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ABSTRACT

The development of autonomous machine learning (ML) agents capable of end-
to-end data science workflows represents a significant frontier in artificial intelli-
gence. These agents must orchestrate complex sequences of data analysis, feature
engineering, model selection, and hyperparameter optimization, tasks that require
sophisticated planning and iteration. While recent work on building ML agents
has explored using large language models (LLMs) for direct code generation, tool-
augmented approaches offer greater modularity and reliability. However, existing
tool-use benchmarks focus primarily on task-specific tool selection or argument
extraction for tool invocation, failing to evaluate the sophisticated planning ca-
pabilities required for MLL Agents. In this work, we introduce a comprehensive
benchmark for evaluating tool-augmented ML agents using a curated set of 61
specialized tools and 15 tabular ML challenges from Kaggle. Our benchmark
goes beyond traditional tool-use evaluation by incorporating an in-memory named
object management, allowing agents to flexibly name, save, and retrieve interme-
diate results throughout the workflows. We demonstrate that standard ReAct-style
approaches struggle to generate valid tool sequences for complex ML pipelines,
and that tree search methods with LLM-based evaluation underperform due to in-
consistent state scoring. To address these limitations, we propose two simple ap-
proaches: 1) using shaped deterministic rewards with structured textual feedback,
and 2) decomposing the original problem into a sequence of sub-tasks, which sig-
nificantly improves trajectory validity and task performance. Using GPT-40, our
approach improves over ReAct by 16.52 percentile positions, taking the median
across all Kaggle challenges. We believe our work provides a foundation for de-
veloping more capable tool-augmented planning ML agents.

1 INTRODUCTION

Autonomous agents capable of solving end-to-end machine learning (ML) tasks represent a crit-
ical frontier in artificial intelligence (Grosnit et al., |2024; [Toledo et al., 2025} [Yang et al.l 2025;
Chan et al.| 2025). Such agents must be capable of doing: data preprocessing, feature engineering,
model training, and hyperparameter tuning, while managing intermediate results and adapting their
strategies based on the evolving context. Achieving this level of autonomy requires not only sophis-
ticated planning, but also memory management and the capacity to coordinate multiple operations
coherently. Large language models (LLMs) have recently been explored as the foundation for such
agents (Grosnit et al.,2024; (Chan et al., 2025; |Huang et al.,|2024). Early work has primarily focused
on direct code generation, where the agent generates python code for completing a given ML task
(Grosnit et al., 2024; |Chan et al., 2025; Huang et al., |2024; Toledo et al., [2025)). This paradigm has
shown promise on competitive benchmarks inspired by Kaggle challenges, with some approaches
achieving performance comparable to a Kaggle Master (Grosnit et al., 2024} |Chan et al.,|2025). Sev-
eral benchmarks have also been proposed to evaluate the performance of LLMs on such tasks (Chan
et al., | 2025; Huang et al., 2024; |Qiang et al., [2025} Jing et al., [2025} Zhang et al., [2025)). However,
any approach that relies on direct code generation is prone to key weaknesses: generated code is
brittle (Abbassi et al., [2025; [Liu et al., 2025), debugging typically requires multiple iterations, and
reasoning is tightly coupled with execution (Liu et al.| 2025} (Chen et al., 2025)).

An alternative paradigm equips LLMs with external tools, yielding tool-augmented agents that need
to decide which tools to invoke and in what sequence, to solve the task. Tools offer modular, reusable
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building blocks for data-science workflows: from preprocessing, to training, and evaluation. This
design has proven effective in broader domains, including web navigation (Zhou et al., [2024b),
operating systems (Bonatti et al.|2024)), and code interpretation (Huang et al.,|2024), yet its potential
for ML workflows remains underexplored. Crucially, tool augmentation reformulates the problem
as planning in a large action space: the agent must coordinate multi-step trajectories and retrieve
and reuse intermediate artifacts (or results). Because the agent is restricted to a curated toolset, tool-
augmented approaches decouple high-level reasoning from low-level code execution, improving
modularity, reliability, and safety.

Existing benchmarks for tool use fall short on long-horizon planning. Most benchmarks and ap-
proaches evaluate whether agents can select the right tools and valid arguments. The Berkeley
Function-Calling Leaderboard (BFCL) (Patil et al., [2025) measures single, parallel, and multiple
function calling, and BFCL-v3 (Patil et al.l 2025) extends this to multi-turn, multi-step settings.
However, even BFCL-v3 emphasizes relatively shallow plans compared to ML workflows, which
might require long-term planning, iterative refinement, and reuse of intermediate artifacts. Similarly
ToolBench (Xu et al.|[2023)) provides a suite of diverse software tools, that span both single-step and
multi-step action generation, but focuses on evaluating whether the LLM can correctly select tools
and tool arguments.

In this work, we introduce ML-Tool-Bench, motivated by the lack of good benchmarks to assess
planning approaches with tools in ML workflows. In particular, ML-Tool-Bench provides a bench-
mark to evaluate the planning capabilities of LLM agents on tabular Kaggle ML challenges. We
introduce a curated suite of 61 tools sufficient to solve such tasks and assess performance across 15
Kaggle challenges spanning regression and classification.

We evaluate multiple agents using several different planning algorithms, on our benchmark. To en-
able agents to create, persist, and reuse intermediate artifacts, we adopt an in-memory, named-object
management scheme: tools accept references to named objects, and agents can assign names to tool
outputs. We refer to this as scratchpad-augmented planning: agents store and retrieve objects by
name over multi-step trajectories, enabling tools to handle arbitrarily large or structured inputs, un-
like prior benchmarks that restrict arguments to simple types (e.g., strings, integers, floats). We
observe that simple methods like ReAct (Yao et al.|[2023b)) struggle to produce performant trajecto-
ries across our Kaggle benchmark. Monte Carlo Tree Search-based methods (Kocsis & Szepesvari,
2006; [Silver et al., [2016)) such as LATS (Zhou et al., 2024a), which rely on LLMs as value estima-
tors, also underperform due to inconsistent trajectory scoring. In contrast, we propose two simple
approaches: 1) combining shaped, deterministic rewards with textual feedback and 2) decompos-
ing the original problem into a sequence of sub-tasks. These approaches outperform the baselines,
yielding more performant tool trajectories. These results highlight the difficulty of autonomous ML
planning and point toward tool-augmented systems that rely less on subjective LLM scoring as tool
sets grow in size and complexity.

