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Abstract

Reinforcement learning is a widely adopted component of large language model
post-training, especially for reasoning-style tasks such as maths questions. How-
ever, as we show, most existing methods will provably fail to learn from questions
that are too hard, where the model always fails, or too easy, where the model always
succeeds. Much human effort is therefore spent producing datasets of questions
of a suitable difficulty for state-of-the-art models. Given this, we consider how to
algorithmically identify questions that allow for maximally efficient training. We
introduce a method, LILO (Learnability Improves LLMs Optimally), that priori-
tises training on questions with high variance of success, known as learnability,
and we provide theory which shows that LILO enables the expected improvement
of the model to be large. We run a wide range of experiments over multiple base
models, algorithms and reasoning datasets to demonstrate that LILO consistently
reaches a higher final test accuracy, and can do so in 3x fewer training steps.
We explore how questions with high learnability can be efficiently identified, and
discuss how learnability can be scaled to produce LLM agents that autonomously
and open-endedly expand the frontier of human knowledge.

1 Introduction

Reinforcement learning (RL) has become a crucial post-training step of many state-of-the-art
reasoning-focused large language models (LLMs), notably DeepSeek-R1 [1]], Tulu [2[], and OpenAl’s
O1 [3]. Policy-gradient algorithms—such as PPO, VinePPO, and GRPO—have become the de facto
standard, using advantage estimation to reinforce promising sections of answers and penalise errors.
However, as we show, many existing methods will provably fail to learn from questions that are too
hard, where the model always fails, or too easy, where the model always succeeds. Given that RL
with LLMs is extremely compute intensive, training on such questions is a huge waste of resources.
Much human effort and millions of pounds are therefore spent continually producing new datasets of
suitable difficulty for state-of-the-art models to train on.

In this work, we ask a fundamental question: Can we algorithmically identify questions that are
optimal to learn from? To answer this, we revisit the formal framing of teaching LLMs to reason
with RL, connecting it to the existing literature of automatic curriculum learning (ACL), unsupervised
environment design (UED) and learnability—defined as the variance of success of a model over
multiple attempts at a given question. We fill a vital gap in the literature, with a proof that the
expected improvement of the model is constrained by the the learnability of the questions attempted
during training.

This motivates us to develop a novel method for prioritising training on questions with high learnability.
We name it LILO- “Learnability Improves LLMs Optimally”. LILO continuously adapts to the
model’s ability during training, identifying questions that the model can answer correctly, but
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not consistently, and which, as we will show, are theoretically most useful to learn from. The
implementation of LILO is extremely simple, and we demonstrate it can be added seamlessly to
existing training libraries (OatLLM [4] and VinePPO [3]) in fewer than 20 lines of code. Running
LILO requires minimal extra compute cost, exploiting the current trend of generating many attempts
per question when teaching LLMs to reason with RL.

We evaluate LILO across three RL algorithms (GRPO [6], PPO [7] and VinePPO [5])), three training
datasets of varying size and difficulty (the often standard GSMS8K [8]] dataset, the more challenging
MATH [9] dataset, and the larger and more diverse ORZ57K [10]]) and two base models (Rho-1B [11]
and Qwen-2.5-1.5B+[12]]). In doing so, we are the first to present evidence that existing training
methods waste significant compute with training on questions with zero learnability. In contrast,
LILO prioritises training on high learnability questions which increases final test accuracy by
several percentage points, and can do so in 3x fewer training steps. Furthermore, we evaluate
LILO on a variety of unseen test datasets, such as CollegeMath [13]] and OlympiadBench [14], and
find that adding LILO improves reasoning on out-of-distribution questions.

Our theory and results show that Learnability provides a principled approach to selecting training
data for reasoning models, and we conclude with a discussion of future work required to develop this
line of research into fully open-ended curricula for language model agents.

To summarise our contributions:

* Theory: Section [3] proves Theorem [3.1} which provides a mathematical argument that
expected policy improvement is upper bounded by a quantity which increase linearly with
learnability.

* Method: Section 4] presents a simple and efficient algorithm for prioritising training on
questions with high learnability.

* Results: Section [6] presents the first results that prioritising learnability during the RL
training of LLMs improves training speed by 3x whilst boosting final performance.

* Insights: Section [/| contributes numerous valuable insights for training LLMs with RL,
uncovering 1) how questions selected by LILO correlate with human-interpretable factors,
2) that learnable questions become progressively harder to find and 3) how even training
on highly learnable questions doesn’t always boost performance, due in part to reasoning
models’ large train—test generalisation gap

2 Background
2.1 Training LLMs to reason with RL

The goal of training LLMs with RL is to maximise the expected reward J(6) = Eqp. a~r, [7(q, )],
where q is a question sampled from a distribution P, and a is an answer to the question generated
by LLM 7y. To find the parameters 0* € © which maximise J(6), answer generation is framed
as a Markov Decision Process (MDP), where each state s, in the MDP represents a sequence of
tokens, and a policy autoregressively chooses the next token a; ~ mp(a¢|s;) to be added to the
current sequence. For reasoning problems, only once the entire answer has been generated is a reward
received, i.e for a generation of length T, for t = 0,...,7 — 1 we have r(s;) = 0, and only 7(s7)
can be non-zero. This MDP permits several other equivalent formulations that closely connect it to
existing work on ACL, UED and learnability. We discuss this further in Section [§]and Appendix

Policy gradient algorithms, such as RLOO [15]], GRPO [6], PPO [7] and VinePPO [35] are the de-facto
standard for training LLMs to reason with RL, optimising .J(#) via the policy gradient theorem
VoJ(0) = Er, {Zz:ol Vo log mg(a|st) - At] The advantages Ay, t = 0,...,T — 1, characterise

how much better a given choice of token a; is compared to the model’s current behaviour. The exact
way the advantages are computed, and how J(6) is optimised for, varies for different policy gradient
algorithms (see Appendix |A|for more details). In Section 3| we analyse how these choices affect the
relationship between expected policy improvement and learnability.

2.2 Learnability

Learnability is a simple way to asses the difficulty of a question with a binary outcome. It is
defined in [[16, (17, 18] as Learnability(rm) := Varz, [r(s7)] = Ex, [ (r(s7) — Ex, [r(sT)])Q] =



po(1 — pg) where pg = E,,[r(s7)]. Given K attempts at a question, we estimate learnability by
computing the empirical success rate p = #successes/ K, with learnability then being p(1 — p), or

25 (1 — p) with Bessel correction.

