&B, meta-heuristics, such as
Large Neighborhood Search (LNS) and Predict-and-Search (PaS), are also popular MILP search
algorithms that can find high-quality solutions to MILPs much faster than B&B for hard problems,
but do not provide optimality guarantees.

2.1 Machine Learning for MILP Solving

ML has been proposed to accelerate MILP solving in different ways. A large body of research
improves B&B by learning to select which variables to branch on [46} 26} 33} 85]] or which nodes to
expand in the search tree [37,52]]. There are also works on learning to schedule or execute primal
heuristics [47,17] and to select cutting planes [77} 166l 44] in B&B. ML has also been applied to
improve meta-heuristics. [75, (76,84} 41] apply learning techniques, such as imitation, reinforcement,
and contrastive learning, to learn to select which subset of variables to reoptimize in LNS. [64, 36\ 42]]
focus on PaS, where they learn to predict the optimal assignment for part of the variables to get a
reduced-size MILP that is easier to solve. A comprehensive literature review is provided Appendix [B]

2.2 Existing Libraries and Software Packages

MIPLIB [29] is a library that provides access to heterogeneous real-world MILP instances, containing
1065 instances from various domains that are diverse in size, structure, and hardness. It has become
a standard test set used to compare the performance of MILP solvers, and several ML methods for
MILP solving have been tested on MIPLIB instances [76, 184} 55]]. Despite some early success, it
remains a challenge for ML methods to deliver state-of-the-art performance on MIPLIB instances,
due to the heterogeneous nature [63}164].

There are also a few open-source software packages built to facilitate research in ML-guided CO.
MIPLearn [73] is a software for ML-guided MILP solving that provides access to a complete ML
pipeline, including data collection, training, and testing. MIPLearn provides generators for one
real-world problem, which is a simplified formulation for Unit Commitment (UC). However, domain
knowledge is required to generate realistic UC instances that are more complex and more challenging
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to solve. Ecole [71] is a library designed to facilitate research on using ML to improve CO solvers. It
exposes the sequential decision-making processes in MILP-solving as control problems over Markov
Decision Processes. Currently, Ecole provides instance generators for four classical problems. OR-
Gym [45] is a framework for developing RL algorithms to produce high-quality solutions for CO,
without using MILP solvers. Ecole and OR-Gym are designed for augmenting solvers and finding
high-quality solutions without solvers, respectively. MIPLearn supports both tasks.

Comparison with Existing Datasets and Contributions. Distributional MIPLIB provides a coun-
terpart for the MIPLIB that provides distributions of similar MILP instances of the same problem
formulation, intended for the development and evaluation of ML-guided MILP methods. Similar
to MIPLIB, it covers a broad range of application domains, allowing for a more comprehensive
evaluation on problems with different structures, especially in real-world domains. All the instances
are pre-compiled, and no domain knowledge is required to access complex real-world instances
included in d-MIPLIB. It covers multiple hardness levels, making it suitable for a wide range of
MILP methods (e.g., exact solving for easier instances and meta-heuristics for harder instances),
compared to libraries designed for specific avenues.

3 Distributional MIPLIB

We pre-generate MILP distributions from both synthetic and real-world problem domains, classifying
them into different hardness levels. Table [2 shows the sources where the distributions were initially
used in existing work on ML for MILPs, along with instance statistics. While we pre-compile a
fixed number of instances for consistency in comparing methods, an instance generator is available
for generating additional training instances for all synthetic problems and one real-world problem
(Optimal Transmission Switching).

3.1 Data Sources

We curate synthetic instances from domains that have been used in multiple ML tasks in existing
work (Table 1). Among variants of a problem in synthetic domains, we choose the most representative
one among the variants. As for real-world domains, as many problems used in existing work are
proprietary and not publicly available, we cover the associated domain by including an available
problem from the same area (e.g., Optimal Transmission Switching as a surrogate for Electric Grid
Optimization used in [[76]).

Synthetic Problems. We curate synthetic instances from domains commonly used in the literature
on ML for MILPs. As shown in Table [I] the most frequently used NP-hard problem domains
are Combinatorial Auctions (CA) [53]], Set Covering (SC) [5], Maximum Independent Set (MIS)
[7]], Capacitated Facility Location Problem (CFLP) [20], and Minimum Vertex Cover (MVC) [23]].
Additionally, we compile distributions of the Generalized Independent Set Problem (GISP), a graph
optimization problem proposed for forestry management [39,|18]]. We used the instance generators
provided in the existing work to compile MILP distributions as described in their work and generate
additional distributions covering different hardness levels for frequently used domains such as
Minimum Vertex Cover (MVC). Finally, we include Item Placement (IP), which involves spreading
items across containers to utilize them evenly [62], and Load Balancing (LB) [82], which deals
with apportioning workloads across workers, used in the NeurIPS 2021 Machine Learning for
Combinatorial Optimization Competition (ML4CO) [25]].