1. We introduce ML-Tool-Bench, a tool-augmented benchmark for end-to-end ML planning with
61 tools and 15 Kaggle challenges.

2. We formalize scratchpad-augmented planning via named-object management that supports arbi-
trarily large artifacts and reversible branching in search.

3. We propose MCTS-Shaped, an MCTS approach with shaped, deterministic rewards and targeted
textual feedback, which improves trajectory validity and performance over ReAct and LATS.

4. We introduce Hierarchical MCTS, an approach that decomposes problems into sequenced sub-
tasks, further improving validity and robustness. For GPT-4o, Hierarchical MCTS improves
over LATS by 9.93 percentile positions on the leaderboard and over ReAct by 16.52 percentile
positions (median across all competitions). For GPT-4.1-mini, it improves over MCTS-Shaped
by 1.89 percentile positions, while both ReAct and LATS had a median percentile position of 0.

Together, these advances establish strong baselines for tool-augmented, end-to-end ML planning
and reduce reliance on subjective LLM scoring.

2 RELATED WORK

Machine Learning Benchmarks for AI Agents: Most of the existing Data Science and ML bench-
marks, provide the LLM agent access to write code that solves the task, and evaluate its performance.
Chan et al.|(2025) propose MLE-bench, a curated benchmark of 75 Kaggle challenges, that test real-
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world ML engineering skills. They find that OpenAI’s ol-preview with the Al-Driven Exploration
(AIDE) scaffolding (Jiang et al.,|2025) achieves at least a level of Kaggle bronze medal in 16.9% of
competitions in their benchmark. AIRA-dojo (Toledo et al.,[2025) improves upon|Chan et al.|(2025),
replacing AIDE (Jiang et al.l [2025) with a different choice of operator set, to generate new candi-
date solutions, and using Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvari, [2006) instead
of greedy search, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%.
Huang et al.| (2024) also propose a ML benchmark, called MLAgentBench, containing a suite of 13
tasks, where the agent is allowed to perform actions like read/write files, execute code and inspect
outputs. They construct a ReAct based agent (Yao et al.| 2023b) (with Claude v3 Opus) and were
able to build compelling ML models on MLAgentBench with 37.5% average success rate. (Qiang
et al.| (2025) propose MLE-Dojo, an interactive gym-style workflow for LLM agents in iterative ML
engineering workflows, and build upon 200+ Kaggle challenges. To evaluate Data Science Agents,
Jing et al.| (2025) proposed a comprehensive benchmark that includes 466 data analysis tasks and
74 data modeling tasks, sourced from Eloquence and Kaggle competitions, and showed that state
of the art LLMs and agents struggle on most tasks. [Zhang et al.| (2025) propose DataSciBench and
demonstrate that closed source models (GPT, Claude etc.) outperform open source models on all
metrics in their benchmark.

Learning in Tool augmented LLMs: Solving ML challenges solely through the invocation of a
fixed set of tools, in the correct sequential order, remains relatively unexplored. Approaches such
as ARTIST (Singh et al., 2025), ReTooL (Feng et al.l [2025)), StepTool (Yu et al., [2024), ToRL
(L1 et al., 2025)), and ToolPlanner (Wu et al., [2024) couple reasoning and tool use for LLMs, using
Reinforcement Learning to learn robust strategies for tool use. Recently, methods to fine-tune LLMs
on responses containing tool usage have also been proposed (Schick et al.l 2023} |Qin et al., 2023;
Gou et al., [2023; [Patil et al.| [2023)).

Alternately, tree search methods (Yao et al., 2023a; Hao et al., 2023; |[Zhou et al.| 2024a}; |[Zhuang
et al.,|2023) have also been used to generate valid tool use trajectories. [Zhuang et al.| (2023) em-
ploys A* search, Hao et al| (2023) adopts Monte Carlo Tree Search (MCTS) and uses LLM as
the world model, Zhou et al.| (2024a) uses MCTS with value functions obtained from an LLM and
self-reflection, and |Yao et al.|(2023a) explores Breadth-First Search (BFS) and Depth-First Search
(DES). However, these methods either depend on heuristic cost functions or leverage LLM feedback
as a value function, and they are primarily applied to problems with relatively shallow depth. LATS
(Zhou et al.,2024a)) and Toolchain* (Zhuang et al.,2023)) are the only approaches that explore plan-
ning with tools while the others restrict themselves to reasoning or toy domains. [Feng et al.| (2024)
propose TS-LLM, an AlphaZero-inspired tree-search framework for LLMs that integrates a learned
value function to guide decoding. The trajectories generated from tree search can further be used
to fine-tune and improve the LLM, and TS-LLM has been shown to scale to tree depths of up to
64. Another approach, ReST-MCTS (Zhang et al., [2024)), adopts a similar strategy to TS-LLM;
however, in this case the per-step rewards are inferred directly from MCTS, whereas TS-LLM infers
them using TD-A (Sutton, [1988)).

Tool Benchmarks: Benchmarks for LLM tool use largely emphasize correct tool selection and ar-
gument specification rather than extended planning. ToolBench (Xu et al., 2023)) covers diverse soft-
ware tools for single- and multi-step tasks but underplays long-horizon coordination. The Berkeley
Function Calling Leaderboard (BFCL) (Patil et al.| [2025) evaluates single, parallel, and multi-step
calls, though plans remain shallow. 7-Bench (Yao et al.,[2024) focuses on human—agent interaction
under domain rules, highlighting alignment and information gathering more than proactive planning.

