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Abstract

Recent advances in out-of-distribution (OOD) detection on image data show that
pre-trained neural network classifiers can separate in-distribution (ID) from OOD
data well, leveraging the class-discriminative ability of the model itself. Methods
have been proposed that either use logit information directly or that process the
model’s penultimate layer activations. With "WeiPer", we introduce perturbations
of the class projections in the final fully connected layer which creates a richer
representation of the input. We show that this simple trick can improve the OOD
detection performance of a variety of methods and additionally propose a distance-
based method that leverages the properties of the augmented WeiPer space. We
achieve state-of-the-art OOD detection results across multiple benchmarks of
the OpenOOD framework, especially pronounced in difficult settings in which
OOD samples are positioned close to the training set distribution. We support our
findings with theoretical motivations and empirical observations, and run extensive
ablations to provide insights into why WeiPer works. Our code is available at:
https://github.com/mgranz/weiper.

1 Introduction

Out-of-Distribution (OOD) detection has emerged as a pivotal area of machine learning research. It
addresses the challenge of recognizing input data that deviates significantly from the distribution
seen during training. This capability is critical because machine learning models, particularly deep
neural networks, are known to make overconfident and incorrect predictions on such unseen data
Hendrycks & Gimpel (2016). The need for OOD detection is driven by practical considerations. In
real-world applications, a model frequently encounters data that is not represented in its training
set. For instance, in autonomous driving, a system trained in one geographic location might face
drastically different road conditions in another. Without robust OOD detection, these models risk
making unsafe decisions Amodei et al. (2016).

Over the last few years, the field has made significant steps towards setting up benchmarks and open
baseline implementations. Thanks to the efforts of the OpenOOD team Zhang et al. (2023b); Yang
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Figure 1: Why random perturbations? Left: We visualize densities of CIFAR10 (ID, blue) and
CIFAR100 (OOD, red) as contour plots along the two logit dimensions spanned by w0 and w1,
zoomed in on the positive cluster of class zero. The blue axis denotes the vector associated with
that class, and one of its perturbations is depicted by the turquoise line. Right: When projecting the
data onto both vectors, we obtain the densities shown in the top and bottom panel, respectively. The
vertical blue lines mark the 5-percentile (highest 5%) of the true ID data (CIFAR10, blue). At this
decision boundary, the classifier would produce false positives in the marked dashed red tail area.
A single perturbation of the class-associated vector yields already a reduction of the false positive
rate (FPR) from 1.34% to 0.79%. Visually, we confirm that OOD data mostly resides close to 0,
extending into the positive cluster in a particular conical shape, which is exploited by the cone of
WeiPer vectors.

et al. (2022), we can evaluate new methods across CIFAR10, CIFAR100 and ImageNet, and compare
them against a variety of methods, on the same network checkpoints. To this date, however, there is
no single method outperforming the competition on all datasets Tajwar et al. (2021), which indicates
a variety of ways in which OOD data differs from the training set. Here, we introduce WeiPer,
a method that can be applied to any pretrained model, any training loss used, with no limitation
on the data modality to separate ID and OOD datapoints. WeiPer creates a representation of the
data by projecting the latent representation of the penultimate layer onto a cone of vectors around
the class-projections of the final layer’s weight matrix. This allows extracting additional structural
information on the training distribution compared to using the class projections alone and specifically
exploits the fact that the OOD data often extends into the cluster of positive samples of the respective
class in a conical shape (see Figure 1). In addition to WeiPer, our KL-divergence-based method
WeiPer+KLD represents a novel OOD detection score that is based on the following observation:

When ignoring the individual dimensions and examining the activation distribution across all di-
mensions, we observe that ID samples exhibit a similar "fingerprint" distribution. The more feature
dimensions there are, the better our estimate of this source distribution becomes. We demonstrate
that measuring the discrepancy between the per-sample distribution and the training set’s mean
distribution in the augmented WeiPer space leads to improved OOD detection accuracy. We evalu-
ate WeiPer on OpenOOD using our proposed KL-divergence-based scoring function (KLD), MSP
Hendrycks & Gimpel (2016), and ReAct Sun et al. (2021). Additionally, we conduct an ablation
study to understand the influence of each component of WeiPer and analyze WeiPer’s performance.
Our results confirm that the weight perturbations allow WeiPer to outperform the competition on two
out of eight benchmarks, demonstrating consistently better performance on near OOD tasks. WeiPer
represents a versatile, off-the-shelf method for state-of-the-art post-hoc OOD detection. However, the
performance of WeiPer comes at a cost: The larger the WeiPer space, the more memory is required.
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In summary, we present the following contributions:

• We discover that OOD detection can be improved by considering linear projections of the
penultimate layer that correlate with the final output, i.e., the class representations. We
construct these projections by perturbing the weights of the final layer.