Real-world Problems. In addition to synthetic instances, we include MILP instances from five
real-world domains. The Maritime Inventory Routing Problem (MIRP) [65] determines routes from
production ports to consumption ports to minimize transportation costs and manages the inventory
at these ports, covering both ship routing and inventory management. MIRP was used as a hidden
test set in MLACO [235]]. Neural Network Verification (NNV) is an optimization problem in ML that
verifies the robustness of a neural network on a given input example [16} [78]. The NNV instances we
include were derived from verifying a convolutional network on MNIST examples, which was used
in [64] for learning for branching and solution prediction.

Furthermore, we compile distributions from problems where no ML method has been applied,
covering applications in energy, e-commerce, and sustainability. In energy planning, the Optimal
Transmission Switching (OTS) problem under high wildfire ignition risk [[70] is a type of Network
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Topology Optimization problem. Transmission grids are represented as a series of buses (vertices)
connected by power lines (edges). During high wildfire ignition risk, transmission lines can start
wildfires; methods to mitigate this risk include de-energizing and undergrounding transmission lines.
De-energizing lines prevent fires but interrupt power delivery to customers, whereas undergrounding
lines can deliver power without the risk of igniting a fire but at a higher cost. OTS examines
the optimal way to de-energize and underground transmission lines to reduce wildfire risk while
minimizing power outages within a resource budget. In e-commerce, the Middle-Mile Consolidation
Network (MMCN) [31] problem is a network design problem that creates load consolidation plans to
transport shipments from stocking locations, including vendors and fulfillment centers, to last-mile
delivery locations. It determines a minimum-cost allocation of transportation capacity on network
arcs that satisfies shipment lead-time constraints. For MMCN, we include distributions containing
binary and integer variables (denoted as BI) and distributions containing binary and continuous
variables (denoted as BC) El The Seismic-Resilient Pipe Network (SRPN) Planning [40] is another
network design problem in infrastructure resilience space that chooses which water pipes are to be
upgraded in earthquake hazard zones to ensure water delivery to critical customers and households
during disasters, while minimizing the cost. The SRPN instances in this library are generated based
on earthquake hazard zones in Los Angeles.

As shown in Table 2] most synthetic MILP instances contain only binary decision variables, except
for CFLP, LB, and IP, which include continuous variables. The real-world problems, on the other
hand, encompass diverse distributions with integer and continuous decision variables, enabling
comprehensive benchmarking on more realistic and complex problems.

3.2 Evaluation

Instances Data Generation. For each synthetic distribution, we generate a total of 1000 instances,
with 900 intended for training and validation in ML-guided methods and 100 for testing and evaluation.
For the real-world problems OTS and MMCN, we follow the same practice as the synthetic problems,
providing 100 test instances for each distribution. For NNV, since precompiled train, validation, and
test splits are publicly available, we respect the established splits, including the same 588 instances in
the test set. However, for MIRP and SRPN, the number of test instances is less than 100 as the total
number of instances available is limited. MIRP contains 20 test instances. SRPN contains 22 and 20
test instances in the Easy and Hard group, respectively

Performance Metrics and Problem Instance Statistics. We design a set of evaluation metrics that
characterize performance well from easy to hard settings. We report the number of instances in the
test set that are solved to optimality in 1 hour (# Opt). For instances solved to optimality, we report
the average solving time in seconds (Opt Time). For instances not solved to optimality, we report
the average primal-dual gap after 1 hour (NonOpt Gap). The primal-dual gap represents the gap
between the lower and upper objective bounds. Specifically, let zp be the primal objective bound
(i.e., the value of the best feasible solution found so far, serving as the upper bound for minimization
problems), and zp be the dual objective bound (i.e., linear relaxation of the MILP, serving as the
lower bound for minimization problems). The primal-dual gap is defined as gap = |zp — zp|/|zp|
[35]. Additionally, we report the primal-dual integral (Integral), which is defined as the integral of the
primal-dual gap over time [9], with lower values indicating faster (better) convergence. For instance
statistics, we report the average number of binary (# Var B), integer (# Var I), and continuous (# Var
C) variables, and the average number of constraints (# Constr).

Hardness Levels. We classify distributions into 5 hardness levels based on the runtime statistics. For
distributions with at least some instances solved to optimality within 1 hour, we classify them into
three levels based on the average solving time. Distributions with average solving times under 100
seconds are categorized as Easy, 100-1000 seconds as Medium, and those exceeding 1000 seconds
as Hard. For distributions with no instances solved to optimality within 1 hour, we further classify
them into Very hard and Extremely hard based on the primal-dual gap. Very hard and Extremely
hard (Ext hard) distributions are groups where the primal-dual gap is less than 1 and greater than 1,
respectively.

