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ABSTRACT

Steering vision foundation models at test time, without retraining or access to
large labeled datasets, is a desirable yet challenging goal, particularly in dynamic
or resource-constrained settings. We present Visual Sparse Steering (VS2), a
lightweight, label-free test-time method that constructs a steering vector from
sparse features extracted by a Sparse Autoencoder (SAE) trained on the model’s
internal activations. On CIFAR-100, CUB-200, and Tiny-ImageNet, VS2 improves
the top-1 accuracy of the CLIP zero-shot baseline by 4.12%, 1.08%, and 1.84%,
respectively. Since not all features learned by the SAE are equally important for
classification, we introduce VS27 ™, a retrieval-augmented variant that selectively
amplifies relevant sparse features using pseudo-labeled neighbors retrieved from
an external unlabeled corpus at inference time. With oracle positive and negative
sets (upper bound), VS2™ T achieves absolute top-1 gains over the CLIP zero-shot
baseline of up to 21.44% on CIFAR-100, 7.08% on CUB-200, and 20.47% on
Tiny-ImageNet, highlighting the potential of steering vectors when relevant feature
selection is accurate. VS2 and VS2™* also improve per-class accuracy by up
to 25% and 38%, respectively, indicating that sparse steering disproportionately
benefits visually or semantically similar classes. Finally, VS2 includes a built-in
reliability diagnostic based on SAE reconstruction loss, which is absent in common
steering vectors, signaling when steering may underperform and safely triggering a
fallback to the baseline.

1 INTRODUCTION

Foundation Models (FMs) have exhibited strong generalization capabilities across a wide range
of domains, from classification tasks to open-ended generation (Radford et all |2021a; Kirillov
et al., 2023} Touvron et al., 2023} [Liu et al., [2023; |Achiam et al., [2023)). Despite their impressive
performance, these models largely function as black boxes, limiting their controllability and reliability
in practice. Controlling a model’s behavior, i.e., editing its outputs, typically involves collecting a
labeled dataset that reflects the target objective, followed by supervised fine-tuning (SFT) over the
full (Zhang et al., 2023;|Dong et al., 2023) or partial (Lester et al.,[2021; [Hu et al., [2022; [Liu et al.,
2022) parameter space. However, this process can become prohibitively costly and might lead to
catastrophic forgetting. As an alternative, Steering Vector (SV) methods have gained popularity in
the Large Language Model (LLM) domain as they can effectively modulate the model’s generation
at inference time in a training-free manner (Turner et al.,[2023}[Zou et al.| 2023} [Liu et al.| [2024).
However, their use in the vision domain remains underexplored.

Conventional Steering Vectors require positive and negative examples that reflect the behavior we aim
to modify. A steering vector is then formed as a directional offset in the latent space, computed by
taking the difference between the average latent representations of the contrastive data. This vector is
then linearly combined with the latent embedding of a test input to influence the model’s behavior.
Steering vectors heavily rely on the quality of the contrastive data, whose selection is non-trivial.
Is it though possible to construct effective steering vectors without requiring explicit positive and
negative examples? Additionally, unlike symbolic language tokens, visual representations exhibit
high redundancy and entanglement. Consequently, in the vision domain, it is often unclear which
features should be steered and in which direction. We thus pose a second question: How can we
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(a) VS2: Visual Sparse Steering without contrastive (b) VS2**: Selective Visual Sparse Steering.
data.

Figure 1: Overview of VS2 and VS2™ . At inference time, VS2 constructs a steering vector by
equally amplifying sparse features, while VS21 selectively enhances them when an external visual
corpus is available.

overcome the increased redundancy and entanglement of visual representations to effectively apply
steering vectors in the vision domain?

Drawing inspiration from the mechanistic interpretability literature (Hugofry} 2024} Daujotas, [2024;
Bhalla et al., 2024; |Stevens et al., [2025)), we hypothesize that the sparse features in an SAE’s
latent space can capture salient aspects of the input and therefore reduce redundancy in the visual
representation. SAEs have shown promise in extracting meaningful features from trained foundation
models, and are unsupervised, i.e., they do not need positive and negative sets to extract features.
Therefore, we ask the question: Can SAE representations be used effectively for steering? To this
end, we propose Visual Sparse Steering (VS2), a method that constructs steering vectors without
requiring labeled anchor examples, by amplifying sparse, non-redundant features extracted from a
Sparse Autoencoder (SAE). Across all datasets and ViT backbones, VS2 consistently outperforms
the zero-shot CLIP baseline (Radford et al.,[2021b) by 3.45% and 4.12% on CIFAR-100, 0.93%
and 1.08% on CUB-200, and 1.50% and 1.84% on Tiny-ImageNet with ViT-B/32 and ViT-B/16
backbones, respectively, without relying on external data or supervision, as in common steering
vector methods. These results suggest that the sparse features learned through the autoencoding
objective can provide a meaningful basis for improving downstream classification performance, as
they capture salient and, to some extent, task-relevant information.

We then pose the following question: Should all selected features be amplified equally, or is there
a way to suppress or amplify them non-uniformly? In vision models, there are potentially many
redundant features, e.g., when predicting labels, we want to ignore background features such as
the sky. To this end, we relax the problem constraints, allowing the existence of an external vision
corpus, and propose VS2T that leverages this additional unlabeled data. For a given target image,
VS27 retrieves the Top-N most similar visual embeddings, and constructs positive and negative
groups according to generated pseudo labels. The VS21 Steering Vector is then constructed via
subtracting the average SAE features of the negative group from the positive group. Intuitively,
V82 upweights the SAE features most relevant for distinguishing the positive and negative groups.
VS2*++ achieves absolute top-1 accuracy improvements over zero-shot CLIP of up to 21.44% on
CIFAR-100, 7.08% on CUB-200, and 20.47% on Tiny-ImageNet when oracle positive and negative
sets are available. These results represent an upper bound and highlight the significant headroom
for improving steering vectors through more accurate feature selection. When those sets are noisy
(non-oracle data), VS2T+ accuracy drops but still surpasses the standard Steering Vector in most
cases, highlighting the need for better feature selection under weakly supervised retrieval.

While a foundational SAE that faithfully captures the data distribution is desirable and remains
an active area of research, in practice, test-time inputs may fall outside the training distribution,
leading to poor reconstruction quality. In such cases, the sparse features extracted by the SAE may be
unreliable, and the resulting steering vectors can degrade model performance. Conventional steering
methods do not include mechanisms to determine when steering should or should not be applied,
which is a significant limitation especially in high-stakes settings. This raises a critical question: Can
we avoid applying steering when it is likely to hurt performance? We show that VS2 includes a
built-in reliability diagnostic, a feature absent in prior steering vector methods. Specifically,
when a test input exhibits a high SAE reconstruction error, this provides a signal that the input may
be out-of-distribution and that steering may be harmful. In such cases, VS2 falls back to the original
zero-shot CLIP prediction, avoiding negative adaptation from misaligned sparse features.
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This work investigates how to control vision foundation models using sparse steering vectors obtained
from SAEs in an unsupervised way. While SAEs have shown promise in mechanistic interpretability,
their effective application to downstream tasks remains limited. In summary,

* We introduce Visual Sparse Steering (VS2), a lightweight, label-free test-time method that
guides vision models using steering vectors derived from sparse features learned by top-k
Sparse Autoencoders without requiring contrastive data. VS2 exhibits that steering with as
few as 64 sparse activations (= 0.00004% of parameters) yields consistent gains across all
datasets, models, and configurations for image classification.

* VS2 also offers a built-in reliability diagnostic, absent from standard steering-vector meth-
ods; SAE reconstruction loss can be used at test-time to anticipate when steering may
underperform and safely revert to a baseline.

» When an additional external vision corpus is available, VS2*+ can be used to selectively
and robustly amplify important features. Our results highlight the substantial headroom for
improving steering vectors through more accurate feature selection and amplification.

