
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ML-TOOL-BENCH: TOOL-AUGMENTED PLANNING
FOR ML TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The development of autonomous machine learning (ML) agents capable of end-
to-end data science workflows represents a significant frontier in artificial intelli-
gence. These agents must orchestrate complex sequences of data analysis, feature
engineering, model selection, and hyperparameter optimization, tasks that require
sophisticated planning and iteration. While recent work on building ML agents
has explored using large language models (LLMs) for direct code generation, tool-
augmented approaches offer greater modularity and reliability. However, existing
tool-use benchmarks focus primarily on task-specific tool selection or argument
extraction for tool invocation, failing to evaluate the sophisticated planning ca-
pabilities required for ML Agents. In this work, we introduce a comprehensive
benchmark for evaluating tool-augmented ML agents using a curated set of 61
specialized tools and 15 tabular ML challenges from Kaggle. Our benchmark
goes beyond traditional tool-use evaluation by incorporating an in-memory named
object management, allowing agents to flexibly name, save, and retrieve interme-
diate results throughout the workflows. We demonstrate that standard ReAct-style
approaches struggle to generate valid tool sequences for complex ML pipelines,
and that tree search methods with LLM-based evaluation underperform due to in-
consistent state scoring. To address these limitations, we propose two simple ap-
proaches: 1) using shaped deterministic rewards with structured textual feedback,
and 2) decomposing the original problem into a sequence of sub-tasks, which sig-
nificantly improves trajectory validity and task performance. Using GPT-4o, our
approach improves over ReAct by 16.52 percentile positions, taking the median
across all Kaggle challenges. We believe our work provides a foundation for de-
veloping more capable tool-augmented planning ML agents.

1 INTRODUCTION

Autonomous agents capable of solving end-to-end machine learning (ML) tasks represent a crit-
ical frontier in artificial intelligence (Grosnit et al., 2024; Toledo et al., 2025; Yang et al., 2025;
Chan et al., 2025). Such agents must be capable of doing: data preprocessing, feature engineering,
model training, and hyperparameter tuning, while managing intermediate results and adapting their
strategies based on the evolving context. Achieving this level of autonomy requires not only sophis-
ticated planning, but also memory management and the capacity to coordinate multiple operations
coherently. Large language models (LLMs) have recently been explored as the foundation for such
agents (Grosnit et al., 2024; Chan et al., 2025; Huang et al., 2024). Early work has primarily focused
on direct code generation, where the agent generates python code for completing a given ML task
(Grosnit et al., 2024; Chan et al., 2025; Huang et al., 2024; Toledo et al., 2025). This paradigm has
shown promise on competitive benchmarks inspired by Kaggle challenges, with some approaches
achieving performance comparable to a Kaggle Master (Grosnit et al., 2024; Chan et al., 2025). Sev-
eral benchmarks have also been proposed to evaluate the performance of LLMs on such tasks (Chan
et al., 2025; Huang et al., 2024; Qiang et al., 2025; Jing et al., 2025; Zhang et al., 2025). However,
any approach that relies on direct code generation is prone to key weaknesses: generated code is
brittle (Abbassi et al., 2025; Liu et al., 2025), debugging typically requires multiple iterations, and
reasoning is tightly coupled with execution (Liu et al., 2025; Chen et al., 2025).

An alternative paradigm equips LLMs with external tools, yielding tool-augmented agents that need
to decide which tools to invoke and in what sequence, to solve the task. Tools offer modular, reusable

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

building blocks for data-science workflows: from preprocessing, to training, and evaluation. This
design has proven effective in broader domains, including web navigation (Zhou et al., 2024b),
operating systems (Bonatti et al., 2024), and code interpretation (Huang et al., 2024), yet its potential
for ML workflows remains underexplored. Crucially, tool augmentation reformulates the problem
as planning in a large action space: the agent must coordinate multi-step trajectories and retrieve
and reuse intermediate artifacts (or results). Because the agent is restricted to a curated toolset, tool-
augmented approaches decouple high-level reasoning from low-level code execution, improving
modularity, reliability, and safety.

Existing benchmarks for tool use fall short on long-horizon planning. Most benchmarks and ap-
proaches evaluate whether agents can select the right tools and valid arguments. The Berkeley
Function-Calling Leaderboard (BFCL) (Patil et al., 2025) measures single, parallel, and multiple
function calling, and BFCL-v3 (Patil et al., 2025) extends this to multi-turn, multi-step settings.
However, even BFCL-v3 emphasizes relatively shallow plans compared to ML workflows, which
might require long-term planning, iterative refinement, and reuse of intermediate artifacts. Similarly
ToolBench (Xu et al., 2023) provides a suite of diverse software tools, that span both single-step and
multi-step action generation, but focuses on evaluating whether the LLM can correctly select tools
and tool arguments.

In this work, we introduce ML-Tool-Bench, motivated by the lack of good benchmarks to assess
planning approaches with tools in ML workflows. In particular, ML-Tool-Bench provides a bench-
mark to evaluate the planning capabilities of LLM agents on tabular Kaggle ML challenges. We
introduce a curated suite of 61 tools sufficient to solve such tasks and assess performance across 15
Kaggle challenges spanning regression and classification.

We evaluate multiple agents using several different planning algorithms, on our benchmark. To en-
able agents to create, persist, and reuse intermediate artifacts, we adopt an in-memory, named-object
management scheme: tools accept references to named objects, and agents can assign names to tool
outputs. We refer to this as scratchpad-augmented planning: agents store and retrieve objects by
name over multi-step trajectories, enabling tools to handle arbitrarily large or structured inputs, un-
like prior benchmarks that restrict arguments to simple types (e.g., strings, integers, floats). We
observe that simple methods like ReAct (Yao et al., 2023b) struggle to produce performant trajecto-
ries across our Kaggle benchmark. Monte Carlo Tree Search-based methods (Kocsis & Szepesvari,
2006; Silver et al., 2016) such as LATS (Zhou et al., 2024a), which rely on LLMs as value estima-
tors, also underperform due to inconsistent trajectory scoring. In contrast, we propose two simple
approaches: 1) combining shaped, deterministic rewards with textual feedback and 2) decompos-
ing the original problem into a sequence of sub-tasks. These approaches outperform the baselines,
yielding more performant tool trajectories. These results highlight the difficulty of autonomous ML
planning and point toward tool-augmented systems that rely less on subjective LLM scoring as tool
sets grow in size and complexity.

1. We introduce ML-Tool-Bench, a tool-augmented benchmark for end-to-end ML planning with
61 tools and 15 Kaggle challenges.

2. We formalize scratchpad-augmented planning via named-object management that supports arbi-
trarily large artifacts and reversible branching in search.

3. We propose MCTS-Shaped, an MCTS approach with shaped, deterministic rewards and targeted
textual feedback, which improves trajectory validity and performance over ReAct and LATS.