?BI and BC distributions correspond to 2 variants of MMCN. In the BI variant, all arcs in the network have
the same transit mode. In the BC variant, multiple transit modes are allowed.

3As MIRP has been used in ML4CO, we adhere to the train, validation, and test split established by ML4CO.
For SRPN, we randomly selected 10% of the total instances as the test set for each distribution.
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Table 2: Synthetic and Real-world problems in Distributional MIPLIB. T indicates domains for
which generators are available. | indicates distributions where # test instances is not 100. For the
performance metrics, we use Gurobi (v10.0.3) [35] with 1 hour time limit, on a cluster with Intel
Xeon Silver 4116 CPUs @ 2.10GHz, with a RAM allocation of 5G (For SRPN-Hard, MMCN-Very
Hard, and OTS-Hard instances, we increased the RAM to 15G, due to memory errors at SGB.)

Instance Statistics Performance Metrics
Domain Hardness Dist. Source:
Level MLAMILPs # Var B # Var | #VarC  #Constr #Opt 'Opt NonOpt Integral
Time(s) Gap
Synthetic
Easy Gasse et al. [26] 1000 0 0 385.04 100 47.14 N/A 2.30
CcAT Medium Gasse et al. [26] 1500 0 0 578.07 100 358.14 N/A 7.29
Very hard Huang et al. [41] 4000 0 0  2676.32 0 N/A 0.10  400.28
Easy Gasse et al. [26] 1000 0 0 500 100 18.05 N/A 0.99
sct Medium Gasse et al. [26] 1000 0 0 1000 100 214.11 N/A 15.78
Hard Gasse et al. [26] 1000 0 0 2000 56 1603.66 0.04 180.25
Very hard Huang et al. [41] 4000 0 0 5000 0 N/A 0.20 847.11
Easy Gasse et al. [26] 1000 0 0 3946.25 100 50.52 N/A 0.86
Mmist Medium Gasse et al. [26] 1500 0 0 5941.14 88  470.44 0.01 11.28
Very hard Huang et al. [41] 6000 0 0 23994.82 0 N/A 030 1132.69
Easy New 1200 0 0 5975 100 27.26 N/A 0.27
Mmvct Medium New 2000 0 0 9975 97  244.11 0.01 2.28
Hard New 500 0 0 30100 55 1821.04 0.02 102.74
Very hard Huang et al. [41] 1000 0 0 65100 0 N/A 0.12  454.02
Easy New 605.81 0 0 1967.05 100 43.09 N/A 15.59
Medium Ferber et al. [24] 988.81 0 0  3353.03 100 671.89 N/A  204.83
GIsp' Hard Ferber et al. [24] 1317.03 0 0  4567.83 85 2623.16 0.08 866.16
Very hard Cai et al. [15] 6017 0 0  7821.87 0 N/A 0.44  2104.04
Ext hard Khalil et al. [47]  12675.83 0 0 16515.44 0 N/A 2.01 8139.33
CELP Easy Gasse et al. [26] 100 0 10000 10201 100 44.44 N/A 0.57
Medium Gasse et al. [26] 200 0 20000 20301 100 103.51 N/A 0.88
LB Hard Gasse et al. [25] 1000 0 60000 64307.17 9 2665.11 0.00 33.48
P f Very hard Gasse et al. [25] 1050 0 33 195 0 N/A 044 1770.42
Real-world
MIRP Medium Gasse et al. [25] 0 15080.57 19576.15 44429.70 10% 697.24 0.23 728.75
NNV Easy Nair et al. [64] 171.49 0 6972.60 6533.70 588% 37.98 N/A 21.81
Easy New 4181 0 17137 48582 100 45.86 N/A 3.72
orst Medium New 7525 0 33202 92992 100 419.55 N/A 25.80
Hard New 6546 0 46423 111804 52 2564.00 020 1926.19
MediumZ ! New 1156.94 263.23 0 437.81 100 114.93 N/A 3.01
MediumZ¢ New 4271.59 0 324.04  3171.23 100 468.17 N/A 37.30
MMCN  HardB! New 2074.76 346.39 0 642.57 34 1998.57 0.01 79.79
Very hard®?  New 21596.72 1127.29 0.00  3944.01 0 N/A 0.10  369.15
Very hard®?®  New 68345.21 0  2425.87 96272.60 0 N/A 0.61 2761.52
SRPN Easy New 3016.42 0 301642  5917.27 21% 7791 0.02 10.00
Hard New 11485.33 0 11485.33 22430.84 91 132143 0.03 134.12

4 Computation Experiments

We illustrate the value of Distributional MIPLIB through computational experiments on its MILP
distributions. First, we identify distributions that are unexplored in previous work in ML-guided
MILP solving and identify potential areas for improvement (subsection[4.T). Furthermore, we propose
a novel setting where we learn ML policies from a diverse mix of domains, contrasting with existing
work that either trains models on single distributions or completely heterogeneous distributions
such as MIPLIB (Table 1) (subsection [d.2)). We show that the proposed mixed-domain strategy is
particularly effective in data-scarce settings.