• We uncover a fingerprint-like nature of the ID samples in both the penultimate space and our
newly found perturbed space, proposing a novel post-hoc detection method that leverages
this structure. The activation distributions of the penultimate space and our WeiPer space
over the dimensions of each sample are similar for each ID input, yielding distributions in
both spaces that we compare to the mean ID distribution using KL divergence.

• We evaluate our findings by testing the proposed methods and two other MSP-based methods
on the perturbed class projections using the OpenOOD benchmark, achieving state-of-the-art
performance on near OOD tasks.

2 Related work

OOD detection. Generally, we can distinguish two types of OOD detection methods - one that
requires retraining of the model, including novel loss variants, data augmentations, or even outlier
exposure settings. Here, we focus on post-hoc methods that can be added with little effort to any
existing pipeline. They can be applied to any pretrained model, irrespective of its architecture, loss
objective or data modality. Post-hoc methods can be distinguished further in:
1) Confidence-based methods Guo et al. (2017); Hendrycks et al. (2022a,b); Liu et al. (2023a, 2020);
Wang et al. (2022) process samples in the model’s logit space, i.e. using the network directly to
detect ID/OOD data points. A prominent example is the Maximum Softmax Probability (MSP)
(Hendrycks & Gimpel, 2016) which simply uses the maximum logit as the main OOD decision metric.
Some methods Ahn et al. (2023); Djurisic et al. (2022); Sun et al. (2021) additionally introduce
transformations such as cutoffs of the features in the penultimate layer or masks on the weight matrix
Sun & Li (2021) to allocate where ID data resides and combine these with confidence metrics. Several
recent methods have employed f-divergences to improve OOD detection, focusing on enhancing the
boundary definition between ID and OOD samples Darrin et al. (2022); Picot et al. (2022).
2) Distance-based methods Bendale & Boult (2015); Lee et al. (2018); Liu et al. (2023b); Ren
et al. (2021); Sastry & Oore (2020); Sun et al. (2022); Zhang et al. (2023a) define distance measures
between the training distribution and an input sample in latent space, i.e. primarily the penultimate
layer of the network. Deep Nearest Neighbors Sun et al. (2022) uses the distance to the k-th closest
neighbor in latent space, while MDS Lee et al. (2018) models the data as Gaussian and uses the
Mahalonibis-Distance. Models of the data distribution can improve the OOD detection performance,
e.g. using histograms to approximate the training density and then define a distance measure on them.
A recent work Liu et al. (2023b) proposed creating a histogram-based distribution on the product of
the penultimate activations and the gradient of a separate KL-loss and then defined a metric on these
modified discrete densities.
Both approaches of 1) and 2) are not exclusive. NNGuide Park et al. (2023) combines both confidence
and distance measures into a joint score, improving performance in case one of the scores fails.

Random weight perturbations and projections. Weight perturbations, i.e. adding noise values
to the weights of a network, have been used for a variety of applications: in sensitivity analyses
Cheney et al. (2017); Xiang et al. (2019), for studying robustness against adversarial attacks Rakin
et al. (2018); Wu et al. (2020), and as training regularization Khan et al. (2018); Wen et al. (2018).
Random projections from the latent space of the neural network have been described in the context
of generative modeling Bonneel et al. (2014); Jerome H. Friedman & Schroeder (1984); Kolouri
et al. (2016); Liutkus et al. (2019); Nguyen et al. (2021); Paty & Cuturi (2019), e.g. to improve the
Wasserstein distance calculation or for robustness. A previous work described random projections
from the penultimate layer to detect out-of-distribution samples with a normalizing flow Kuan &
Mueller (2022).
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3 Method

3.1 Preliminaries

We consider a pretrained neural network classifier f : X → RC that maps samples x from an input
space X ∈ RD to a logit vector f(x) ∈ RC , by applying a linear projection W fc to the feature
representation in the penultimate layer

(z1, ..., zK)T = z = h(x) = (h1(x), ..., hK(x))T (1)

such that f(x) = W T
fcz, with D, K and C representing the dimensionality of the input, the

penultimate layer and the output layer, respectively. We define the rows of the final weight layer to be
w1, ...,wC .