For many algorithms, it is simple to show the outcome of training on questions with zero learnability.
For example, consider RLOO and GRPO, that compute advantage as A; = r(st) — Er, [r(s)] or
A, = ") By [r(s7)]

t Varr [r(sT)]
are estimated from a batch of attempts sampled from the model. When learnability is zero, it holds
that A; = Oforall¢ =0,...,7 — 1, and this question has no contribution to the model update.

where the success probability E,, [r(s7)] and success variance Var,, [r(s7)]

There is minimal prior work examining the impact of training on questions with learnability > 0.
Whilst, the authors of [16] show the expected improvement of a model trained by the classic algorithm
REINFORCE [19]] is maximised by maximising learnability, they require a very simplified learning
setting with strong assumptions.

3 Relationship between Expected Policy Improvement and Learnability

In this section we introduce Theorem [3.1] which provides a mathematical argument that the policy
improvement resulting from one gradient update is upper bounded by a quantity which increases
linearly with learnability, when using RLOO, GRPO, VinePPO, PPO or any other advantage based
policy gradient algorithm. A full proof of Theorem [3.1]is provided in Appendix

We first see that when setting 0,11 = 6 + 8V J(0k), for a learning rate 5 > 0, and assuming that
10k+1 — Okl = BlIVeJ(0r)|| is small, we can use the first-order Taylor expansion of J(0;4+1) =
J(Or + BV, J(0k)) = J(0k) + B]|Ve,J (0x)]|*. This yields that

J(Op1) — J(0) =~ BV, J (0k)?, ey

i.e. the policy improvement is proportional to the gradient magnitude. Theorem [3.1|then connects the
gradient magnitude to learnability:

Theorem 3.1

Consider an MDP in which reward is obtained only in the terminal state s, and a parametrised

policy my. Assume that (Vg log 7y (ay \st))T Vo logmp(as|sy) and Ay Ay are uncorrelated for
all t,t/ =0, ..., T — 1. Then the following statements hold:

For A; = r(sr), i.e. REINFORCE:

T—1

IV0J(6)] < Ex, [n " Vylog m(at|st>|2} E., [rwf]
t=0

For A; = r(st) — E.,[r(s7)], i.e. RLOO:

2

[ (o) - B )]

T-1

Z Vo logmp(a|s:)

IV (6)] < Ex, [
t=0

For Ay = V™ (s441) — V™ (s;), i.e. PPO, VinePPO:

T-1

190 @) < 3 En, [nve 1ogwe<at|st>|2]Em M

. E: 90tz aolso) | | B | (1) — B (o) |,

where the second equality holds wunder the additional assumption that
Er, [[IVologmo(aslse)||?], ¢ = 0,..,T — 1, are all equal. Even without this additional

assumption, it still holds that 37 ' E, [A?] = En, [ (r(s7) — Exy [r(s7)] )2 .



Theorem combined with Equation |1, provides a mathematical argument that the policy
improvement obtained from one gradient update is upper bounded by the variance of the final
reward, times an additional factor. When using an algorithm which follows the gradient of a
clipped objective, one can expect that a slightly modified version of this argument still applies, since
all the learning of such algorithms occurs when in the unclipped portion of the objective.

In the case of binary rewards i.e. r(sr) € {0, 1}, such as in reasoning questions, it holds that

Er, [ (r(s7) — Exy [r(s1)])?] = po(1 — pp), for py = Ex, [r(s7)]. Thus for RLOO, PPO and
VinePPO, assuming approximately correct estimates of V™ through multiple rollouts (VinePPO)
or a learned value network (PPO), Theorem [3.1]suggests that the magnitude of the policy gradient,
and thus by Equation [I]the expected policy improvement, is upper bounded by learnability times an
additional factor.

GRPO uses a normalised advantage function, i.e. A; = (r(s7) — Ex, [r(s7)])/+/Vary,[r(s7)].
Thus we see that under the assumptions of Theorem it holds that E., [|[VeJ(0)]?] =

Er [l ZtT;Ol g1,0/|?]. In other words, the normalisation of the advantage function removes the
dependency of the expected gradient magnitude on learnability. However, multiple attempts to
replicate Deepseek R1-Zero [1] have found much better performance without this normalisation, i.e.
when using A; = r(s7) — Ex, [r(s7)], as in RLOO, with which the expected policy improvement is
again upper bounded by a quantity which increases linearly with learnability.

Significance tests: We performed numerous statistical tests to validate our assumptions and test
Theorem [3.T)end to end. These are detailed in Appendix [C|

4 Method

In Section 3, we argued that the expected policy improvement is small when training on questions
with smalllearnability. Thus, in Algorithm 1| we present a method that, at every training step 1)
produces a batch of questions with high learnability and 2) trains on this batch. In Algorithm[2} we
introduce a simple method to produce a batch of questions with high learnability, based on rejection
sampling. The idea is to first estimate the learnability of a pool of | D| candidate questions using a
small number Nieamabitity Of attempts per question. A larger number Ny, of attempts per question is
then rolled out during training on the top-| B| learnable questions.

Algorithm 1 Training with LILO

Input: Initial model parameters: 6, Number train steps: 7', Training batch size: | B|

: fort =1to T do
B < get learnable_questions(6, | B|) e.g using Algorithm[2]
6 < train_on_batch(0, B)

end for

b e

Algorithm 2 Get Learnable Questions by Rejection Sampling

Input: Model parameters: 6, Size of question batch to return: | B|, Size of candidate pool: | D],
Number of attempts per question to calculate learnability: Nieamability

: Sample candidate pool of | D| questions from dataset
: Rollout Nicamability attempts per candidate question

: Compute success rate per question = p

: Compute learnability per question = p(1 — p)

: Return top-| B| questions by learnability

AW ==

Many large-scale implementations of RLOO, GRPO, PPO and VinePPO for teaching LLMs to
reason with RL use large values of Ny, €.g VinePPO [5] uses Ny,in =~ 500. In this case, taking
Nieamabiliy = 8 only requires 4% more samples, which is a negligible increase in wall-clock time. The
smaller scale implementations of PPO and GRPO that we use in some experiments take Ny, = 8, in
which case we simply reuse the Nicamabiliy Samples from the selected top-| B| questions generated



during line 2 of Algorithm[I] and require no further samples during line 3. In this case, the sampling
overhead is approximately 4 x, which we do not consider an issue for the following reasons:

1. For larger scale implementations with larger values of Ny,i,, rejection sampling adds
minimal overhead.

2. Many of our results show that learnability prioritised training plateaus at a higher level, and
so even allowing baselines infinitely more samples would not give the same level of final
performance.