Most ML-guided MILP approaches discussed in subsection 2.1|require a computationally expensive
data collection procedure before training ML models, as they replace computationally intensive
algorithmic components with ML oracles. The output of the expensive algorithmic component
(e.g., high-quality neighborhood candidate variables obtained via local branching in LNS) is used
as the ground truth in supervised learning. Given that Distributional MIPLIB spans many problem
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domains and hardness levels, complete benchmarking is beyond the scope of this paper. In this
paper, we focus our experiments on Learning to Branch (Learn2Branch) [26], which imitates Strong
Branching — a branching rule that effectively reduces the search tree size in B&B but is time-
consuming. Learn2Branch encodes a MILP with a variable-constraint bipartite graph, employs
a Graph Convolution Network (GCN) to learn variable representations, and trains a policy using
imitation learning.

Throughout the experiments, we use SCIP 6.0.1 [28]] as the solverﬂ Following existing work [56,26]],
we compare the ML methods against Reliability Pseudocost Branching (RPB), a state-of-the-art
human-designed branching policy in B&B. We report the mean and standard deviation over 5 seeds
for all metrics. We briefly introduce the setup; details on data collection and hyperparameters are
deferred to Appendix [C]

4.1 Learning on Previously Unused Distributions

Table 3: Learn2Branch evaluated on previously unused domains. Note that the solving time differs
from Table 2] because results in[2] were evaluated with Gurobi and under different RAM allocations.

Dist. Method Integral #0Opt OptTime(s)  NonOpt Gap # Nodes Infer Pct(%) Node Integral
GISP SCIP 118.0 + 1.5 100  376.6 +4.7 N/A  158866.1 + 1693.4 N/A  38596.6 + 508.0
(Medium) ML 139.0+£58 98.0+15 4728 +162 0.121 £0.007  89354.6 + 2622.5 212 +04 22636.5 + 6833
OTS SCIP 20.0 47 944 +22 179.4 55 0.003 4 0.002 1798.7 4+ 2429 N/A 5.8 +22
(Easy) ML 279 +104 804477 129.7+152 0.003 & 0.002 4073.2 £ 1416.0 49+ 1.1 20.6 +82
SRPN SCIP 470 +17 13.8+04 548 £151 0.152 + 0.006 15420.2 4 1937.0 N/A 1594.2 + 160.9
(Easy) ML 523 +43 128 +£07 418 £84  0.16 £ 0011  13003.5 + 1739.8 149 £1.9 1371.6 + 93.6

We evaluate the performance of Learn2Branch on three unused distributions. To our knowledge,
GISP has not been used in learning variable branching (Table [T)), and OST and SRPN have never
been used in any ML-guided methods. We focus on Easy and Medium distributions as learning for
branching is typically used on smaller instances in the literature.

Setup. We use a train, validation, and test split of 80%, 10%, 10%, respectively. This results in 800
MILP instances used for collecting training data for GISP and OTS and 175 for SRPN-Easy, as SRPN
instances are limited. We collect 10 Strong Branching expert samples from each instance. We report
the performance metrics described in[3.2] with a time limit of 800s.

Results and discussions. As shown in Table 3| the trained ML policy did not outperform SCIP in
any of the 3 distributions. We investigate the reason for failure by measuring the number of explored
nodes in B&B (# Nodes), the integral of the primal-dual gap with respect to the nodes (Node Integral),
and the % of time spent in ML inferences (Infer Pct (%)), which includes feature extraction, forward
pass, and ranking. The reason why Learn2Branch did not work well on GISP and SRPN could be
the overhead of the ML inference time, as they outperform SCIP on the number of Nodes and Node
Integral. For OTS, the reasons why Learn2Branch fails to beat SCIP are less obvious and pose an
open research question.

4.2 Learning with Mixed Distributions

Collecting expert samples for imitation learning in Learn2Branch is computationally intensive [56].
While collecting a large number of expert samples from a large number of training instances can lead
to stronger performance, it could be prohibitively costly. One simple strategy to make the best use of
limited data is to pool data and train policies on mixed domains, as opposed to existing work that
trains models on a single distribution, distributions from variants of a single problem family [[11}[10],
or completely heterogeneous distributions such as MIPLIB (Table[I). Empirically, we show that
pooling data from a diverse mix of domains achieves better performance when limited training data
is used.