3 ML-TOOL-BENCH

Each task in ML-Tool-Bench, can be formalized as a Markov Decision Process (MDP) (S, A, T, R)
(Puterman, 2014) The state space S consists of the entire interaction history: all AI, Human, and
Tool messages together with artifacts such as dataframes and ML models. Whenever a tool is ex-
ecuted, its observations (e.g., outputs, errors, logs) are appended to the history and folded into the
state, so that the state maintains an up-to-date record of both conversational and artifact changes.
The initial state s comprises the Kaggle challenge description along with the dataset.

The action space is defined as: A = (Ao U {@}) X (Aseason U {@}), where Ay denotes the
set of all tool invocations together with their full parameterizations (not just tool identity, but also
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argument values and hyperparameters). This makes the benchmark challenging, since the effective
size of Ao can be very large rather than a small, discrete set. The set Ayeqson 1S the space of free-
form reasoning steps, which we model as natural-language strings. The null element & denotes “no
action” in that component, allowing tool-only, reason-only, both, or neither at a step. Reasoning
actions organize information, plan future steps, and inject prior knowledge; tool actions modify or
analyze data and train/evaluate models, thereby updating the state’s artifacts.

The transition function T : S x A — S maps a state—action pair (s, a) to the next state by append-
ing the messages generated by the agent’s action, appending tool messages (i.e., the observations
produced), and updating artifacts accordingly.

The reward function R evaluates progress and can be instantiated in several ways: (i) an outcome
reward granted upon successful challenge completion; (ii) a shaped reward providing intermediate
credit for measurable progress; or (iii) an LLM-based evaluation of the current state, using the LLM
as a judge (Zheng et al., 2023)) and absolving us from providing the reward function.

fit_model

X %

create_feature

3.1 SCRATCHPAD
Y
e

train df <> transformed_df: <> model; <> predictions: <>

test_df: <>

Figure 1: An illustration of our named-object management scheme. Green circles denote tool calls;
the blue rectangle denotes the scratchpad (a key—value store). Each tool can read any named object
from the scratchpad and write outputs back to it, depending on their read-write behavior. Arrows
into a tool indicate inputs; arrows from a tool to the scratchpad indicate outputs. read_csv is a set
tool; fill nans_with, fit model, and predict are get—set tools; create_feature is an
override tool. There are two read_csv tool calls in the figure, one for train data and one for test.

Solving an ML challenge often involves storing large dataframes, models, and other complex arti-
facts as they cannot be directly passed as tool inputs by an LLM. A naive workaround is to maintain
a single dataframe and model object that the agent incrementally modifies via tool calls. However,
a single erroneous call can corrupt these objects, forcing a restart of the trajectory, and the agent
becomes inflexible to create and reuse intermediate variables.

To address this, we adopt an in-memory, named-object management scheme: an agent assigns names
to tool outputs, and tools accept references to named objects as inputs. Thus, agents can pass com-
plex objects to tools by specifying the name under which the object is stored in the scratchpad. An
illustration of this approach is presented in Figure[I] Implementing this requires modifying tools to
operate on named references rather than raw objects; we describe these changes next.

3.2 TooLS

We grant the agent access to a curated suite of 61 tools spanning data loading, data cleaning, feature
engineering, and modeling. These tools are designed to be reasonably sufficient for solving tabular
regression and classification tasks. Agent performance depends on the available toolset: in principle,
a very large collection would maximize flexibility, but it results in an increased action space and
complicates planning. We therefore adopt a fixed, compact tool set that trades some flexibility for a
more tractable planning, while remaining adequate to solve the Kaggle challenges considered. For
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modeling, we restrict to tree-based learners: Random Forest, XGBoost, LightGBM, and CatBoost,
and linear/logistic regression, in light of the strong performance of tree-based methods on tabular
Kaggle challenges (Grinsztajn et al., |2022). For more information on tools and how arbitrary user
defined tools are modified to operate on named references rather than objects, refer to Appendix [E]

3.3 KAGGLE CHALLENGES

We select 15 tabular Kaggle ML challenges for ML-Tool-Bench: eight classification (binary and
multiclass) and seven regression. These tasks are chosen so that they are solvable with our tool set.
Several datasets are large (e.g., New York City Taxi Fare Prediction is ~2.5 GB), so we randomly
sample 10,000 data points from each competition’s training set to keep planning computationally
tractable. Because Kaggle test labels are hidden, we create an internal evaluation split by reserving
20% of the sampled training data as a test set with ground-truth labels. We evaluate using each
competition’s official metric and report agent performance as the corresponding public-leaderboard
percentile. Our evaluation metric is chosen to accommodate a collection of regression and multi-
class classification tasks. Note that Kaggle leaderboards are computed on a test set, the labels to
which we do not have access to; our reported results are computed on our held-out test split. For
more information on the Kaggle challenges, refer to Appendix [C]

4 APPROACHES

4.1 REACT

ReAct (Yao et al., [2023b) is a prompting framework that interleaves natural-language reasoning
(Thought) with tool interaction (Action) and the subsequent Observation from the environment due
to tool calling. ReAct augments the agent’s action space to include the space of language, to ac-
count for thoughts or reasoning traces that do not affect the environment. Thoughts compose useful
information from the current context and update the context to support future reasoning or actions.
By explicitly exposing intermediate chain-of-thought alongside tool calls, ReAct enables agents to
plan, invoke tools, and revise plans based on feedback. However, ReAct is unidirectional and can
neglect potential alternative continuations from certain states, leading to locally optimal solutions
(Zhuang et al., [2023; [Zhou et al.| [2024al).