In the following it is useful to introduce Z as random vector from which we draw our latent samples.
We denote the densities of the latent activations of the training data with pZtrain , of the test data with
pZtest and those of OOD samples with pZood admitted by the random vectors Ztrain, Ztest and Zood,
respectively. To ease notation, we will treat Z and all its subsets, both as sets, e.g. Ztrain is the set of
all training activations in the penultimate layer.

An OOD detector is a binary classifier O that decides if samples are drawn from an ID or OOD
distribution by usually only considering samples drawn from pZtest or pZood . Commonly, this is
achieved by thresholding a scalar score function S.

O(x) =

{
ID if S(x) > λ

OOD otherwise
(2)

For MSP, the score function is simply the maximum softmax probability

S(x) = MSP(x) = max
i=1,...,C

ef(x)i∑C
j=1 e

f(x)j
=: MSP(f(x)). (3)

Note, that for clarity, we define MSP also as a function of the logits. Other methods propose metrics
on the penultimate layer, e.g. by incorporating distance measures between a given latent activation z
of a new sample and the distribution of activations pZtrain of the training set.

3.2 WeiPer: Weight perturbations

A neural network classifier maps the data distribution to the distribution of the logits W fcZ. The
training objective of the network ensures an optimal separation of classes and lets the model learn to
exploit features in Z specific to the training distribution. OOD samples, hence, often yield lower logit
scores. Confidence methods leverage this property, but could potentially be improved by capturing
more of the underlying distribution of the penultimate layer. A confidence score measures properties
of the logit distribution W fcZ. Is there additional information in the penultimate layer of the network,
and if so, how can we utilize it?

Applying the weight matrix W fc to the penultimate space can be understood as C projections of
Z onto the row vectors w. According the Cramer-Wold theorem (Cramér & Wold (1936)), we can
reconstruct the source density pZ from all one-dimensional linear projections, and Cuesta-Albertos
et al. (2007) has shown that a K-dimensional subset of projections suffices (for more details see
Appendix A.1.1). The question remains which projections extract the most relevant information?

Drawing vectors w ∈W = N (0, I) from a standard normal and projecting onto them often results in
similar densities for ID and OOD data, i.e. wTZtrain ≈ wTZood, deteriorating detection performance
(see Table 1, RP). This aligns with Papyan et al. (2020), suggesting limited information in the
penultimate layer compared to the logits. We hypothesize that the latent distribution shows relevant
structure only along certain dimensions. We applied PCA to the latent activations Z and inspected
the resulting projections. This analysis supports the notion that the informative dimensions lie in the
directions of the class projections w1, ...,wC (see Appendix A.1.3). Hence, we construct projections
that correlate with these vectors but at the same time deviate enough to obtain new information.
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Weight Perturbations

W fc

W̃ (δ, r) =
W̃ 1

W̃ 2

...
W̃ r



δ

KLD MSP

︸ ︷︷ ︸
rC(K) samples

Ez∈Z(qz)

pW̃z

DKL←→
Tks(pW̃z)

Tks

MSPWeiPer(x)

:=
1

r

r∑
i=1

MSP
(
W̃ iz

)
W̃z

z
pz

Tks(pz)

Tks

Figure 2: WeiPer perturbs the weight vectors of W fc by an angle controlled by δ. For each weight,
we construct r perturbations resulting in r weight matrices W̃ 1, ..., W̃ r. KLD: For WeiPer+KLD,
we treat z1, ..., zk ∼ pz and wT

1,1z, ..., w
T
r,Cz ∼ pW̃z as samples of the same distribution induced

by z and W̃z, respectively. We approximate the densities with histograms and smooth the result
with uniform kernel Tks

. Afterwards, we compare the densities Tks
(qz) with the mean distribution

over the training samples Ez∈Ztrain(qz) for qz = pz and qz = pW̃z , respectively. MSP: For a score
function S on the logit space RC , we define the perturbed score SWeiPer as the mean over all the
perturbed logit spaces W̃z. We choose S = MSP and call the resulting detector MSPWeiPer.