Setup. We collect samples from training instances from 5 different domains: MIS-Easy, GISP-easy,
CFLP-easy, CA-Medium, and SC-Medium. We use the collected data in two different ways. First,

“We use SCIP in the Experiments as opposed to Gurobi, since Gurobi does not provide needed API for
ML-guided branching
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Table 4: Performance comparison under two training strategies, evaluated on five domains. Under
the first strategy, a separate model is trained for each domain on expert samples collected from
instances drawn from homogeneous distributions from the corresponding domain: ML-MIS, ML-
GISP, ML-CFLP, ML-CA, and ML-SC. ML-mix5 is trained under the second strategy, where pooled
data collected from instances in the 5 domains are used to train one single model. We present results
when using different numbers n of training instances per domain: n = 80 (left) and n = 320 (right).

Di Poli Collected samples from 80 instances per domain Collected samples from 320 instances per domain
ist. olicy
Integral # Opt Opt Time(s) NonOpt Gap Integral # Opt Opt Time(s) NonOpt Gap
mis SCIP 4412 £0.118  99.0 £0.0 1454 +£39 0.022 +0004 4.412+0118 99.0+00 1454439 0.022 £ 0.004
(Easy) ML-MIS  5.408 +5309 82.6+31.3 140.5+66.5 0.016 +0.003 2.434 +0.074 99.0 £06 89.2+51 0.015 + 0.001
Y ML-mix5  2.781+0197 980+ 11 107.3 +£13.0 0.016 +0.004 2.545+0.107 99.0+£06 97.4+54 0.016 + 0.003
Gisp SCIP 12.509 + 0.242 100 40.0 £ 0.7 N/A 12.509 + 0.242 100 40.0 £0.7 N/A
(Easy) ML-GISP  11.299 + 0.885 100 41.0 £34 N/A 10.700 =+ 0.442 100 385+ 16 N/A
ML-mix5 10.823 + 0.383 100 39.1+20 N/A 10.420 + 0.279 100 37.3+08 N/A
crLp SCIP 0.644 £ 0.021 100 48.5+£05 N/A 0.644 £ 0.021 100 48.5+£05 N/A
(Easy) ML-CFLP  0.642 + 0.036 100 478 £34 N/A 0.606 —+ 0.028 100 424 +19 N/A
¥ ML-mix5  0.638 + 0.020 100 46.7 + 2.8 N/A 0.610 £ 0.021 100 421+ 1.0 N/A
CA SCIP 2.347 £0.034 972 +04 1574 +48 0.009 +0.001 2.347 £0.034 97.24+04 1574448 0.009 £ 0.001
(Med) ML-CA 1.927 £0.063 97.0+00 1449 +62 0.007 +0.001 1.775 £0.056 98.2+07 136.8 +2.1 0.009 £ 0.003
ML-mix5  1.815 £0.015 982407 141.0 32 0.009 £ 0.002 1.795 £0.199 98.6 0.8 142.1 £ 125 0.011 £ 0.002
sC SCIP 6.465 £ 0.023 100 90.3 + 0.6 N/A 6.465 £ 0.023 100 90.3 + 0.6 N/A
(Med) ML-SC 5.602 £ 0.156 100 84.6 +£22 N/A 4.965 4 0.095 100 725+ 17 N/A
ML-mix5  5.362 + 0.131 100 79.8 + 2.2 N/A 4.796 =+ 0.104 100 68.4 + 1.7 N/A

we train a separate model for each domain. Second, we pool expert samples collected for all domains
and train a single model from the mixed distribution (denoted as ML-mix5). The number of training
samples fed into ML-mix35 is five times the first strategy, but the data collection costs for the two
strategies aggregated across the 5 domains are the same. We first start with n = 80 training instances
per domain, which is 10% what we used in[4.1] We then quadruple the number of training instances
to n = 320. Following [i.T] we collect 10 expert samples per instance. We compare the performance
of the two training strategies (single domain vs. mixed domains) on each domain separately.

Results and Discussions. As shown in Table[d] when the total number of instances used for data
collection is small (80), ML-mix5 outperforms the models trained on homogeneous distributions and
SCIP across multiple evaluation metrics for all domains. However, as the number of training instances
increases (320), the models trained on a homogeneous distribution outperform ML-mix5 in some
domains. This indicates that learning with mixed distributions can improve data collection efficiency
in the case when we have a limited budget for data collection (e.g., under time or computational
resource constraints), but does not surpass training on homogeneous distributions when training
samples can be collected from a larger number of instances. Additionally, Table ] suggests that when
the number of training data points fed into the model is the same, using a training set where the data
is drawn from mixed distributions is unlikely to surpass the performance of using a training set where
the data is drawn from homogeneous distributions. The performance of ML-mix5 under 80 instances
per domain, which was trained with samples collected from 400 training instances in total, did not
outperform the separately trained models under 320 instances per domain. This underscores the
benefits of having domain-specific distributional datasets as provided in our library.

