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Abstract
Automatically understanding funny moments (i.e., the moments that make people laugh) when watching comedy is challeng-
ing, as they relate to various features, such as body language, dialogues and culture. In this paper, we propose FunnyNet-W, a
model that relies on cross- and self-attention for visual, audio and text data to predict funny moments in videos. Unlike most
methods that rely on ground truth data in the form of subtitles, in this work we exploit modalities that come naturally with
videos: (a) video frames as they contain visual information indispensable for scene understanding, (b) audio as it contains
higher-level cues associated with funny moments, such as intonation, pitch and pauses and (c) text automatically extracted
with a speech-to-text model as it can provide rich information when processed by a Large Language Model. To acquire labels
for training, we propose an unsupervised approach that spots and labels funny audio moments. We provide experiments on
five datasets: the sitcoms TBBT,MHD,MUStARD, Friends, and the TED talk UR-Funny. Extensive experiments and analysis
show that FunnyNet-W successfully exploits visual, auditory and textual cues to identify funny moments, while our findings
reveal FunnyNet-W’s ability to predict funnymoments in the wild. FunnyNet-W sets the new state of the art for funnymoment
detection with multimodal cues on all datasets with and without using ground truth information.

Keywords Multimodal learning · Vision+language · Video understanding · Humor detection

1 Introduction

We understand the world by using our senses, especially in
multimedia areas. All signals can stimulate one’s feelings
and reactions. Funniness is universal and timeless: in 1900
BC Sumerians wrote the first joke and it is still funny nowa-
days. However, whereas humans can easily understand funny
moments, even from different cultures and eras, machines do
not. Even though the number of interactions between humans
and machines is growing fast, identifying funniness is still
a brake on making these interactions spontaneous. Actually,
understanding funny moments is a complex concept since
they can be purely visual, purely auditory, or they can mix
both cues: there is no recipe for the perfect joke.
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Recently, there have been attempts to understand the
nature of jokes, humour, and funny moments (Annamorad-
nejad & Zoghi, 2020;Weller & Seppi, 2020). However, most
of these works have relied solely on textual cues, with only a
few incorporating videos (Patro et al., 2021; Kayatani et al.,
2021). The limitation of these approaches lies in their depen-
dence on external transcripts in the form of manual subtitles,
which are not naturally available with raw video data. In
contrast, advancements in the field of speech-to-text have
made it easier to extract accurate transcripts from raw audio
waveforms that naturally accompany videos. This enables
processing natural language to better understand the overall
context. Furthermore, including audio as a modality in the
funny moment detection pipeline is essential, as raw audio
carries essential and complementary cues, including tones,
pauses, pitch, pronunciation, and background noises (Zadeh
et al., 2018; Castro et al., 2019). When speaking, the way
people convey their message is as important as the actual
content being delivered. Similarly, visual content plays a cru-
cial role. For example, the same phrase spoken by the same
person can elicit different emotional responses depending on
the context (see Fig. 1). Facial expressions, body gestures,
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Fig. 1 What is funny? Audio cues along with visual frames and textual
data are a rich source of information for identifying funny moments
in videos. Video scene from Pulp Fiction, 1994, source video https://
www.youtube.com/watch?v=4L5LjjYVsHQ

and scene context contribute to a better understanding of the
intended meaning, thereby influencing the perceived funni-
ness.

Therefore, in this paper,we introduce FunnyNet-W, amul-
timodal model for predicting funny moments in videos. It
comprises three encoders: (a) visual encoder, which cap-
tures the global contextual information of a scene; (b) textual
encoder, which represents the overall understanding of a
scene; and (c) audio encoder, which captures voice and lan-
guage effects; and theCrossAttention Fusion (CAF)module,
i.e., a new module that learns cross-modality correlations
hierarchically so that features from different modalities can
be combined to form a unified feature for prediction. Thus,
FunnyNet-W is trained to learn to embed all cross-attention
features in the same space via self-supervised contrastive
learning (Chen et al., 2020), in addition to classifying clips
as funny or not funny. To obtain labeled data, we exploit
the laughter that naturally exists in sitcom TV shows. We
define as ‘funny-moment’ any n-second clip followed by
laughter; and ‘not-funny’ the clips not followed by laugh-
ter. To extract laughter, we propose an unsupervised labeling
approach that clusters audio segments into laughter, music,
voice and empty, based on their waveformdifference.1 More-
over, we enrich the Friends dataset with laughter annotations.

Our extensive experimentation and analysis show that
combining audio, visual and textual cues (that all come
naturally with videos) is suitable for funny-moment detec-
tion. Moreover, we compare FunnyNet-W to the state of
the art on five datasets including sitcoms (TBBT, MHD,
MUStARD, and Friends) and TED talks (UR-Funny), and
show that it outperforms all other methods for all met-
rics and input configurations. Note that even by using only
automatically generated text from audio, FunnyNet-W out-
performs all other methods that rely on ground-truth text in
the formof subtitles. Furthermore, we examine the difference
between our proposed FunnyNet-W and automatic chatbots
based on Large-Language-Models (LLMs). Our findings
show that without specific prompt engineering under the

1 Note that we use the laughter solely as an indicator for data labeling,
but the laughter is not the included in the audio segments of FunnyNet-
W. Once FunnyNet-W is trained, it can detect funny moments in any
video, with or without laughter.

few-shot setting, chatbots cannot understand the funniness of
texts. Instead, our proposed FunnyNet-W significantly out-
performs chatbots in prediction accuracy, highlighting the
importance of specific multimodal training for this task. We
also apply FunnyNet-W to data from other domains, i.e.,
movies, stand-up comedies, and audiobooks. For quantita-
tive evaluation, we apply FunnyNet-W on a sitcom without
canned laughtermanually annotated. It shows that FunnyNet-
W predicts funny moments without fine-tuning, revealing its
flexibility for funny-moment detection in the wild.

Our contributions are summarized as follows: (1) We
introduce FunnyNet-W, a model for funny moment detection
that uses audio, visual, and textual modalities that come auto-
matically with videos. FunnyNet-W combines features from
the three modalities using the proposed CAF module relying
on cross and self-attention; (2) Extensive experiments and
analysis highlight that FunnyNet-W successfully exploits
audio, visual and textual cues; (3) FunnyNet-W achieves
the new state of the art on five datasets. We also demon-
strate its generalizability by comparing it to automatic LLM
chatbots and its flexibility by showcasing in-the-wild appli-
cations. The code is available online on the project page:
https://www.lix.polytechnique.fr/vista/projects/2024_ijcv_liu/.

A preliminary version of this work has been published in
ACCV 2022 (Liu et al., 2022). We significantly extend it in
the following ways:

– Motivation. We propose FunnyNet-W, a multimodal
model for funny moment detection in videos. FunnyNet-
W follows the same motivation from FunnyNet, i.e.
leverage modalities that comewith videos for free. Given
that most funny moments are inherently associated with
language, in addition to the audiovisual features of Fun-
nyNet, FunnyNet-W leverages speech-to-text features.
For this, we automatically generate text from speech
by leveraging Automatic Speech Recognition methods,
and then pair it with the rich representation capability of
Large Language Models (LLMs), thus enabling to better
understand the specificities of language.This ismotivated
thoroughly in the Introduction, in Sect. 3.4 and exper-
imentally evaluated in the new Sects. 5.2.1, 5.2.2, 6.1,
and 6.2.

– Architecture. FunnyNet uses audio, visual and face
encoders to process the multimodal signals. The face
encoder, however, is cumbersome and requires an exter-
nal face detectionmodel. For this reason, in FunnyNet-W
we do not use a face encoder. Instead, FunnyNet-W uses
an LLM text encoder to process textual data that are auto-
matically transcribed. Moreover, in FunnyNet-W, we use
a more modern visual encoder. The differences between
the two models are described in Sect. 3.4 and experimen-
tally compared in Sect. 5.1 (Table 1) and Sect. 5.2.1.
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Table 1 Comparison to the state of the art on five datasets

Method/metrics Wild TBBT MHD MUStARD UR-Funny Friends

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Random – 46.3 50.0 56.1 50.9 48.3 48.7 50.2 50.2 51.0 51.0

All positive – 60.3 43.2 75.6 60.8 66.7 50.0 75.4 50.7 66.7 50.0

All negative – 0.0 56.8 0.0 39.2 0.0 50.0 0.0 49.3 0.0 50.0

MUStARD 2019 (V+A+Tgt) (Castro et al., 2019) – – – – – 71.7 71.8 – – – –

MSAM 2021 (V+Tgt) (Patro et al., 2021) – – - 81.3 72.4 – – - - – – -

MISA 2020 (V+A+Tgt) (Hazarika et al., 2020) – – – – – – 66.2 – 69.8 - –

HKT 2021 (V+A+Tgt) (Hasan et al., 2021) – – – – – – 79.4 – 77.4 – - -

LaughM† 2021 (Tgt) (Kayatani et al., 2021) – 64.2 70.5 86.5 76.3 68.6 68.7 71.9 67.6 74.7 59.8

FunnyNet (V+A+Tgt) (Liu et al., 2022) – 73.8 75.8 83.4 78.6 79.5 79.9 84.1 79.9 88.2 85.8

FunnyNet (V+F+A+Tgt) (Liu et al., 2022) – 75.9 78.3 85.2 79.6 83.2 82.0 84.4 80.2 88.8 86.4

FunnyNet-W (V+A+Tgt) – 78.5 80.0 84.6 80.1 85.9 84.1 84.5 80.2 89.3 86.7

FunnyNet: V+F+A (Liu et al., 2022) � 69.6 74.0 84.0 79.3 81.4 81.0 83.7 78.0 86.8 84.8

FunnyNet-W: V+A+Ta � 78.2 79.1 83.6 78.9 80.1 81.0 84.2 80.3 88.2 85.6

Bold values indicate the higher performance compared to others
Modalities used per method A: audio, V: visual frames, Tgt: ground truth text (subtitles or transcript), Ta: automatically generated text (text extracted
from speech), F: face. The column ‘Wild’ signifies themethods that can run in the wild, i.e., automatically without requiring ground truth information
either for training or for testing. Note, most methods require ground truth labels (mostly in the form of textual subtitles or transcripts) both for
training and testing. This is in contrast to FunnyNet-W which can automatically process videos in the wild. †Reproduced results: we use the exact
model as in (Kayatani et al., 2021), pre-train it on Friends and fine-tune it on the other datasets

– Experiments and analysis. We provide more insights
and content to explain the performance of FunnyNet-W.
Specifically, we experimentally demonstrate and discuss
the benefits of the new encoders, each modality and their
fusion module, of the length of the input time window, of
the losses used as opposed to alternative ones (Sect. 5.2).
Furthermore, we provide a thorough qualitative and intu-
itive analysis of each modality and their fusion, as well
as failure cases (Sect. 6).