4. We introduce Hierarchical MCTS, an approach that decomposes problems into sequenced sub-
tasks, further improving validity and robustness. For GPT-4o, Hierarchical MCTS improves
over LATS by 9.93 percentile positions on the leaderboard and over ReAct by 16.52 percentile
positions (median across all competitions). For GPT-4.1-mini, it improves over MCTS-Shaped
by 1.89 percentile positions, while both ReAct and LATS had a median percentile position of 0.

Together, these advances establish strong baselines for tool-augmented, end-to-end ML planning
and reduce reliance on subjective LLM scoring.

2 RELATED WORK

Machine Learning Benchmarks for AI Agents: Most of the existing Data Science and ML bench-
marks, provide the LLM agent access to write code that solves the task, and evaluate its performance.
Chan et al. (2025) propose MLE-bench, a curated benchmark of 75 Kaggle challenges, that test real-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

world ML engineering skills. They find that OpenAI’s o1-preview with the AI-Driven Exploration
(AIDE) scaffolding (Jiang et al., 2025) achieves at least a level of Kaggle bronze medal in 16.9% of
competitions in their benchmark. AIRA-dojo (Toledo et al., 2025) improves upon Chan et al. (2025),
replacing AIDE (Jiang et al., 2025) with a different choice of operator set, to generate new candi-
date solutions, and using Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvari, 2006) instead
of greedy search, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%.
Huang et al. (2024) also propose a ML benchmark, called MLAgentBench, containing a suite of 13
tasks, where the agent is allowed to perform actions like read/write files, execute code and inspect
outputs. They construct a ReAct based agent (Yao et al., 2023b) (with Claude v3 Opus) and were
able to build compelling ML models on MLAgentBench with 37.5% average success rate. Qiang
et al. (2025) propose MLE-Dojo, an interactive gym-style workflow for LLM agents in iterative ML
engineering workflows, and build upon 200+ Kaggle challenges. To evaluate Data Science Agents,
Jing et al. (2025) proposed a comprehensive benchmark that includes 466 data analysis tasks and
74 data modeling tasks, sourced from Eloquence and Kaggle competitions, and showed that state
of the art LLMs and agents struggle on most tasks. Zhang et al. (2025) propose DataSciBench and
demonstrate that closed source models (GPT, Claude etc.) outperform open source models on all
metrics in their benchmark.

Learning in Tool augmented LLMs: Solving ML challenges solely through the invocation of a
fixed set of tools, in the correct sequential order, remains relatively unexplored. Approaches such
as ARTIST (Singh et al., 2025), ReTooL (Feng et al., 2025), StepTool (Yu et al., 2024), ToRL
(Li et al., 2025), and ToolPlanner (Wu et al., 2024) couple reasoning and tool use for LLMs, using
Reinforcement Learning to learn robust strategies for tool use. Recently, methods to fine-tune LLMs
on responses containing tool usage have also been proposed (Schick et al., 2023; Qin et al., 2023;
Gou et al., 2023; Patil et al., 2023).

Alternately, tree search methods (Yao et al., 2023a; Hao et al., 2023; Zhou et al., 2024a; Zhuang
et al., 2023) have also been used to generate valid tool use trajectories. Zhuang et al. (2023) em-
ploys A* search, Hao et al. (2023) adopts Monte Carlo Tree Search (MCTS) and uses LLM as
the world model, Zhou et al. (2024a) uses MCTS with value functions obtained from an LLM and
self-reflection, and Yao et al. (2023a) explores Breadth-First Search (BFS) and Depth-First Search
(DFS). However, these methods either depend on heuristic cost functions or leverage LLM feedback
as a value function, and they are primarily applied to problems with relatively shallow depth. LATS
(Zhou et al., 2024a) and Toolchain* (Zhuang et al., 2023) are the only approaches that explore plan-
ning with tools while the others restrict themselves to reasoning or toy domains. Feng et al. (2024)
propose TS-LLM, an AlphaZero-inspired tree-search framework for LLMs that integrates a learned
value function to guide decoding. The trajectories generated from tree search can further be used
to fine-tune and improve the LLM, and TS-LLM has been shown to scale to tree depths of up to
64. Another approach, ReST-MCTS (Zhang et al., 2024), adopts a similar strategy to TS-LLM;
however, in this case the per-step rewards are inferred directly from MCTS, whereas TS-LLM infers
them using TD-λ (Sutton, 1988).

Tool Benchmarks: Benchmarks for LLM tool use largely emphasize correct tool selection and ar-
gument specification rather than extended planning. ToolBench (Xu et al., 2023) covers diverse soft-
ware tools for single- and multi-step tasks but underplays long-horizon coordination. The Berkeley
Function Calling Leaderboard (BFCL) (Patil et al., 2025) evaluates single, parallel, and multi-step
calls, though plans remain shallow. τ -Bench (Yao et al., 2024) focuses on human–agent interaction
under domain rules, highlighting alignment and information gathering more than proactive planning.

3 ML-TOOL-BENCH

Each task in ML-Tool-Bench, can be formalized as a Markov Decision Process (MDP) (S,A, T , R)
(Puterman, 2014) The state space S consists of the entire interaction history: all AI, Human, and
Tool messages together with artifacts such as dataframes and ML models. Whenever a tool is ex-
ecuted, its observations (e.g., outputs, errors, logs) are appended to the history and folded into the
state, so that the state maintains an up-to-date record of both conversational and artifact changes.
The initial state s0 comprises the Kaggle challenge description along with the dataset.

The action space is defined as: A =
(
Atool ∪ {∅}

)
×

(
Areason ∪ {∅}

)
, where Atool denotes the

set of all tool invocations together with their full parameterizations (not just tool identity, but also

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

argument values and hyperparameters). This makes the benchmark challenging, since the effective
size of Atool can be very large rather than a small, discrete set. The set Areason is the space of free-
form reasoning steps, which we model as natural-language strings. The null element ∅ denotes “no
action” in that component, allowing tool-only, reason-only, both, or neither at a step. Reasoning
actions organize information, plan future steps, and inject prior knowledge; tool actions modify or
analyze data and train/evaluate models, thereby updating the state’s artifacts.

The transition function T : S × A → S maps a state–action pair (s, a) to the next state by append-
ing the messages generated by the agent’s action, appending tool messages (i.e., the observations
produced), and updating artifacts accordingly.

The reward function R evaluates progress and can be instantiated in several ways: (i) an outcome
reward granted upon successful challenge completion; (ii) a shaped reward providing intermediate
credit for measurable progress; or (iii) an LLM-based evaluation of the current state, using the LLM
as a judge (Zheng et al., 2023) and absolving us from providing the reward function.

3.1 SCRATCHPAD

Figure 1: An illustration of our named-object management scheme. Green circles denote tool calls;
the blue rectangle denotes the scratchpad (a key–value store). Each tool can read any named object
from the scratchpad and write outputs back to it, depending on their read-write behavior. Arrows
into a tool indicate inputs; arrows from a tool to the scratchpad indicate outputs. read csv is a set
tool; fill nans with, fit model, and predict are get–set tools; create feature is an
override tool. There are two read csv tool calls in the figure, one for train data and one for test.