3. In this work, we are interested in studying whether training on maximally learnable batches
can improve performance in LLMs, and we therefore leave developing algorithms to compute
learnability more optimally to future work. In Section [9] we provide a discussion of
potential directions towards more sample efficient learnability-based algorithms, including
an algorithm that finds highly learnable questions with no extra sampling overhead in
Appendix [D.T]for use in situations where sampling speed is a bottleneck.

4. As we summarise in Table [I] using learnability to generate samples and then discarding
some is a more efficient way to scale than training on all 4x samples, as measured by
wall-clock time. This is because generation can be done with highly specialised inference
engines on independent distributed nodes. Increasing training throughput is much harder,
requiring the communication of weights and gradients between nodes. For this reason,
leveraging additional samples during training LLMs with RL is an increasingly popular
trend to compute value functions by VinePPO [3]], and to rapidly speed up training with
AsyncRLHF [20] and Openlnstruct [21]. Using reward models with synthetic data also
fits this trend, requiring thousands of samples to fit the reward model before RL training

commences.
Paradigm Algorithm Sampling time(s) Training time(s) Total(s)
Nirain & Niearnability PPO 20 200 220
i.e. Small Ny, PPO, GRPO PPO + LILO 80 200 280
Nirain >> Niearaility VinePPO 1500 500 2000
i.e. Large Ny,in PPO, GRPO, VinePPO VinePPO + LILO 1550 500 2050

Table 1: Prioritising learnability with Algorithmhas minimal impact on the total time for a single
training iteration. Numbers taken from PPO and VinePPO runs shown in Section[§] Appendix
discusses how high learnability batches can be computed without additional samples, for scenarios
where sampling speed is a bottleneck.

S Experimental setup

RL algorithms: We add LILO to two existing open-source libraries for training LLMs to reason with
RL. The VinePPO library [5] provides implementations of PPO and VinePPO. The OAT library [4]
implements GRPO tuned to closely replicate the Deepseek R1 results. All of the hyperparameters
for PPO, VinePPO and GRPO we leave unchanged from their implementations in [5] and [4]. We
choose these algorithms to cover two major axes of variation for policy gradient algorithms: 1) the
coarseness of credit assignment (GRPO assigns credit at the sequence level, PPO/VinePPO and token
level), 2) the use of value functions (VinePPO does empirical rollouts, PPO uses value networks). All
our algorithms follow the clipped objective, which has become standard.

Base models: For our VinePPO and OAT experiments, we follow their baseline setup, using Rho-
Math-1B[11] and Qwen-2.5-1.5B [12]] respectively. In Section[7] we additionally explore whether
LILO can be used to squeeze further performance out of models that have already undergone heavy
RL training to reach state-of-the-art, and so we experiment with Oat-Zero-1.5B [22] as the base
model.

Hyperparameters: The main hyperparameters for rejection sampling in Algorithm [2]is the size
of candidate pool |D|, and the value of Nieamability» the number of responses sampled per question.
Ideally, these would be tuned to be as small as possible whilst achieving batches with high learnability.
In practice, choosing |D| = 4 x |B| and Nicamaviliy = 8 works well with minimal overhead. The
only exception is for VinePPO on GSM8K, where the model nearing 95% train accuracy requires
|D| = 8 x | B] to produce high learnability batches.



Algorithm  Train Dataset Speed-up (Steps) Final test accuracy (%)

PPO MATH 2.5x 19.1 —21.8
GSMSK 1.9x 51.1 = 53.2
VinePPO  MATH 3.2x 22.8 —+249
GSMSK 3.3x 532 =559
GRPO ORZ57K 1.5x 35.5 = 37.1

Table 2: Summary of results. We compute speed-up by comparing the training step at which
the highest test accuracy of the baseline is reached by LILO. Final test accuracy compares the
performance of the baseline algorithm to the final test accuracy achieved by the algorithm+LILO.
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Figure 1: Adding LILO to PPO increases both the model improvement rate and final test accuracy
when training on MATH and GSMS8K.

Datasets: For VinePPO and PPO experiments, we train on mathematical reasoning datasets
MATH [9], ( 12,000 competition-level problems), and GSM8K [8]], (8,000 simpler grade school
problems). These are chosen to demonstrate the effect of learnability prioritised training in situations
where initial model performance is high (GSM8K) and where it is initially low (MATH). We fur-
ther evaluate downstream performance of the MATH-trained models on CollegeMATH [13]] (2,818
college-level questions) and OlympiadBench [[14] (8,000 Olympiad level maths and physics competi-
tions). For the GRPO experiments, we use the OAT-library and train on the ORZ57K dataset [10] of
57,000 questions amalgamated from AIME [23]], Numina-Math [23]], Tulu3 MATH [2]] and others.
For evaluation, we follow their setup and test on 5 datasets MATH [9], Minerva [24], Olympiad
Bench [14], AMC [23]] and AIME [23]].

Metrics: We evaluate model performance on the test sets of each dataset, using accuracy (Pass@1)
as the primary metric. For PPO/VinePPO this is computed using extract string matching as per the
VinePPO library. For GRPO, the OAT library is more flexible, attempting to match the answer to
many other equivalent mathematical forms.

6 Results

Adding LILO to PPO: We train on MATH and GSMS8k using the VinePPO codebase. For MATH,
we follow the baseline and run for 1000 timesteps (approximately 8 epochs of the data). The
improvement rate is almost doubled by adding LILO, increasing by 4.8% compared to 2.1% over
the course of training. PPO+LILO reaches the best performance achieved by PPO in 2.5x fewer
training steps. When training on GSMS8K the runs plateau after 650 steps, with PPO+LILO achieving
a slightly higher final test accuracy. It achieves this final test accuracy in 1.9x fewer steps than PPO
without Learnability.

Adding LILO to VinePPO We again compare on MATH and GSMS8K and find that VinePPO
also benefits significantly from prioritising learnability. On MATH, it achieves 2.1% higher best
test accuracy, and achieves the best test accuracy of VinePPO without learnability in 3.2x fewer
steps. On GSMB8K we find that finding learning questions via rejection sampling (Algorithm [2) with
|D| = 4 x | B| cannot consistently learnable questions during training, as train performance is closing
in on 95%. We increase |D| = 8 x |B|, which is enough to find learnable questions consistently
enough during training to boost performance. VinePPO without learnability improves performance
on GSMB8K from 40.5% to 53.2%, a gain of 12.7%. Prioritising learnability improves on this, taking
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Figure 2: Adding LILO to VinePPO increases both the model improvement rate and final test
accuracy when training on MATH and GSM8K. During training on GSM8K, train accuracy reached
nearly 95% (see Figure[9), and LILO began to struggle to find high learnability questions (as shown
in Figure @ Doubling the size of the candidate pool |D| in Algorithm 2| fixed this and further
improved performance (mint green line).

test accuracy from 40.5% to 55.9%, a gain of 15.4%. VinePPO with learnability reaches the best
accuracy achieved without learnability in 3.3x fewer training steps.