2 RELATED WORK

Mechanistic Interpretability and Sparse Autoencoders. Several traditional approaches exist for
interpretability in vision models, including feature visualization (Simonyan et al., [2014} |Zeiler &
Fergus, [2014; Olah et al., 2017) and network dissection (Bau et al., [2017; |Oikarinen & Weng}, 2022).
Mechanistic interpretability seeks to systematically analyze and understand neural networks (Elhage
et al., 2021} |Olah et al.l 2020), but it faces challenges due to polysemantic neurons i.e. units that
activate in response to multiple, seemingly unrelated inputs (Elhage et al.,|2022). This phenomenon
arises from superposition, where networks encode more features than the available dimensions allow,
forcing different concepts to share the same activations (Elhage et al.,|2022)). Sparse Autoencoders
(SAESs) have been explored to mitigate superposition by applying sparse dictionary learning to model
internals (Sharkey et al.| 2022} |Bricken et al.| 2023)). Recent efforts have leveraged SAEs to uncover
interpretable features within LLMs, revealing latent units tied to grammar rules, style patterns, and
factual knowledge (Templeton, 2024} |Cunningham et al., 2023} (Gao et al., |2024). Joshi et al.
(2025) refines this by training SAEs on embedding differences to disentangle multiple concept shifts,
enabling precise interventions in model activations without requiring direct supervision. While these
methods focus on language models, our work extends sparse steering to the vision domain, where
applications of SAEs to vision models remain comparatively underexplored.

While SAEs have been explored for feature analysis, generative modeling, and concept disentangle-
ment in the visual domain (Hugofry, [2024; |Daujotas, [2024} [Bhalla et al.,2024; Stevens et al., 2025}
Fel et al., 2025} Thasarathan et al.| 2025), these works focus primarily on interpretability rather than
downstream performance. In contrast, our method leverages SAEs to actively steer vision models in
a label-free, test-time setting to improve classification. Related efforts like Joseph et al.|(2025) study
CLIP’s steerability on typographic attacks, while Patch-SAE (Lim et al.,|2024) improves classification
accuracy via class-conditioned latent masking. Our approach, on the other hand, requires no class
labels and avoids class-based activation aggregation during training, enabling broader applicability
without reliance on external supervision or gradient updates.

Steering vectors. Steering Vector (SV) methods (Turner et al., 2023} |Park et al., 2023} Hernandez
et al 2024; Mikolov et al.l 2013), also known as representation engineering (Zou et al., [2023]),
construct a directional task vector and apply it in the latent space to change the target model’s
behavior at inference time. In LLMs/MLLMs, SVs are used to enhance security (Liu et al., [2024),
truthfulness (Li et al.,|2023)), reduce hallucinations (Li et al., 2025a), and improve efficiency (Li et al.|
2025b). Interestingly, prior work has shown that in VLMs, visual cues are influenced by language, and
that biases in the model’s response can be steered through simple natural language prompts (Gavrikov
et al.,|2025)). In contrast, we focus on steering latent representations in vision models without any
language input. Recent work has demonstrated that sparse representations can improve interpretability
and disentanglement in steering directions (Bayat et al.} 2025; Makelov, [2024)). Unlike these methods,
which rely on supervised contrastive examples or training data, our approach discovers meaningful
sparse directions in vision models without requiring labeled positive/negative concept pairs, making
it more adaptable to general visual representations.
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3 METHOD

3.1 PRELIMINARIES

Sparse Autoencoder (SAE). A SAE consists of an encoder-decoder pair that maps an input vector
x into a latent representation z, then reconstructs « from z. Formally, we define the encoder as:
z = ReLU(Wenc (€ — bpre) + benc ), Where Wey,. € R"™* is the encoder weight matrix, b, € R”
is a bias term, and by, € R? normalizes the input. The decoder then reconstructs  using a decoder
weight matrix , as & = Wec 2 + bpre . To enforce sparsity, £; norm with strength « is introduced as
the regularization term, and the intact optimization objective becomes Lsag = ||x — &||3 + a||z||:-
In practice, instead of relying on ¢; regularization, top-k Sparse Autoencoder (Gao et al., [2024)
explicitly enforces the sparsity by using a top-k selection mechanism: z = TopK(Wenc ( — bpre)),
where TopK(-) operator retains only the & highest-magnitude activations and zeroes out the rest. This
modification ensures that only a fixed number of latent dimensions contribute to the reconstructed
representation, making the extracted features more interpretable.

3.2 VISUAL SPARSE STEERING

Visual Sparse Steering (VS2) is a lightweight, label-free, test-time method that guides vision models
using steering vectors derived from sparse features learned by top-k Sparse Autoencoders without
requiring contrastive data. We hypothesize that the sparse features in an SAE’s latent space can
capture salient aspects of the input, thereby reducing redundancy. To this end, VS2 constructs a
steering vector by amplifying the SAE’s salient features, reconstructing the corresponding amplified
representation, and subtracting the original reconstruction (without amplification) to minimize the
inherent SAE’s reconstruction errors. The resulting sparse steering vector points in the direction of
the salient features and is linearly combined with the original embedding to steer the model’s behavior.
Unlike common steering vectors, VS2 does not require positive and negative anchor examples; instead,
steering occurs in the direction of the most salient features identified by the SAE.

3.2.1 VS2: VISUAL SPARSE STEERING

Learning latent concept space. Given an input image X € A" and its corresponding embedding
x € R? extracted from layer ¢ of a Vision Foundation Model (VFM), we define a Concept Encoder
E.: R? — RICI that maps the embedding x into a sparse feature activation vector: ¢ = E,(x) =
(¢1,...,¢|c)). By imposing sparsity constraints described in Sec. on the feature activations, the
encoder E, is encouraged to identify disentangled, semantically meaningful features. To map the
features into the original representation space, we define a Concept Decoder D,.: RI®l — R? that
reconstructs the original embedding from these features: £ = D.(c). Since explicit supervision for
feature identification is typically unavailable, we train the encoder-decoder pair jointly on training data
X, enforcing both sparsity and accurate embedding reconstruction to implicitly uncover meaningful
features.

Constructing steering vector. At inference time, emerged sparse features are assumed semantically
significant and critical for downstream tasks, and we enhance them via a Concept Upweighting
Function U : RI®l — RI®l| In implementation, we simply scale the original feature activations ¢
by a factor of v to amplify their effects: ¢/ = U(c¢) = v x ¢. Reconstructing this modified feature
vector ¢’ provides a conceptually steered embedding: &' = D.(c’). Since reconstruction steps
inherently introduce approximation errors, we define the steering vector v as: v = &’ — &. which
explicitly represents the semantic shift induced by upweighting and aims to mitigate the effects of the
reconstruction errors.

Steer the target emebedding. Obtaining the steering vector v that aims to amplify the latent features
embedded in x, we shift the original embedding by adding the steering vector back as: £ = « + A v.
where ) is a hyperparameter that controls the magnitude of steering. To stabilize the representation,

we further rescale the ¢5 norm of the steered embedding to its original scale: & = ml:ﬁ!z . Intuitively,
this procedure precisely moves the embedding « along directions defined by semantically relevant,
salient features, thus enhancing robustness against spurious correlations. We refer Fig. [I] (left) for a

schematic overview of VS2.
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3.2.2 VS2Tt: VISUAL SPARSE STEERING WITH UNLABELED DATA

In VS2, we leverage the learned SAEs to identify the most salient features for a given latent
representation, but treat all identified features equally important by equally amplifying them. In
vision models, there are potentially many redundant features, e.g., when predicting labels, we want
to ignore background features such as the sky. To selectively amplify only important features more
robustly and non-uniformly, we relax the problem, allowing the existence of an unlabeled external
vision corpus, and propose VS21 that leverages this additional unlabeled data to construct steering
vectors. For a given target image, VS27 retrieves the Top-N most similar visual embeddings and
constructs positive and negative groups according to generated pseudo labels. The VS2++ Steering
Vector is then constructed via subtracting the average SAE features of the negative group from the
positive group. Intuitively, VS2* T amplifies the SAE features most relevant for distinguishing the
positive and negative groups.