– In thewild applications. In addition to experimenting on
other domains as in FunnyNet (Sect. 7.1),we perform two
in-the-wild applications: first, we compare FunnyNet-W
against chatbots based on LLMs and show that relying
solely on language with or without prompt engineering
is insufficient for detecting funnyness (Sect. 7.2); and
second, we replace real speech by synthetic speech and
showcase the importance of real vocals for funnymoment
detection (Sect. 7.3).

2 RelatedWork

Sarcasm and Humor Detection
Sarcasm and humor share similar styles (irony, exagger-

ation and twist) but also differ from each other in terms of
representation. Sarcasm usually relates to dialogues; hence,
most methods detect sarcasm by processing language using
human efforts. For instance, Davidov et al. (2010) collects

a speech dataset from social media using the hashtag and
manual labeling, while others (Rockwell, 2000; Tepperman
et al., 2006) study the acoustic patterns related to sarcasm,
like slower speaking rates or higher volumes of voice. In con-
trast, a humorous moment is defined as the moment before
laughter (Castro et al., 2019; Hasan et al., 2019). Hence, such
methods (Bertero & Fung, 2016; Castro et al., 2019; Hasan
et al., 2019; Kayatani et al., 2021; Hasan et al., 2021) pro-
cess audios to extract laughter for labeling. Nevertheless, for
prediction, most such approaches focus solely on language
models (Annamoradnejad & Zoghi, 2020; Weller & Seppi,
2020) or on multiple cues including text (Hasan et al., 2019,
2021). For instance, LaughMachine (Kayatani et al., 2021)
proposes vision and language attention mechanisms, while
MSAM (Patro et al., 2021) combines self-attention blocks
and LSTMs to encode vision and text. (Hazarika et al., 2020)
use first an advanced BERT (Devlin et al., 2019) model to
process long-term textual correlation and then vision for the
prediction. Following this, Rahman et al. (2020) propose a
Multimodal Adaptation Gate to efficiently leverage textual
cues to explore better representation for sentiment analysis.
OxfordTVG-HIC (Li et al., 2023) proposes a dataset with 2.9
M image-text pair for humor detection. A few methods also
explore audio. For instance, MUStARD (Castro et al., 2019)
and URFUNNY (Hasan et al., 2019) process text, audio
and frames using LSTM to explore long-term correlations,
while HKT (Hasan et al., 2021) classifies language (context
and punchline) and non-verbal cues (audio and frame) to
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learn cross-attention correlations for humor prediction. They
combine audio with other information (video and texts) in a
simple feature fusion process without investigating the inter-
correlations in depth. Specifically, they stack multimodal
features to learn the global weighting parameters without
considering the biases in different domains. In contrast, we
believe that funny scenes can be triggered by mutual sig-
nals from multimodalities; hence, in this work, we explore
the cross-domain agreement of cues with contrastive train-
ing. Moreover, FunnyNet-W eliminates the need for external
textual annotation by relying solely on raw audiovisual cues,
and extracts textual cues directly from the audio that naturally
accompanies videos.
Sound Event Detection and Laughter detection. Sound event
detection aims to identify and timestamp sound events within
audio recordings. Most attempts either rely on annotated
data (Mesaros et al., 2016) or use source separation tech-
niques (Défossez et al., 2019; Rouard et al., 2023). The
choice of input representation is crucial, and most methods
use Mel spectrograms (Mesaros et al., 2017; Wang et al.,
2021; Niizumi et al., 2021, 2023; Saeed et al., 2021) instead
of audiowaveforms.This choice ismotivated by their compu-
tational efficiency, interpretability, and effortless integration
into conventional vision models. In our work, we focus on a
specific acoustic event: laughter. We leverage these detected
laughter as pseudo-labels to train FunnyNet-W.
Laughter detection. The literature in this domain remains
relatively scarce. Some methods rely on physiological sen-
sors (Barral et al., 2017; Shimasaki & Ueoka, 2017), while
others (Ryokai et al., 2018; Gillick et al., 2021) follow
the conventional supervised learning paradigm to train deep
neural laughter detectors. Nevertheless, the latter approach
requires annotated datasets, a challenging endeavour in the
context of this specialized domain. For instance, the authors
of Gillick et al. (2021) experiment with the Switchboard
dataset (Holliman et al., 1992), which contains manually
annotated laughter timestamps from phone conversation, and
also manually annotate laughter timestamps from 1000 clips
of AudioSet dataset (Gemmeke et al., 2017). In contrast, our
laughter detector is unsupervised, robust and straightforward,
by leveraging the specific attributes of multichannel audio
data. Our method sidesteps the need for complex annota-
tions, presenting a promising alternative within the laughter
detection landscape.

Multimodal tasks. Over the past decade, the number of
tasks that require multiple modalities has increased either
due to their intrinsicmultimodal nature or due to the potential
performance enhancements of adding extramodalities. Here,
we review some approaches that are directly related to our
work in terms of multimodality and modality fusion.

Audio+Video. For instance, Gabbay et al. (2018); Afouras
et al. (2020) recognize the facial movements to separate the
speaker’s voice in the audio. Senocak et al. (2018); Tian et

al. (2018) temporally align the audio and video using atten-
tion to locate the speaker. The former (Senocak et al., 2018)
proposes a triplet network to process the query, positive and
negative samples to encourage the query to be closewith pos-
itive samples and far from negative samples. The latter (Tian
et al., 2018) collects an Audio-Visual Event (AVE) dataset
to better handle audio-visual alignment. Several methods
extend this to other applications, such as audiovisual gen-
eration (Zhou et al., 2020) that generates an audio-driven
talking face from a single source image and pose video.

Video+Language. Several tasks involve combining lan-
guage and visual–in particular video– modalities. One
notable category encompasses video-to-text tasks, includ-
ing video captioning (Wang et al., 2020; Lin et al., 2022),
which entails generating natural language captions for video
sequences. Amore challenging, yet very similar task is video
question answering (Liang et al., 2020;Yang et al., 2023; Zhu
et al., 2022),where the goal is to comprehend the contentwell
enough to respond to queries effectively. In contrast, Singer
et al. Singer et al. (2022) propose an approach focusing on
text-to-video generation. Finally, video-text retrieval (Dong
et al., 2021; Bain et al., 2021; Fang et al., 2021) aims to
facilitate bidirectional exploration of both video and textual
content.

Audio+Language. Numerous research directions focus
only on audiovisual modalities. Amajor audiovisual task lies
in speech emotion recognition (Yoon et al., 2018; Priyasad
et al., 2020), which aims to connect audio and text to cat-
egorize emotions. A speech emotion recognition pipeline
consists of modality fusion followed by classification. Par-
allel to the well-established image-text retrieval task, the
domain of audio-text retrieval has also received substan-
tial attention (Lou et al., 2022; Koepke et al., 2022; Xin
et al., 2023; Mei et al., 2022). This task employs similar
techniques based on measuring feature similarity between
the modalities. Another complex audiovisual challenge is
audio captioning, where the objective is to generate textual
descriptions from acoustic inputs. Most approaches rely on
the classical encoder-decoder architecture (Koizumi et al.,
2020; Shen et al., 2023; Kim et al., 2023).

Video+Language+Audio.Someworks have extended pre-
vious tasks by combining the three modalities: audio, video
and text. For example, certain approaches incorporate the
acoustic modality into the conventional video captioning
pipeline (Iashin & Rahtu, 2020; Liu et al., 2023). Addition-
ally, Deng et al. (2018) introduce an acoustic modality to
enhance emotion recognition. Rouditchenko et al. (2021)
learns a shared audio-visual embedding space directly from
raw video inputs via self-supervision. Han et al. (2023) use
CLIP (Radford et al., 2021) to align audio-visual signals to
produce audio descriptions. Hong et al. (2023) propose a
hyperbolic loss to align audio-visual features in a tree-shaped
space. All these works show improvements in compari-
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Fig. 2 Architecture of FunnyNet-W. Given audio-visual clips,
FunnyNet-W predicts funny moments in videos. It consists of the audio
(blue), textual (red), and visual (green) encoders, whose outputs pass
through the Cross Attention Fusion (CAF), which consists of cross-

attention (CA) and self-attention (SA) for feature fusion. It is trained to
embed all modalities in the same space via self-supervision (Lss) and
to classify clips as funny or not-funny (Lcls) (Color figure online)

son to unimodal baselines. In contrast to previous methods
that depend on distinct annotated sources and ground-truth
modalities (for instance subtitles for text or ground-truth
annotations), our proposed FunnyNet-W extracts multiple
additionalmodalities– audio and text– froma singlemodality
source, namely video, using non-perfect extraction tech-
niques, such as speech-to-text models.