Solving an ML challenge often involves storing large dataframes, models, and other complex arti-
facts as they cannot be directly passed as tool inputs by an LLM. A naive workaround is to maintain
a single dataframe and model object that the agent incrementally modifies via tool calls. However,
a single erroneous call can corrupt these objects, forcing a restart of the trajectory, and the agent
becomes inflexible to create and reuse intermediate variables.

To address this, we adopt an in-memory, named-object management scheme: an agent assigns names
to tool outputs, and tools accept references to named objects as inputs. Thus, agents can pass com-
plex objects to tools by specifying the name under which the object is stored in the scratchpad. An
illustration of this approach is presented in Figure 1. Implementing this requires modifying tools to
operate on named references rather than raw objects; we describe these changes next.

3.2 TOOLS

We grant the agent access to a curated suite of 61 tools spanning data loading, data cleaning, feature
engineering, and modeling. These tools are designed to be reasonably sufficient for solving tabular
regression and classification tasks. Agent performance depends on the available toolset: in principle,
a very large collection would maximize flexibility, but it results in an increased action space and
complicates planning. We therefore adopt a fixed, compact tool set that trades some flexibility for a
more tractable planning, while remaining adequate to solve the Kaggle challenges considered. For

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

modeling, we restrict to tree-based learners: Random Forest, XGBoost, LightGBM, and CatBoost,
and linear/logistic regression, in light of the strong performance of tree-based methods on tabular
Kaggle challenges (Grinsztajn et al., 2022). For more information on tools and how arbitrary user
defined tools are modified to operate on named references rather than objects, refer to Appendix E

3.3 KAGGLE CHALLENGES

We select 15 tabular Kaggle ML challenges for ML-Tool-Bench: eight classification (binary and
multiclass) and seven regression. These tasks are chosen so that they are solvable with our tool set.
Several datasets are large (e.g., New York City Taxi Fare Prediction is ∼2.5 GB), so we randomly
sample 10,000 data points from each competition’s training set to keep planning computationally
tractable. Because Kaggle test labels are hidden, we create an internal evaluation split by reserving
20% of the sampled training data as a test set with ground-truth labels. We evaluate using each
competition’s official metric and report agent performance as the corresponding public-leaderboard
percentile. Our evaluation metric is chosen to accommodate a collection of regression and multi-
class classification tasks. Note that Kaggle leaderboards are computed on a test set, the labels to
which we do not have access to; our reported results are computed on our held-out test split. For
more information on the Kaggle challenges, refer to Appendix C

4 APPROACHES

4.1 REACT

ReAct (Yao et al., 2023b) is a prompting framework that interleaves natural-language reasoning
(Thought) with tool interaction (Action) and the subsequent Observation from the environment due
to tool calling. ReAct augments the agent’s action space to include the space of language, to ac-
count for thoughts or reasoning traces that do not affect the environment. Thoughts compose useful
information from the current context and update the context to support future reasoning or actions.
By explicitly exposing intermediate chain-of-thought alongside tool calls, ReAct enables agents to
plan, invoke tools, and revise plans based on feedback. However, ReAct is unidirectional and can
neglect potential alternative continuations from certain states, leading to locally optimal solutions
(Zhuang et al., 2023; Zhou et al., 2024a).

4.2 MONTE CARLO TREE SEARCH (MCTS)

MCTS (Kocsis & Szepesvari, 2006) is a search algorithm that has achieved remarkable success in
challenging domains such as Go (Silver et al., 2016) and Atari (Ye et al., 2021). MCTS builds a
search tree where nodes correspond to states and edges correspond to actions. It comprises four
phases: selection, expansion, simulation/rollout, and backpropagation. A common selection policy
uses UCT (Upper Confidence Bound for Trees) (Kocsis & Szepesvari, 2006), choosing a child s of
parent p such that: s ∈ argmaxs∈C(p) V (s) + w

√
lnN(p)/N(s),

where V (s) is the empirical value function, denoting the expected cumulative reward from state s,
N(p) is the parent’s visit count, N(s) is the child’s visit count, w > 0 controls exploration, and C(p)
denotes the set of children of p. Upon reaching a leaf node, it is expanded by selecting an action and
adding the resulting next state as a child. From the newly expanded node, a simulation is run until
the end of the episode or a fixed depth to obtain a reward r, which is then backpropagated along the
trajectory to update values of all states along that trajectory: V (s)← (V (s) (N(s)− 1) + r)/N(s).
MCTS is well-suited to large, irregular action spaces and provides a principled trade-off between
exploration and exploitation. A pictorial illustration of MCTS is provided in Appendix B.

4.3 LANGUAGE AGENT TREE SEARCH (LATS)

LATS (Zhou et al., 2024a) adapts MCTS to language agents by using LLMs both to propose actions
(reasoning steps or tool calls) and to evaluate node values. At each expansion, the policy LLM
suggests candidates, and an evaluator LLM scores partial trajectories based on estimated progress
toward the task objective. The value of a state is taken to be a weighted average of the evaluator
LLM’s score and a self-consistency score (Wang et al., 2022), which upweights frequent candidates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in the expansion stage. In our tool-planning setting, we do not incorporate the self-consistency score
into the value of a state. We observed that during the expansion phase, the LLM tends to propose
only a small but distinct set of tool calls or reasoning steps, making the additional score unnecessary.
LATS has shown improvements over purely reactive methods, such as ReAct (Yao et al., 2023b) on
complex tasks. However, its value estimates can be noisy, and the effective planning depth may be
limited by inconsistencies in evaluator scoring.

4.4 MCTS-SHAPED

In MCTS with shaped rewards, the agent receives intermediate credit for completing stages of the
Kaggle ML challenge. The shaped-reward stages and their triggers are detailed below. Figure 2
provides an example to illustrate how rewards are provided in MCTS-Shaped.

Shaped-reward stages

1. Train data loading: reward when the agent successfully loads the training data.
2. Test data loading: reward when the agent successfully loads the test data. Note that test data

does not have the target variable, that needs to be predicted.
3. Combine train and test: reward when the agent correctly concatenates train and test to enable

consistent cleaning and feature engineering.
4. Data cleaning: reward when no missing values (NaNs) remain in the combined data.
5. Feature engineering: reward when (a) all categorical variables are properly encoded (e.g., one-

hot or label encoding), and (b) the resulting feature dimensionality remains within a reasonable
bound (to avoid exploding features from, e.g., high-cardinality text-like columns).

6. Split back to train/test: reward when the agent correctly splits the combined data back into train
and test after transformations.

7. Train features/target: reward when the agent extracts (Xtrain, ytrain) from the training dataframe
using the correct target column.

8. Test features: reward when the agent extracts Xtest from the test dataframe (which prior to this
stage contains a dummy target), with correct arguments.