Constructing Contrastive Groups. Given a query embedding x, and an unlabeled dataset of
embeddings {z;}},, VS2T first retrieve the set of N nearest neighbors Ny (z,) for a query
embedding x, is defined as:

Nn(zy) = argmax S(zg,x;), (1)

Ny (z)|=N

where S(,) denotes the measurement of cosine similarity. After retrieving Ny (z,), we obtain
the pseudo-label for the query embedding §, = argmax, P(y | z,), where P(y | x) is the
classifier’s predicted probability for label y. Similarly, for each neighbor ; € Ny (x,), we compute
its pseudo-label: §; = argmax, P(y | «;). We then construct the positive group, ST (), by
selecting neighbors sharing the same pseudo-label as the query embedding: S*(xz,) = {z; €
Nn(zq) | Ui = yq}- Likewise, the negative group, S~ (x4 ), is formed by the remaining neighbors:

S7(xg) = Nn(=g) \ ST(zy).

Selective Steering. For each embedding x; € S*(x,), VS2" 7 first obtains the steering vectors as
in VS2 acquiring a directional vector v that underscores the underlying features within the given
embedding. We repeat the same procedure for each ; € S~ (x,) to obtain the negative steering
vectors v'. We then average these per-embedding steering vectors within each group, yielding the
positive anchor

1
= Yl )
’S'*‘(asq)‘ 2C6F (o)
and the negative anchor
1
v = vl 3)
e 2,

Finally, we obtain the contrastive steering vector by subtracting the negative anchor from the positive
anchor: v = o — ", and apply it to the query embedding x, in the same manner as VS2:

. . Zq - |z
Ty = xg + Av, Ty = q|§3|”2‘1”2
q

“
This selective scheme thus anchors the steering directions in features consistently activated within the
positive group, while suppressing undesired features highlighted by the negative group. Since VS2++
retrieves N-nearest embeddings of a query to construct both positive and negative groups, negative
group contains non-trivial hard cases. We refer Fig. E] (right) for a schematic overview of VS2++.

4 EXPERIMENTS

We evaluate VS2 and VS2*++ on three datasets: CIFAR-100 (Krizhevsky et al., 2009), Tiny-
ImageNet (Le & Yang] 2015), and CUB-200 (Wah et al., |2011)), covering standard, complex, and
fine-grained classification tasks. For the vision foundation model, we use CLIP (Radford et al.,
2021b)) with ViT-B/32, and ViT-B/16 backbones. Our goal is to investigate the effectiveness of Sparse
Autoencoders (SAEs) for constructing steering vectors. In Sections {f.T|and[4.2] we focus on the case
where the SAE can faithfully reconstruct the test inputs. To this end, we train top-k SAEs on CLS
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Table 1: Benchmarking Visual Sparse Steering: Zero-Shot Accuracy (%) with and without External
Data on CIFAR-100, CUB-200, and Tiny Imagenet using ViT-B/32 and ViT-B/16.

CIFAR-100 CUB-200 Tiny-IN
Method ViT-B/32 ViT-B/16 ViT-B/32 ViT-B/16 ViT-B/32 ViT-B/16
Label-free, unsupervised, test-time steering
CLIPzs 61.07(0) 63.96(0) 51.76(0) 55.06(0) 56.64(0) 61.08(0)
SAEf:c 58.01(-3.06) 64.05(+0.09) 47.45(-4.31) 51.81(-3.25) 30.56(-26.08) 52.96(-8.12)
SAEﬁEC 58.22(-2.85) 63.42(-0.54) 48.08(-3.68) 51.43(-3.63) 36.33(-20.31) 54.84(-6.24)
SAEEES’ 62.69 (+1.62) 66.81(+2.85) 49.41(-2.35) 53.28(-1.78) 39.49(-17.15) 58.81(-2.27)
VS2 (ours) 64.52(+3.45) 68.08(+4.12) 52.69(+0.93) 56.14(+1.08) 58.14(+1.50) 62.92(+1.84)
RAG-enhanced (oracle unlabeled external data)

Weighted RAG 7643 (+15.36) 69.78 (+5.82) 58.32(+6.56) 60.65(+5.59) 72.53(+15.89) 67.84(+6.75)
CLIP Steering Vector 81.85(+20.78) 84.12(+20.16) 56.42(+4.66) 61.51(+6.45) 80.38 (+23.74) 84.07 (+22.99)
VS2++ 81.95(+20.88) 85.40(+21.44) 58.84 (+7.08) 61.91(+6.85) 73.27(+16.63) 81.55(+20.47)

RAG-enhanced (non-oracle unlabeled external data)

CLIP Steering Vector 77.22(+16.15) 78.97(+15.01) 47.89(-3.87) 53.95(-1.11) 74.06(+17.42) 76.79(+15.71)
VS2++ 77.11(+16.04) 79.14(+15.18) 52.81(+1.05) 57.02(+1.96) 72.12(+15.48) 76.92(+15.84)

token embeddings extracted from each layer of CLIP’s vision transformer, using the training split of
each dataset to learn sparse latent representations (unsupervised in-domain data). Additional training
details are provided in Appendix [C| In Section[4.4] we relax this assumption by training a single,
more general SAE across all train datasets, including both general and fine-grained tasks, to better
approximate a real-world deployment scenario and evaluate how VS2 can avoid harmful steering
when test samples cannot be faithfully reconstructed. This capability is novel compared to common
steering vector techniques.

4.1 VS2: VISUAL SPARSE STEERING WITHOUT CONTRASTIVE DATA

Baselines. We evaluate the effectiveness of VS2 on downstream classification tasks. As baselines,
we report: (1) the zero-shot performance of the original CLIP model (CLIPzs); (2) CLIPEEC, which
uses the SAE-reconstructed CLS token from the final layer without steering; and (3) CLIPggc, which
uses reconstructed CLS tokens from all layers. These isolate the effect of reconstruction alone, with
no steering applied. All top-k SAEs are trained on CLS token activations across all transformer layers.
We also include SAEEEJ , which applies a fixed scaling (7 = 1.5) to the top-k sparse features before
reconstructing the final-layer CLS token, isolating the impact of latent amplification. Appendix [G|
provides pseudocode comparing these baselines to VS2. Additional comparisons with Splice (Bhalla
et al., [2024), which uses an external vocabulary to define latent features (unlike our unsupervised
SAESs), are included in Appendix [H} VS2 steering is applied to the CLS token at the final layer of the
vision encoder. Appendix [E] provides further analysis of VS2 steering across layers.

Results. From Table[I] we demonstrate that using only SAE reconstructions generally reduces
zero-shot performance in all datasets; we hypothesize this is due to reconstruction errors in SAEs
(Engels et al.} 2025). However, when SAE features are amplified in the reconstruction, performance
can improve, as demonstrated by SAEEJEFg for CIFAR-100. Specifically, SAEEJE’g outperforms the
zero-shot baseline on CIFAR-100 by 1.62% and 2.85% using the ViT-B/32 and ViT-B/16 backbones
respectively. However, SAEﬁEg is worse than the CLIP baseline on CUB-200 and Tiny-ImageNet. In
contrast, our method VS2 consistently outperforms all baseline methods across all datasets and
ViT backbones, surpassing zero-shot CLIP by 3.45% and 4.12% on CIFAR-100, 0.93% and 1.08%
on CUB-200, and 1.50% and 1.84% on Tiny-ImageNet with ViT-B/32 and ViT-B/16 backbones,
respectively. In summary, we demonstrate that our proposed steering vectors using SAEs can
improve downstream classification performance on vision tasks without relying on any external
data or supervision. Although our focus is on how to effectively steer SAEs, we also provide some
evidence in Appendix [A] that the sparse features appear to capture subtle class-specific attributes and
concepts, such as birds with gray upperparts, white underparts, a white-colored throat, and black eyes.
Finally, in Table[2] and in more detail in Appendix [B] we present a sensitivity analysis of the VS2
hyperparameters  and A\, demonstrating the robustness of our proposed methods.
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Figure 2: Sensitivity of VS2 to sparse amplification v and steering magnitude ). All three datasets
show a range of near-optimal combinations (warm colours), typically when A - v € [2, 3].