Modality alignment.Recentlymanyworks (Radford et al.,
2021; Guzhov et al., 2022; Girdhar et al., 2023) have shown
promising efforts for acquiring shared multimodal embed-
dings by leveraging large-scale datasets. Notably, the first
breakthrough of text and image embedding was achieved
with CLIP (Radford et al., 2021). Comparable milestones
have been reached in diverse modalities; for instance, Mor-
gado et al. (2021) proposes to learn a powerful audio-visual
representation from videos. Other works extend the origi-
nalCLIP language-image representationwith newmodalities
such as audio in Guzhov et al. (2022), or video in Lin et al.
(2022), Xue et al. (2023). Recently, the ImageBind (Gird-
har et al., 2023) unifies six distinct modalities into a shared
embedding space. The key to success consists in aligning
features from the different modalities.

Attention mechanisms (Vaswani et al., 2017) is natural
for connecting multimodal signals. For instance, Wei et al.
(2020) employ cross-attention to model inter- and intra-
modality relationships, Tan et al. (2021) leverage contrastive
cross-attention, Jaegle et al. (2021) and Lee et al. (2020)
use iterative cross-attention. In addition, (Nagrani et al.,
2021) introduced attention bottlenecks with randomly ini-
tialized bottleneck tokens for modality fusion. In contrast,
our fusion mechanism builds on this idea but differs by (i)
employing modality projections as bottlenecks and (ii) inte-
grating an extra self-attention block to capture fused token
correlations. These works illustrate the natural strength of
attention mechanisms in aligning multiple modalities within
a unified space. Numerous multimodal tasks benefit from

this capability of modality alignment. Applications such as
summarization (Narasimhan et al., 2021), retrieval (Gabeur
et al., 2020; Bain et al., 2021), audiovisual classification
(Nagrani et al., 2021), predicting goals (Epstein & Vondrick,
2021), human replacement (Dufour et al., 2022). Tan et al.
(2021) and Wei et al. (2020) iteratively apply self and cross-
attention to explore correlations among modalities. Instead,
FunnyNet-W both fuses all modalities and in parallel learns
the cross-correlation among different modalities; this avoids
any biases that may be caused by one dominant modality.

3 Method

Here, we present FunnyNet-W, its training process and losses
(Sects. 3.1–3.2). For training labels, we propose an unsuper-
vised laughter detector (Sect. 3.3).
Overview. FunnyNet-W consists of (i) three encoders: the
visual encoder with videos as input, the audio encoder with
audio as input, and the text encoder with subtitles as input. To
parse the subtitles, we use an automatic speech recognition
(ASR) system (Radford et al., 2022); (ii) the proposed Cross-
Attention Fusion (CAF) module, which explores cross-
and intra-modality correlations by using cross- and self-
attentions in the encoders’ outputs. Then, the fused feature is
fed to a binary classifier. The overall architecture is illustrated
in Fig. 2. FunnyNet-W is trained to embed all modalities in
the same space via self-supervised contrastive loss and to
classify clips as funny or not. For training,we exploit laughter
that naturally exists in TV Shows: we define it as ‘funny-
moment’ for any audiovisual snippet followed by laughter;
and ‘not-funny’ for any audiovisual snippet not followed by
laughter.

123



International Journal of Computer Vision

3.1 FunnyNet-W Architecture

FunnyNet-W utilizes raw inputs from videos, including the
audio waveform and frames.
Audio Encoder. First, the audio waveform is transformed
into a Mel spectrogram.2 This spectrogram, denoted as
Xaudio, is then passed through an audio encoder to gener-
ate a 1D feature vector. Finally, a projection head is applied
to obtain a N -dimensional vector FA ∈ R

N .
Text Encoder. The corresponding transcripts, denoted as
X text, are extracted from the audio waveform using an auto-
matic speech recognitionmodel (Radford et al., 2022). These
transcripts are then encoded into a feature vector using the
text encoder. Subsequently, a projection is performed to
obtain a N -dimensional vector FT ∈ R

N .
Visual Encoder. The visual encoder employs an architecture
based on the transformer to process video frames. The input
frames, denoted asXvisual, are divided into patches from sev-
eral consecutive frames.Unlike conventional approaches that
use a ‘classification token’ to obtain a general representation,
we compute the representation by averaging the pooled fea-
tures from all patches. This process results in a feature vector,
which is then projected to a N -dimensional vector FV ∈ R

N

using a projection head. The video context complements the
audio in providing richer content (Hasan et al., 2019). Addi-
tionally, in the absence of sound and transcripts, visual cues
can also elicit laughter.
Projection Head. This module consists of two linear layers
separated by a GeLU activation function. Dropout and nor-
malization layers are applied after the linear layers. It takes
the features outputted from each encoder and projects them
into a shared N -dimensional multimodal feature space.
Cross-Attention Fusion (CAF). It learns the cross-domain
correlations among vision, audio and text (yellow box Fig. 2).
It consists of (a) three cross-attention (CA) and (b) one self-
attention (SA) modules, described below:

– Cross-attention is used in cross-domain knowledge
transfer to learn across-cue correlations by attending the
features from one domain to another (Mohla et al., 2020;
Nam et al., 2017; Wei et al., 2020). In CAF, it models the
relationship among vision, audio, and textual features.
We stack all features as FS∈R3×512, and then feed FS

into three cross-attention modules to attend to vision,
text, and audio, respectively (Fig. 2). Next, the scaled

attention per modality is computed as σ

(
QSKT

i√
d

)
Vi,

where i={V , T , A} for {vision, text, audio}, and σ the
softmax. The query Q comes from the stacked features:
QS=FSWQS, while the key K and value V come from a

2 Mel spectrogram is a 2D acoustic time-frequency representation of
sound.

singlemodality asKi=FiWKi , andVi=FiWVi . Next, we
obtain three cross-attentions and sum them to a unified
feature FU as:

FU =
∑

i∈{V ,F,A}
σ

(
QSKT

i√
d

)
Vi . (1)

– Self-attention computes the intra-correlation of the FU
features, which are further summed with a residual FU
as:

FCAF = FU + σ

(
QUKT

U√
d

)
VU , (2)

where QU=FUWQU, KU=FUWKU, VU=FUWVU.
Finally, we average FCAF tokens and feed it to a clas-
sification layer.

Discussion.CAF differs to existingmethods (Mohla et al.,
2020; Wei et al., 2020) in the computation of the cross atten-
tion. Using stacked features FS to attend to eachmodality QS

brings three benefits: (a) it is order-agnostic: for any modal-
ity pair we compute cross-attention once, instead of twice by
interchanging queries and keys/values; this results in reduced
computation; (b) each modality serves as a query to search
for tokens in other modalities; this brings rich feature fusion;
and (c) it generalizes to any number of modalities, resulting
in scalability3.

3.2 Training Process and Loss Functions

Subtitle extraction. To extract transcripts from the raw
waveform, we use the WhisperX system (Bain et al., 2023).
WhisperX enforces alignment of the automatic speech recog-
nition model Whisper (Radford et al., 2022) with an external
voice activity detection model to produce accurate word-
level timestamps. This approach results in a Time-Accurate
Speech Transcription, very similar to manually transcribed
subtitles.
Positive and Negative Samples. To create samples, we
exploit the laughter that naturally exists in episodes. We
define as ‘funny’ any n-sec clip followed by laughter;

3 Note that although the CAFmodule scales linearlywith the number of
modalities, the total training time complexity is increased quadratically
with the number of modalities (O(d2)), because all modality pairs are
taken into consideration when computing the loss (see Eq.4). However,
not all loss pairs are necessary if one modality plays a dominant role,
then we can skip some loss pairs. Our experiments in Table 5 also show
the importance of different modalities. For instance, the increase in F1
from the single text-only T model to the T + A model is 7%, while the
increase of F1 from the T + A model to the T + A+ V model is 3.7%.
This indicates that it may not be necessary to use more modalities if the
information they offer is overlapping and not complementary.

123



International Journal of Computer Vision

‘not-funny’ any n-sec clip not followed by laughter. More
formally, given a laughter at timestep (ts, te), we extract a
n-sec clip at (ts−n, ts) and we split it into audio and video.
For each video, we sample n frames (1 FPS). For the audio,
we resample it at 16,000 Hz and transform it to Mel spectro-
gram. Thus, each sample corresponds to n sec and consists
of aMel spectrogram for the audio and a n-frame long video.
In practice, we use 8-sec clips as the average time between
two canned laughters, and it also leads to better performances
(ablations of n-sec clips and n-frames per clip in supplemen-
tary). Note that we clip the audio based on the starting time
of the laughter so the positive samples do not include any
laughter.
Self-Supervised Contrastive Loss. To capture ‘mutual’
audiovisual information, we solve a self-supervised syn-
chronization task (Chung & Zisserman, 2016; Korbar, 2018;
Owens & Efros, 2018): we encourage visual features to be
correlated with true audios and uncorrelated with audios
from other videos. Given the i-th pair of visual vi and true
audio features ai and N other audios from the same batch:
a1, ..., aN we minimize the loss (Chen et al., 2020; Chung et
al., 2019; Oord et al., 2018):

Lcotrs = −log
exp(S(vi , ai )/τ)∑N
j=1 exp(S(vi , a j )/τ)

, (3)

where S the cosine similarity and τ the temperature factor.
Equation (3) accounts for audio and visual features. Here, we
compute the contrastive loss between all three modalities,
i.e., visual-audio, text-audio, and visual-text. Thus, our self-
supervised loss is:

Lss = −1

3

(
Lvi ,ai
cotrs + Lvi ,t i

cotrs + Lti ,ai
cotrs

)
. (4)

Final Loss. FunnyNet is trained with a Softmax loss Ycls
to predict if the input is funny or not, and the Lss to learn
‘mutual’ information across modalities. Thus, the final loss
is:

L=λssLss + λclsLcls , (5)

where λss, λcls the weighting parameters that control the
importance of each loss.