Definition of WeiPer We define perturbations η, drawn from a standard normal and add them to
W fc. To ensure that all perturbed vectors have the same angular deviation from the original weight
vector, we normalize the perturbations to be the same length as their corresponding row vector and
multiply them by a factor δ:

w̃i,j = wj + δ
ηi∥wj∥
∥ηi∥

=: wj + η̃i, ηi ∼ N (0, IK) (4)

for i = 1, ..., r, where δ represents the length ratio between wj and the perturbation ηi. For large
K = dim(Z), wj and η̃i are almost orthogonal and thus δ actually adjusts the angle α ≈ arctan(δ)
of the perturbed vector bundle. We set δ to be constant across all j = 1, ...,K and treat both δ and
r as hyperparameters. This proceedure is related to the Distributional Sliced Wasserstein distance
Nguyen et al. (2021) as they sample projections from a distribution such that the mean angle between
the projections is greater than arccos(C) for a constant C.The whole set of vectors we define is

W = {w̃1,1, ..., w̃1,C , ..., w̃r,C} (5)

We can think of the resulting weight matrix W̃ as r repetitions of the weight matrix W fc on which we
add perturbation matrices H̃i. The j-th row H̃i,j corresponds to a perturbation vector η̃j , normalized
to match the respective row wj .

W̃ :=

W̃ 1

...
W̃ r

 =

W fc + H̃1

...
W fc + H̃r

 , (6)

Since W̃ iZ = W fcZ + HiZ, we call W̃Z the perturbed logit space. Our weight perturbations
method, we call WeiPer, essentially increases the output dimension of a model. Hence, it can be
combined with many scoring functions. We demonstrate this with the two following postprocessors.

3.3 Baseline MSP scoring function

If the perturbations do not deviate too much from the class projections wj , i.e. the row vectors of the
final layer, the class cluster will still be separated from the other classes in the new projections and
we can apply MSP on the perturbed logit space. In fact, we find that class clusters on the perturbed
projections can be better distinguished from the OOD cluster than on the original class projection
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Figure 3: Histogram of all 512 activations in the penultimate layer (left pair) and the activations
in WeiPer space (right pair) of a ResNet18 trained on CIFAR10. We perturb the weight matrix 100
times to produce a 10 · 100 = 1000-dimensional perturbed logit space. For each pair, the left panel
shows the mean distribution over all samples (ID = CIFAR10, OOD = CIFAR100). The right panels
show the distribution pz and pW̃z , respectively, for two randomly chosen samples with smoothing
applied (s1 = s2 = 2)

defined by W fc (see improvements of WeiPer+MSP(x) over MSP in Table 2). Figure 1 illustrates a
visual example. We calculate the MSP on the perturbed logit space as

WeiPer+MSP(x) := MSPWeiPer(x) :=
1

r

r∑
i=1

MSP(W̃ iz) (7)

the mean over all the maximum softmax predictions of the perturbed logits. We analyze why
MSPWeiPer could be capable of capturing more of the penultimate layer distribution than MSP in
Appendix A.1.2.

3.4 Our KL divergence score function

Following our line of argument motivated by Theorem A.1, it seems natural to choose a density-based
score function. When pooling all activations of the penultimate layer, an ID sample’s activation
distribution exhibits remarkable differences to that of an OOD sample. We observe the following
properties:

• The majority of samples exhibit a bimodal distribution of their penultimate activations. An
activation either belongs to the mode close to zero, or to the second mode (and rarely takes
values in between).

• ID samples share a similar activation distribution. The mean activation distribution can serve
as a prototype – see the upper left panel in Figure 3.

• The activation distribution is specific to the ID samples, i.e. the activation distribution of
OOD samples differs from its distribution of ID samples and thus from the ID prototype.