4.2 MONTE CARLO TREE SEARCH (MCTYS)

MCTS (Kocsis & Szepesvari, [2000) is a search algorithm that has achieved remarkable success in
challenging domains such as Go (Silver et al., 2016) and Atari (Ye et al., [2021). MCTS builds a
search tree where nodes correspond to states and edges correspond to actions. It comprises four
phases: selection, expansion, simulation/rollout, and backpropagation. A common selection policy
uses UCT (Upper Confidence Bound for Trees) (Kocsis & Szepesvari, [2006), choosing a child s of

parent p such that: s € argmax e,y V(s) + w/InN(p)/N(s),

where V() is the empirical value function, denoting the expected cumulative reward from state s,
N (p) is the parent’s visit count, N (s) is the child’s visit count, w > 0 controls exploration, and C(p)
denotes the set of children of p. Upon reaching a leaf node, it is expanded by selecting an action and
adding the resulting next state as a child. From the newly expanded node, a simulation is run until
the end of the episode or a fixed depth to obtain a reward r, which is then backpropagated along the
trajectory to update values of all states along that trajectory: V' (s) < (V(s) (N(s) — 1) +r)/N(s).
MCTS is well-suited to large, irregular action spaces and provides a principled trade-off between
exploration and exploitation. A pictorial illustration of MCTS is provided in Appendix [B]

4.3 LANGUAGE AGENT TREE SEARCH (LATS)

LATS (Zhou et al., 2024a) adapts MCTS to language agents by using LLMs both to propose actions
(reasoning steps or tool calls) and to evaluate node values. At each expansion, the policy LLM
suggests candidates, and an evaluator LLM scores partial trajectories based on estimated progress
toward the task objective. The value of a state is taken to be a weighted average of the evaluator
LLM’s score and a self-consistency score (Wang et al.,[2022), which upweights frequent candidates
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in the expansion stage. In our tool-planning setting, we do not incorporate the self-consistency score
into the value of a state. We observed that during the expansion phase, the LLM tends to propose
only a small but distinct set of tool calls or reasoning steps, making the additional score unnecessary.
LATS has shown improvements over purely reactive methods, such as ReAct (Yao et al.,[2023b)) on
complex tasks. However, its value estimates can be noisy, and the effective planning depth may be
limited by inconsistencies in evaluator scoring.

4.4 MCTS-SHAPED

In MCTS with shaped rewards, the agent receives intermediate credit for completing stages of the
Kaggle ML challenge. The shaped-reward stages and their triggers are detailed below. Figure
provides an example to illustrate how rewards are provided in MCTS-Shaped.

Shaped-reward stages

1. Train data loading: reward when the agent successfully loads the training data.
2. Test data loading: reward when the agent successfully loads the test data. Note that test data
does not have the target variable, that needs to be predicted.
3. Combine train and test: reward when the agent correctly concatenates train and test to enable
consistent cleaning and feature engineering.
Data cleaning: reward when no missing values (NaNs) remain in the combined data.
Feature engineering: reward when (a) all categorical variables are properly encoded (e.g., one-
hot or label encoding), and (b) the resulting feature dimensionality remains within a reasonable
bound (to avoid exploding features from, e.g., high-cardinality text-like columns).
6. Split back to train/test: reward when the agent correctly splits the combined data back into train
and test after transformations.
7. Train features/target: reward when the agent extracts (Xiwin, Yirain) from the training dataframe
using the correct target column.
8. Test features: reward when the agent extracts X,y from the test dataframe (which prior to this
stage contains a dummy target), with correct arguments.
9. Modeling: reward when the agent successfully fits a model on the training data; the reward is
proportional to cross-validation performance.
10. Create submission: reward when the agent generates predictions on the test data and writes a
valid submission CSV to disk.

Wk

train data loaded Data cleaned
r=+1 r=+1
7 7 Model Fitted

r=2*cv_score
x
;

b
test data loaded
r=+1

Y ™
bl
Saved
Feature Eng -
predictions
done =41
r=+1

Figure 2: An example illustration of how rewards are provided in MCTS-Shaped. If a particular
stage is judged to be successfully completed at a node, a reward is given, which is used to update the
value of all the nodes in this trajectory. It needs to be noted that these stage-wise rewards are only
provided once per trajectory and only if the earlier stages were successfully completed.

It needs to be noted that all of the stage rewards are provided to the agent only once per trajectory,
and only if the earlier stages were successfully completed. The provided stage rewards are used
to update the value of all the nodes in the trajectory. We verify stage completion using a reward
function that inspects the node scratchpad and tool messages, confirming (i) that artifacts satisfy
required properties (e.g., no NaNs for data cleaning; all columns encoded for feature engineering)
and (ii) that the correct tools were invoked as evidenced by the tool logs.



Under review as a conference paper at ICLR 2026

4.5 HIERARCHICAL MCTS

We propose Hierarchical MCTS to improve over ReAct (Yao et al., [2023b), LATS (Zhou et al.,
2024a)), and classical MCTS (Kocsis & Szepesvari, [2000) in generating performant tool-use tra-
jectories for solving Kaggle challenges within ML-Tool-Bench. Hierarchical MCTS decomposes
a complex task into an ordered sequence of subtasks. We partition the available tools and assign
them to relevant sub-tasks manually. For each subtask, MCTS searches its local state—action space
to identify solution nodes. The solution nodes from one subtask are appended to the root of the next
subtask, and the search continues. To avoid being trapped in locally optimal (but globally subop-
timal) choices, we enumerate all solution nodes within each subtask up to a prescribed maximum
subtask search depth. If there are no solution nodes identified after a subtask, the search terminates
and we return ‘No Solution Found’. The solution node with the highest value, at the final subtask,
is returned as the solution of the Hierarchical MCTS search. Importantly, the agent is given only the
tools relevant to the current subtask (tool masking), which reduces the branching factor and focuses
the search. Figure [3|illustrates the overall procedure. Hierarchical MCTS is similar to the options
framework (Sutton et al.| |1999), that break down a complex problem into a hierarchy of sub-tasks,
making the learning process more efficient and manageable for an agent.