4.2 VS2*t*: VISUAL SPARSE STEERING WITH SELECTIVELY AMPLIFYING FEATURES

In contrast to VS2, which amplifies the salient SAE features equally, VS2*+ serves as a method to
selectively amplify or suppress features non-uniformly. To achieve this, we relax the experimental
setup by allowing the use of external data, i.e., data from the training set of each dataset, to guide
steering more selectively. As a proxy for identifying salient features, we adopt a Retrieval-Augmented
Generation (RAG) approach: we retrieve the top-50 most similar training images to the test input
using DINOV2 (Oquab et al} 2023)) and average their sparse activations. To construct the positive
and negative sets, we assign pseudolabels using a CLIP classifier; images with the most frequent
pseudolabel form the positive set, while the remaining images serve as negatives. This setup
corresponds to the non-oracle data in Table[I] For comparison, we also report an ideal scenario that
serves as an upper-bound, i.e., an oracle setting that uses ground-truth labels of the retrieved images
to define positives and negatives. As a baseline, we use the Retrieval-Augmented Generation (RAG)
pipeline 2020), by combining the test query embedding with a weighted aggregation of
retrieved image embeddings. Additional details on the weighting strategy are provided in Appendix D}
We also include a non-SAE variant that constructs a steering vector by averaging the CLIP embeddings
of the positive and negative sets and taking their difference, yielding a purely contrastive direction
without relying on Sparse Autoencoders.

Results. In Table [I| we present the results for VS2** when external data is available under
both settings, where we have oracle and non-oracle data. When oracle positive/negative sets are
available, we observe that VS2* surpasses all other methods under almost every setting. Weighted
RAG performs worse than the steering vector approaches (both CLIP and VS2++), suggesting that
directionality is more informative than proximity. In the more realistic scenario of non-oracle positive
and negative sets, we observe drops in accuracy. We hypothesize that this degradation is due to
inaccuracies in pseudolabeling, resulting in the amplification of spurious directions in the SAE latent
space. Across the six configurations, VS2T outperforms the CLIP Steering Vector in four cases
and falls behind only in the ViT-B/32 runs for CIFAR-100 and Tiny-ImageNet (with CIFAR-100
essentially on par). These results suggest that there remains significant room for improvement in
actively selecting which sparse features to steer, especially under noisy or weakly supervised retrieval
scenarios. In Appendix[I] we conduct ablation studies on the top-N retrieved images that indicate
that the utility of neighbor-based aggregation is dataset-dependent: general object recognition tasks
may benefit from larger N, while fine-grained classification may require retrieving fewer samples to
avoid introducing noise from visually similar but irrelevant examples.

4.3  FINE-GRAINED PER-CLASS ACCURACY ANALYSIS

To investigate which classes Visual Sparse Steering helps most, we compute per-class top-1 accuracy
on CIFAR-100 with a ViT-B/32 backbone and report the ten largest improvements in Table 2]
The results reveal a long-tailed pattern: VS2 lifts accuracy by up to 25 % in individual classes
(e.g., lawn-mower — tractor, pine-tree — forest), while VS27 reaches gains of 38 % when
high-quality neighbors are available (e.g., bee — spider, lion — tiger, whale — flatfish). In all
cases, the corrected predictions involve visually or taxonomically proximate categories, suggesting
that sparse steering helps refine decision boundaries between semantically similar classes. This
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Table 2: Top-10 class gains on CIFAR-100. Top-1 accuracy; green = gain over CLIP Zero-shot.

(a) VS2 (b) VS2++

Class ZS VS2(+A) Mislabel Why visually confusing Class ZS  VS2++ (+A) Mislabel Why visually confusing

tractor 550 80.01(+250) lawn.mower Both are wheeled agricultural ma-  spider 53.0 91.0 (+38.0) bee Small multi-legged insects; dark radial
chines; similar viewed side-on. silhouettes.

forest 35.0 58.01(+23.0) pine_tree Dense tree canopies often dominated by tiger 48.0  84.0 1(+36.0)  lion Large orange/brown big cats; stripes vs.
tall conifers. mane often unclear at low resolution.

man 53.0 74.0 1(+21.0) boy Male human silhouette; age difference flatfish 49.0  85.0 1(+36.0) whale Flattened marine shapes against blue
subtle at CIFAR resolution. water backgrounds.

bus 51.0 68.01(+17.0) pickup_truck Rectangular vehicle profile with win-  possum 30.0 65.01(+35.0) hamster Small brown furry mammals with
dows and wheels. rounded bodies.

snake 61.0 76.0 1(+15.00 worm Long, legless bodies with smooth tex- lizard 39.0 74.0 1(+350) snake Slender reptiles; legs on lizard hard to
tures. spot in 32 x 32 images.

woman 57.0 71.0 f+14.0) girl Female human figures; height/size cues sweet_pepper 58.0  92.0 1(+340) orange Round orange-coloured produce with
are small. glossy skins.

trout 18.0 32.0 1(+14.0) aquarium_fish Similar fish shape and reflective scales raccoon 49.0 83.0 7(+34.0)  skunk Mid-sized nocturnal mammals with
in water scenes. dark fur and contrasting markings.

cockroach 49.0  62.0 1(+13.0) beetle Small, dark exoskeleton insects with shrew 46.0  79.0 1(+33.0)  skunk Small ground mammals; dark elongated
segmented bodies. silhouettes blur distinguishing cues.

bridge 720 83.01(+11.0) sea Large spans photographed above wide snail 53.0 86.0 1(+33.0) mushroom Brown dome (shell vs. cap) resting on
blue water areas. the forest floor.

rose 58.0 68.0 1(+10.0) poppy Red, multi-petal flowers with central  beetle 49.0 82.0 1(+33.0) cockroach Dark, shiny exoskeletal insects with
dark core. similar body shapes.

observation is consistent with the qualitative examples shown in Appendix [A.2] where the top-k SAE
features appear to highlight subtle, class-relevant attributes such as gray upperparts, white underparts,
a white-colored throat, and black eyes in bird images. A more detailed list of per-class performance
accuracies of VS2 and VS2* is provided in Table in Appendix m

4.4 SAES AS A RELIABILITY DIAGNOSTIC FOR SAFE VISUAL SPARSE STEERING

Our approach is based on the hypothesis that a general-purpose, foundational Sparse Autoencoder
(SAE) is available and capable of modeling the input data distribution. To approximate this condition
in practice, we train SAEs using the in-domain training split of each dataset. This assumption allows
us to isolate and investigate the effectiveness of sparsity-guided steering vectors in modulating the
classification behavior of CLIP’s vision transformer.