Concluding on all three points, we make the assumption that all features z = h(x) of an ID input x
can be thought of as samples

z1, ..., zK ∼ pz , where (z1, ..., zK)T = z, (8)

of the same underlying activation distribution pz . Furthermore, the density of pz matches the mean
distribution over all ID samples

pz ≈ Ez′∈Ztrain [pz′ ]. (9)
We assume, the same is true for the logits. They naturally separate into a non-class cluster and a
class cluster with the ratio 1 : C − 1. Here, we could apply the same procedure, but especially for
datasets with a small number of classes we would only get C samples. This is where the cone of
WeiPer vectors creates an advantage: They sit at a fixed angle to a class projection and thus preserve
the class structure similarly across each projection onto one vector of the cone (e.g., like Figure 1
right - bottom panel). Analogous to Equation (9), we treat each projection

wT
1,1z, ...,w

T
r,Cz ∼ pW̃z (10)

as a sample of the same underlying distribution and observe that

pW̃z ≈ Ez′∈Ztrain [pW̃z′ ]. (11)
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We demonstrate both behaviors in Figure 3.

In practice, we discretize pz and pW̃z as histogram-based densities by splitting the value range into
nbins bins (see Equation (21) in the Appendix). Compared to the mean distribution, pz and pW̃z still
have a sparse signal. We smoothen the densities with a function

Tks(p(t)) := normalize((p ∗ ks)(t) + ε) (12)

by convolving p with a uniform kernel ks of size s and prevent densities from being zero by adding
ε > 0 which we set to the fixed values ε := 0.01 for the penultimate layer and ε := 0.025 for the
WeiPer space. Note, that tuning both epsilons might increase performance as we observed in early
stages of our experiments, but will add two additional hyperparameters. We normalize the density to
sum up to one again, here defined by normalize. Afterwards, we compare each of the densities with
the KL divergence, respectively:

DKL(x | qz, ks, ε) := KL
(
Tks(qz) ∥ Ez∈Ztrain [qz]

)
+KL

(
Ez∈Ztrain [qz] ∥ Tks(qz)

)
, (13)

where qz is either pz or pW̃z . We discuss why our method does not suffer from the curse-of-
dimensionality in contrast to other methods as investigated by Ghosal et al. (2023) in Appendix A.1.5

WeiPer+KLD combines the KL divergence on the penultimate space, the KL divergence and MSP on
the perturbed logit space into one final score:

WeiPer+KLD(x) := DKL(x | pz, s1) + λ1DKL(x | pW̃z, s2)− λ2 MSPWeiPer(x) (14)

The full list of hyperparameters is r and δ for the WeiPer application and nbins, λ1, λ2, s1, s2 for the
KL divergence score function. Figure 2 provides a visual explanation and a quick overview of WeiPer
and both its postprocessors.

4 Experiments

Setup. We evaluate WeiPer using the OpenOOD Zhang et al. (2023b) framework that includes three
vision benchmarks: CIFAR10 Krizhevsky (2009), CIFAR100 Krizhevsky (2009), and ImageNet Deng
et al. (2009). Each of them contains a respective ID dataset Din and several OOD datasets, subdivided
into near datasets Dnear and far datasets Dfar (see Table 1). The terms near and far indicate their
similarity to Din and, therefore, the difficulty of separating their samples.

OpenOOD also provides three model checkpoints trained on each CIFAR dataset whereas for
ImageNet the methods are evaluated on a single official torchvision Marcel & Rodriguez (2010)
checkpoint of ResNet50 He et al. (2016) and ViT-B/16 Dosovitskiy et al. (2020) respectively. We
report our scores together with the results of Zhang et al. (2023b) in Table 2.

Due to resource constraints, we only evaluate our methods on the models trained with the standard
preprocessor, that includes random cropping, horizontal flipping and normalizing, on the cross
entropy objective. Additionally to the KL divergence score function and MSP, we evaluate WeiPer
on ReAct. But instead of combining ReAct with the energy-based score function Liu et al. (2020)
as in OpenOOD, we apply MSPWeiPer and call it WeiPer+ReAct. The hyperparameters of our
methods were tuned by finding the best combination over a predefined and discrete range of values
on the OpenOOD validation sets to assure a fair comparison to the competition (see Table 8).

Table 1: The individual benchmark datasets.

Din CIFAR10 CIFAR100 ImageNet-1k

Dnear
out

CIFAR100, CIFAR10, ssb-hard,
TinyImageNet TinyImageNet ninco

Dfar
out

MNIST, MNIST, iNaturalist,
SVHN, SVHN, Texture,
Texture, Texture, OpenImage-O
Places365 Places365

For ImageNet, results are based on a
subset of the training data, comprising
300,000 randomly selected, balanced
samples (300 per class). For an anal-
ysis across different training set sizes,
refer to Table 6.