We evaluate the four combinations of PPO/VinePPO training on MATH/GSMS8K on the holdout
datasets CollegeMath and Olympiad Bench. On all four combinations, learnability improves perfor-

mance, for full results see [Table 6]in[Appendix [
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Figure 4: Adding LILO to GRPO increases the model improvement rate on 4/5 unseen test datasets.

7 Further analysis

LILO introduces an interpretable training curriculum In we plot the average number of
reasoning steps in the gold solution to each question trained on at a given iteration. Note that these
gold solutions are not used to calculate learnability, but provide a human-interpretable way to see
what type of questions are being prioritised during training. For MATH, we initially select simpler
questions (fewer steps) but gradually include harder ones. On GSMS8K, the model quickly masters
the average question, prompting us to focus on more difficult ones.

Learnability doesn’t solve RL’s generalisation gap The results in the previous section show that
RL training can increase the test accuracy of LLMs, and learnability helps this happen faster and to a



greater extent. However, the improvements, even with learnability, are modest, with no algorithm
allowing Rho-Math-1B or Qwen-2.5-1B to perfect MATH, GSMS8K or other datasets. However,
looking at training accuracy (full training curves in[Appendix F)), we see that training accuracy is
often nearly 2x higher. In the GSM8K experiments, for example, the training accuracy nears 95%
whilst test accuracy stays below 60%. While LILO causes train accuracy to increase faster, the ratio

between train and test accuracy is unchanged. We plot this in Figure [I0]in[Appendix F|

Finding learnable questions gets harder through- MATH
out training Figure[6|shows that during PPO training
on MATH, we remain able to select high learnability
batches. For GSMSK, rejection sampling starts to be
unable to find high learnability batches. This could be
a factor in why PPO closes in on PPO + Learnability
later in training on GSM8K, whereas for MATH the
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high learnability. Despite being able to find batches
of highly learnable questions, performance only min-
imally improves. This could be due to many reasons
- a lack of capacity in the model, entering the overfit-
ting/no generalisation regime, or learning new ques-
tions whilst forgetting old ones. We are excited to
investigate this further.
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Figure 5: Questions selected by LILO cor-
relate with the number of reasoning steps in
the gold standard solution, despite LILO not
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ability questions towards the end of training. minimally improves Oat-Zero-1.5B. This may be
This happens to a lesser degree on MATH due to the model already having undergone sig-
than on GSM8K. nificant post-training.

8 Related work

Curricula with LLMs for RL: Rho-1b [11] shows the effectiveness of curricula during supervised
training of LLMs, but prior to the initial release of this paper, there was minimal work applying
curricula to RL on LLMs. While [25] try PLR [26] and backtracking [27]], they see no improvement
over PPO. DPOP [28] applies various heuristics to improve the diversity of question attempts for use
with DPO, but the heuristics are not linked to model performance and do not change during training.

Since the initial release of this paper in February 2025, several works have been released that validate
some of our findings. DAPO [29] filters out training on questions that produce all successful or all
failing attempts. Kimi-1.5 [30]] samples questions proportional to 1 — p, i.e., upweighting difficult
questions. “Not all rollouts are useful” [31] trains on a subset of question attempts with the highest
variance. They provide no theory to explain why this is useful and present only a single experiment
with GRPO on GSMSK. Llama 4 [32] uses a curriculum of increasingly difficult questions and filters
out questions with zero advantage. They provide no theory, training code or experiments to validate
this choice.



Unsupervised Environment Design: A UED problem features a family of MDPs parametrised by a
set of values 6, known as a “level” [33|[260]. The goal is to vary the 6 used during training such that
performance remains high on unseen or adversarially chosen 6 at test time. The majority of previous
work on learnability and UED has been on embodied-agent style robotics tasks, such as Minigrid [34],
XLand-Minigrid [35]], JaxNav [36] and variants OpenAl’s bidpeal walker [37]. However, one can
view each question in a reasoning dataset as a “level” of the answer-generation MDP. Viewing RL on
LLMs as a UED problem opens up a whole world of literature that could be adapted for LLMs to
further improve capabilities. Notably, SFL [18]], which inspired early work on this paper, trains on
both high learnability and randomly sampled levels throughout training on the robotics tasks above.
Having proved Theorem [3.1] we train only on high learnability questions. Many elements of SFL are
unsuitable for RL on LLMs: Notably, maintaining a buffer of high learnability questions that is only
periodically refreshed leads to massive overfitting in LLMs (see Figure[I0]in Appendix [F). Sampling
is slower for LLMs than in their JAX [38]] environments, so we 1) rollout for a fixed number of
episodes, rather than timesteps, which allows us to use fast inference engines and 2) reuse samples
from learnability estimation in training. For further related work on UED and its connection to LLMs
and RL, see Appendix

9 Limitations and future work

There are many exciting ways to further reduce LILO’s sampling overhead. Appendix [D.T]details
one such way and presents some initial results. As suggested in Section[7] it is likely more efficient
to dynamically allocate more compute to finding learnable questions as it gets more difficult later
in training. LILO currently discards useful data if more than | B| high learnability questions are
identified. Making LILO fully asynchronous, similar to AsyncRLHF [20], could alleviate this.
LILO is also stateless - no information from previous steps is used to estimate learnability in the
current step. Future work could also explore using the LLM itself to estimate learnability without
any actual question attempts. This is similar to some of the work on LLM confidence estimation and
calibration [39]].

LILO uses learnability to prioritise existing training data. Future work could look at using learnability
as a metric to produce new training data at the correct level of difficulty. This could build on the UED
algorithm ACCEL [40] for mutating questions, and existing work for automatically producing RLVR
tasks [41].

Learnability does not account for inherent aleatoric uncertainty in a question, e.g, “I just flipped a
coin. Is it head or tails?”. Such questions may not be actually learnable by the model, despite having
high variance of success, and thus high learnability score. There is also no quantification of whether
a question is “worth learning”, e.g its relevance to the test set.

Learnability in prior work was only considered for binary rewards. Our Theorem [3.1] suggests that
more generally, including for non-binary rewards, that maximising learnability, defined as the variance
of the final reward, maximises expected model improvement. However, more experiments are needed
to empirically verify this. There is a growing body of work looking at unsupervised RL, in which no
rewards, or even tasks, are given to the model. In this situation, the agent simply explores to better
understand the world around them. It remains to be seen how this concept, previously implemented
for vision-transformer or diffusion-based world models, can be translated into the LLM domain.