9. Modeling: reward when the agent successfully fits a model on the training data; the reward is
proportional to cross-validation performance.

10. Create submission: reward when the agent generates predictions on the test data and writes a
valid submission CSV to disk.

Figure 2: An example illustration of how rewards are provided in MCTS-Shaped. If a particular
stage is judged to be successfully completed at a node, a reward is given, which is used to update the
value of all the nodes in this trajectory. It needs to be noted that these stage-wise rewards are only
provided once per trajectory and only if the earlier stages were successfully completed.

It needs to be noted that all of the stage rewards are provided to the agent only once per trajectory,
and only if the earlier stages were successfully completed. The provided stage rewards are used
to update the value of all the nodes in the trajectory. We verify stage completion using a reward
function that inspects the node scratchpad and tool messages, confirming (i) that artifacts satisfy
required properties (e.g., no NaNs for data cleaning; all columns encoded for feature engineering)
and (ii) that the correct tools were invoked as evidenced by the tool logs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.5 HIERARCHICAL MCTS

We propose Hierarchical MCTS to improve over ReAct (Yao et al., 2023b), LATS (Zhou et al.,
2024a), and classical MCTS (Kocsis & Szepesvari, 2006) in generating performant tool-use tra-
jectories for solving Kaggle challenges within ML-Tool-Bench. Hierarchical MCTS decomposes
a complex task into an ordered sequence of subtasks. We partition the available tools and assign
them to relevant sub-tasks manually. For each subtask, MCTS searches its local state–action space
to identify solution nodes. The solution nodes from one subtask are appended to the root of the next
subtask, and the search continues. To avoid being trapped in locally optimal (but globally subop-
timal) choices, we enumerate all solution nodes within each subtask up to a prescribed maximum
subtask search depth. If there are no solution nodes identified after a subtask, the search terminates
and we return ‘No Solution Found’. The solution node with the highest value, at the final subtask,
is returned as the solution of the Hierarchical MCTS search. Importantly, the agent is given only the
tools relevant to the current subtask (tool masking), which reduces the branching factor and focuses
the search. Figure 3 illustrates the overall procedure. Hierarchical MCTS is similar to the options
framework (Sutton et al., 1999), that break down a complex problem into a hierarchy of sub-tasks,
making the learning process more efficient and manageable for an agent.

Figure 3: A schematic of Hierarchical MCTS. The task is decomposed into an ordered sequence
of subtasks. For each subtask, MCTS searches for all solution nodes up to a prescribed maximum
subtask depth to avoid locally optimal but globally suboptimal choices. The solution nodes from
subtask t are appended to the root of subtask t+1, and the search resumes. In the example, the
solution node from subtask 1, S1

1 , initializes subtask 2; its solution nodes S1
2 and S2

2 initialize sub-
task 3, and so on. The highest-value solution at the final subtask is returned as the overall outcome
of Hierarchical MCTS.

5 EXPERIMENTS

We evaluate the tool-planning performance of two language models—GPT-4o and GPT-4.1-mini,
on ML-Tool-Bench. For each model, we compare five planning algorithms: (i) ReAct (Yao et al.,
2023b); (ii) LATS (Zhou et al., 2024a); (iii) Monte Carlo Tree Search (MCTS) with outcome-based
rewards, where the agent is rewarded upon successfully training a model or producing a valid sub-
mission file (denoted MCTS-Outcome); (iv) MCTS with shaped rewards, where the agent receives
intermediate credit for completing stages of the Kaggle ML workflow (denoted MCTS-Shaped);
and (v) Hierarchical MCTS: the Kaggle challenge is decomposed into subtasks. We use the reward
stages defined for MCTS-Shaped as subtasks. A node is a solution node for a subtask, if it satisfies
the reward condition for the stage corresponding to that subtask.

5.1 IMPLEMENTATION DETAILS

When using tree-search methods with our in-memory, named-object scheme, we adopt a path-local
scratchpad, where each node v contains a scratchpad S(v), that stores only the objects produced by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Plots of consistency and median leaderboard percentile across all competitions in ML-
Tool-Bench, for different planning algorithms. The top row shows results for GPT-4o, with the left
plot showing consistency and the right plot showing the median leaderboard percentile. The bottom
row shows results for GPT-4.1-mini. Hierarchical MCTS outperforms LATS and ReAct, followed
by MCTS-Shaped, in terms of leaderboard performance, for both LLMs. Also, both Hierarchical
MCTS and MCTS-Shaped improve consistency over the other baselines. In the box plots, µ denotes
the mean, σ denotes the standard deviation, and M denotes the Median

the tool call at that node. During expansion, the LLM proposes candidate actions. For a candidate
that is a tool call, the accessible memory is the path union: S∗(v) =

⋃
u∈path(root→v) S(u), and

the LLM may reference any named object in S∗(v) as tool arguments. The tool’s outputs are written
to the child’s scratchpad S(child), preserving isolation per node while enabling reuse of intermediate
artifacts along the trajectory.

LATS: To estimate the value of a state, we provide an evaluator LLM with all AIMessage and
ToolMessage entries along the path from the root to the current node; it scores the trajectory by
the progress made toward solving the Kaggle challenge. To propose candidate actions, we similarly
pass the full trajectory history to the LLM, which returns new reasoning steps or tool calls. Unlike
the original LATS formulation, we omit a self-consistency score from the value estimate, as at each
expansion the agent typically proposes a small number of distinct candidates.

MCTS: We propose new candidate nodes during the expansion phase using the same approach listed
in LATS. To evaluate the value of a node, we check if it produces a model or a valid submission file in
the outcome rewards case. In the shaped rewards case, a node is provided a reward if it successfully
completes a stage, as detailed earlier. In the case of Hierarchical MCTS, we designate a node as
a solution node of the subtask, if it successfully completes the stage corresponding to that subtask.
Additionally, across all MCTS variants, we apply a per-level depth penalty of 0.1 to discourage
unnecessarily long trajectories that fail to make progress toward the goal.

In addition to rewards, we provide targeted textual feedback to help the agent refine its plan. When
a stage fails, the agent receives an explanation of the failure. For example, in feature engineering
we flag remaining categorical columns or an excessive increase in feature dimensionality; in data

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

cleaning we report the presence of missing values. If a tool invocation fails, we return an explicit
message along with the tool’s docstring to guide correct usage on the next attempt. We find that such
feedback is crucial for consistently producing valid trajectories. This textual feedback is provided
for all the MCTS variants (MCTS-Outcome, MCTS-Shaped, and Hierarchical-MCTS).