Table 5: Performance comparison under two training strategies when transferred to different hardness.
ML-MIS (trained on Easy), ML-SC (trained on Medium), and ML-mix5 are the ones presented in
Table[d] (under n = 320). The time cutoff is 800s, except for Very hard distributions where it is 3600s.

Policy Integral #Opt Opt Time(s) NonOpt Gap Integral #Opt NonOpt Gap Infer Pct(%) Node Integral
MIS (Medium) MIS (Very hard)

SCIP 234+01 114+1.0 4832+£105 0.024 £ 00 14793 £23 0 0.393 £ 0.002 N/A 223.6 +41.7

ML-MIS 219 +24 1024104 377.2+£200 0.023 +0.003 1461.5+ 4.8 0 0.390 + 0.002 0.1 +0.0 179.0 + 56.4

ML-mix5 16.5+02 24.2+39 3353 +19.6 0.017 £ 0.0 1459.0 + 2.4 0 0.390 + 0.001 0.1 +0.0 1394 + 429
SC (Hard) SC (Very hard)

SCIP 533 +02 350+£35 37854108 0.066 +0.000 767.0 + 1.0 0 0.239 + 0.001 N/A 3853.6 + 826

ML-SC 49.6 £04 378+10 367.1+£73 0.062 +0.001 8703+ 13.6 0 0.297 + 0.009 92416 2622.8 +579.1

ML-mix5 48.2+03 40.2+07 3582 +33 0.062 +0.001 830.3 £ 19.5 0 0.275 +0.010 133 £47 4051.3 +1734.7
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Transferring to Different Distributions. We further evaluate the performance of trained models
when applied to distributions of different hardness levels from the same domain, for MIS and SC.
Table [5]shows that on MIS, ML-mix5 exhibits better generalization to harder instances compared to
the model trained on homogeneous distributions, even though ML-mix5 did not outperform ML-MIS
at the trained hardness level (Table E]) On SC, again ML-mix5 exhibits better performance than ML-
SC on harder distributions of SC, however on the Very hard distribution neither is able to outperform
SCIP, possibly due to the larger overhead of the GCN inference time on larger instances.

5 Potential Research Paths

Below we outline suggestions for potential research paths using Distributional MIPLIB to facilitate a
significant step-change in the ability to solve hard real-world MILP problems.

Faster Inference. Due to computational constraints, prior work has focused on training and testing
on relatively small and/or easy MILP distributions. In addition to Learn2Branch, much of the existing
work on ML for MILP focuses on replacing an expensive procedure with an ML oracle, such as ML
for LNS. Our empirical results highlighted that often the advantage of the ML policy is outweighed
by its cost of inference on large MILPs. This calls for investigations of ML model architectures or
hardware solutions that specifically target this challenge.

Synthetic Data Generation. Synthetic Data Generation (SDG) captures the underlying distribution
of a dataset and synthesizes targeted data through a generative process [3]. SDG has been applied to
finance [4] and healthcare [38]] to address the problem of limited data or preserve the privacy of real
data. SDG could also be used to improve ML-based methods for MILPs, as collecting algorithmic
decision data from solving instances can be expensive, as discussed in Sectiond] There has been
existing work that uses data augmentation to generate MILP instances [38, 127} 80, [32] or algorithm
decision data inside B&B [56]. Distributional MIPLIB could be used to develop theoretical and
algorithmic frameworks that generate targeted data forming the same distributions.

Foundation Model for Combinatorial Optimization. Deep learning foundation models that
leverage vast amounts of data to learn general-purpose representation can adapt to a wide range of
downstream tasks, which has drastically transformed the domains of language, vision, and scientific
discovery [13]]. [54] took a step towards foundation models for MILP by using a LLM-based
framework to generate MILPs and training a single model on a diverse set of MILP problems.
Moreover, Distributional MIPLIB contains MILPs from a wide range of domains and hardness levels,
which can be suited for a wide range of tracks (B&B, LNS, and finding primal solutions). Much of the
existing works (e.g., learning for backdoors, LNS, and branching) use a common subset of features to
learn a representation of MILP variables, which could be unified as a shared latent representation.
Distributional MIPLIB could be used to develop and train such foundation models for the discrete
optimization world.