10 Conclusion

In this work, we revisited the formal framing of training LLMs to reason using RL, connecting it to
existing theories of learnability, active curriculum learning (ACL), and unsupervised environment
design (UED). We contribute new theoretical results showing that prioritising learnability during
training maximises expected policy improvement. Building on this, we propose LILO, a simple,
practical method for prioritising learnable questions during LLM training, and demonstrate its ease of
integration by adding it to two widely used training libraries. We evaluate our approach using three
algorithms (GRPO, PPO, and VinePPO) across three reasoning benchmarks (MATH, GSM8K, and
ORZ57K). Our results show that LILO not only improves final performance by several percentage
points but also requires 3x fewer training steps to exceed the same performance of training without
LILO. We conclude by discussing the limitations of current learnability-based methods and outlining
future directions toward developing LLM agents capable of autonomously and continually expanding
the boundaries of human knowledge.
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A Policy gradient algorithms

The standard RL framework [42] considers an environment formulated as a Markov Decision
Process (MDP) M = (S, A, T, R, po,7), where S and A denote the state and action spaces,
T(s¢+1]5t,ar) denotes the transition dynamics, R(st,a:) denotes the reward function, pg the
initial state distribution and v € (0,1) is the discount factor. Given an episode of length T,
[s0, a0, Ro, $1,a1, Ry ...s7_1,ar—1, Rr_1] with actions sampled by the policy mg(a¢|st), the goal
is to find the policy my that maximizes the expected discounted return:

T-1
E;,Lo,ﬂ'g,T lz 'tht (2)
t=0
This objective can be maximized using gradient ascent with the following gradient estimator:
T—1
VoJ(0) =E sup, | > Velogms(as| ) Ry 3)
ar~g (|s¢) =0

For a lower variance gradient estimator, the reward R; can be replaced with the ‘advantage’ A;, which
quantifies how much better taking action a; in state s; is compared to the average action according to
the current policy 7my. Given a learning rate (3, the policy parameters are updated iteratively with:

Ox+1 = O + BV@J(G}Q “4)

We now consider applying this RL framework to question-answering in LLMs, denoting the sequence
of tokens that make up the question and LLM response as x = x., and y = yo.7 respectively. There
are multiple different treatments of the RL framework for LLMs. The simplest view treats response
generation as ‘contextual bandits’ and to consider the question to be the initial state so = x¢.,,, the
generation of an entire response to be a single action ag = 4.7, and thus the horizon tobe 7" = 1.
An alternative is to view response generation as a token-level MDP, so the state is the sequence of
previous question and response tokens s; = [X, yo.t—1, the action is the next token in the response
as = Yy, and the transition function is deterministic and simply involves concatenating the new
token y; onto the previous state to get s;+1 = [X, yo:¢]. In RL applied to LLMs a single reward R is
typically only received after the whole response has been generated. Therefore with on-policy data
the 7" = 1 contextual bandits treatment and the token-level treatment with v = 1 are equivalent.

In deep RL the advantage is typically estimated as A(az, st) = R(a, s¢) — V" (s¢), where V' (s¢),
an additional learned value baseline, is subtracted from the reward. In LLMs, however, fitting
value functions has proven tricky and instead a sample-based approach involving sampling multiple
responses for each prompt has become popular. There are several different popular expressions

for advantage. RLOO [15] samples G responses {y(i)}f:1 per question and uses A() = R(®) —
ﬁ ZJG# RU). Similarly, GRPO makes use of G sampled responses per prompt, instead using
AW = (R® — meaan(j))/stde(j)

This is generally applied token-wise, resulting in the following gradient estimator:

G T
VHJ(G) =E x~D, Z Z Vg log e (yt(l) | X, y(()li)571) A(l) (5)

y O ~mo (%) [i=1 t=0

While RLOO and GRPO assign the same advantage A for all response tokens, VinePPO [5]] aims
for fine-grained credit assignment. Like RLOO and GRPO, they again use a sample-based approach
instead of relying on a learned value network, and estimate V™ (s; = [X, yo.¢]) by sampling multiple
completions y,1.7 onwards using the current policy 7 and averaging their final rewards. The
advantage is then calculated as A; = V™ (s;11) — V™ (s;), where a sample-based estimate is used
for V™. This approach avoids the difficulties of training a separate value network for LLMs while
still enabling token-level credit assignment.

PPO style clipping is often applied to increase sample efficiency by enabling use of off-policy data.

'The GRPO advantage has been found to perform better without the division by std; RYME].
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B Proof of Theorem 3.1]

Proof. We see that

T—1 2
VoI (0)]? = ||Ex, Vo log mg(at|st) Ay
=0
T-1 2
<E,, Vo log mg(at|st) A
=0
T—1
= Er, [Vologmo(as|s:)” Volog mo(ay|sy)ArAv]
t,t'=0
T—1
= Er, [Vologmg(ails:) Vologmo(ay|sy)] Ex, [AiAv],
t/=0

where in the second inequality we have used Jensen’s inequality, and in the last equality we have

used the assumption that (Vg log 7y (at|st))T Vo log mg(ay|sy) and Ay Ay are uncorrelated for all
t,t’ = 0,...,T — 1. This proves the statements for REINFORCE, where A; = r(s7), and RLOO,
where A; = r(st) — Er, [r(s7)]. For PPO and VinePPO, where A; = V7 (s.41) — V™ (s¢),
we now show that E,, [4;Ay] = 0 for ¢ # ¢, and E, [Af] =E,, [V”" (s¢41)% — V™o (st)ﬂ.
Together with the fact that r(sp) = V™ (sg) and E, [r(s7)] = V™ (s0), this will finish the proof
of the theorem.

We see that
By [(V7(s141) = V™ (s1))?]
=Er, [(V™ (s141)% = 2V (s141)V ™ (50)) + V™ (51)%)]
=Er, [(V™ (s141)% = 2By [V (5041)V™ (50))|se] + V7™ (51)%)]

=By | | V7 (5041)* =2V (50) Y mo(aslss) D Tlsearlse, ar)V™ (sp41) + V7™ (s1)?
at St+1
=Er, [(V™(s41)> — 2V (5¢)? + V™ (s5¢)?)]
:]E‘ﬂ'e [(Vﬂ-e (St+1)2 — V7T9 (St)2)} B
(©6)

where T (s¢41]5¢, at) is the transition function of the underlying MDP. We now turn to the off-diagonal
terms, where without loss of generality we let ¢ > ¢’

Ery [(V™(st41) = V™ (50)) (V™ (st741) — V™ (51)))]
=Ery [Erp (V™ (st41) = V™ (86)) (V™ (s741) — V7™ (517))50, .- 8t])]
=Ery [(Ery [(V™ (st41)[5¢] = V™ (56)) (V™ (s1741) = V™ (517))]