Ideally, we would run Monte Carlo rollouts to a fixed depth or until episode termination and use the
return to update the value of all the nodes in the trajectory. Running to termination is impractical due
to cost and compute constraints. Shallow rollouts (depth 3–5) are viable but GPT usage across many
Kaggle challenges, planning algorithms, and trials, and roll outs at each state, resulted in extremely
high costs and was infeasible. Learning value functions to approximate the value of states (Silver
et al., 2016) is also not straightforward, on account of complex artifacts that are a part of the state.
Consequently, we use the immediate reward at the current state (a depth-0 rollout), yielding a best-
first search with a UCT-style exploration bonus. When budget permits, using small depth rollouts is
preferred.

5.2 RESULTS

We evaluate GPT-4o and GPT-4.1-mini on our benchmark. For each algorithm–Kaggle challenge
combination, we run 10 trials. We define consistency as the proportion of valid trajectories (e.g.,
4 valid trajectories out of 10 trials yields a consistency of 0.4). For each trial, we evaluate predic-
tions against the provided test labels using the competition’s official metric and compare against the
leaderboard to obtain a leaderboard percentile. For each algorithm and competition, we report the
median percentile across the 10 trials. Figure 4 presents boxplots for all algorithms, summarizing
the distribution of leaderboard percentiles across all competitions in our benchmark. For further
details on consistency and leaderboard percentiles for both models, refer to Appendix D.

As shown in Figure 4, Hierarchical MCTS improves leaderboard performance compared to Re-
Act, LATS, and MCTS-Outcome, followed by MCTS-Shaped, for both GPT-4o and GPT-4.1-mini.
Moreover, both Hierarchical MCTS and MCTS-Shaped achieve higher consistency than the other
baselines. For GPT-4o, Hierarchical MCTS shows improvement over LATS by 9.93 percentile po-
sitions on the leaderboard and over ReAct by 16.52 percentile positions, taking the median across
all competitions. For GPT-4.1-mini, Hierarchical MCTS improved over MCTS-Shaped by 1.89
percentile positions on the leaderboard, while both ReAct and LATS had a median leaderboard per-
centile position of 0 across all competitions. These results highlight that as toolsets become more
complex and larger, it is important either to introduce hierarchy—decomposing the original task into
subtasks with corresponding reward functions, or to employ shaped rewards that guide the search
toward solutions. In contrast, unidirectional planning strategies like ReAct do not perform well.
Similarly, tree-search methods such as LATS, that rely solely on LLM evaluation also fail, as LLMs
provide inconsistent scores to nodes when trajectory lengths increase, due to the accumulation of
messages and artifacts that must be considered during evaluation.

6 CONCLUSION

We introduced ML-Tool-Bench, a benchmark for evaluating the planning capabilities of tool-
augmented LLMs on tabular Kaggle challenges. Existing tool-use benchmarks (Xu et al., 2023;
Patil et al., 2025; Yao et al., 2024) primarily assess tool selection and argument grounding, rather
than long-horizon planning. By contrast, many ML agents generate code directly; while flexible, this
approach sacrifices modularity, reliability, and safety compared to operating within a curated toolset.
Empirically, we found that ReAct and LATS struggle to consistently produce valid and performant
trajectories. We proposed two improved approaches: (i) MCTS with shaped, deterministic rewards,
and (ii) Hierarchical MCTS, which decomposes problems into sequenced subtasks. Across two
models, Hierarchical MCTS achieved the best leaderboard performance compared to other base-
lines, while both Hierarchical MCTS and MCTS-Shaped improved consistency, measured as the
fraction of valid trajectories. These results suggest that incorporating subtask decomposition with
deterministic rewards, rather than relying on subjective LLM evaluation, yields performance gains
as the set of available tools grows in size and complexity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Altaf Allah Abbassi, Leuson Da Silva, Amin Nikanjam, and Foutse Khomh. A taxonomy of in-
efficiencies in llm-generated python code, 2025. URL https://arxiv.org/abs/2503.
06327.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
agent arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/
abs/2409.08264.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Madry.
Mle-bench: Evaluating machine learning agents on machine learning engineering, 2025. URL
https://arxiv.org/abs/2410.07095.

Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma, Chuchu Fan, and Chi Wang. Steering large
language models between code execution and textual reasoning, 2025. URL https://arxiv.
org/abs/2410.03524.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use
in llms. ArXiv, abs/2504.11536, 2025. URL https://api.semanticscholar.org/
CorpusID:277824366.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training,
2024. URL https://arxiv.org/abs/2309.17179.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solv-
ing. ArXiv, abs/2309.17452, 2023. URL https://api.semanticscholar.org/
CorpusID:263310365.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on tabular data?, 2022. URL https://arxiv.org/abs/2207.08815.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath
Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Ab-
delhakim Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao,
Balazs Kegl, Haitham Bou-Ammar, and Jun Wang. Large language models orchestrating struc-
tured reasoning achieve kaggle grandmaster level, 2024. URL https://arxiv.org/abs/
2411.03562.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023. URL https://arxiv.
org/abs/2305.14992.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/
2310.03302.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code, 2025. URL https://arxiv.
org/abs/2502.13138.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents from becoming data
science experts?, 2025. URL https://arxiv.org/abs/2409.07703.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European Conference
on Machine Learning, 2006. URL https://api.semanticscholar.org/CorpusID:
15184765.

10

https://arxiv.org/abs/2503.06327
https://arxiv.org/abs/2503.06327
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.03524
https://arxiv.org/abs/2410.03524
https://api.semanticscholar.org/CorpusID:277824366
https://api.semanticscholar.org/CorpusID:277824366
https://arxiv.org/abs/2309.17179
https://api.semanticscholar.org/CorpusID:263310365
https://api.semanticscholar.org/CorpusID:263310365
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2411.03562
https://arxiv.org/abs/2411.03562
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2409.07703
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:15184765

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. ArXiv, abs/2503.23383,
2025. URL https://api.semanticscholar.org/CorpusID:277451754.

Changshu Liu, Yang Chen, and Reyhaneh Jabbarvand. Codemind: Evaluating large language mod-
els for code reasoning, 2025. URL https://arxiv.org/abs/2402.09664.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Rushi Qiang, Yuchen Zhuang, Yinghao Li, Dingu Sagar V K, Rongzhi Zhang, Changhao Li, Ian
Shu-Hei Wong, Sherry Yang, Percy Liang, Chao Zhang, and Bo Dai. Mle-dojo: Interactive
environments for empowering llm agents in machine learning engineering, 2025. URL https:
//arxiv.org/abs/2505.07782.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis. ArXiv, abs/2307.16789, 2023. URL https://api.semanticscholar.
org/CorpusID:260334759.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. ArXiv, abs/2302.04761, 2023. URL https://api.semanticscholar.org/
CorpusID:256697342.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for llms via reinforcement learning, 2025. URL https://arxiv.org/abs/
2505.01441.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988. doi: 10.1007/BF00115009.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Edan Toledo, Karen Hambardzumyan, Martin Josifoski, Rishi Hazra, Nicolas Baldwin, Alexis
Audran-Reiss, Michael Kuchnik, Despoina Magka, Minqi Jiang, Alisia Maria Lupidi, Andrei
Lupu, Roberta Raileanu, Kelvin Niu, Tatiana Shavrina, Jean-Christophe Gagnon-Audet, Michael
Shvartsman, Shagun Sodhani, Alexander H. Miller, Abhishek Charnalia, Derek Dunfield, Carole-
Jean Wu, Pontus Stenetorp, Nicola Cancedda, Jakob Nicolaus Foerster, and Yoram Bachrach. Ai
research agents for machine learning: Search, exploration, and generalization in mle-bench, 2025.
URL https://arxiv.org/abs/2507.02554.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. Toolplanner: A tool augmented llm for multi
granularity instructions with path planning and feedback. ArXiv, abs/2409.14826, 2024. URL
https://api.semanticscholar.org/CorpusID:272827086.