6 Conclusion and Discussion

We introduce Distributional MIPLIB, a curated dataset of more than 35 MILP distributions from 13
synthetic and real-world domains, making it a large-scale resource for developing ML-guided MILP
solving and comprehensive evaluation. Compared to existing datasets and generators, it provides data
in distributional settings which is better suited for ML-guided methods. It provides MILP distributions
from a wide range of applications and requires no domain knowledge to access these instances. We
intend for the library to continue to grow with domain contributions from the community.

We ran experiments on Learn2Branch focused on variable selection policies in B&B. We identified
that in past research only a few distributions/domains were used to assess state of the art, and evaluated
the performance of Learn2Branch on unused domains, identifying open challenges. Moreover, we
propose to train a Learn2Branch model with mixed distributions and show that this offers advantages
in the low-data regime. We also identified potential future directions that can benefit from this library.

We also would like to acknowledge some limitations of our work. Due to computational constraints,
we did not experiment with other GNN architectures, with a larger number of samples, or on better
GPUs. These could change our empirical conclusions, but do not affect the value of the library.
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The abbreviations for the domains are listed in Table
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Abbreviation Domain Reference

CA Combinatorial Auctions 53]

SC Set Covering 151

MIS Maximum Independent Set 171
MVC Minimum Vertex Cover 23]
GISP Generalized Independent Set Problem 1390 118]]
CFLP Capacitated Facility Location Problem 120]
MK Multiple Knapsack 1671
MC Max Cut 169)
CORLAT Wildlife Management Problem 191 130]
LB Load Balancing 182]

1P Item Placement 162]
MIRP Maritime Inventory Routing Problem 1651
NNV Neural Network Verification 1161 178]
OTS Optimal Transmission Switching 1700
MMCN Middle-Mile Consolidation Network 131]
SRPN Seismic-Resilient Pipe Network Planning 140]

Table 6: Abbreviation for domains.

B Literature Review

Learning to Branch A series of papers have explored learning to branch by imitating the strong
branching heuristic, a branching method that results in fewer search tree nodes but is expensive to
compute [46 160, 2 16, 26| 33,164, 156]]. The strong branching heuristic computes a score for each
branching candidate and these methods either learn to predict the variables’ score or learn to rank
them according to their scores. For the features and ML models, [46]] develop the first ML-based
framework for learning to branch using a Support Vector Machine (SVM) with hand-crafted features.
[26] extend the framework by using a bipartite graph to encode the MILP and Graph Convolution
Networks (GCN) to learn variable representations.

Learning Backdoors Backdoor for MILPs is a small subsets of variables such that a MILP can be
solved optimally by branching only on the variables in the set [81]. Therefore, identifying backdoors
efficiently and effectively can greatly improve the performance of B&B. [24] using ML to predict the
most effective backdoor candidates generated by a LP relaxation-based sampling methods. More
recently, [[15] propose to use a Monte-Carlo tree search method [49] to improve the quality of training
data and apply contrastive learning to directly construct backdoors.

Learning Primal Heuristics Primal heuristics refer to routines that find good feasible solutions in
a short amount of time [14] and deciding which heuristics to run and when is an important task. These
decisions are mostly made by hard-coded frequency rules in MILP solvers, which are static, instance-
oblivious, and context-independent. To tackle this challenge, [47/] propose a data-driven approach to
decide when to execute primal heuristics. [17] derive a data-driven approach for scheduling primal
heuristics.

Another line of research is to learn to predict solutions to MILPs. Both [[64]] and [36] learn to predict
optimal solutions to MILPs and fix the values for a subset of variables based on the prediction to get
reduced-size MILPs that are faster to solve.

Large Neighbourhood Search (LNS) LNS is a meta-heuristic that can find high quality solutions
faster than B&B on large-scale MILP instances but provides no optimality guarantees. It starts with
a feasible solution to the MILP and iteratively selects a subset of variables to reoptimize. Local
Branching (LB) is a heuristic that finds the variables that lead to the largest improvement over the
current solution in each iteration of LNS. But LB is often slow since it needs to solve a MILP of the
same size as input. To mitigate this issues, [76] and [41]] replace LB with imitation-learned policies.
Other ML techniques, such as reinforcement learning (RL), have also been applied to learn destroy
heuristics for LNS [75/184].

Learning to Cut A cutting-plane is a constraint that is valid for feasible integer solutions but cuts
into the feasible region of the linear programming (LP) relaxation, thus improving the bound on
the optimal solution. Adding cutting planes has been shown to speed up B&B [12, 21]. Modern
MILP solvers maintain a cut-pool that includes a large number of cutting planes of a diverse set of
classes. The decisions regarding which classes of cutting planes to use, as well as the specific cutting
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planes to select from each class, significantly impact solver performance. In recent advancements,
[77] introduce a Reinforcement Learning (RL) framework tailored for the Gomory cutting-plane
algorithm. Additionally, [44] develop a method to approach cut selection as a learning-to-rank task,
while [66] devise a strategy to imitate a lookahead strategy for cut selection.