Metrics. We evaluate the methods
with the Area Under the Receiver Op-
erating characteristic Curve, AUROC,
Bradley (1997) metric as a threshold-
independent score and the FPR95 as
a quality metric. The FPR95 score
reports the False Positive Rate at the
True Positive Rate threshold 95%.
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Table 2: OOD Detection results of top performing methods on the CIFAR10, CIFAR100 and
ImageNet-1K benchmarks (For a comparison with every other evaluated method of OpenOOD and
standard deviation over the CIFAR models, see Appendices A.5 and A.6). The top performing results
for each benchmark are displayed in bold and we underline the second best result. Due to WeiPer’s
random nature, we report the median AUROC score over 10 different seeds. For an easy comparison,
we portray the following ablations for CIFAR10 which are seperated by a line: The KLD results are
the WeiPer+KLD results without MSP and RP is WeiPer+KLD with weight independent random
projections drawn from a standard Gaussian. While WeiPer+KLD performs strongly especially on
near datasets using ResNet backbones, its performance deteriorates with ViTs (see Section 4 for
discussion).

Method
Dnear Dfar Dnear Dfar

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓
Benchmark: CIFAR10 / Backbone: ResNet18 Benchmark: CIFAR100 / Backbone: ResNet18

NAC - - 94.60 - - - 86.98 -
RMDS 89.80 38.89 92.20 25.35 80.15 55.46 82.92 52.81
ReAct 87.11 63.56 90.42 44.90 80.77 56.39 80.39 54.20
VIM 88.68 44.84 93.48 25.05 74.98 62.63 81.70 50.74
KNN 90.64 34.01 92.96 24.27 80.18 61.22 82.40 53.65
ASH 75.27 86.78 78.49 79.03 78.20 65.71 80.58 59.20
GEN 88.20 53.67 91.35 34.73 81.31 54.42 79.68 56.71
MSP 88.03 48.17 90.73 31.72 80.27 54.80 77.76 58.70

WeiPer+MSP 89.00 40.71 91.42 28.87 81.32 54.49 79.95 57.00
WeiPer+ReAct 88.83 42.84 91.23 29.50 81.20 55.03 80.31 55.61
WeiPer+KLD 90.54 34.06 93.12 23.72 81.37 54.34 79.01 57.96

KLD 90.53 34.12 93.15 23.58 76.68 66.41 68.95 71.70
RP 69.62 87.72 75.83 75.66 70.68 73.98 67.23 77.25

Method
Dnear Dfar Dnear Dfar

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓
Benchmark: ImageNet-1K / Backbone: ResNet50 Benchmark: ImageNet-1K / Backbone: ViT-B/16

NAC - - 95.29 - - - 93.16 -
RMDS 76.99 65.04 86.38 40.91 80.09 65.36 92.60 28.76
React 77.38 66.69 93.67 26.31 69.26 84.49 85.69 53.93
VIM 72.08 71.35 92.68 24.67 77.03 73.73 92.84 29.18
KNN 71.10 70.87 90.18 34.13 74.11 70.47 90.81 31.93
ASH 78.17 63.32 95.74 19.49 53.21 94.43 51.56 96.77
GEN 76.85 65.32 89.76 35.61 76.30 70.78 91.35 32.23
MSP 76.02 65.68 85.23 51.45 73.52 81.85 86.04 51.69

WeiPer+MSP 77.68 63.84 89.33 41.56 74.82 74.97 89.15 43.49
WeiPer+ReAct 76.85 66.87 93.09 29.83 74.79 74.08 89.45 41.22
WeiPer+KLD 80.05 61.39 95.54 22.08 75.00 73.02 90.32 38.16

Results. Table 2 reports the performance of WeiPer in comparison to the state-of-the-art OOD
detectors on each benchmark. We compare our approach based on the Dnear and Dfar detection
performances and report the mean over all datasets in each category. Table 3 portrays the mean
relative performance on Dnear and Dfar of every postprocessor. The score is calculated as follows:

Srel(P ) :=
1

3

(
ACIFAR10(P ) +ACIFAR100(P ) +

1

2
(AImageNet(ResNet50)(P ) +AImageNet(ViT))(P ))

)
(15)

where

AD(P ) :=
AUROCDnear / far(P )

maxP∈P AUROCDnear / far(P )
(16)

It is designed such that each result on each dataset D is equally weighted and scoring 1.0 means that
the postprocessor P is top performing across all datasets.