=Er, | | D_moladlse) Y Tseralse, an) V™ (se41) = V™ (50) | (VT (s041) = V™ (s0))

=By (V™ (s1) = V7 (50)) (VT (s1741) — V™ (s1))]
=0.
O
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C Significance tests

GSMSK MATH
Corr  Sig | Corr  Sig
REINFORCE: No correlation between 7(s7)? and || Zt 0 9t H2 -0.0460 Yes | -0.0315 Yes
RLOO: No correlation between (7(s7) — E[r(sr)])? and I Zt o U g2 -0.0169  Yes | -0.0211  Yes
GRPO: No correlation between Learnability and || Zt o 9tl? -0.0327  Yes | -0.0319 Yes

Table 3: Since the underlying MDP in Theorem- depends on the question on which we train, it
is in principle possible that the quantities Er, [|[Vglogmg(a¢|s:)|?], t = 0,.
the learnability of that question. In particular, they could decrease with learnability, such that the
upper bound for the gradient magnitude as a whole could decrease with learnability. However, while
the formal MDP changes, the weights of the underlying LLM do not depend on the question that
is chosen to train. Thus we assume that in practice, those quantities do not depend significantly
on the learnability of the current question. This table tests this assumption empirically, and shows
no statistically significant correlation between learnability and Er, [|| Vg log 7o (as|s¢)||?], for any

t=0,..,T - 1.

., ' — 1, depend on

Assumption GSMSK MATH
Corr Sig | Corr Sig
No correlation between g; - g and [V (s¢+1) — V (s0)][V (sp41) — V(s})] 0.0357 No | 0.0132 No
No correlation between [|g;||? and V (s¢41) — V (s¢) -0.0025 No | -0.0030 No
No correlation between ||g;||* and ¢ -0.0072 No | -0.0046 No
No correlation between ||g; || and learnability -0.0057 No | 0.0105 No

Table 4: This table checks the assumptions required by the proof of Theorem 3.1]

GSMSK MATH
Learning algorithm Corr Sig \ Corr Sig
REINFORCE 0.1629 Yes | 0.3145 Yes
RLOO 0.1485 Yes | 0.4262 Yes
GRPO (normalised) 0.1293 No | 0.3842 Yes
GRPO (unnormalised) 0.1690 Yes | 0.4178 Yes
PPO 0.3786 Yes | 0.7140 Yes
VinePPO 0.3786 Yes | 0.7140 Yes

Table 5: This table tests Theorem [3.1] -end to end, by showing the correlation between learnability and

Vo7 (0)]2
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D Additional method

D.1 An algorithm for selecting high learnability questions with no additional sampling cost

Algorithm [2| uses rejection sampling to get
batches of high learnability questions. It uses
|D| X Nicamabitityrollouts to find | B| high learn-
ability questions and generate a batch of | B| x
Nicanability question attempts to learn from. This
is in contrast to uniform sampling, which uses
only | B| X Nearnability Samples.

As discussed in Section (4} in many situations
this is practical and results in a negligible in-
crease in wall clock time. However, for situa-
tions where this is not the case, ie sampling is
extremely slow and cannot be parallelised, we
present Algorithm |3| which is smarter in how it
samples.

Algorithm 3]starts in the same way as Algorithm
sampling a candidate pool of | D| questions
from the dataset. However, unlike Algorithm@],
it only samples 2 attempts for each question in
this pool. Algorithm [3] then proceeds to itera-
tively estimate the learnability of each question
in the pool, sample a promising high learnability
question, and draw 2 further samples from it. At
each iteration, the new samples further refine
the learnability estimates. This is a smarter way
to allocate a given sampling budget, N.

We show the learnability of batches generated
by Algorithm 3]in Figure[8] We see that uniform
sampling consistently produces low learnability

0.95 Comparison of sampling strategies

0.20

Learnability
©
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Figure 8: The smarter sampling used by Algorithm
[3| produces high learnability batches comparable
to rejection sampling, but using 4x fewer samples.
It uses the same number of samples as uniform
sampling, ie LILO + Smarter has no additional
sampling overhead.

batches, and, as could be expected, the rejection sampling approach consistently produces high
learnability batches. However, despite using 4 x fewer samples than rejection sampling, the smarter
sampling used by Algorithm [3| produces batches with nearly as high learnability. Algorithm
produces much high learnability batches than uniform sampling despite using the same sampling

budget.

Algorithm 3 Get Learnable Questions Using Smarter Sampling

Input: Model parameters, 0
Size of question batch to return, | B|
Hyperparameters: Size of candidate pool, | D|

Total number of question rollouts, N

: Rollout 2 attempts per question
1 i=2x|D|
: while : < N do

Rollout 2 more attempts for that question
1=1+4+2

: end while

: Return all N generated attempts

TR UNERN T

—_——

Compute success rates for each question = p
Compute learnability for each question = p(1 — p)
Select question from candidate pool with probability proportional to its learnabiliity

: Sample candidate pool of | D| questions from dataset
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E Additional experimental setup details

E.1 Alterations to VinePPO training setup

We increased the number of gradient accumulation steps and added Deepspeed ZeRO stage 2 to allow
for training on a single 48GB Nvidia L40s GPU and thus run multiple experiments in parallel on an
8 * 48GB node. This did not change the overall effective batch size of 512 episodes (64 levels * 8
rollouts per level) and thus our training dynamics are identical to VinePPO.

E.2 Compute resources

The PPO and VinePPO experiments took 1 week on 4xL.40s GPUs for each algorithm, dataset
combination. The GRPO experiments took 1 day on 8xH200 GPUs for each of GRPO with LILO
and GRPO without LILO.

F Additional results

Table 6: Test accuracy@1 for 4 different training runs on the MATH dataset. CollegeMath and
OlympidBench were not seen during training. LILO consistently improves generalisation.