3.3 Unsupervised Laughter Detection

To detect funny moments, we design an unsupervised laugh-
ter detector consisting of 3 steps (Fig. 3).

1. Remove Voices. Background audios include sounds,
music, laughter; instead, voice (speech) is part of the

foreground audio. We remove voices from audios by
exploiting multichannel audio specificities. Given raw
waveformaudios,when the audio is stereo (two channels),
the voices are centered and are common in both chan-
nels (Huber & Runstein, 2012); hence, by subtracting the
channels, we remove the voice and keep the background
audio. In surround tracks (six channels), we remove the
voice channel (Huber & Runstein, 2012) and keep the
background ones.

2. Background Audios. The waveforms from (i) are mostly
empty with sparse peaks corresponding to audio: laugh-
ter and music. To split them into background and empty
segments, we use an energy-based peak detector4 that
detects peaks based on the waveform energy. Then, we
keep background segments and convert them to log-scaled
Mel spectrograms.

3. Cluster Audio Segments. For each laughter and music
segment, we extract features using a self supervised pre-
trained encoder. Then,we cluster all audio segments using
K-means to distinguish the laughter from the music ones.

3.4 Differences to the ACCV 2022 version (Liu et al.,
2022)

FunnyNet (Liu et al., 2022) and FunnyNet-Wusemultimodal
input signals from videos and identify whether a video input
is funny or not. Here, we describe the three main method-
ological differences between the two models.

FunnyNet (Liu et al., 2022) uses three encoders: (a) visual
encoder for video frames (Timesformer (Bertasius et al.,
2021)) (b) audio encoder for voice and background audio
(BYOL (Niizumi et al., 2021)) and (c) face encoder for
facial expressions (ResNet (Schroff et al., 2015)). However,
the face encoder is cumbersome as it requires an external
model for face detection, thus leading to higher runtime and
decreasing its applicability. For this reason, in FunnyNet-W
we remove the face encoder, which leads to slight per-
formance drops but increased gains in applicability and
scalability. Moreover, FunnyNet-W uses the more modern
visual encoder VideoMAE.

Furthermore, for FunnyNet-W, we made the follow-
ing three-fold observation. First, most funny moments are
inevitably related to language. Second, recent advances in
Automatic Speech Recognition (ASR) (Radford et al., 2022;
Bain et al., 2023) have rendered it possible to exploit the vocal
part of the audio (i.e., the part where people are speaking) and
automatically transcribe existing dialogues. Third, the recent
explosion of Large LanguageModels (LLMs) offers remark-
able capabilities in processing text and dialogues across a
wide range of tasks. Combining these would mean transcrib-
ing dialogues via ASR for free, then using an LLM encoder

4 https://github.com/amsehili/auditok.
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Fig. 3 Proposed laughter detector. It takes raw waveforms as input and consists of (i) removing voices by subtracting channels (here, the audio is
stereo with 2 channels), (ii) detecting peaks, and (iii) clustering audios to music and laughter

to detect funniness. However, FunnyNet does not rely on
textual data. We consider this a wasted opportunity, as the
textual data via LLMs can boost the representation capabil-
ity of the model and, in turn, its performance. To this end,
FunnyNet-W differs from FunnyNet in two aspects: it relies
on ASR to transcribe dialogues for free and it uses an LLM
text encoder for processing the text (Llama-2 (Touvron et al.,
2023)).

4 Datasets andMetrics

Datasets. We use five datasets.

– The Big Bang Theory (TBBT) dataset (Kayatani et
al., 2021) contains 228 episodes of TBBT TV show:
(183,23,22) for (train,val,test). All episodes come with
video, audio and subtitles, labelled as humor (or non) if
followed (or not) by laughter.

– MultimodalHumorDataset (MHD) (Patro et al., 2021)
contains episodes from the TV show TBBT, with 110
episodes split (84,6,20) for (train,val,test) (disjoint splits
to TBBT). It contains multiple modalities; the subtitles
are tagged as humor (or not).

– MUStARD (Castro et al., 2019) contains 690 segments
from four TV shows with video-audio-transcript labelled
as sarcastic or not.

– UR-Funny (Hasan et al., 2019) contains 1866 TED-talk
segments with video-audio-transcript labelled as funny
or not.

– Friends (Brown et al., 2021; Kalogeiton & Zisserman,
2020) contains all 25 episodes (∼23min) from the third
season of Friends (∼10h). We split them into 15 training
(1–15), 5 validation (16–20) and 5 test episodes (21–
25). Each episode comes with video, audio, face, body,
voice tracks and features with speaker identifiers. In this
work, we enrich this dataset by providingmanually anno-
tated laughter time codes. These annotated laughter time
codes consist of time-stamps of the start and the end of all
canned or not laughter. This results in 3.5k time-codes,

with an average duration of 3 sec (0.3−16.5 sec), 138
average number of laughter per episode (109 to 182).
The annotations are available: https://www.lix.polytechnique.
fr/vista/projects/2024_ijcv_liu/.

Metrics. To evaluate FunnyNet-W, we use classification
accuracy (Acc) and F1 score (F1).
For laughter detector, we use sample-scale at the detec-
tion level and frame-scale at the temporal level to compute
precision (Pre), recall (Rec) and F1.

5 Experiments

In this section, we provide experiments for FunnyNet-W.
First, we compare to the state of the art (Sect. 5.1), then
we provide an ablation of each component of FunnyNet-W
(Sect. 5.2), and finally, we ablate our unsupervised laughter
detector (Sect. 5.3).
Implementation Details. We train FunnyNet using Adam
optimizer (Loshchilov & Hutter, 2019) with a learning rate
of 1×10−4, batch size of 32 andPytorch (Paszke et al., 2019).
The input audio is first downsampled by fixed sampling fre-
quency (16,000 Hz) and then transformed to log-scaled Mel
spectrogram by mel-spaced frequency bins F = 64. At train-
ing, we use data augmentation: for frames, we randomly
apply rotation and horizontal/vertical flipping, and randomly
set the sampling rate to 8 frames; for audios,we apply random
forward/backward time shifts and random Gaussian noises.
For subtitles, we tokenize them as max_length = 64 inputs
and send them to the language models.
Setting. In our experiments, we train FunnyNet-W on
Friends. For MUStARD and UR-Funny, we fine-tune
FunnyNet-W on their respective train sets. For TBBT and
MHD, we fine-tune it only with a subset of the training set
from TBBT (32 random episodes) These datasets come with
data samples of uneven lengths. If the sample length is larger
than 8s (our best setting), we crop the last 8-second sequence
to fit our model; otherwise, we pad zeros to the end. For UR-
FUNNY, we exclude from training the data samples with no
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sounds. For audio, textual, and visual encoders, we used the
corresponding pre-trained models for feature extraction.

To understand the funnymoments in thewild, we consider
that subtitles do not come naturally with other modalities.
Different from text-driven funny detections (Castro et al.,
2019; Hasan et al., 2021, 2019), we instead use off-the-shelf
audio-to-text models, like WhisperX (Bain et al., 2023), to
automatically generate texts from audios for funny detection.
Hence, in addition to audiovisual data, we experiment with
both real and automatically-generated texts (in the form of
subtitles) for funny moment detection.

5.1 Comparison to the State of the Art

Here, we evaluate FunnyNet on five datasets: TBBT, MHD,
MUStARD, UR-Funny and Friends and compare it to the
state of the art: MUStARD (Castro et al., 2019), MSAM
(Patro et al., 2021), MISA (Hazarika et al., 2020), HKT
(Hasan et al., 2021) and LaughM (Kayatani et al., 2021).
Table 1 reports the results (including random, positive and
negative baselines) for both metrics. We indicate the modali-
ties eachmethod uses asA: audio, V: video, Tgt: ground-truth
text, Ta: automatically-generated text (speech-to-text), and
F: face. Furthermore, we also indicate in the ‘Wild’ column
the methods that can run automatically without requiring
ground-truth information (either for training or testing). Note
that most methods require ground truth labels (mostly in the
form of textual subtitles or transcripts) either for training
or testing (Tgt). This is in contrast to FunnyNet-W, which
can automatically process videos in the wild by exploiting
speech-to-tex models (Ta).

The first part of Table 1 (nowild) demonstrates that overall
the proposed FunnyNet-W (V+A+Tgt) outperforms all meth-
ods on all five datasets. For TBBT it outperforms theLaughM
by a notable margin of +10% for F1 and Acc, and FunnyNet
by +3% in bothmetrics. ForMHD, it outperformsMSAMby
3% in F1 and 7% in Acc, LaughM and FunnyNet by 3% and
1%, respectively, in Acc. Furthermore, FunnyNet-W outper-
forms MUStARD, MISA, HKT, LaughM and FunnyNet by
3–12% in F1 and 2–15% inAcc forMUStARDand 1–15% in
F1 and 1–10% inAcc for UF-Funny. For Friends, we observe
similar patterns, where we outperform LaughM by 15% in
F1 and 26% in Acc and FunnyNet by approximately +1% in
both F1 and Acc. These results confirm the effectiveness of
FunnyNet compared to other methods.

The major advantage and motivation of FunnyNet-W and
its predecessor FunnyNet (Liu et al., 2022) is the fact that they
can run in the wild, i.e. without requiring ground truth data
either at training or test time. To this end, the second part
of Table 1 reports results when experimenting in the wild.
We observe that for TBBT, remarkably FunnyNet-W outper-
forms its predecessor FunnyNet by 5–10% in F1 and Acc,
while forMHD it is inferior by 1% or similar forMUStARD.

For UR-Funny and Friends, FunnyNet-W outperforms Fun-
nyNet consistently by 1–3% in allmetrics.Whenwe compare
FunnyNet-W-Ta to the first part of the table, we observe that
it still produces on par or superior results to all othermethods.
This clearly shows the superiority of FunnyNet-Wevenwhen
compared to methods that have access to manually annotated
ground-truth data.