C Experiment Details

We used the Learn2Branch implementation from [26] in our experiments. Their code is publicly
available at https://github. com/ds4dm/learn2branch.

Setup. All experiments in Section ] were conducted on a cluster with Intel Xeon Gold 6130 CPUs @
2.10GHz and Nvidia Tesla V100 GPUs. Each method was run with 5 different seeds. For ML-based
methods, we trained the model using 5 different seeds and solved the instances using the trained
policies that correspond to the 5 training seeds. For the non-ML methods, we used SCIP to solve the
instances with 5 different seeds. The results report the mean and standard deviation across these 5
seeds.

Data Collection. In the orginal implementation [26]], expert samples were collected by sampling
from a set of training instances with replacement and solving it with SCIP. They iterated this process
until the desired number of expert samples was collected. Therefore, in their implementation, the
whole set of training and validation instances was not necessarily used to collect samples. In our
implementation, we collected a fixed number of expert samples (10) from each instances, to ensure
that all instances in the training set were used.

Hyperparameters. We used the same GCN architecture as described in [26] and trained the models
in TensorFlow [1]]. We used the Adam Optimizer [50]] with a batch size of 32 and an initial learning
rate of 0.001. In case the when the validation loss does not decrease over a period of 10 epochs, the
learning rate was reduced to 20% of its previous value.

D License of existing assets

We curated new assets from the following existing assets. The NNV dataset was down-
loaded from https://github.com/google-deepmind/deepmind-research/tree/master/
neural_mip_solving, which is available under the terms of the Creative Commons Attribu-
tion 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.
0/legalcode. Datasets downloaded from ML4CO (LB, IP, MIRP) are under BSD-3-Clause li-
cense https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE. CA, SC, MIS,
CFLP instances were generated using code from [26], available at https://github. com/ds4dm/
learn2branch?tab=readme-ov-file under the MIT license https://github.com/ds4dm/
learn2branch?tab=MIT-1-ov-file.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper introduces a library developed for advancing ML-guided MILP
methods and performed computational experiments using data in this library. The abstract
and introduction (Section 1) reflects this.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of the work in Section [6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the information needed to reproduce the main experimental
results in Appendix [C] This includes the setup, data collection procedure, and model training
details.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experimental results in this paper are based on the library that we intro-
duced, which is made publicly available in this submission. The code and instructions for
running the experiments is included in the supplemental material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The data splits and how they were chosen are described in Section 4.1. The
hyperparameters and optimizers used are described in Appendix [C]

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experiments in Section 4 were ran with 5 random seeds, and the mean
and standard deviation of results over 5 random seeds are reported in Table 3, Table 4, and
Table 5. For ML-based methods, we trained the model using 5 different seeds and solved the
instances using the trained policies that correspond to the 5 training seeds. For the non-ML
methods, we used SCIP to solve the instances with 5 different seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of works CPU and GPU are detailed in Appendix[C] and the execution
time is detailed in Section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The library we provide has minimal privacy concerns and we respect the terms
of existing datasets that have defined licenses. We also discuss the impact of our dataset in
the supplemental materials.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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12.

Justification: We discuss the potential positive societal impacts and negative societal impacts
of the work performed in the supplemental materials.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the license of the data sources in https://sites.google.com/
usc.edu/distributional-miplib/license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document the details of the dataset in https://sites.google.com/
usc.edu/distributional-miplib/home,

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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948 * The answer NA means that the paper does not involve crowdsourcing nor research with
949 human subjects.

950 * Depending on the country in which research is conducted, IRB approval (or equivalent)
951 may be required for any human subjects research. If you obtained IRB approval, you
952 should clearly state this in the paper.

953 * We recognize that the procedures for this may vary significantly between institutions
954 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
955 guidelines for their institution.

956 * For initial submissions, do not include any information that would break anonymity (if
957 applicable), such as the institution conducting the review.

958 16. Declaration of LLM usage

959 Question: Does the paper describe the usage of LLMs if it is an important, original, or
960 non-standard component of the core methods in this research? Note that if the LLM is used
961 only for writing, editing, or formatting purposes and does not impact the core methodology,
962 scientific rigorousness, or originality of the research, declaration is not required.

963 Answer: [NA]

964 Justification: LLM is used only for writing and editing for this paper.

965 Guidelines:

966 * The answer NA means that the core method development in this research does not
967 involve LLMs as any important, original, or non-standard components.

968 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
969 for what should or should not be described.
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