COLLEGE OLYMPIAD
MATH (%) BENCH (%)

ORIGINAL SFT 20.3 2.6
PPO 25.4 3.5
PPO + LILO 26.4 3.8
VINEPPO 26.9 4.1
VINEPPO + LILO 28.8 4.5
8 g 8 g
< 0.6 B3 g 2
g g; 0.5 g 0.9 g 0.91
5 0.54 5
g g o0a 2os g o8y
£ 041 £ £ .
5 ]
£ 03] EER £ 07 s0
T T % %
";‘ g H 0.6 = 0647
T T T T T T - - r T T T T T
0 5000 10000 15000 0 5000 10000 15000 © 0 2500 5000 7500 10000 © 0 2500 5000 7500 10000
Training step (Num model updates) Training step (Num model updates) Training step (Num model updates) Training step (Num model updates)
—&— vineppo ppo —&— vineppo ppo
vineppo + LILO ppo + LILO vineppo + LILO ppo + LILO

—8— vineppo + LILO (4x)

a: VinePPO on MATH  b: PPO on MATH  ¢: VinePPO on GSM8K d: PPO on GSMS8K

Figure 9: Train accuracy when training with and without LILO. For a full discussion of experimental
setup see section E} In all scenarios train accuracy increases faster with LILO.
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Figure 10: Train accuracy vs test accuracy shows overfitting and generalisation of different runs.
Despite LILO’s higher train accuracy, all runs fall roughly on the same line, indicating the
same level of generalisation and degree of overfitting.
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Buffer resampled every 50 iterations, 50% of batch from buffer
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Figure 11: Exploring finding learnable questions less frequently, as suggested by [18]. 50% of the
batch is randomly sampled each iteration, and the rest of the batch is sampled from a buffer of high
learnability questions found by LILO. The model overfits to the high learnability questions when
the buffer is refreshed every 50, 10, 5 steps. Only when updated every step did we find overfitting
stopped and generalisation started to occur.
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0 5000 10000 15000 50 100 150 200 250 0 5000 10000 15000
Training step (Num model updates) Training iteration Number of backwards passes

4x training levels
4x smaller learning rate

4x training levels
4x more gradient accumulation steps
= PPO+LILO

= 4x training rollouts

4x training rollouts
4x smaller learning rate

4x training rollouts
4x more gradient accumulation steps

4x training levels

Figure 12: Training on all generated samples vs training on the top-K highest learnability samples.
We compare generating the additional samples from 4x more levels, or 4x more rollouts per level.
We use the additional samples 1) naively, by increasing the number of batches, 2) increasing the
number of batches but decreasing the learning rate 4x and 3) increasing the effective batch size
by doing 4x the gradient accumulation steps. Whilst training on 4x the samples can challenge the
performance of PPO+LILO, it is significantly slower due to the outsized cost of doing more model
forward/backwards passes during training.
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G Further related work

‘We now cover various framings of the language generation MDP discussed in Section [2| and their
related work on Automated Curriculum Learning (ACL).

G.1 ACL in Supervised Learning and Bandit Problems

Choosing a question to train on during each step can be seen as a bandit problem. The seminal
work [43]] provides an overview of ACL in this setting. The central idea is to define a utility measure
U(q) for each question or training sample and then design a curriculum that sequences the data
accordingly. Early methods [44] used human-designed heuristics for U, progressing training from
the easiest to the hardest examples. More advanced ACL methods in this setting can be loosely
categorized by how they define U, such as:

1. Loss-Based Methods: Many methods use loss to prioritize training on hard data points [45]
46, 47]]. In [48] the authors use the loss from a pre-trained model to estimate the difficulty
of new samples for a freshly initialized network learning a new task.

2. Uncertainty or Entropy: Several papers use the entropy of the answer distribution to
prioritize training on data points the model is “unsure” about [49] |50, |51]. LILO can
be seen as using return variance—or learnability—as an estimator of entropy or
uncertainty. For Bernoulli random variables, as in the reasoning setting, maximum entropy
corresponds to maximum variance.

3. Information Gain or Learning Progress: In some settings, it is possible to estimate or
empirically compute the effect of training on a data point. This allows prioritizing samples
that maximize the change in loss—i.e., the model’s learning progress [52, [11 |53} 149].
One can also aim to maximize the change in entropy or information gain [49,|53]]. These
approaches are challenging to apply at the scale of modern LLMs.

4. Gradient-Based Approaches: One can select data points that minimize the variance of the
gradient estimator computed by SGD [54, 55]].

Self-paced learning [56] is an early approach that allows the model to determine the pace at which
it incorporates harder examples with higher values of U. [57, 58] introduced the concept of a
teacher—student setup, where the teacher is trained to optimize the student’s learning.

G.2 ACL in Multi-Task Reinforcement Learning

Each question in a training dataset can be thought of as defining its own MDP, with the same state
and action spaces but a unique reward function encoding the question’s answer. This framing is
equivalent to multi-task RL. (MTRL) [59], where each question constitutes a separate task.

ACL work for MTRL roughly follows the categories above. [60] uses the entropy of the value
function to prioritize training on tasks with the highest uncertainty. [61]] selects training tasks based
on their information gain relative to test tasks. Similarly, [62] prioritizes tasks that maximize entropy
gain.

G.3 ACL in Goal-Conditioned RL

Since the MDP defined by each question shares the same state and action spaces, a question can be
viewed as a “goal” for the agent. [63] samples goals using a learned goal distribution that maximizes
entropy. [64] learns which goals are teachable based on an agent’s competence. It is intriguing
to consider whether ideas from [[65]—in which a GAN is trained to generate goals of appropriate
difficulty—could be applied to reasoning with LLMs.

G.4 Unsupervised Environment Design
Formally, the language generation MDP is extended to use the parameter 6. Each 8 € © corresponds

to a question from a training dataset, and the UED adversary will determine the distribution over
which 6 is sampled from ©. Given a choice of 6, the starting distribution for each level py is just
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the question x, and the reward function Ry computes accuracy of the generation y. The transition
function is unchanged.

There are some key practical differences between the LLLM reasoning setting and the setting UED
was originally designed for. SFL was previously employed on simple, fast, vectorised environments
such as Minigrid, XLand-Minigrid and JaxNav. These environments have millions of unique levels.
GSMSK, on the contrary, is just 8,000 questions. Models in the traditional UED setting are small,
perhaps 1M parameters. Whilst in this work we looked at a 1B parameter model, Rho-Math-1B [11]],
LLMs with far more parameters have been trained with RL, such as the 671B parameter Deepseek-
R1 [1]. SFL has therefore previously been employed in settings where each training batch contains
experience from 1000s of levels and 100s of episodes per level, even on a single GPU. Mention how
many rollouts per question is done in Deepseek, Tulu, RLHF etc In contrast in VinePPO, they train
on a batch of just 8 rollouts for each of 64 levels.

Whilst the increase in popularity of JAX means that some popular RL environments are now vectorised,
the sampling of trajectories remains expensive and a major bottleneck for many RL tasks. In many
LLM training setups however, sampling new trajectories is far more scalable than model updates, as
trajectory collection can be distributed across independent processes that require no inter-process
communication. This sampling computation can be fully pipelined and leverages highly optimized
specialized inference engines like vLLM. Furthermore, since trajectory sampling only involves
forward passes, it eliminates the need to store activations or optimizer states, making it significantly
more memory-efficient than training updates.