Subtask-1 Subtask-2 Subtask-3

Figure 3: A schematic of Hierarchical MCTS. The task is decomposed into an ordered sequence
of subtasks. For each subtask, MCTS searches for all solution nodes up to a prescribed maximum
subtask depth to avoid locally optimal but globally suboptimal choices. The solution nodes from
subtask ¢ are appended to the root of subtask t+41, and the search resumes. In the example, the
solution node from subtask 1, S{, initializes subtask 2; its solution nodes S3 and S3 initialize sub-
task 3, and so on. The highest-value solution at the final subtask is returned as the overall outcome
of Hierarchical MCTS.

5 EXPERIMENTS

We evaluate the tool-planning performance of two language models—GPT-40 and GPT-4.1-mini,
on ML-Tool-Bench. For each model, we compare five planning algorithms: (i) ReAct (Yao et al.
2023b)); (ii) LATS (Zhou et al., 2024a)); (iii) Monte Carlo Tree Search (MCTS) with outcome-based
rewards, where the agent is rewarded upon successfully training a model or producing a valid sub-
mission file (denoted MCTS-Outcome); (iv) MCTS with shaped rewards, where the agent receives
intermediate credit for completing stages of the Kaggle ML workflow (denoted MCTS-Shaped);
and (v) Hierarchical MCTS: the Kaggle challenge is decomposed into subtasks. We use the reward
stages defined for MCTS-Shaped as subtasks. A node is a solution node for a subtask, if it satisfies
the reward condition for the stage corresponding to that subtask.

5.1 IMPLEMENTATION DETAILS

When using tree-search methods with our in-memory, named-object scheme, we adopt a path-local
scratchpad, where each node v contains a scratchpad S(v), that stores only the objects produced by
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Figure 4: Plots of consistency and median leaderboard percentile across all competitions in ML-
Tool-Bench, for different planning algorithms. The top row shows results for GPT-40, with the left
plot showing consistency and the right plot showing the median leaderboard percentile. The bottom
row shows results for GPT-4.1-mini. Hierarchical MCTS outperforms LATS and ReAct, followed
by MCTS-Shaped, in terms of leaderboard performance, for both LLMs. Also, both Hierarchical
MCTS and MCTS-Shaped improve consistency over the other baselines. In the box plots, x4 denotes
the mean, o denotes the standard deviation, and M denotes the Median

the tool call at that node. During expansion, the LLM proposes candidate actions. For a candidate
that is a tool call, the accessible memory is the path union: $*(v) = U.,epath(root—v) S(u), and

the LLM may reference any named object in $*(v) as tool arguments. The tool’s outputs are written
to the child’s scratchpad S(child), preserving isolation per node while enabling reuse of intermediate
artifacts along the trajectory.

LATS: To estimate the value of a state, we provide an evaluator LLM with all ATMessage and
ToolMessage entries along the path from the root to the current node; it scores the trajectory by
the progress made toward solving the Kaggle challenge. To propose candidate actions, we similarly
pass the full trajectory history to the LLM, which returns new reasoning steps or tool calls. Unlike
the original LATS formulation, we omit a self-consistency score from the value estimate, as at each
expansion the agent typically proposes a small number of distinct candidates.

MCTS: We propose new candidate nodes during the expansion phase using the same approach listed
in LATS. To evaluate the value of a node, we check if it produces a model or a valid submission file in
the outcome rewards case. In the shaped rewards case, a node is provided a reward if it successfully
completes a stage, as detailed earlier. In the case of Hierarchical MCTS, we designate a node as
a solution node of the subtask, if it successfully completes the stage corresponding to that subtask.
Additionally, across all MCTS variants, we apply a per-level depth penalty of 0.1 to discourage
unnecessarily long trajectories that fail to make progress toward the goal.

In addition to rewards, we provide targeted textual feedback to help the agent refine its plan. When
a stage fails, the agent receives an explanation of the failure. For example, in feature engineering
we flag remaining categorical columns or an excessive increase in feature dimensionality; in data
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cleaning we report the presence of missing values. If a tool invocation fails, we return an explicit
message along with the tool’s docstring to guide correct usage on the next attempt. We find that such
feedback is crucial for consistently producing valid trajectories. This textual feedback is provided
for all the MCTS variants (MCTS-Outcome, MCTS-Shaped, and Hierarchical-MCTYS).

Ideally, we would run Monte Carlo rollouts to a fixed depth or until episode termination and use the
return to update the value of all the nodes in the trajectory. Running to termination is impractical due
to cost and compute constraints. Shallow rollouts (depth 3—5) are viable but GPT usage across many
Kaggle challenges, planning algorithms, and trials, and roll outs at each state, resulted in extremely
high costs and was infeasible. Learning value functions to approximate the value of states (Silver
et al., [2016) is also not straightforward, on account of complex artifacts that are a part of the state.
Consequently, we use the immediate reward at the current state (a depth-0 rollout), yielding a best-
first search with a UCT-style exploration bonus. When budget permits, using small depth rollouts is
preferred.