The effectiveness of our method, though, depends on the quality of the sparse features, and thus
on the fidelity of the underlying SAE. In practice, constructing a universal, high-fidelity SAE that
generalizes across diverse distributions is a challenging and ongoing research problem. As a result,
when test-time data is out of the SAE’s learned distribution (OOD), the extracted sparse features may
be unreliable, potentially leading to harmful steering. This raises an important practical question:
How can we mitigate the impact of suboptimal steering when the SAE cannot faithfully reconstruct
the input? To approximate a more realistic setting, we trained a more generalizable SAE by jointly
using the union of the unlabeled training splits of CIFAR-100, CUB-200, and Tiny-ImageNet, instead
of training a separate SAE per dataset. We then evaluate this single SAE per dataset, reporting FVU
reconstruction and top-1 classification accuracy. The results are presented in Table 3] We observe
that, on CIFAR-100 and Tiny-ImageNet, the generalized SAE yields strong accuracy gains over
the zero-shot baseline, demonstrating that our approach can remain effective even when the SAE
is trained on a more general input distribution. However, this does not hold for CUB-200, where
performance drops below the baseline. Notably, this degradation coincides with a significantly higher
reconstruction loss on CUB-200, compared to the other two datasets. FVU > 1 indicates that the
model performs worse than simply predicting the mean of the target variable.

These results highlight that the effectiveness of sparse steering depends strongly on the SAE’s
reconstruction quality. Specifically, VS2 consistently outperforms the baseline on datasets with low
FVU (CIFAR-100 and Tiny-ImageNet), but underperforms on CUB-200, where the SAE fails to
accurately reconstruct the encoder activations. This leads to a key practical insight: reconstruction
loss can be used as a test-time diagnostic to estimate whether steering is likely to be beneficial, an
ability notably absent in conventional steering-vector methods, which lack any built-in signal of
reliability. When the reconstruction loss of a test-time input is high, a simple fallback to the baseline
representation may yield better results.



Under review as a conference paper at ICLR 2026

Table 3: Reconstruction and classification with a generalized SAE. We report top-1 accuracy (%)
with corresponding reconstruction error FVU in parentheses.

CIFAR-100 CUB-200 Tiny-IN
Method B/32 B/16 B/32 B/16 B/32 B/16
Baseline  61.07 () 63.96 () 51.76 () 55.06 () 56.64 () 61.08 ()
VS2 64.63 (0.216) 68.22(0.208)  48.81 (1.931) 49.22(1.930)  59.73(0.448) 63.83 (0.437)

5 DISCUSSION AND FUTURE WORK

We introduced VS2, a lightweight, label-free test-time method that steers vision models using steering
vectors derived from sparse features learned by top-k Sparse Autoencoders (SAEs), without requiring
contrastive data as in conventional steering vectors. Our working hypothesis is that SAEs, trained with
a self-reconstruction objective, identify salient features; by amplifying these features and forming a
sparse steering vector that points toward their direction, VS2 improves classification performance at
inference time. This work contributes to the limited literature on effective downstream use of SAEs.

The effectiveness of VS2 depends on SAE fidelity: poor reconstructions yield unreliable sparse fea-
tures and may lead to harmful steering. While our method assumes a foundational SAE that captures
the data distribution, test-time inputs may be out-of-distribution. VS2 leverages reconstruction error
as a built-in diagnostic which is absent compared to common steering vectors; high error triggers
a safe fallback to the zero-shot prediction. One promising research direction includes adapting the
SAE per instance at test time via lightweight self-reconstruction to reduce error, improve the salient
features, and therefore steering effectiveness.

Diving deeper into why SAEs are effective, we observe an important nuance: features learned for
the autoencoding objective are not necessarily relevant for downstream classification. This helps
explain why VS2 performs well on general-domain datasets (e.g., CIFAR-100) but is less effective on
fine-grained datasets (e.g., CUB-200). A promising direction is to develop SAEs that learn features at
multiple levels of granularity, such as Matryoshka SAEs (Bussmann et al.,|[2025; [Zaigrajew et al.,
2025)), allowing sparse representations at multiple levels.

Most importantly, we identify a central insight: the SAE objective surfaces sparse features for
reconstruction, but the features most relevant for a downstream task may differ and are not known
a priori. In our current setup, the same SAE activations are produced regardless of the task, while
feature relevance is inherently task-dependent. This gap between reconstruction saliency and task
saliency motivates future work on task-aligned steering, i.e., constructing steering vectors that
align with truly task-salient features. An initial step in this direction appears in the Appendix [K]|
with Prototype-Alignment Sparse Steering, inspired by prototype theory (Roschl [1973)), thereby
highlighting a promising approach to align SAE-based features with downstream task relevance.

6 CONCLUSION

We introduce Visual Sparse Steering VS2 and its retrieval-augmented variant VS2*+, two test-
time methods that steer vision foundation models using sparse features obtained from top-k Sparse
Autoencoders without requiring contrastive data. Specifically, VS2 consistently outperforms all
baseline methods across all datasets and ViT backbones, surpassing zero-shot CLIP by 3.45% and
4.12% on CIFAR-100, 0.93% and 1.08% on CUB-200, and 1.50% and 1.84% on Tiny-ImageNet with
ViT-B/32 and ViT-B/16 backbones, respectively. To control concept importance more precisely, we
propose VS21+. With oracle positive/negative sets, VS2T surpasses every baseline in nearly every
configuration, achieving absolute top-1 gains over CLIP zero-shot of up to 21.44% on CIFAR-100,
7.08% on CUB-200, and 20.47% on Tiny-ImageNet. When those sets are noisy, its accuracy drops
but still surpasses the standard Steering Vector in most cases, highlighting the need for better feature
selection under weakly supervised retrieval. Interestingly, VS2 and VS27 ™ raise per-class accuracy
by up to 25% and 38%, respectively, showing that sparse steering benefits visually or taxonomically
proximate classes. Finally, VS2 includes a built-in reliability diagnostic based on SAE reconstruction
loss, which can signal when steering may underperform and safely trigger fallback to the baseline.
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Reproducibility Statement. We reference all details needed to reproduce our results in the paper
and appendix. Visual Sparse Steering pseudocode is provided in Appendix [G] and training details for
top-k Sparse Autoencoders (objectives, hyperparameters, and optimization settings) are in Appendix
E} Datasets, zero-shot CLIP backbones, and evaluation metrics are specified in the main text, with
hyperparameter sweeps and additional ablations (e.g., sensitivity to A, v and layer-wise CLS steering
in Appendices [B] and[E]respectively) reported in the main paper and appendix.
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APPENDIX

A DECODING THE SPARSE LATENT SPACE: INSIGHTS FROM SAES

Our proposed methods achieve significant classification performance gains, primarily due to the
contribution of Sparse Autoencoders (SAEs). We hypothesize that SAEs identify meaningful sparse
features, which in turn guide the steering mechanisms. To validate this assumption, we conduct both
quantitative and qualitative evaluations to assess the significance of the learned features.

A.1 QUANTITATIVE EVALUATION OF FEATURE SIGNIFICANCE

To evaluate the role of sparse features, we manipulate the top-k most active latent features extracted
via Sparse Autoencoders. This experiment examines whether these features are critical for classifi-
cation and how model predictions change under different modifications. We explore the following
manipulation settings:

1. Zeroing-Out (v = 0): We set the top-k most active features to zero before applying the
steering vector. This removes their influence while preserving the remaining latent structure.

2. Negation (v = —1): We invert the sign of the top-£ features before applying the steering
vector, effectively pushing the representation in the opposite direction. This tests whether
these dimensions encode class-discriminative information.

Tablereports the zero-shot classification accuracy of SAEEEg using ViT-B/32 after applying these
transformations to the Sparse Steering vector intervention. We observe that negating or zeroing
the top-% most important features consistently degrades performance across all datasets. This
result confirms that the features learned by the Sparse Autoencoders are essential for classification.

Table 4: Effect of manipulating top-% sparse codes. Zero-shot accuracy (%) drops sharply when

dominant sparse features are zeroed (y = 0) or negated (y = —1), confirming their importance.
Modification CIFAR-100 CUB-200 Tiny-IN
CLIPzs 61.07 38.68 56.64
SAELY 62.69 37.30 39.49
+ Zero-out (v = 0) 1.71 1.14 16.11
+ Negate (v = —1) 0.06 0.00 0.82

A.2 QUALITATIVE EVALUATION OF FEATURES SIGNIFICANCE

We qualitatively investigate the features learned in the sparse latent representations of the top-k
activations in the Sparse Autoencoder (SAE). Specifically, we assess the learned features by analyzing
feature activations for each input and identifying the inputs that exhibit the highest activations for
a given feature. Unlike mechanistic interpretability in the language domain, where an LLM can be
used to assign semantic labels to a feature by summarizing its highly activated inputs, the vision
domain lacks an equivalent automated labeling process.