11

https://api.semanticscholar.org/CorpusID:277451754
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2505.07782
https://arxiv.org/abs/2505.07782
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://arxiv.org/abs/2505.01441
https://arxiv.org/abs/2505.01441
https://arxiv.org/abs/2507.02554
https://api.semanticscholar.org/CorpusID:272827086

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023. URL https://arxiv.
org/abs/2305.16504.

Sherry Yang, Joy He-Yueya, and Percy Liang. Reinforcement learning for machine learning
engineering agents. 2025. URL https://api.semanticscholar.org/CorpusID:
281080955.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. ArXiv, abs/2305.10601, 2023a. URL https://api.semanticscholar.org/
CorpusID:258762525.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
Zhiqiang Guo, and Min Zhang. Steptool: Enhancing multi-step tool usage in llms via step-
grained reinforcement learning. 2024. URL https://api.semanticscholar.org/
CorpusID:273233670.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024. URL https://arxiv.org/abs/
2406.03816.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science, 2025.
URL https://arxiv.org/abs/2502.13897.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024a. URL https:
//arxiv.org/abs/2310.04406.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024b. URL https://arxiv.org/abs/
2307.13854.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor S. Bursztyn, Ryan A. Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. ArXiv, abs/2310.13227, 2023. URL https://api.semanticscholar.
org/CorpusID:264405734.

A LARGE LANGUAGE MODEL USAGE

Large Language Models (LLMs) were used for grammatical editing and improving writing flow.
Additionally, LLMs assisted the authors in conducting literature surveys and identifying related
work. LLMs were also used to aid in developing the ML-Tool-Bench toolset. LLMs were used

12

https://arxiv.org/abs/2305.16504
https://arxiv.org/abs/2305.16504
https://api.semanticscholar.org/CorpusID:281080955
https://api.semanticscholar.org/CorpusID:281080955
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://api.semanticscholar.org/CorpusID:273233670
https://api.semanticscholar.org/CorpusID:273233670
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2502.13897
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://api.semanticscholar.org/CorpusID:264405734
https://api.semanticscholar.org/CorpusID:264405734

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

to assist with code generation, debugging, and documentation for components of the ML-Tool-
Bench toolset, based on tool descriptions provided by the authors. LLMs were also used to assign
relevant tools to each subtask in the proposed Hierarchical MCTS approach. All implementations
were reviewed and validated by the authors. All research methodology, experimental design, data
analysis, and scientific conclusions are entirely the work of the human authors.

B APPROACHES

B.1 MONTE CARLO TREE SEARCH

Figure 5 provides a pictorial illustration of the MCTS algorithm.

Figure 5: A pictorial illustration of Monte Carlo Tree Search

C KAGGLE CHALLENGES

The list of Kaggle challenges present in ML-Tool-Bench, and the corresponding ML problem types
of each challenge are presented in Table 1

Challenge Type
Santander Value Prediction Challenge Regression
New York City Taxi Fare Prediction Regression
New York City Taxi Trip Duration Regression
Predicting the Beats-per-Minute of Songs Regression
Predict Calorie Expenditure Regression
Regression with a Tabular California Housing Dataset Regression
Regression of Used Car Prices Regression
Porto Seguro Safe Driver Prediction Binary Classification
Costa Rican Household Poverty Prediction Multi-Class Classification
Forest Cover Type (Kernels Only) Multi-Class Classification
Santander Customer Transaction Prediction Binary Classification
Binary Prediction of Poisonous Mushrooms Binary Classification
Spaceship Titanic Binary Classification
Binary Classification with a Bank Dataset Binary Classification
Binary Classification with a Bank Churn Dataset Binary Classification

Table 1: Kaggle challenges used in ML-Tool-Bench with problem type.

D RESULTS

In this section, we provide the exact consistency and performance values for each of the 15 chal-
lenges and the two models (GPT-4o and GPT-4.1-mini). Tables 2 and 3 show the consistency and

13

https://www.kaggle.com/competitions/santander-value-prediction-challenge/overview
https://www.kaggle.com/competitions/new-york-city-taxi-fare-prediction
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/playground-series-s5e9
https://www.kaggle.com/competitions/playground-series-s5e5
https://www.kaggle.com/competitions/playground-series-s3e1/overview
https://www.kaggle.com/competitions/playground-series-s4e9
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/costa-rican-household-poverty-prediction
https://www.kaggle.com/competitions/forest-cover-type-kernels-only
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/playground-series-s4e8
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/playground-series-s5e8
https://www.kaggle.com/competitions/playground-series-s4e1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Competition ReAct LATS MCTS-
Outcome

MCTS-
Shaped

Hierarchical
MCTS

Spaceship Titanic 0.6 0.4 0.9 0.8 0.6
Santander Value Prediction Challenge 0.9 0.6 0.5 1 1
NYC Taxi Fare Prediction 0 0.5 0.2 0.3 0.9
NYC Taxi Trip Duration 0.3 0.3 1 0.2 0.3
BPM Prediction 1 0.6 0 0.9 0.7
Calorie Expenditure Prediction 0.8 0.8 1 0.9 1
california Housing Regression 0.9 0.9 1 0.9 0.9
Used Car Prices Regression 0.9 0.4 0.4 0.9 1
Porto Seguro Safe Driver Prediction 0.3 0.5 0 0.1 0.2
Costa Rican Household Poverty Level Prediction 0.5 0.5 0.7 0.3 1
Forest Cover Type Prediction 0.6 0.9 0 0 0
Santander Customer Transaction Prediction 0.5 0.8 0.8 0.7 0.4
Poisonous Mushroom Prediction 0.9 1 1 1 0.8
Bank Deposit Classification 0.5 0.8 0.4 0.6 0.7
Bank Churn Classification 0.4 0.9 0.6 1 0.6

Overall (Median) 0.6 0.6 0.6 0.8 0.7

Table 2: Consistency across 15 competitions for five planning algorithms for GPT-4o.