5.2 RESULTS

We evaluate GPT-40 and GPT-4.1-mini on our benchmark. For each algorithm—Kaggle challenge
combination, we run 10 trials. We define consistency as the proportion of valid trajectories (e.g.,
4 valid trajectories out of 10 trials yields a consistency of 0.4). For each trial, we evaluate predic-
tions against the provided test labels using the competition’s official metric and compare against the
leaderboard to obtain a leaderboard percentile. For each algorithm and competition, we report the
median percentile across the 10 trials. Figure [] presents boxplots for all algorithms, summarizing
the distribution of leaderboard percentiles across all competitions in our benchmark. For further
details on consistency and leaderboard percentiles for both models, refer to Appendix [D}

As shown in Figure [4] Hierarchical MCTS improves leaderboard performance compared to Re-
Act, LATS, and MCTS-Outcome, followed by MCTS-Shaped, for both GPT-40 and GPT-4.1-mini.
Moreover, both Hierarchical MCTS and MCTS-Shaped achieve higher consistency than the other
baselines. For GPT-40, Hierarchical MCTS shows improvement over LATS by 9.93 percentile po-
sitions on the leaderboard and over ReAct by 16.52 percentile positions, taking the median across
all competitions. For GPT-4.1-mini, Hierarchical MCTS improved over MCTS-Shaped by 1.89
percentile positions on the leaderboard, while both ReAct and LATS had a median leaderboard per-
centile position of 0 across all competitions. These results highlight that as toolsets become more
complex and larger, it is important either to introduce hierarchy—decomposing the original task into
subtasks with corresponding reward functions, or to employ shaped rewards that guide the search
toward solutions. In contrast, unidirectional planning strategies like ReAct do not perform well.
Similarly, tree-search methods such as LATS, that rely solely on LLM evaluation also fail, as LLMs
provide inconsistent scores to nodes when trajectory lengths increase, due to the accumulation of
messages and artifacts that must be considered during evaluation.

6 CONCLUSION

We introduced ML-Tool-Bench, a benchmark for evaluating the planning capabilities of tool-
augmented LL.Ms on tabular Kaggle challenges. Existing tool-use benchmarks (Xu et al.| [2023;
Patil et al., 2025} |Yao et al.| [2024) primarily assess tool selection and argument grounding, rather
than long-horizon planning. By contrast, many ML agents generate code directly; while flexible, this
approach sacrifices modularity, reliability, and safety compared to operating within a curated toolset.
Empirically, we found that ReAct and LATS struggle to consistently produce valid and performant
trajectories. We proposed two improved approaches: (i) MCTS with shaped, deterministic rewards,
and (ii) Hierarchical MCTS, which decomposes problems into sequenced subtasks. Across two
models, Hierarchical MCTS achieved the best leaderboard performance compared to other base-
lines, while both Hierarchical MCTS and MCTS-Shaped improved consistency, measured as the
fraction of valid trajectories. These results suggest that incorporating subtask decomposition with
deterministic rewards, rather than relying on subjective LLM evaluation, yields performance gains
as the set of available tools grows in size and complexity.
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to assist with code generation, debugging, and documentation for components of the ML-Tool-
Bench toolset, based on tool descriptions provided by the authors. LLMs were also used to assign
relevant tools to each subtask in the proposed Hierarchical MCTS approach. All implementations
were reviewed and validated by the authors. All research methodology, experimental design, data
analysis, and scientific conclusions are entirely the work of the human authors.

B APPROACHES

B.1 MONTE CARLO TREE SEARCH

Figure[5] provides a pictorial illustration of the MCTS algorithm.

M W ’Slmulatlon ‘ | Backpropagation

A A

Figure 5: A pictorial illustration of Monte Carlo Tree Search

C KAGGLE CHALLENGES

The list of Kaggle challenges present in ML-Tool-Bench, and the corresponding ML problem types
of each challenge are presented in Table

Challenge Type

~[Santander Value Prediction Challenge Regression
New York City Taxi Fare Prediction Regression
New York City Taxi Trip Duration Regression
Predicting the Beats-per-Minute of Songs Regression
Predict Calorie Expenditure Regression
Regression with a Tabular California Housing Dataset| Regression
Regression of Used Car Prices Regression

~[Porto Seguro Safe Driver Prediction Binary Classification
Costa Rican Household Poverty Prediction Multi-Class Classification
Forest Cover Type (Kernels Only) Multi-Class Classification
Santander Customer Transaction Prediction Binary Classification
Binary Prediction of Poisonous Mushrooms Binary Classification
Spaceship Titanic Binary Classification
Binary Classification with a Bank Dataset Binary Classification
Binary Classification with a Bank Churn Dataset Binary Classification

Table 1: Kaggle challenges used in ML-Tool-Bench with problem type.

D RESULTS

In this section, we provide the exact consistency and performance values for each of the 15 chal-
lenges and the two models (GPT-40 and GPT-4.1-mini). Tables [2]and [3| show the consistency and
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Competition ReAct LATS MCTS- MCTS- Hierarchical
Outcome Shaped MCTS

Spaceship Titanic 0.6 0.4 0.9 0.8 0.6
Santander Value Prediction Challenge. 0.9 0.6 0.5 1 1
NYC Taxi Fare Prediction; 0 0.5 0.2 0.3 0.9
NYC Taxi Trip Duration 0.3 0.3 1 0.2 0.3
BPM Prediction 1 0.6 0 0.9 0.7
Calorie Expenditure Prediction: 0.8 0.8 1 0.9 1
california Housing Regression 0.9 0.9 1 0.9 0.9
Used Car Prices Regression 0.9 0.4 0.4 0.9 1
Porto Seguro Safe Driver Prediction 0.3 0.5 0 0.1 0.2
Costa Rican Household Poverty Level Prediction 0.5 0.5 0.7 0.3 1
Forest Cover Type Prediction 0.6 09 0 0 0
Santander Customer Transaction Prediction: 0.5 0.8 0.8 0.7 0.4
Poisonous Mushroom Prediction 0.9 1 1 1 0.8
Bank Deposit Classification 0.5 0.8 0.4 0.6 0.7
Bank Churn Classification 0.4 0.9 0.6 1 0.6
Overall (Median) 0.6 0.6 0.6 0.8 0.7

Table 2: Consistency across 15 competitions for five planning algorithms for GPT-4o.