To avoid reliance on human qualitative evaluation, we leverage annotated datasets where each image
is associated with predefined attributes. For the qualitative evaluation of feature significance, we
use the CUB dataset, which provides rich concept annotations for each image, enabling a structured
assessment of the learned representations. Specifically, we investigate whether we can identify
specific latent features with the highest concept coverage among their top-k most activated images.
Concept coverage refers to how consistently a specific interpretable concept (e.g., an identifiable
object category, attribute, or semantic idea) appears across a set of highly activated examples for
a given SAE dimension. The intuition is that if a specific concept frequently emerges among the
top-activating images for a particular feature, that feature is strongly associated with that concept.

For feature 511 as shown in Figure E] (left), the activated images exhibit consistent semantic char-
acteristics, including a gray upper part and a white underpart. Notably, this feature predominantly
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activates for images from similar but different classes, specifically different types of Gulls, such as
Western, California, Herring, and Slaty-Backed Gulls. We observe that the top-activating images for
these classes share all concepts in common which is not the case with dimension 3067. For feature
3067, as shown in Figure 3] (right) we observe that the top-activating images share common visual
attributes, such as a white-colored throat and black eyes. Through human qualitative evaluation,
we find that features in the sparse latent space capture meaningful visual concepts, grouping
semantically similar images together, either from the same class or across different classes, as
long as they share underlying conceptual similarities.

Figure 3: Concept coverage analysis of learned sparse latent features in the Sparse Autoencoder (SAE).
Each subfigure illustrates the top-activating images for two different SAE dimensions, highlighting
the consistency of shared visual concepts among the highest-activated examples. The analysis
demonstrates how sparse features capture meaningful semantic attributes, grouping semantically
similar images either within or across classes. Left: Top-activating images for feature 511. The
images predominantly belong to different classes of Gulls (e.g., Western, California, Herring, and
Slaty-Backed Gulls), yet they share consistent visual characteristics such as a gray upper part and a
white underpart. This suggests that feature 511 captures a semantically meaningful concept spanning
multiple related categories. Right: Top-activating images for feature 3067. The images share distinct
visual attributes, including a white-colored throat and black eyes. However, unlike feature 511, these
images belong to more diverse categories, indicating that this latent dimension captures a broader
concept that generalizes across different classes.

B SENSITIVITY TO SPARSE AMPLIFICATION (77) AND STEERING MAGNITUDE
(A

We analyze how the two key hyperparameters in VS2 (i) the sparse-feature amplification v, and (ii)
the steering vector scale A affect downstream accuracy. In the absence of contrastive supervision,
these parameters govern how strongly we amplify sparse activations and how far the embedding is
shifted in feature space. We sweep both values across a grid on three datasets: CIFAR-100, CUB-200,
and Tiny-ImageNet using ViT-B/32 backbone.

Figure shows that all tested combinations of (\,~y) outperform the zero-shot baseline, though to
varying degrees. Each dataset exhibits a diagonal band of near-optimal settings where A - v € [2, 3]
tends to yield peak accuracy. For example, CIFAR-100 peaks at A* = 2.1 and v* = 1.5. Beyond
this band, increasing \ or v causes performance to degrade likely due to over-amplification of sparse
features and/or embedding distortion. The consistent contour patterns across datasets suggest that
VS2 is robust to moderate variation in its hyperparameters and that good settings generalize well
across domains.

C TRAINING TOP-k SPARSE AUTOENCODERS

We follow CLIP (Radford et al., | 2021b) with a ViT-B/32 and ViT-B/16 vision backbones, intercepting
the output of each encoder layer for the C'LS token. Specifically, we train top-k SAEs on the C'LS
embeddings for each chosen layer. We use k = 64 and k = 256 as the maximum active features
within the latent space for ViT-B/32 and ViT-B/16 respectively, and we set a “dead feature” threshold
of 100 i.e., any feature seldom activated is pruned. We also use an expansion factor of 4 relative to
the input embedding dimension, resulting in 3,072 latent units. Training largely follows|Gao et al.
(2024) and uses [EleutherAl| (2024), with a linear learning-rate schedule and warmup from 5 x 10~
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VS2 Top-1 Accuracy Heatmap on CUB-200 VS2 Top-1 Accuracy Heatmap on Tiny Imagenet
VS2 Top-1 Accuracy Heatmap on CIFAR-100 R o P y P P 3 P Yy L] s
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Steering Vector Magnitude A Steering Vector Magnitude A Steering Vector Magnitude A

(a) CIFAR-100 (b) CUB-200 (c) Tiny-ImageNet

Figure 4: Sensitivity of VS2 to sparse amplification v and steering magnitude ). All three datasets
show a range of near-optimal combinations (warm colours), typically when X - v € [2, 3]. Accuracy
degrades if either parameter becomes too large.

Table 5: Fraction of variance unexplained (FVU; lower is better). Each SAE has 4x expansion;
sparsity k = 64 for ViT-B/32 and k = 256 for ViT-B/16.

Dataset ViT-B/32 (k=64)  ViT-B/16 (k=256)
CIFAR-100 0.2812 0.1166
CUB-200 0.2487 0.1653
Tiny-ImageNet 0.5060 0.3018

‘We monitor reconstruction quality with the fraction of variance unexplained (FVU; lower is better),

defined as .

_ X=X

- v 9
X = X]|3%

where X € RB*? ig a batch of CLS embeddings, X denotes their SAE reconstructions, and X
is the batch mean (so the denominator equals the total variance). FVU is the complement of the
coefficient of determination (1 — R?); an FVU of 0 indicates perfect reconstruction, while an FVU
of 1 corresponds to predicting only the mean. In Table 5] we report FVU results for ViT-B/32 with
k = 64 and ViT-B/16 with k = 256 across all three datasets.

FVU )

D SENSITIVITY IN RETRIEVAL-AUGMENTED GENERATION (RAG)

When an external image corpus is available, VS2 can be extended using a Retrieval-Augmented
Generation (RAG) pipeline. We use DINOv2 |Oquab et al.| (2023) to retrieve top-k images most
similar to the input query and compute an enhanced embedding by combining the query with the
retrieved set:

k
E:aq—i—(l—a)ijrj,

Jj=1

where q is the query embedding, r; the j-th retrieved embedding, and w; the normalized similarity
weight:
w; = Ijij, where s; = sim(q, ;).
Zi:l 54

The parameter « € [0, 1] controls the trade-off between using the original query and the retrieved
set. We sweep over values of « and k to assess their impact on zero-shot classification performance.
Figure 5] shows results for CIFAR-100, and Tiny-ImageNet. CIFAR-100 and Tiny-ImageNet display
a similar trend: larger « (i.e., more reliance on the query) typically degrades performance. On
Tiny-ImageNet, setting o = 0, completely ignoring the input query and relying purely on retrieved
features, yields the best result. Across all datasets, large k eventually hurts performance, confirming
that RAG benefits from focused rather than broad context. The trade-off parameter o and the retrieval
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(a) CIFAR-100 (b) Tiny-ImageNet

Figure 5: RAG sensitivity to o and top-k. Accuracy varies with the weight « on the original query
and the number £ of retrieved images. Larger k often introduces noise; smaller « performs better on
cluttered datasets.

depth k play dataset-dependent roles in RAG-enhanced pipelines. For fine-grained domains, fewer,
high-confidence neighbors and a low « might work best; for noisy domains, more reliance on the
retrieval images might be more beneficial.