Our remarks are: First, FunnyNet-W outperforms most
methods in both metrics in both settings, when using ground
truth text (Tgt) or when being in the wild (Ta). Second, the
performance in the out-of-domain UR-Funny is significantly
high. Third, for TBBT and MHD our results are much less
optimized than the ones from LaughM or MSAM, as we do
not have access to the exact same test videos as eitherwork, so
inevitably there are some time shifts or wrong labels5 and we
use much fewer training data (32 vs 183 episodes in LaughM
vs 84 episodes in MHD). These highlight that FunnyNet-W
is an effective model for funny moment detection.

Note that in the remainder of this work, unless stated oth-
erwise, using the automatically-generated text (in the form
of subtitles) is the default setting of FunnyNet-W. For sim-
plicity, we denote the Ta by T.

5.2 Ablation of FunnyNet-W

In this section, we provide ablations of FunnyNet-W. Specif-
ically we ablate the encoders (Sect. 5.2.1), the modalities
(Sect. 5.2.2), the cross attention fusion module (Sect. 5.2.3),
the length of input videos (Sect. 5.2.4) and the losses
(Sect. 5.2.5).

5.2.1 Ablation of Encoders

Visual encoder. Table 2 ablates two video encoders on
Friends, i.e. Timesformer (Bertasius et al., 2021) and Video-
MAE (Tong et al., 2022) for two scenarios: one using
automatically generated text (Ta) and when using ground-
truth text (Tgt). Given the same video sequence, we use
the best settings for them (8 frames for Timesformer and
16 frames for VideoMAE). We observe that using Video-
MAE outperforms Timesformer by about 1–3% in F1 score
and 2–3% in Acc. This is expected because VideoMAE is
a larger model, and it also uses a masked autoencoder for
unsupervised learning; hence it can generalize better than
Timesformer. When comparing the results between using
ground truth and automatically generated texts, we observe
that the improvements of using VideoMAE are consistent,
and the differences are very small (1–2% in both F1 and
Acc).

Text encoder. Table 3 ablates three different text encoders
in FunnyNet-W on Friends: Bert (Devlin et al., 2019), GPT2

5 The label time shift is 0.3–1s on TBBT and 0.3–2s on v2.
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(Solaiman et al., 2019) and LlaMa-2 (Touvron et al., 2023)
(7Bmodel) for two scenarios (one using automatically gener-
ated text (Ta) and when using ground-truth text (Tgt)). Given
the other ablation study, we choose VideoMAE and BYOL-
A as the best visual and audio encoders, respectively. We
observe that using LlaMa-2 gives the best improvements in
both F1 and Acc. Interestingly, using GPT2 results in infe-
rior performance than using Bert. This finding is consistent
with what we observe in LLMmodels. For LlaMa-2, we note
that the differences between using ground truth and automat-
ically generated texts areminor, about 0.8–1% in both F1 and
accuracy.

Audio encoder. Table 4 ablates four audio encoders on
Friends: Beats (Chen et al., 2023), CAV-MAE (Gong et al.,

Table 2 Ablation of visual encoders on Friends

Modality F1 Acc

A V Ta

BYOL-A Timesformer Bert 84.2 80.9

VideoMAE 85.3 82.3

A V Tgt

BYOL-A Timesformer Bert 84.9 80.8

VideoMAE 87.2 83.8

A: audio, V: visual frames, Tgt: ground truth text, Ta: automatically
generated text (text extracted from speech)

Table 3 Ablation of text encoders on Friends

Modality F1 Acc

A V Ta

BYOL-A VideoMAE Bert 85.3 82.3

GPT2 85.2 82.3

LlaMa-2 88.2 85.6

A V Tgt F1 Acc

BYOL-A VideoMAE Bert 87.2 83.8

GPT2 88.1 85.6

LlaMa-2 89.3 86.8

A: audio, V: visual frames, Tgt: ground truth text, Ta: automatically
generated text (text extracted from speech)

Table 4 Ablation of audio encoders on Friends

Modality F1 Acc

A V Ta

BEATS VideoMAE LlaMa-2 78.2 65.1

CAV-MAE 87.3 83.8

BYOL-A-v2 87.6 84.7

BYOL-A 88.2 85.6

A: audio, V: visual frames, Tgt: ground truth text, Ta: automatically
generated text (text extracted from speech)

2023), BYOL-A-v2 (Niizumi et al., 2023) and BYOL-A
(Niizumi et al., 2021). Given the previous ablation studies,
we choose VideoMAE and LlaMa-2 as the best visual and
text encoders and operate directly with automatically gener-
ated text (Ta). The results show that CAV-MAE,BYOL-A-v2
and BYOL-A perform on par (approximately 1% difference
in F1 and Accuracy). In our experiments, we use BYOL-A
as it results in the best F1 and Accuracy but it also requires
fewer parameters than the other models.

Subtitles sources. Tables 2 and 3 report results for two
scenarios: one using automatically generated text (Ta) and
when using ground-truth text (Tgt). Consistently, we observe
that using the ground truth text outperforms using the
automatically-generated one. This is expected, as Ta includes
imperfect transcripts. We note, however, that the difference
in both F1 and Accuracy are minor (1–3% for both metrics).
This highlights that substituting ground-truth with an auto-
matic speech-to-text model is a good trade-off between good
performance and the ability to run in the wild, i.e., without
requiring manual ground truth labels.

5.2.2 Ablation of Modalities

Table 5 ablates all modalities of FunnyNet-W on the Friends
test set. Using text alone (third row) produces better results
than when using the visual or audio modality alone (first and
second rows). This highlights the efficiency of large dataset
pre-training and the representation power of Large Language
Models (since we use LlaMa 2 as the textual encoder). Using
audio alone (second row) leads to the second-best perfor-
mance compared to using single modalities, underlying that
audio is more suitable than visual cues for our task, as it
encompasses the way of speaking (tone, pauses). Combining
modalities outperforms using single ones: combining visual
and audio (fourth row) or visual and text (sixth row) increases
the F1 by approximately 1.3–10% and the Acc by 0.2–15%.
This is expected as audio or text bring complementary infor-
mation to the visual modality (Morgado et al., 2021; Radford
et al., 2021) and their combination helps discriminate funny

Table 5 Ablation of modalities
of FunnyNet-W on Friends test
set

Modality F1 Acc

V A T

� – – 73.2 64.1

– � – 73.7 66.6

– – � 77.8 68.1

� � – 84.3 79.3

– � � 84.5 80.3

� – � 74.9 64.3

� � � 88.2 85.6

Bold values indicate the higher
performance compared to others
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Table 6 Ablation of CAF of
FunnyNet-W on Friends test set.
(A: audio, V: visual frames, T:
text)

CAF A+V A+T V+T A+V+T
Self Cross F1 Acc F1 Acc F1 Acc F1 Acc

– – 80.1 76.5 81.0 76.9 73.5 63.8 82.4 77.8

� – 81.1 77.3 81.4 77.5 74.4 64.4 85.7 81.8

– � 83.6 78.7 82.3 78.7 74.6 64.2 85.4 81.4

� � 84.3 79.3 84.5 80.3 74.9 64.3 88.2 85.6

MMCA (Wei et al., 2020) 83.1 78.3 83.4 79.8 73.6 63.8 87.0 84.5

CoMMA (Tan et al., 2021) 83.5 78.5 83.9 80.3 74.2 64.1 87.6 85.1

Bold values indicate the higher performance compared to others

moments.Combining audio and text (fifth row) leads to larger
boosts than audio+visual or text+visual (fourth and sixth
rows), as audio and text contain complementary informa-
tion regarding character dialogues, expression in voices and
background music. Overall, using all modalities achieves
the best performance.

5.2.3 Ablation of Cross-Attention Fusion (CAF)

Table 6 reports results with various cross- and self-attention
fusions in CAF. We observe that including either self- or
cross-attention (second, third rows) brings improvements
over not having any (first row), indicating that they enhance
the feature representation. The fourth row shows that using
them both for feature fusion leads to the best performance.
For completeness, we also compare CAF against the state
of the art: MMCA (Wei et al., 2020) and CoMMA (Tan et
al., 2021). All CAF,MMCA and CoMMAuse self and cross-
attentions jointly for feature extraction. Theirmain difference
is that both MMCA and CoMMA first use self-attention
to individually process each modality, then concatenate all
modalities together and process them using cross-attention
to output the final feature representation. Instead, CAF uses
cross-attention to gradually fuse one modality with the rest
of the modalities to fully explore cross-modal correlations.
The results (fourth, fifth, and last rows) show that CAF out-
performs MMCA (Wei et al., 2020) and CoMMA (Tan et al.,
2021) by 0.1-−0.4 in F1 score and 0.03-−0.2 in accuracy.
This reveals the importance of the gradual modality fusion,
and hence the superiority of CAF.

5.2.4 Impact of Time

In this section, we examine the impact the length of the time
window has on the final results, as well as the number of
sampled frames within the time window.

Influence of Time Window. Following (Bertasius et al.,
2021), our proposed FunnyNet-W is trained on fixed-length
inputs of multiple modalities that last 8 s. Here, we examine
the impact that the length of time window has on FunnyNet-
W and illustrate results on four datasets (as well as their

Fig. 4 Comparison of various time window lengths used as input of the
(top) visual encoder of FunnyNet-W (referred to as FunnyNet-W V)
and (bottom) audio encoder of FunnyNet-W (referred to as FunnyNet-
W A). We illustrate (left,a) the F1 score and (right,b) the accuracy on
different datasets. The average results are plotted in red lines (Color
figure online)

average in a dashed red line) in Fig. 4. For this, we use input
time windows of varying lengths (from 2 to 16s) in either
the visual encoder of FunnyNet-W (referred to as FunnyNet-
W V, top in Fig. 4) or the audio encoder of FunnyNet-W
(referred to as FunnyNet-W A, bottom in Fig. 4).