Competition ReAct LATS MCTS- MCTS- Hierarchical
Outcome Shaped MCTS
Spaceship Titanic 39.54 0 22.88 59.44 62.55
Santander Value Prediction Challenge: 0.09 7.17 7.12 14.87 0.27
NYC Taxi Fare Prediction; 0 9.23 0 0 19.66
NYC Taxi Trip Duration 0 0 100.0 0 0
BPM Prediction 0.51 52.63 0 5.26 100
Calorie Expenditure Prediction: 0.16 13.43 1447 14.47 14.47
california Housing Regression 0.58 0.65 14.35 11.59 17.10
Used Car Prices Regression 3.0 0 0 9.35 100
Porto Seguro Safe Driver Prediction 0 534 0 0 0
Costa Rican Household Poverty Level Prediction 50 0 100 0 100
Forest Cover Type Prediction 0.84 23.32 0 0 0
Santander Customer Transaction Prediction: 1.14 227 349 349 0
Poisonous Mushroom Prediction 22.75 17.61 17.69 17.62 17.62
Bank Deposit Classification 8.64 27.50 0 27.24 26.37
Bank Churn Classification 0 22.93 31.57 34.79 3.47
Overall (Median) 0.58 7.17 7.12 9.36 17.10

Table 3: Median Leaderboard percentile across 15 competitions for five planning algorithms for
GPT-4o.

leaderboard percentiles for all algorithms across all competitions in ML-Tool-Bench, for GPT-4o.
Similarly, Tables ] and 5] show the consistency and leaderboard percentiles for all algorithms across
all competitions in ML-Tool-Bench, for GPT-4.1-mini.

Competition ReAct LATS MCTS- MCTS- Hierarchical
Outcome Shaped MCTS
Spaceship Titanic 0.1 0 0.4 0.7 0.2
Santander Value Prediction Challenge. 0.6 0.2 0 0.9 09
NYC Taxi Fare Prediction 0.2 0 0.1 0.1 0.9
NYC Taxi Trip Duration 0.1 0.1 0.3 0.5 0.9
BPM Prediction 0.4 0.1 0 1 0.8
Calorie Expenditure Prediction 0.6 0.6 0 0.9 0.9
california Housing Regression 0.7 0.3 0.3 0.8 0.8
Used Car Prices Regression 0.3 0.2 0.4 0.7 0.4
Porto Seguro Safe Driver Prediction 0.2 0.1 0.1 0.7 0.9
Costa Rican Household Poverty Level Prediction 0.2 0.2 0.1 0 0.1
Forest Cover Type Prediction 0.2 0.2 0.3 0 0.7
Santander Customer Transaction Prediction: 0.3 0.5 0.1 0.7 0.7
Poisonous Mushroom Prediction 0.5 0.5 0.2 1 0.6
Bank Deposit Classification 0.5 0.3 0.1 1 0.9
Bank Churn Classification 0.5 0.8 0.5 1 0.9
Overall (Median) 0.3 0.2 0.1 0.7 0.8

Table 4: Consistency across 15 competitions for five planning algorithms for GPT-4.1-mini.
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Competition ReAct LATS MCTS- MCTS- Hierarchical
Outcome Shaped MCTS
Spaceship Titanic 0 0 0 62.11 0
Santander Value Prediction Challenge. 3.60 0 0 14.24 14.24
NYC Taxi Fare Prediction; 0 0 0 0 20.94
NYC Taxi Trip Duration 0 0 0 1.24 2.70
BPM Prediction 0 0 0 100 100
Calorie Expenditure Prediction: 431 13.41 0 14.43 14.43
california Housing Regression 21.59 0 0 21.59 21.59
Used Car Prices Regression: 0 0 0 100 0
Porto Seguro Safe Driver Prediction 0 0 0 17.01 17.01
Costa Rican Household Poverty Level Prediction 0 0 0 0 0
Forest Cover Type Prediction 0 0 0 0 99.44
Santander Customer Transaction Prediction: 0 1.17 0 227 2.27
Poisonous Mushroom Prediction 6.23 6.97 0 14.36 16.32
Bank Deposit Classification: 13.19 0 0 27.24 27.73
Bank Churn Classification 14.66 31.09 0.94 31.57 34.02
Overall (Median) 0 0 0 14.43 16.32

Table 5: Median Leaderboard percentile across 15 competitions for five planning algorithms for
GPT-4.1-mini.

Stage Number of Tools
Data Loading 6
Data Cleaning 9
Feature Engineering 30
Modeling 10
Evaluation/Prediction 10

Table 6: Number of tools available at each stage of a Kaggle-style workflow. In total, 61 tools
are provided spanning data loading, cleaning, feature engineering, and modeling. Some tools can
appear in more than one stage

E TooLs

In this section, we describe the various tools that are part of ML-Tool-Bench. Table [f] shows the
number of tools in our toolset that are part of each stage in solving an ML challenge on Kaggle.
Table[/| provides info about all the tools in the curated toolset provided by ML-Tool-Bench

Decorators for named references To enable tools to operate on named references rather than raw
objects, we design four decorators that adapt arbitrary user-provided functions to our scratchpad
interface according to their read—write behavior. We categorize tools into four types:

1. Set tool: saves an object to memory. Example: read_csv loads a dataframe and stores it
under a provided name.

2. Get tool: reads an object from memory. Example: get_dataframe_summary loads a
dataframe and returns a brief textual summary to guide subsequent planning.

3. Get-Set tool: reads an object from memory and writes a new object to memory. Example:
fit_randomforest _model takes as input, a dataframe, and returns a fitted model.

4. Override tool: reads an object, returns an updated object, and overwrites the input variable
binding with the returned value. Example: cast_column loads a dataframe and returns a
modified dataframe that replaces the original.

Accordingly, we provide four decorators: make_get_tool, make_set_tool,
make_get_and_set_tool,and make_override_tool, that automatically wrap user-provided
tools to operate on named references and integrate with the scratchpad.