E STEERING ACROSS LAYERS OF THE CLS TOKEN

Our default method reconstructs and applies steering to the CLS token embedding at the final layer of
the vision encoder. To study depth effects, we evaluate steering the CLS token across multiple final
layers of the transformer. We use ViT-B/16 on CIFAR-100 with expansion factor 4 and 128 sparse
activations. Table[6]reports top-1 accuracy when steering the last 1, 2, or 3 layers. Steering only the
final layer yields the best performance. Adding earlier layers causes a progressive drop in accuracy,
falling below the zero-shot baseline when steering the last three layers.

Table 6: Effect of steering depth on CLS. Top-1 accuracy (%) on CIFAR-100 (ViT-B/16) as the
number of steered final layers increases.

Steered Layers Accuracy (%)

12 68.08
11+12 65.72
10+11+12 59.36

Applying steering at multiple layers likely introduces compounding perturbations that propagate
forward, making later representations harder to align with the classifier. CLS steering is most
effective at the final layer. Future work could explore coordinated multi-layer steering to avoid error
accumulation.

F ABLATION STUDY OF EXPANSION FACTOR AND TOP-k

In Table [/} we present the downstream task accuracy of CLIP ViT-B/32 using various values of
expansion factor and k. Across a 4 x range in width and an 8 x range in sparsity, top-1 accuracy
fluctuates by less than one percentage point evidence that VS2’s performance is largely insensitive to
the precise SAE capacity—sparsity trade-off. Additionally, in Table[T3] we present the average cosine
similarities of different steering vectors coming from various configurations of SAEs in terms of
expansion factor and top-k.

G VISUAL SPARSE STEERING PSEUDOCODE

For reproducibility purposes, in Algorithm[I} we provide the pseudocode for the baselines and VS2
used in the analysis of
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Table 7: VS2 accuracy as a function of SAE width (expansion factor) and sparsity (top-k).
Numbers are top-1/ top-5 (%). The best result is boldfaced; every other configuration is within of the
optimum, highlighting the method’s robustness to architectural choices.

SAE configuration Top-1 71 Top-5 1

4 x, k=128 64.61 87.95
8 x, k=128 64.56 87.76
4 x, k=64 64.54 87.79
16 x, k=064 64.54 87.78
8 x, k=64 64.52 87.96
10 x, k=128 64.43 87.81
16 x, k=512 64.42 87.71
8 x, k=512 64.40 87.91
4 x, k=256 64.34 87.62
8 x, k=256 64.29 87.80
16 X, k=256 64.28 87.75
4 x, k=512 64.12 87.87
16 x, k=128 64.10 87.79

Algorithm 1 SAE_STEERING — SAE-based CLS token modification

1: function SAE_STEERING(h, SAE, k,~v, Aa,, mode) > h: CLS token; SAE: sparse autoencoder;
k: sparsity level
: a,idx < SAE.select_topk(SAE.pre_acts(h), k)
Zvase < SAE.decode(a, idx)
Zboost < SAE.decode(y - a, idx)
if mode = "reconstruction" then
return zy,g. > Variant: CLIPEEC
else if mode = "amplified" then
return Zyoost > Variant: CLIPEES
9: else if mode = "steering" then
10: return h + A - (Zboost — Zbase) > VS2
11: end if
12: end function

AN A

H COMPARISON WITH OTHER BASELINE METHODS

We compare VS2 against SpLiCE (Bhalla et al.| [2024), using the official implementation provided by
the authors. For all three datasets, we report performance using SpLiCE with an external vocabulary
of 10,000 LAION-based concepts and an ¢; regularization weight of 0.25, following their best
reported configuration. Despite relying on no external vocabulary, VS2 consistently outperforms
SpLiCE across all benchmarks highlighting the strength of sparse concept steering even in the absence
of external lexical resources.

Table 8: Zero-shot top-1 accuracy (%) on CIFAR-100.

Method ViT-B/32 ViT-B/16

CLIPs 61.07(0) 63.96(0)

SAES:c 58.01(-3.06) 64.05(+0.09)
SAER. 58.22(-2.85) 63.42(-0.54)
SAERY 62.69 (+1.62) 66.81(+2.85)
SpLiCE (Bhalla et al},2024) 55.57 (-5.50) 58.29(-5.67)
VS2 (ours) 64.52(+3.45) 68.08(+4.12)

18



Under review as a conference paper at ICLR 2026

I EFFECT OF TOP-N RETRIEVED NEIGHBORS

To assess the influence of retrieval size on performance, we conduct an ablation over the number of
retrieved neighbors N used for latent aggregation. We use a fixed ViT-B/16 (Patch-16) backbone
and vary N € {10, 25, 50,100} across three datasets: CIFAR-100, CUB-200, and Tiny-ImageNet.
As shown in Figure [6] both top-1 and top-5 classification accuracy steadily increase with N on
CIFAR-100 and Tiny-ImageNet, with diminishing returns beyond N = 50. In contrast, performance
on CUB-200 remains largely flat or slightly degrades, suggesting that retrieving more neighbors in
fine-grained datasets can introduce noise due to overly similar but semantically irrelevant examples.
These results indicate that the utility of neighbor-based aggregation is dataset-dependent: general
object recognition tasks may benefit from larger N, while fine-grained classification may require
more careful control of retrieval scope.

CIFAR-100 CUB-200 Tiny-ImageNet
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Figure 6: Top-1 and Top-5 accuracy as a function of number of retrieved neighbors N, using ViT-B/16

(Patch-16) across datasets. Larger N improves general classification but may degrade performance in
fine-grained settings.

J PER-CLASS PERFORMANCE ANALYSIS ON CIFAR-100

In Table@ we present results for the classes most affected by steering CLIP ViT-B/32 with VS2
and VS27 7. We highlight both positive and negative shifts in accuracy to identify the most impacted
categories. Unlike the average performance reported in the main experiments, this analysis shows that
the top-10 class-level gains are generally larger in magnitude than the corresponding losses. Although
the accuracy drops for misclassified categories are smaller in magnitude, they are non-negligible. As
future work, it would be valuable to explore when steering should be applied or withheld to further
maximize overall performance gains.

K PROTOTYPE-AWARE SPARSE STEERING VECTORS

Our core methods, VS2 and its retrieval-augmented variant VS2++, enhance zero-shot classification
by steering CLIP embeddings along directions identified by a top-k Sparse Autoencoder (SAE). These
directions correspond to latent features that, ideally, align with class-discriminative concepts. Steering
in these directions upweights what the model has learned to be important during reconstruction. This
raises a central hypothesis: the reconstruction task itself is to some extent sufficient to uncover
features that are also relevant for classification. In other words, there is a meaningful overlap
between features that are important for reconstructing the CLS token and those that are predictive
for the downstream task. In this section, drawing inspiration from prototype theory (Roschl|1973)),
we investigate whether incorporating prototype information during SAE training can better align the
features important for reconstruction with those that are critical for downstream classification.

The limited improvements observed on fine-grained datasets like CUB-200 and Tiny-ImageNet
suggest that the challenge lies not just in identifying sparse features, but in uncovering the correct
ones. This shifts the central question from “What are the most important sparse features to select?”
to a deeper inquiry: “Can the reconstruction objective alone reliably capture features that are most
useful for classification and if not, how can task-relevant information be effectively incorporated?”
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Table 9: Benchmarking Visual Sparse Steering: Zero-Shot Accuracy (%) with and Without External
Data on CIFAR-100, CUB-200, and Tiny Imagenet using ViT-B/32 and ViT-B/16.