Competition ReAct LATS MCTS-
Outcome

MCTS-
Shaped

Hierarchical
MCTS

Spaceship Titanic 39.54 0 22.88 59.44 62.55
Santander Value Prediction Challenge 0.09 7.17 7.12 14.87 0.27
NYC Taxi Fare Prediction 0 9.23 0 0 19.66
NYC Taxi Trip Duration 0 0 100.0 0 0
BPM Prediction 0.51 52.63 0 5.26 100
Calorie Expenditure Prediction 0.16 13.43 14.47 14.47 14.47
california Housing Regression 0.58 0.65 14.35 11.59 17.10
Used Car Prices Regression 3.0 0 0 9.35 100
Porto Seguro Safe Driver Prediction 0 5.34 0 0 0
Costa Rican Household Poverty Level Prediction 50 0 100 0 100
Forest Cover Type Prediction 0.84 23.32 0 0 0
Santander Customer Transaction Prediction 1.14 2.27 3.49 3.49 0
Poisonous Mushroom Prediction 22.75 17.61 17.69 17.62 17.62
Bank Deposit Classification 8.64 27.50 0 27.24 26.37
Bank Churn Classification 0 22.93 31.57 34.79 3.47

Overall (Median) 0.58 7.17 7.12 9.36 17.10

Table 3: Median Leaderboard percentile across 15 competitions for five planning algorithms for
GPT-4o.

leaderboard percentiles for all algorithms across all competitions in ML-Tool-Bench, for GPT-4o.
Similarly, Tables 4 and 5 show the consistency and leaderboard percentiles for all algorithms across
all competitions in ML-Tool-Bench, for GPT-4.1-mini.

Competition ReAct LATS MCTS-
Outcome

MCTS-
Shaped

Hierarchical
MCTS

Spaceship Titanic 0.1 0 0.4 0.7 0.2
Santander Value Prediction Challenge 0.6 0.2 0 0.9 0.9
NYC Taxi Fare Prediction 0.2 0 0.1 0.1 0.9
NYC Taxi Trip Duration 0.1 0.1 0.3 0.5 0.9
BPM Prediction 0.4 0.1 0 1 0.8
Calorie Expenditure Prediction 0.6 0.6 0 0.9 0.9
california Housing Regression 0.7 0.3 0.3 0.8 0.8
Used Car Prices Regression 0.3 0.2 0.4 0.7 0.4
Porto Seguro Safe Driver Prediction 0.2 0.1 0.1 0.7 0.9
Costa Rican Household Poverty Level Prediction 0.2 0.2 0.1 0 0.1
Forest Cover Type Prediction 0.2 0.2 0.3 0 0.7
Santander Customer Transaction Prediction 0.3 0.5 0.1 0.7 0.7
Poisonous Mushroom Prediction 0.5 0.5 0.2 1 0.6
Bank Deposit Classification 0.5 0.3 0.1 1 0.9
Bank Churn Classification 0.5 0.8 0.5 1 0.9

Overall (Median) 0.3 0.2 0.1 0.7 0.8

Table 4: Consistency across 15 competitions for five planning algorithms for GPT-4.1-mini.

14

https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/santander-value-prediction-challenge/overview
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/playground-series-s5e9
https://www.kaggle.com/competitions/playground-series-s5e5
https://www.kaggle.com/competitions/playground-series-s3e1/overview
https://www.kaggle.com/competitions/playground-series-s4e9
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/costa-rican-household-poverty-prediction
https://www.kaggle.com/competitions/forest-cover-type-kernels-only
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/playground-series-s4e8
https://www.kaggle.com/competitions/playground-series-s5e8
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/santander-value-prediction-challenge/overview
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/playground-series-s5e9
https://www.kaggle.com/competitions/playground-series-s5e5
https://www.kaggle.com/competitions/playground-series-s3e1/overview
https://www.kaggle.com/competitions/playground-series-s4e9
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/costa-rican-household-poverty-prediction
https://www.kaggle.com/competitions/forest-cover-type-kernels-only
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/playground-series-s4e8
https://www.kaggle.com/competitions/playground-series-s5e8
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/santander-value-prediction-challenge/overview
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/playground-series-s5e9
https://www.kaggle.com/competitions/playground-series-s5e5
https://www.kaggle.com/competitions/playground-series-s3e1/overview
https://www.kaggle.com/competitions/playground-series-s4e9
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/costa-rican-household-poverty-prediction
https://www.kaggle.com/competitions/forest-cover-type-kernels-only
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/playground-series-s4e8
https://www.kaggle.com/competitions/playground-series-s5e8
https://www.kaggle.com/competitions/playground-series-s4e1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Competition ReAct LATS MCTS-
Outcome

MCTS-
Shaped

Hierarchical
MCTS

Spaceship Titanic 0 0 0 62.11 0
Santander Value Prediction Challenge 3.60 0 0 14.24 14.24
NYC Taxi Fare Prediction 0 0 0 0 20.94
NYC Taxi Trip Duration 0 0 0 1.24 2.70
BPM Prediction 0 0 0 100 100
Calorie Expenditure Prediction 4.31 13.41 0 14.43 14.43
california Housing Regression 21.59 0 0 21.59 21.59
Used Car Prices Regression 0 0 0 100 0
Porto Seguro Safe Driver Prediction 0 0 0 17.01 17.01
Costa Rican Household Poverty Level Prediction 0 0 0 0 0
Forest Cover Type Prediction 0 0 0 0 99.44
Santander Customer Transaction Prediction 0 1.17 0 2.27 2.27
Poisonous Mushroom Prediction 6.23 6.97 0 14.36 16.32
Bank Deposit Classification 13.19 0 0 27.24 27.73
Bank Churn Classification 14.66 31.09 0.94 31.57 34.02

Overall (Median) 0 0 0 14.43 16.32

Table 5: Median Leaderboard percentile across 15 competitions for five planning algorithms for
GPT-4.1-mini.

Stage Number of Tools
Data Loading 6
Data Cleaning 9
Feature Engineering 30
Modeling 10
Evaluation/Prediction 10

Table 6: Number of tools available at each stage of a Kaggle-style workflow. In total, 61 tools
are provided spanning data loading, cleaning, feature engineering, and modeling. Some tools can
appear in more than one stage

E TOOLS

In this section, we describe the various tools that are part of ML-Tool-Bench. Table 6 shows the
number of tools in our toolset that are part of each stage in solving an ML challenge on Kaggle.
Table 7 provides info about all the tools in the curated toolset provided by ML-Tool-Bench

Decorators for named references To enable tools to operate on named references rather than raw
objects, we design four decorators that adapt arbitrary user-provided functions to our scratchpad
interface according to their read–write behavior. We categorize tools into four types:

1. Set tool: saves an object to memory. Example: read csv loads a dataframe and stores it
under a provided name.

2. Get tool: reads an object from memory. Example: get dataframe summary loads a
dataframe and returns a brief textual summary to guide subsequent planning.

3. Get–Set tool: reads an object from memory and writes a new object to memory. Example:
fit randomforest model takes as input, a dataframe, and returns a fitted model.