When ablating the input length of the visual input (top
in Fig. 4), we observe that using approximately 8 s achieves
the best performance compared to all other settings. Specifi-
cally, for F1 (a, left), we observe that for all datasets, the best
result is achieved when using 8s, whereas the second and
third results are achieved when using 10 and 12s length of
the input. For Accuracy (b, right), the performance follows
the same trend: the best accuracy is reached for 8-second
inputs, while the 10 and 12-second inputs reach the sec-
ond and third-best accuracies. Interestingly, for both F1 and
Accuracy, for the average amongst all datasets (red dashed
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Fig. 5 Comparison of different lengths of time windows for the visual
encoder of FunnyNet-W (referred to as FunnyNet-W V). We illustrate
(a) the F1 score and (b) the accuracy on different datasets. The average
results are plotted in red points and lines for Timesformer and magenta
for VideoMAE (Color figure online)

lines), we observe that both metrics degrade when using
longer visual input windows (e.g. more than 15s). This is
probably because longer inputs contain too much visual or
audio information across both positive and negative samples,
which confuses the model and leads to more incorrect pre-
dictions.

When ablating the input length of the audio input (bottom
in Fig. 4), we observe that similar to the previous conclu-
sions, the time window of 8 s leads to the best performance
both in F1 and Accuracy. Nevertheless, using a longer time
window improves the prediction accuracy, in contrast to the
visual ablation. Specifically, the best time window setting is
between 8 and 12s. For any time windows outside this range,
the performance is getting worse.

In our experiments, we use a time window of 8 s as a good
trade-off between the performance of the visual and audio
encoders.

Influence of Sampled Frames. Given the input time win-
dow of 8 s, we test the scenario where we sample different
numbers of frames within a fixed 8-second time window.
In particular, we examine the impact when sampling from
8 to 100 frames. The results are shown in Fig. 5, where we
illustrate the (left, a) F1 score and (right, b) accuracy over
the number of sampled frames. Our results suggest that the
number of frames has no or only a trivial impact on the final
performance. This is expected, since sampling more frames
in a fixed time windowmainly produces redundancy without
introducing new relevant information. Furthermore, in this
ablation, we also compare the results obtained when using
Timesformer (red points and dashed line) and VideoMAE
(magenta points and dashed line) in the visual encoder. We
observe that using VideoMAE outperforms Timesformer in
all settings, hence the final FunnyNet-W uses VideoMAE for
the visual encoder.

5.2.5 Ablation of Losses

FunnyNet-W uses the classification Lcls and the self-
supervised contrastive losses Lss. Here, we examine their
impact by training FunnyNet-W with and without Lss.
Table 7 reports the results on Friends, where we observe

Table 7 Ablation of losses used to train FunnyNet-W

Lcls Lss Lkoleo Lclip F1 Acc

� – – – 70.9 68.0

� � – – 88.2 85.6

� � � – 86.7 84.6

� � – � 87.3 84.6

� � � � 85.4 82.2

Bold values indicate the higher performance compared to others

that adding Lss improves over +10 in all metrics (first two
rows). This reveals that using the auxiliary self-supervised
task of syncing audiovisual data helps to identify the funny
moments in videos.

Recently, Koleo (Sablayrolles et al., 2019) (Lkoleo) and
CLIP (Radford et al., 2021) (Lclip) have been proposed for
improving unsupervised feature clustering. To examine the
impact of these two losses, we train FunnyNet-W with dif-
ferent loss combinations and show the results in Table 7.
We observe that including Koleo and/or CLIP losses (third-
fifth rows) results in a small drop in both F1 and accuracy
compared to the proposed loss configuration (second row).
Regarding the Koleo loss, this drop is probably because
Koleo encourages a uniform span of the features within a
batch which maximizes the variances of features and affects
the binary decisions on the boundaries. Regarding the CLIP
loss, the drop can be explained by the fact that CLIP is widely
used for multi-class feature projection, which may compli-
cate the funny or not-funny classification

Model complexity. We also compare in Table 8 the com-
plexity of FunnyNet and FunnyNet-W to the other state-of-
the-art models. Note that both models use pre-trained visual,
audio and text encoders. For completion, we also report
the metrics when including the complexity of the visual,
audio and text backbone encoders. We observe that the gain
in performances and the unsupervised aspect of FunnyNet-
W impacts its complexity. Indeed, FunnyNet-W is a huge
model, with an increase of approximately 52 GFLOPS, 16M
of parameters and 11ms on runtime, in comparison to the
second-heaviest model (Hazarika et al., 2020). Addition-
ally, when comparing FunnyNet to FunnyNet-W, the latter
replaces the face encoder with a text encoder and uses larger
visual and text encoders, VideoMAE and LlaMa2, respec-
tively. These lead to higher complexity on GFLOPS and
parameters. However, the overall inference time is reduced
because it does not require online per-frame face detection,
masking, and feature extraction.

5.3 Analysis of Unsupervised Laughter Detector

Comparison to the state of the art. We compare our laugh-
ter detector with the state of the art: LD (Ryokai et al.,
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Table 8 Comparison to the state
of the art of FLOPs count
(FLOPs), number of parameters
(Params) and inference runtime
average (Runtime)

Model FLOPs Params Runtime
(109) (106) (ms)

MISA 2020 (V+A+T) (Hazarika et al., 2020) 138.8 111.2 33.64

HKT 2021 (V+A+T) (Hasan et al., 2021) 7.6 16.8 25.91

LaughM 2021 (T) (Kayatani et al., 2021) 2.5 112.4 11.15

FunnyNetb 4.4 39.5 45.25

FunnyNet (V+F+A) 190.9 126.9 45.25

FunnyNet-Wb 3.1 29.6 30.21

FunnyNet-W (V+F+T) 72,190 70228 30.21

We report two versions of model complexity, FunnyNet (V+F+A) and FunnyNet-W (V+F+T) with including
pre-trained encoders, and FunnyNetb and FunnyNet-Wb without including pre-trained encoders

Table 9 Evaluation of laughter detection on friends

Temporal Det IoU = 0.3 Det IoU = 0.7

Acc Prec Rec F1 Prec Rec F1 Prec Rec F1

LD (Ryokai et al., 2018) 43.6 35.7 99.0 52.3 25.7 22.1 23.4 4.0 3.7 3.8

RLD (Gillick et al., 2021) 74.5 58.9 62.0 59.7 66.2 53.7 59.1 18.5 15.0 16.5

Ours Wav2CLIP (Wu et al., 2021) 77.6 64.5 63.7 63.7 91.3 61.2 73.1 49.7 33.5 39.9

Ours CAV-MAE (Gong et al., 2023) 84.3 75.4 74.2 74.6 92.3 80.0 85.6 52.2 45.5 48.4

Ours BYOL-A (Niizumi et al., 2021) 86.0 76.9 79.4 77.8 94.6 82.3 87.8 54.1 47.1 50.3

Ours BYOL-A-v2 (Niizumi et al., 2023) 82.1 67.7 82.6 74.1 92.5 83.5 87.6 51.9 47.0 49.2

Ours BEATs (Chen et al., 2023) 86.4 78.4 78.3 78.1 95.2 81.6 87.7 55.1 47.3 50.8

Bold values indicate the higher performance compared to others
We compare five versions of our laughter detector, denoted as ‘Ours’, employing different feature encoders, along with two external audio laughter
detectors. The last row corresponds to the actual configuration used in FunnyNet-W

2018) laughter detector used in Castro et al. (2019) and
RLD (Gillick et al., 2021). The results on the Friends dataset
are presented in Table 9. Overall, our detector demonstrates
superior performance compared to both supervised methods.
Notably, our detector combined with BEATs features con-
sistently demonstrates superior performance, excelling for
instance in temporal precision (78.4%), and detection preci-
sion for both thresholds (95.2% for 0.3 and 55.1% for 0.7).
Our method combined with BYOL-A and BYOL-A-v2 fea-
tures also showcases a balanced performance, maintaining
high temporal accuracy (86.0% and 82.1% respectively). In
comparison, LD exhibits high temporal recall (99.0%) but
lower temporal precision (35.7%) highlighting a bias in its
predictions. While RLD achieves a better balance between
temporal precision and recall (58.9% 62.0% respectively) it
is still far from our results.

Furthermore, we evaluate our detector using five audio
feature extractors: Wav2CLIP (Wu et al., 2021), CAV-MAE
(Gong et al., 2023), two versions of BYOL-A (Niizumi et al.,
2021, 2023), and BEATs (Chen et al., 2023). Among these,
the BEATs encoder exhibits the most suitable audio repre-
sentation capacity for our detector, providing the best results
(last row). During the analysis of the laughter detection, we
make three important observations: (i) The majority of false

Fig. 6 Evolution of the temporal (blue) and detection (red) F1 scores
according to the number of clusters chosen for the K-means algorithm
at the end of the laughter detection pipeline (Color figure online)

positives are unfiltered sounds that are not easily separable
using K-means clustering. (ii) The majority of false nega-
tives correspond to intra-diegetic laughter, which is typically
less loud and therefore more challenging to detect. (iii) The
peak detector fails in scenarios where music overlaps with
laughter, such as in party settings.

Influence of Clustering on the Detection Performance.
Here, we examine how the choice of the cluster count param-
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Fig. 7 Visualization of (a–d) funny, (e,f) non-funny predictions on the Friends test set. We show the audio, visual and text inputs, the learned
average weights of cross-attentions from CAF (pie chart), and the subtitles (for better understanding) (Color figure online)

eter K in the K-means algorithm influences the performance
of our laughter detector. In practice, laughter chunks signif-
icantly outnumber music chunks. Consequently, in the third
stage of Fig. 3, we exclude the smallest cluster- identified as
the music cluster through empirical assessment- and retain
the clusters comprising the laughter chunks.