CIFAR-100 CUB-200 Tiny-IN
Method ViT-B/32 ViT-B/16 ViT-B/32 ViT-B/16 ViT-B/32 ViT-B/16
Zero-shot (no retrieval)
CLIPzs 61.07(0) 63.96(0) 51.76 (0) 55.06(0) 56.64(0) 61.08(0)
SAEQEC 58.01(-3.06) 64.05(+0.09) 47.45(-4.31) 51.81(-3.25) 30.56(-26.08) 52.96(-8.12)
SAEﬁEC 58.22(-2.85) 63.42(-0.54) 48.08(-3.68) 51.43(-3.63) 36.33(-20.31) 54.84(-6.24)
SAEﬁEg 62.69 (+1.62) 66.81(+2.85) 49.41(-2.35) 53.28(-1.78) 39.49(-17.15) 58.81(-2.27)
VS2 (ours) 64.52 (+3.45) 68.08 (+4.12) 52.69(+0.93) 56.14(+1.08) 58.14(+1.50) 62.92(+1.84)

VS2 + PASS (ours) 70.64 (+9.57) 68.23(+4.27) 52.97(+1.21) 56.63 (+1.57) 57.94(+1.30) 62.98(+1.90)

Oracle steering with known prototypes. Following prototype theory, we collect for every class
the ten images that ViT-B/32 CLIP classifies with the highest confidence; these serve as oracle
prototypes. Given the true class label y, we build a prototype steering vector by averaging their latent
sparse features. VS2 using oracle prototypes can lift CLIP to 97.5% on CIFAR-100, 91.04 %
on CUB-200, and 90.1% on Tiny-ImageNet. This confirms the existence of discriminative sparse
directions. In Appendix [[] we further examine the discriminative ability (measured by orthogonality)
of these steering vectors. Generally, these prototype vectors have a low cosine similarity, yet a
non-negligible tail reveals strongly overlapping directions between visually or semantically close
categories.

Prototype-aligned SAE (PASS). Above, we constructed steering vectors using the pretrained SAE
features of oracle prototypes. Now, we consider whether prototypes can be used to learn new, more
informative SAE features. We assume during SAE training that we have access to class labels. Then,
to the SAE loss we add a regularization term which encourages SAE features to be close to their
class mean. That is, for a training sample 4 with latent sparse feature z; and class mean Zjus(;) We
minimize )

L = Liecon + Waux ||Zi - chass(i) ||25 (6)
where w,yx controls the strength of the prototype-alignment term relative to the reconstruction
loss and is set to 0.8. We refer to the resulting steering method as PASS (Prototype-Aligned
Sparse Steering). Although PASS uses class labels during SAE training, it remains fully test-time
unsupervised. Empirically, in Table[9] we observe that PASS outperforms VS2 across all datasets,
with particularly substantial gains on CIFAR-100. However, this improvement comes at the cost of
requiring labels for each training sample during SAE training. Gains are modest on CUB-200 and
Tiny-ImageNet, and we thus hypothesize that classes which share many features require richer or
multi-prototype guidance which is an intriguing avenue for future work.

Table 10: Trade-off between reconstruction fidelity and prototype alignment. Increasing wgaux
improves classification accuracy but degrades FVU reconstruction.

wax FVU | Accuracy (%) 1

0.1 0.3437 68.80
0.5 0.4887 70.40
1.0 0.5393 70.61

2.0 0.5702 70.76

Reconstruction vs. Alignment Trade-off Sparse Autoencoders (SAEs) trained for reconstruction
can also be optimized to align their latent features with class-level prototypes. However, this
introduces a trade-off between two competing objectives: fidelity of reconstruction and discriminative
alignment.

To investigate this trade-off, we introduce a weighting coefficient w,, that controls the strength of
prototype alignment relative to the reconstruction loss. As wy,y increases, alignment is encouraged
more strongly. Table[I0]reports the resulting changes in reconstruction loss (measured by FVU) and
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top-1 classification accuracy on CIFAR-100 using ViT-B/16, with 128 sparse latents and expansion
factor 4.

We observe that increasing w,,x consistently improves classification performance, up to a point,
even though it introduces more reconstruction error. This aligns with our hypothesis: while exact
input reconstruction encourages general feature coverage, alignment with class prototypes promotes
discriminative feature extraction. These results highlight the flexibility of SAE-based steering to
balance interpretability and performance depending on downstream objectives.

L.  ARE EXEMPLAR-DERIVED DIRECTIONS REALLY DISTINCT?

A desirable property of class—specific steering vectors is orthogonality: pushing an embedding toward
class A should not simultaneously raise its score for class B. Using the oracle prototypes as described
in Appendix Kl we compute for every CIFAR-100 class a prototype steering vector and measure
the pair-wise cosine similarity at layer 11 of the ViT-B/32 encoder. Most pairs have low similarity
(mean=0.23), yet a non-negligible tail reveals strongly overlapping directions. Table|l 1|lists the ten
highest-overlap pairs.

Table 11: Top-10 most overlapping prototype steering directions on CIFAR-100. High cosine
similarity indicates that the two classes share visual attributes that the SAE encodes along nearly the
same latent axis.

Rank  Class 1 Class 2 Cosine 1
1 beetle cockroach 0.91
2 mouse shrew 0.89
3 dolphin  shark 0.84
4 otter seal 0.84
5 dolphin whale 0.84
6 possum  raccoon 0.84
7 snake worm 0.83
8 oak tree  willow tree 0.83
9 ray shark 0.81
10 bowl cup 0.80

These high-overlap pairs are semantically plausible confusions (e.g. beetle vs. cockroach or dolphin
vs. whale), confirming that exemplar steering directions tend to align for visually or taxonomically
proximate classes. In downstream applications, a simple orthogonalization step may help reduce
feature overlap between sparse directions. Investigating principled ways to encourage orthogonality
during SAE training is a promising direction for future work.

M USE OF LLMs

We used Large Language Models (LLMs) to refine the paper text for grammar, syntax, and spelling
errors.
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Table 12: Top-10 class gains and losses on CIFAR-100. Green = absolute gain; Red = absolute loss

relative to ZS baseline.

(a) VS2 - Top-10 Gains

(b) VS2 — Top-10 Losses

Class ZS VS21(n) Class ZS VS2(A)
tractor 0.55 0.80 1(+0.25) aquarium_fish  0.82 0.61 (-0.21)
forest 0.35 0.58 1(+0.23) beetle 0.64 0.49 (-0.15)
man 0.53 0.74 1(+0.21) sweet_pepper  0.70 0.58 (-0.12)
bus 0.51 0.68 1(+0.17) tulip 0.78 0.71 (-0.07)
snake 0.61 0.76 1(+0.15) maple_tree 0.57 0.50 (-0.07)
woman 0.57 0.71 1(+0.14) flatfish 0.55 0.49 (-0.06)
trout 0.18 0.32 1(+0.14) willow_tree 0.46 0.41 (-0.05)
cockroach 0.49 0.62 1(+0.13) lamp 0.75 0.70 (-0.05)
bridge 0.72 0.83 1(+0.11) lawn_mower 1.00 0.96 (-0.04)
rose 0.58 0.68 1(+0.10) kangaroo 0.72 0.68 (-0.04)
(c) VS2++ — Top-10 Gains (d) VS2++ — Top-10 Losses

Class ZS  VS2++ 1(A) Class ZS VS2++ (A)
spider 0.48 0.91 1(+0.43) girl 0.72 0.65 (-0.07)
caterpillar 0.27 0.68 1(+0.41) maple_tree 0.57 0.51 (-0.06)
possum 0.24 0.65 1(+0.41) porcupine 0.18 0.13 (-0.05)
tractor 0.55 0.96 1(+0.41) ray 0.06 0.02 (-0.04)
tiger 0.45 0.84 1(+0.39) mouse 0.18 0.15(-0.03)
raccoon 0.44 0.83 1(+0.39) lawn_mower 1 0.98 (-0.02)
lizard 0.36 0.74 1(+0.38)

wolf 0.54 0.90 1(+0.36)

shrew 0.44 0.79 1(+0.35)

bear 0.51 0.85 1(+0.34)
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