Function Signature | Description

Modeling Functions
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fit_logistic_regressor (X_train,
y_-train, cv=5)

Fit Logistic Regression model

fit_linear_regressor (X_train, y_train, Fit Linear Regression model
cv=5)

fit_random_forest_regressor (X_train, Fit Random Forest Regressor
y_-train, cv=5)

fit_random_forest_classifier (X_train, Fit Random Forest Classifier
y_-train, cv=5)

fit_xgboost_regressor (X_train, y.train, Fit XGBoost Regressor
cv=5)

fit_xgboost_classifier (X_train, Fit XGBoost Classifier
y_-train, cv=5)

fit_lightgbm_regressor (X_train, Fit LightGBM Regressor
y_-train, cv=5)

fit_lightgbm.classifier (X_train, Fit LightGBM Classifier

y_-train, cv=5)

fit_catboost_regressor (X_train,
y_-train, cv=5)

Fit CatBoost Regressor

fit_catboost_classifier (X_train,
y_-train, cv=5)

Fit CatBoost Classifier

Data Loading Functions

read-data (filepath)

| Read CSV data into a pandas DataFrame

Feature Engineering and Functions to get Dataframe information

create_numeric_feature (df,
expression)

name,

Create a numeric feature using a pandas
expression

create_categorical_feature (df, name, Create a categorical feature by mapping
source_column, mapping) values from a source column
create_conditional_feature (df, name, Create a feature based on a condition
condition, true_value, false_value)

extract_string.pattern(df, name, Extract pattern from string column using
source_column, pattern, group=0) regex

split_string_column (df, name_prefix, Split string column and create separate fea-
source_column, delimiter, tures

max_splits=-1, indices=None)

create_group-aggregation (df, name, Create feature by aggregating within
group-column, agg.column, agg-func) groups

get_group.aggregation (df,
agg_column, agg-func)

group-column,

Get aggregation result without adding it to
the DataFrame

create_rolling_feature (df,
name, source_column, window,
agg-func="mean’)

Create rolling window feature

create_lag_feature (df, name, Create lagged feature
source_column, lag=l)
create_lead_feature (df, name, Create leading feature

source_column, lead=1l)

extract_datetime_features (df,
datetime_column, features=None)

Extract datetime features from datetime
column

create_time_delta (df, name,

Create time delta feature between two date-

start_column, end_column, unit=’D’) time columns
apply-custom_function (df, name, Apply custom function to create feature
source_columns, func)

fillnawith_value (df, columns, value) Fill missing values with a specific value

fillnawithmedian (df, columns=None)

Fill missing values with median of the col-
umn

fillnawithmean (df, columns=None)

Fill missing values with mean of the col-
umn
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fillnawith.mode (df, columns=None)

Fill missing values with mode of the col-
umn

fillnawith_condition (df,
target_column, condition, fill_value)

Fill missing values in a column based on a
condition

fillnawithmultiple_conditions (df,
target_column, conditions_and._values)

Fill missing values in a column based on
multiple conditions

fillnawith_conditional_aggregation (df,
target_column, condition_column,
condition_values, agg-func='mean’)

Fill missing values using conditional ag-
gregation based on another column’s val-
ues

fillnawith_custom_function (df,
target_column, condition, custom_func)

Fill missing values using a custom function
based on a condition

drop_-rows_with missing (df,
columns=None, threshold=None)

Drop rows with missing values

get missing_summary (df)

Get a summary of missing values in the
DataFrame

cast_columns (df, column_type_mapping)

Cast columns to specified data types

cast_numeric_columns (df, columns=None,
target_type='float’)

Cast numeric columns to specified type

cast_integer_columns_to_float (df,
columns=None)

Cast integer columns to float type

cast_categorical_columns (df,
columns=None)

Cast categorical columns to category type

one_hot_encode (df, columns=None,
drop_first=True, prefix=None)

One-hot encode categorical columns

label_encode (df, columns=None)

Label encode categorical columns

normalize_features (df, columns=None,
method=’standard’)

Normalize numeric features

encode_all_categorical_columns (df,
method=’one_hot’, drop_-first=True)

Encode all categorical/object columns us-
ing specified method

normalize_all_numerical_columns (df,
method=’'standard’)

Normalize all numerical columns using
specified method

concatenate_train_test (train_df,
test_df)

Concatenate train and test data with track-
ing columns for proper splitting

split_combined_into_train_test (combined)

Split combined data back into train and test
using tracking columns

convert_dataframe_to_features_target (df,
target_column, is_train=True)

Convert DataFrame to features and target
format

convert_to_dataframe (data, =*xkwargs)

Convert various data types to pandas
DataFrame

drop_-feature (df, column)

Drop feature(s) from the DataFrame

get_features (df, columns)

Extract specific features (columns) from
the DataFrame

concatenate_dataframes (dfl, df2, Concatenate two DataFrames
axis=0)
join_dataframes (left_df, right_df, Join two DataFrames using pandas merge

left_on, right_on=None, how=’inner’,

suffixes=("x", "_y'))

functionality

rename_feature (df, old_.name, new_name)

Rename feature(s)

get_unique_values (df, column,
sort=True, include_counts=True)

Get unique values from a column as a
DataFrame

get_dataframe_dtypes_summary (df)

Get comprehensive summary of the dtypes
in the entire DataFrame

filter_dataframe (df, condition)

Filter DataFrame using a boolean condi-
tion

Model Utilities

save_model (model,
filepath="model.pkl’)

Save the trained model to disk using pickle
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load-model (filepath)

Load a trained model from disk using
pickle

save_dataframe_to_csv(df, filepath)

Save a DataFrame to CSV file

Model Evaluation Functions

evaluate_regression.model (model,
X_test, y_test, model_name="model",
eval_data_label='test’)

Evaluate a trained regression model on
data

evaluate_classification_model (model,
X_test, y-test, model_name="model",
eval_data_label='test’)

Evaluate a trained classification model on
data

predict_target (model,
X_data, model_name="model",
return_probabilities=False)

Make predictions using a trained model

Table 7: All tools in the curated toolset provided by ML-Tool-Bench.
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