4. Override tool: reads an object, returns an updated object, and overwrites the input variable
binding with the returned value. Example: cast column loads a dataframe and returns a
modified dataframe that replaces the original.

Accordingly, we provide four decorators: make get tool, make set tool,
make get and set tool, and make override tool, that automatically wrap user-provided
tools to operate on named references and integrate with the scratchpad.

Function Signature Description
Modeling Functions

15

https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/santander-value-prediction-challenge/overview
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/playground-series-s5e9
https://www.kaggle.com/competitions/playground-series-s5e5
https://www.kaggle.com/competitions/playground-series-s3e1/overview
https://www.kaggle.com/competitions/playground-series-s4e9
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/costa-rican-household-poverty-prediction
https://www.kaggle.com/competitions/forest-cover-type-kernels-only
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/playground-series-s4e8
https://www.kaggle.com/competitions/playground-series-s5e8
https://www.kaggle.com/competitions/playground-series-s4e1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

fit logistic regressor(X train,
y train, cv=5)

Fit Logistic Regression model

fit linear regressor(X train, y train,
cv=5)

Fit Linear Regression model

fit random forest regressor(X train,
y train, cv=5)

Fit Random Forest Regressor

fit random forest classifier(X train,
y train, cv=5)

Fit Random Forest Classifier

fit xgboost regressor(X train, y train,
cv=5)

Fit XGBoost Regressor

fit xgboost classifier(X train,
y train, cv=5)

Fit XGBoost Classifier

fit lightgbm regressor(X train,
y train, cv=5)

Fit LightGBM Regressor

fit lightgbm classifier(X train,
y train, cv=5)

Fit LightGBM Classifier

fit catboost regressor(X train,
y train, cv=5)

Fit CatBoost Regressor

fit catboost classifier(X train,
y train, cv=5)

Fit CatBoost Classifier

Data Loading Functions
read data(filepath) Read CSV data into a pandas DataFrame

Feature Engineering and Functions to get Dataframe information
create numeric feature(df, name,
expression)

Create a numeric feature using a pandas
expression

create categorical feature(df, name,
source column, mapping)

Create a categorical feature by mapping
values from a source column

create conditional feature(df, name,
condition, true value, false value)

Create a feature based on a condition

extract string pattern(df, name,
source column, pattern, group=0)

Extract pattern from string column using
regex

split string column(df, name prefix,
source column, delimiter,
max splits=-1, indices=None)

Split string column and create separate fea-
tures

create group aggregation(df, name,
group column, agg column, agg func)

Create feature by aggregating within
groups

get group aggregation(df, group column,
agg column, agg func)

Get aggregation result without adding it to
the DataFrame

create rolling feature(df,
name, source column, window,
agg func=’mean’)

Create rolling window feature

create lag feature(df, name,
source column, lag=1)

Create lagged feature

create lead feature(df, name,
source column, lead=1)

Create leading feature

extract datetime features(df,
datetime column, features=None)

Extract datetime features from datetime
column

create time delta(df, name,
start column, end column, unit=’D’)

Create time delta feature between two date-
time columns

apply custom function(df, name,
source columns, func)

Apply custom function to create feature

fillna with value(df, columns, value) Fill missing values with a specific value
fillna with median(df, columns=None) Fill missing values with median of the col-

umn
fillna with mean(df, columns=None) Fill missing values with mean of the col-

umn

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

fillna with mode(df, columns=None) Fill missing values with mode of the col-
umn

fillna with condition(df,
target column, condition, fill value)

Fill missing values in a column based on a
condition

fillna with multiple conditions(df,
target column, conditions and values)

Fill missing values in a column based on
multiple conditions

fillna with conditional aggregation(df,
target column, condition column,
condition values, agg func=’mean’)

Fill missing values using conditional ag-
gregation based on another column’s val-
ues

fillna with custom function(df,
target column, condition, custom func)

Fill missing values using a custom function
based on a condition

drop rows with missing(df,
columns=None, threshold=None)

Drop rows with missing values

get missing summary(df) Get a summary of missing values in the
DataFrame

cast columns(df, column type mapping) Cast columns to specified data types
cast numeric columns(df, columns=None,
target type=’float’)

Cast numeric columns to specified type

cast integer columns to float(df,
columns=None)

Cast integer columns to float type

cast categorical columns(df,
columns=None)

Cast categorical columns to category type

one hot encode(df, columns=None,
drop first=True, prefix=None)

One-hot encode categorical columns

label encode(df, columns=None) Label encode categorical columns
normalize features(df, columns=None,
method=’standard’)

Normalize numeric features

encode all categorical columns(df,
method=’one hot’, drop first=True)

Encode all categorical/object columns us-
ing specified method

normalize all numerical columns(df,
method=’standard’)

Normalize all numerical columns using
specified method

concatenate train test(train df,
test df)

Concatenate train and test data with track-
ing columns for proper splitting

split combined into train test(combined) Split combined data back into train and test
using tracking columns

convert dataframe to features target(df,
target column, is train=True)

Convert DataFrame to features and target
format

convert to dataframe(data, **kwargs) Convert various data types to pandas
DataFrame

drop feature(df, column) Drop feature(s) from the DataFrame
get features(df, columns) Extract specific features (columns) from

the DataFrame
concatenate dataframes(df1, df2,
axis=0)

Concatenate two DataFrames

join dataframes(left df, right df,
left on, right on=None, how=’inner’,
suffixes=(’ x’, ’ y’))

Join two DataFrames using pandas merge
functionality

rename feature(df, old name, new name) Rename feature(s)
get unique values(df, column,
sort=True, include counts=True)

Get unique values from a column as a
DataFrame

get dataframe dtypes summary(df) Get comprehensive summary of the dtypes
in the entire DataFrame

filter dataframe(df, condition) Filter DataFrame using a boolean condi-
tion

Model Utilities
save model(model,
filepath=’model.pkl’)

Save the trained model to disk using pickle

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

load model(filepath) Load a trained model from disk using
pickle

save dataframe to csv(df, filepath) Save a DataFrame to CSV file
Model Evaluation Functions

evaluate regression model(model,
X test, y test, model name="model",
eval data label=’test’)

Evaluate a trained regression model on
data

evaluate classification model(model,
X test, y test, model name="model",
eval data label=’test’)

Evaluate a trained classification model on
data

predict target(model,
X data, model name="model",
return probabilities=False)

Make predictions using a trained model

Table 7: All tools in the curated toolset provided by ML-Tool-Bench.

18

	Introduction
	Related Work
	ML-Tool-Bench
	Scratchpad
	Tools
	Kaggle Challenges

	Approaches
	ReAct
	Monte Carlo Tree Search (MCTS)
	Language Agent Tree Search (LATS)
	MCTS-Shaped
	Hierarchical MCTS

	Experiments
	Implementation Details
	Results

	Conclusion
	Large Language Model Usage
	Approaches
	Monte Carlo Tree Search

	Kaggle Challenges
	Results
	Tools