Figure 6 shows the performance of the detection pipeline
both at the detection level (red lines) and at the temporal level
(blue lines) as a function of different numbers of clusters (x-
axis). Overall, we make the following three observations: (1)
For 1 cluster, we note that using one cluster is equivalent to
no clustering. (2) Between 2 and 4 clusters, we note that F1

scores are higher than for 1 cluster. Here, there are enough
degrees of freedom for the K-means algorithm to correctly
detect the centroid of the music cluster. (3)For more than 7
clusters, we note that F1 scores tend to converge to the same
value as for 1 cluster. Here, there are too many degrees of
freedom for the K-means algorithm, and therefore it detects
multiple centroids for the music cluster. Thus, the higher
the number of clusters, the smaller the music sub-cluster we
have, with the extreme case of having one cluster per sample,
thus having the same effect as no clustering.

Moreover, Fig. 6 shows that the detection F1 score (red
line) is less sensitive to the number of clusters than the tem-
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poral F1 score (blue line). This can be explained by the fact
that music chunks are generally longer than laughter chunks.
Thus, by removing longer false positive chunks, we improve
temporal metrics, whereas the impact is less important at the
sample scale for detection metrics.

6 Analysis of FunnyNet-W

6.1 Modality Impact

To visualize the impact of modalities, we compute the aver-
age attention values on the three CA modules (CA boxes in
Fig. 2) and then, show the average weights for each modal-
ity in the pie chart of each example in Fig. 7. For this, we
show (a-d) four positive and (e,f) two negative samples on
Friends with frames, subtitles and audio spectrogram (left)
and pitch (right). We observe that the contribution of each
modality varies; the commonality though is that audio con-
tributes more than half, followed by text and finally visual
features. Specifically, in cases where there is a strong audio
signal, the contribution of audio increases significantly. This
is illustrated when the character yells (‘Chandler’ in positive
example (a), or pauses the speech (‘Chandler’ in positive
example (b), or the speech rate speeds up (‘Phoebe’ in
positive example (c) or speech volumes change suddenly
(‘Chandler’ and ‘Joey’ in positive example (d). In contrast, in
negative (e) and (f), the tone, volume, pitch or rhythm do not
change greatly, so the text starts to play a bigger role in deter-
mining them as non-funny scenes. Furthermore, we observe
that in the (c) and (e) examples, the visual feature plays very
little role in the final prediction probably because the scenes
do not capture the whole character’s bodies and their move-
ment, so the visual model can offer only little information.

Fig. 8 t-SNE visualization of embeddings on Friends for (a) audio, (b)
text, (c) visual, (d) all modalities. We show positive (blue) and negative
samples (red)

Fig. 9 CAF attention maps on the test set of Friends. a–c) Cross Atten-
tion between the unified feature FU (coming from all modalities) and
audio, vision and text; d Self Attention on FU

6.2 Feature Visualization

Figure 8 shows the t-SNE (Hinton & Roweis, 2002) visual-
ization of features: (a, b, c) display the unimodal distributions
of audio, text, and visual features respectively, while (d)
corresponds to all modalities for four datasets. Blue colour
corresponds to funny samples and red to not-funny ones.
All single features, and in particular the visual and textual
ones, are scattered in the 2D space without clear boundaries
between positives and negatives. Interestingly, for Friends,
TBBT and MUSTaRD the audio features alone exhibit a
notable ability to discriminate positive and negative samples;
this is probably because of the punchlines used in these shows
that typically occur at the end of sentences. For these three
datasets, we observe that the joint embedding of all modal-
ities results in the best separation between positives and
negatives. Interestingly, forUR-Funny, a datasetwithout end-
ing punchlines, all combinations of modalities (either single
or joint) fail to distinguish funny from not-funny moments.
This is probably due to the domain shift between samples
from this dataset (TED-talk segments) and the samples used
at training (sitcoms).

6.3 Impact of CAFModule

To examine the effect of CAF, we visualize in Fig. 9 the
learned attention maps: red indicates higher and blue lower
attention. (a,b,c) display the cross-attention between the uni-
fied FU and (a) audio, (b) visual, (c) text features. Since
FU is stacked from audio, vision, and text, we observe that
each modality highly attends to itself (especially text). We
also observe that the audio encoder also attends to the text
encoder, indicating that there is mutual information shared
between text and audio. Finally, (d) displays the self-attention
map between FU, where we observe that FU attends to all
tokens with different weights. The small color differences
on the diagonal and anti-diagonal areas suggest that the joint
features have approximately uniform representations for the
final classification.
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Fig. 10 Failure cases on Friends split into three main groups: a, b strong emotional responses expressed by single wording, c subtle sarcastic
comments with straight face and no follow-up indications, and d inside jokes depending on long-term understanding

6.4 Failure Analysis

By examining the results, we observe three main groups of
failure cases. First, when characters have strong emotional
responses expressed only by single words (such as ‘haha’,
‘no!’) is not always funny. However, all modalities incor-
rectly, yet confidently predict them as funny. Figure10a and b
show this. In Fig. 10a, ‘Rachel’ laughs sarcastically, which is
not funny (subtitle ‘ha ha’). FunnyNet-W incorrectly predicts
it as positive. In Fig. 10b,Monica screams loudly and falls on
Rachel (subtitle ‘Ah’). The sudden high pitch of the scream
gives thewrong signal to themodel andwrongly predicts it as
positive. Second, when the funny moment is expressed only
with subtle indications, typically sarcasm without a follow-
up signal (indicative facial expression or grimace, surprise,
pause in dialogue, phrase, joke). In such cases, FunnyNet-W
may fail to discriminate these subtle cues that come usu-
ally with human-level understanding. Figure10c indicates
such an example, where Ross gives a sarcastic response
to Joey without changing facial expression or tone; in this
case, FunnyNet-W incorrectly predicts the scene as negative.
Third, in most cases, all modalities fail to understand inside
jokes that depend on long-term dependencies. For instance,
Fig. 10d is the case where the context is so long (the previous
awkward moment between Ross and Rachel) that the model
wrongly predicts the scene as a not-funnymoment. All audio,
visual or text fail to give discriminative signals to indicate the
funniness.

7 Funny Scene Detection in theWild

7.1 Applications FromOther Domains

In this section, we show applications of FunnyNet and
FunnyNet-W in videos from other domains.

1. Sitcoms without Canned Laughter. In FunnyNet (Liu
et al., 2022), we collect 9 episodes of the first season
(∼180min) of Modern Family (Lloyd and Levitan, 2009)6

without canned laughter. We manually annotate as positive
every punchline that could lead to laughter, resulting in 453
positives (we will make them available). Figure11a shows
a correctly predicted funny moment between two characters
who vary their speech rhythm and tones.

2. Movies with Diverse Funny Styles. Fig. 11b depicts
such an example from the Dumb and Dumber film (Far-
relly (1994)). Our model correctly detects funny moments
followed by silence or a speaker’s change of tone.

3. Stand-Up Comedies. They contain several punchlines
that make audiences laugh.We experiment on the Jerry Sein-
feld 23h to Kill stand-up comedy. Figure11c shows that
FunnyNet detects funny moments correctly and confidently,
as Jerry is highly expressive (expressions, gestures).

4. Audio-Only. As audio is the most discriminative cue,
we examine its impact on out-of-domain audios: narrating
jokes and reading books.Ourmodel detects funny punchlines
from jokes, mostly when they are accompanied by a change
of pitch or pause; for the audiobook, it successfully detects
funny moments when the reader’s voice imitates a character.

6 https://www.youtube.com/playlist?list=PL8v3aNB88WMM0iwOU
eLpgFf3pHH9uxz7_.
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Fig. 11 Funny moments in the wild. Three examples from sitcoms, movies, and stand-up with diverse contents, e.g. the sitcom does not have
canned laughter, the movie contains dramatic acting performance, and the stand-up is a one-man show without interactions

7.2 FunnyNet-W against LLM Chatbot

Recently, several large language models (LLMs) (OpenAI,
2023; Touvron et al., 2023) have been fine-tuned and are
used as chatbots (OpenAI, 2021; Köpf et al., 2023). With
their expansive knowledge and context-aware responses,
they have significantly advanced language understanding
and generation, which enable them to perform a wide range
of language-related tasks. In this context, we compare the
proposed FunnyNet-W against a chatbot to assess its perfor-
mance relative to these general models. Specifically, we use
the LlaMa-2 (Touvron et al., 2023) chatbot on the Friends
dataset.

Prompting.We evaluate the language LlaMa-2 chatbot in
two setups.
First, with or without prompt training:

– zero-shot setting, where we prompt the chatbot with
a transcript sample and ask it to determine whether it
is funny or not. We do that iteratively for all test sam-
ples of the Friends test set. The prompt we use is “Is the
following sentence funny or not? �subtitles�”, where
�subtitles� corresponds to each test sample. However,
given the popular nature of the ‘Friends’ sitcom, the chat-
bot may have already seen samples or even the whole
transcript of the TV show during training. We hypothe-
size that this impacts its performance positively, as the
chatbot not only has knowledge of the dialogues that fol-
low, but also knows the comments of the community for
each pun or joke.

– few-shot setting,whereweprompt the chatbotwith some
training samples followed by the testing sample within
the token context limit. The prompt we use is twenty
training samples (ten positives and ten negatives): “This
sentence is funny: �subtitles�. This sentence is not
funny �subtitles�.”, followed by the testing sample:
“Is the following sentence funny or not? �subtitles�”.
In this case, the chatbot uses the training samples to better
distinguish the specific TV show type of humour.