Prioritised level replay (PLR) [26] generates random levels, samples trajectories, and adds high
scoring levels to a buffer. TD-error is typically used as the score function. ACCEL [40] extends
this with a mechanism to mutate previously high-scoring levels, to generate new levels that train
the agent on the frontier of its capabilities. PAIRED [33] co-trains a level-selecting adversary
and two agents, a protagonist and an antagonist. It aims to maximise regret by maximising the
difference in performance between the protoganist and antogonist. SFL [18] discards the notion
of regret, instead using learnability to select which levels to replay. SFL inspired early work on
this paper, but significant changes we required to transfer it to LLMs. Namely we had to compute
learnability at every step, using a fixed attempt budget instead of timestep budget (more suitable for
inference engines like vLLM) and reuse trajectories generated during learnability estimation. This
results in an overall simpler, cleaner algorithm to that used in SFL. Our method is also similar to
Prioritised Experience Replay (PER) [66], which uses TD-error prioritisation instead of learnability
prioritisation.
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H Examples of high and low learnability questions

Dataset: GSM8K

* Question: Alton owns a business. He is currently renting a space that costs $20 per week.
If Alton earns $8 per day, how much is his total profit every week?

— Gold Solution:
% Calculate weekly earnings: $8 x 7 = $56
* Subtract weekly rent: $56 - $20 = $36
+ Answer: 36
— Number of Reasoning Steps: 3
— Success Rate (p) at ¢ = 0: 1.0
— Learnability (p(1 —p)) att =0: 9
* Question: Mrs. Smith wanted to buy items worth $500. She went to a boutique with the

$500 but realized she would need two-fifths more money than she had. If the shop owner
gave her a discount of 15%, how much more money will she still need?

Gold Solution:

Calculate additional money needed: % x 500 = 200
Total cost before discount: $500 + $200 = $700
Calculate discount: 0.15 x 700 = 105

Subtract discount from total cost: $700 - $105 = $595
Additional money needed: $595 - $500 = $95
Answer: 95

¥ O ¥ X ¥ %

Number of Reasoning Steps: 6
Success Rate (p) at¢t = 0: 0.5
Learnability (p(1 — p)) at¢ = 0: 0.25

* Question: In a fruit salad, there are raspberries, green grapes, and red grapes. There are
seven more than 3 times the number of red grapes as green grapes. There are 5 fewer
raspberries than green grapes. If there are 102 pieces of fruit in the salad, how many red
grapes are in the salad?

— Gold Solution:
% Let G represent the number of green grapes.
Red grapes: 3G + 7
Raspberries: G — 5
Total fruit equation: G + (3G +7) + (G — 5) = 102
Simplify: 5G' + 2 = 102
Solve for G: 5G = 100 = G = 20
Calculate red grapes: 3 x 20 + 7 = 67
Answer: 67

L . R

— Number of Reasoning Steps: 10
— Success Rate (p) att =0: 0
- Learnability (p(1 — p))at¢t =0: 0

Dataset: MATH

* Question: Suppose p(z) is a monic cubic polynomial with real coefficients such that
p(3 —2i) = 0 and p(0) = —52. Determine p(x) (in expanded form).

— Gold Solution:

* Since p(x) has real coefficients and 3 — 2i is a root, its complex conjugate 3 + 2¢
is also a root.
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*

The quadratic factor with roots 3 — 27 and 3 + 27 is:
(x—(B—=2))(x—(34+2i)) =(x—3+2i)(z — 3 — 29)
= (z - 3)* - (20)°
=2 —6r+9+4
=12°— 62+ 13

*

Since p(z) is cubic, it can be expressed as p(z) = (22 — 6z + 13)(x — 7).
Given p(0) = —52:

*

p(0) = (0> —=6-0+13)(0 —r)
—52 = 13(—r)
r=4

*

Therefore, p(z) is:

p(x) = (:52 — 6z + 13)(x — 4)
= 2% — 42 — 622 4 242 + 13z — 52
= 2% — 102 + 372 — 52
% Answer: 3 — 1022 + 37z — 52
— Number of Reasoning Steps: 29

— Success Rate (p) att = 0: 0
— Learnability (p(1 — p))att =0: 0

* Question: If the sum of the squares of nonnegative real numbers a, b, and c is 13, and
ab + be + ca = 6, then what is the sum of a, b, and ¢?

— Gold Solution:
* Start with the identity: (a + b+ ¢)? = a? + b% + ¢ + 2(ab + bc + ca)
# Substitute the given values:

(a+b+c)? =13+2x6=13+12=25

+ Take the square root of both sides:

a+b+c=+V25=45

% Since a, b, and ¢ are nonnegative, a + b 4+ ¢ must be nonnegative.
* Answer: 5

— Number of Reasoning Steps: 5

— Success Rate (p) att = 0: 0.5

— Learnability (p(1 — p)) at ¢t = 0: 0.25
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, each claim in the abstract in the introduction is summarised succinctly in
the bullet points on page 2. Each bullet point contains a claim and a hyperlink to the section
of the paper that proves the claim.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[9]contains limitations of the work, including LILO’s sampling over-
head, discarding of useful data and restriction to verifiable binary reward tasks. Section 7]
also contains some limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions for Theorem [3.1]are present in its definition in Section[3] the
full proof is in Appendix |B|and is linked to from Section

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our method is fully described in Algorithm[I]and Algorithm 2] The results in[6]
were produced using open-source codebases [S] [4] and models, with some small additions
of code by us. We will open source these additions, as well as our final model checkpoints
upon acceptance. All the experimental methodology is provided in Section 5}

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As in the previous checlist item, our the results in [§] were produced using
existing open-source codebases, models and data [3]] [4]. This is described in Section E}
We will open-source the small modifications we made to these repos upon acceptance. We
do not produce any new datasets, we will open source our final model checkpoints upon
acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the hyperparameters specific to our method in Section[5} All
the other hyperparameters for training are replicated directly from the VinePPO [5]] and
Oat [4] libraries, and the user is directed to these in Section[3]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: Since LLM training is computationally expensive we were unable to run the
additional experiments needed to plot error bars. We have, however, provided training curves
to aid the reader in interpreting the significance of the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are discussed in Appendix [E.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read and fully conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work does not have societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the assets used in this paper are properly credited. The two libraries we
used for training (VinePPO and Oat) are both fully open-source.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Will open source our code upon acceptance. It very simple, and could be
implemented from this paper alone. However, instructions and documentation for our
released code will be provided in the model.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human objects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human objects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM usage was only used in a standard way for editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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