Table 10 Chatbot vs FunnyNet-W

Prompt engineering Prompt training F1 Accuracy

Generic – 14.5 41.8

� 44.3 46.5

Specific – 64.1 53.2

� 71.1 55.9

FunnyNet-W (T) 77.8 68.1

FunnyNet-W (A+V+T) 88.2 85.6

Second, by performing a simple prompt engineering (i.e.
part of the prompt that gives context to the chatbot):

– general system prompt, we prompt the chatbot with
the general system prompt (referred to as ‘Generic’):
“You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content. [...]”.
This system prompt makes the chatbot act as a general
chatbot without any prior on the task.

– specific system prompt, we prompt the chatbot with the
task-specific system prompt (referred to as ‘Specific’): “I
will give some sentences, and you need to say if it’s funny
or not, reply only by yes or no.”. This kind of system
prompt helps the chatbot limit its range and focus on
the task only. Moreover, it forces the chatbot to answer,
whereas the general system prompt leads sometimes to
hesitating answers.

Experimental results. Table 10 reports the results when
prompting the LlaMa-2 chatbot. We observe that without
prompt training, the chatbot’s performance drops both with
and without prompt engineering. Additionally, we observe
the importance of prompt engineering: when using the spe-
cific prompt (with or without training) the performances are
higher than 50% in both metrics, whereas the generic prompt
(no prompt engineering) results in very low performances.
This is in line with the current bibliography on LLMs, where
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Fig. 12 Examples of using Chatbot, with or without prompt training (w
PT orw/o PT), and FunnyNet-W for funny prediction. FunnyNet-W can
give correct predictions (green) for both positive and negative examples,
while LlaMa-2 fails to give good results and the prompt training brings
small improvements (Color figure online)

prompt engineering is crucial for higher accuracy.We believe
that more prompt engineering will increase the performance;
yet, this is outside the scope of this work. Overall, we observe
that FunnyNet-W outperforms all examined cases with the
chatbot. This highlights the need for specific model training
for funny moment detection. Interestingly, we note that the
performance of FunnyNet-W using text only is close to the
one of the LlaMa-2 chatbot, thus showcasing the impressive
representation power of LLM chatbots.

Figure 12 illustrates four examples: two positive (first and
second rows) and two negative samples (third and fourth
rows). For the positive samples,we observe that LlaMa-2 cor-
rectly understand its funniness (green) with prompt training,
whereas when there is no prompt the results are incorrect.
For two negative samples, most predictions from the chat-
bot are incorrect, most likely because it picks up the words
with strong emotional expressions, like “weird” and “burn”,
resulting in false positives. In all examples, FunnyNet-Wcor-
rectly predicts the results because it does not solely rely on
text, but also audio and visual features.

Overall, our findings are twofold: (1) using only subtitles
is insufficient to understand the funniness in video scenes,
and (2) since we only do minor prompt engineering (generic
and specific), the results of LLMs cannot outperform the pro-
posed FunnyNet-W. Potentially, by improving the prompts,
we can further improve the performance of LLMs.

7.3 Impact of Audio

In the context of funny moment detection, audio is more
relevant than text (Liu et al., 2022) because it contains
more information, including vocals, pauses, pitch variations,
speech rate variations, rhythm and timing, accent and pro-
nunciation, emotional tone, music and background noise. To
highlight the importance of audio, in this section, we test
FunnyNet-W by replacing the ground truth audio with auto-
matic machine sounds.

For this, we generate corresponding synthetic audios from
the ground truth subtitles of the Friends dataset with a text-to-

Table 11 Ablation of synthetic and real voice when training and testing
FunnyNet-W on Friends

Model Training voice

Synthetic Real

F1 Accuracy F1 Accuracy

Test voice Synthetic 65.5 67.7 68.8 66.8

Real 83.1 79.6 88.2 85.6

audio model.7 Note that the synthetic audio only mimics the
vocals between characters without any background sounds
and, more importantly, without including all additional voice
cues that help identify the emotional state of the charac-
ter and the dialogue. Then, we train FunnyNet-W with the
synthetic voices and test it on both the real and synthetic
voices and respectively, we test FunnyNet-W (trained on
real voices) on both real and synthetic voices. Table 11
reports the results. When training with synthetic voice (first
and second column), we observe that testing on real voices
(second row) outperforms testing on synthetic ones (first
row) by a large margin, i.e. approximately 10–15% for both
metrics. Similarly, when training with real voice (third and
fourth columns), we observe that there is a significant differ-
ence in performance (or approximately 20% in both metrics)
between testing on synthetic and real data. These results show
that simply replacing real voice with synthetic ones omits
other important information, such as background audio, and
music; hence, the model makes more correct predictions
when the test set contains additional auditory information
(real) rather than a simple voice (synthetic). When we test on
synthetic voices (first row), we observe that training either
with synthetic or real voice produces similar results. This
is because the test set contains synthetic data, and therefore
learning the specificities of voice is not necessary for good
performance. However, when we test on real voices (second
row), we observe that trainingwith real voices (columns 3–4)
outperforms training with synthetic ones (columns 1–2) by a
large margin (e.g. for Acc 79.6% for synthetic vs. 85.6%
for real). This clearly shows that the real voice includes
important additional cues (pause, intonation, etc.) that help
FunnyNet-W discriminate funniness.

To further analyze the effect of voice, we perform here a
qualitative comparison using Spleeter.8 Specifically, Fig. 13
illustrates the spectrum heatmaps between (a) real vocal, (b)
real accompaniment (non-vocal parts, such as background
music, sounds, talks, audio), (c) synthetic vocal, and (d) the
differences between real and synthetic audio. We visualize
the heatmaps of examples (two rows), where in both cases
FunnyNet-Wcorrectly predicts the funninesswhenusing real

7 https://github.com/pndurette/gTTS.
8 https://github.com/deezer/spleeter.
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Fig. 13 Visualization of real and synthetic audio on Friends. We show
real vocals (a), real accompaniment (b), synthetic vocals (c) and the
residues between real and synthetic vocals (d)

Fig. 14 T-SNE visualization of real and synthetic audio on Friends.We
show positive (blue) and negative (red) samples to indicate the feature
distributions (Color figure online)

audio and incorrectly when using synthetic audio. The first
row shows the funny moment when Phoebe tries to shush
the wind bell while the wind bell keeps ringing. This con-
trast between vocals and non-vocal sounds (i.e. in this case
bell ringing) is missing from the synthetic vocals. Row 2
shows that when Ross screams excitedly (‘Call Mum!’), his
voice triggers the smartphone to dial Pete’s mum. This strong
vocal expression does not appear on the synthetic vocals.
Both these examples indicate that audio plays a key role in
funny moment detection because it contains not only back-
ground sounds but also expressions and feelings from the
characters leading to better scene understanding.

Furthermore, we also use T-SNE to visualize the data clus-
tering in Fig. 14. This visualization shows that when the train
and test data come from the same domain (either real or syn-
thetic, c and d figures), the positive and negative distributions
(blue and red points) are clearly separable. This is in con-
trast to the (a,b) figures, where the two synthetic and real
domains are mixed (i.e., training on one domain and testing
on another); in this case, the two distributions overlap more,
as expected due to domain shift (Kalogeiton et al., 2016;
Torralba & Efros, 2011).

8 Ethical Discussion

Practical Impact.There are various potential applications for
FunnyNet-W. First, it may be useful to collect a large dataset
of funny moments (similar to (Li et al., 2023)), so for exam-
ple, cognitive researchers could study funniness mechanisms

at a large scale. Next, it may be useful to enable artists to edit
films more easily, without relying on a live audience. Finally,
itmay be useful to enhance human–machine interactions. For
instance, adding a sense of humor to conversational agents
would make the relation more natural and spontaneous.

However, FunnyNet-W is part of artificial intelligence
systems that tend to analyze complex human specificities
and behaviors (e.g., conversational agents). Given the nature
of these systems, their usage and deployment should be
done with caution. For instance, in the particular case of
FunnyNet-W, it could enhance identity fraud methods, by
better mimicking the sense of humor of victims.

Societal Impact. FunnyNet-W is trained mainly with
Western cultural materials, especially from the USA, which
donot necessarily represent uniformdemographics. In partic-
ular, wemainly tackle funniness in American sitcoms, which
covers a very specific type of humor. Therefore, without fine-
tuning, FunnyNet-W might have difficulties in generalizing
to funny moments from other cultures, as humor is highly
thematic, and themes vary from one culture to another.More-
over, the audio modality might also be highly impacted by
cultural bias, as expressiveness is strongly related to culture,
e.g., actor performances change a lot from one country to
another, leading to misinterpretations. In addition to the cul-
tural barrier, FunnyNet-W includes language bias. Indeed,
the audio as well as the textual modality are trained with
the English language. This can be a limiting factor for gen-
eralization and transferability across languages, as jokes or
puns often rely on language specificities. We also note that
the textual modality is limited by alphabets that vary among
languages.

Environmental Impact. All experiments are done on
NVIDIA RTX4090 and A100 GPUs, with each of them
requiring 215W in power supply. For this project, we use
approximately 800 GPU hours. Training a FunnyNet-W
model with all three modalities requires around 6 GPU hours
on NVIDIA RTX4090, which amounts to 1.29 kWh and
300.75g of CO2 emitted.

9 Conclusions

We introduced FunnyNet, an audiovisual model for funny
moment detection. In contrast to works that rely on text,
FunnyNet exploits audio that comes naturally with videos
and contains high-level cues (pauses, tones, etc). Our find-
ings show audio is the dominant cue for signaling funny
situations, while video offers complementary information.
Extensive analysis and visualizations also support our find-
ing that audio is better than text (in the formof subtitles)when
it comes to scenes with no or simple dialogue but with hilari-
ous acting or funny background sounds. Our results show the
effectiveness of each component of FunnyNet, which outper-
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forms the state of the art on the TBBT, MUStARD, MHD,
UR-Funny and Friends. Future work includes analyzing the
contribution of audio cues (pitch, tone, etc).
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