WeiPer+KLD achieves three out of eight top AUROC scores and the best performance on all near
benchmarks, establishing a new state of the art performance by a significant margin (see Table 3).

Especially for the most challenging benchmark, separating Dnear on ImageNet with a ResNet50,
we outperform our strongest competitor, ASH Djurisic et al. (2022), by 1.88% AUROC (we even
achieve an AUROC score of 80.29 when using a 1M training samples instead of 300k, see Table 6).
Additionally, WeiPer+KLD performs well on many far benchmarks, being the best method for
ResNet50 on ImageNet, reaching into the top three positions on CIFAR10 far and into the top three
on the CIFAR100 far benchmark. With its relative performance in Table 3, WeiPer+KLD reaches 3rd
place overall in the far benchmark.
Only on Vit-B/16 trained on ImageNet, WeiPer+KLD shows a significant performance dent, especially
on the far benchmark. ViT-B/16 uses a comparably narrow penultimate layer having fewer features
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Table 3: Mean relative scores of all the postprocessors (post-hoc methods), see Equation (15).

Dnear Dfar

Postprocessor Srel Postprocessor Srel Postprocessor Srel Postprocessor Srel

WeiPer+KLD 0.988 OpenMax 0.943 NAC 0.999 MLS 0.932
RMDS 0.984 VIM 0.943 VIM 0.970 TempScale 0.929
WeiPer+MSP 0.977 EBO 0.940 KNN 0.963 EBO 0.924
GEN 0.975 SHE 0.934 WeiPer+KLD 0.959 MSP 0.920
WeiPer+ReAct 0.974 KLM 0.918 RMDS 0.959 SHE 0.919
TempScale 0.967 DICE 0.901 WeiPer+ReAct 0.951 DICE 0.909
KNN 0.963 ASH 0.870 GEN 0.947 KLM 0.893
MSP 0.963 MDS 0.829 WeiPer+MSP 0.944 MDS 0.877
ReAct 0.955 GradNorm 0.722 ReAct 0.943 ASH 0.844
MLS 0.954 NAC - OpenMax 0.935 GradNorm 0.700

than classes and therefore compresses the class clusters. Some dimensions may thus compress two
classes while others represent a feature specific to only one class. This introduces more noise into
pz which could impair the detection performance. Future experiments will reveal whether WeiPer
benefits from higher dimensionalities of the latent space.

WeiPer on existing methods. Additionally, WeiPer enhances the MSP performance by 1-4.1%
AUROC across all benchmarks and WeiPer+ReAct consistently outperforms ReAct with an energy-
based score, although in their evaluation, this variant was better than ReAct+MSP (see Table 3).

Ablation study. We determine the effect of each hyperparameter in Figure 4 by freezing single
hyperparameters and optimizing only the one in question. As expected, increasing the number of
random perturbations r leads to a better median performance, while the standard deviation decreases
for larger r. Note, that it is possible to have better performance for lower r by rerolling the weights a
few times and choosing the best performing ones. All methods show a significant performance boost
compared to using no perturbations δ = 0 and seem to be best at δ = 2 for WeiPer+KLD, which
corresponds to an angle of α ≈ 63◦ and δ = 4 (α ≈ 76◦) for MSP and ReAct.

On CIFAR10, WeiPer+KLD only improves marginally by applying MSPWeiPer, which is not the case
for the other benchmarks (see Table 7), where λ2 > 0. Furthermore, we study the performance of
random projections that are independent from the weights Wfc. We show that using only random
projections (RP, see Table 2) without adding MSPWeiPer, we are hardly able to detect any OOD
samples. This supports the claim that utilizing the class directions is necessary. The supplementary
material presents all the other KLD-specific hyperparameters and we also investigate their influences
to the performance in Figure 6. We outline the selected parameters for each benchmark in Table 7.
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Figure 4: We investigate the effect of WeiPer hyperparameters r and δ on the performance of the
three postprocessors. The left pair shows results on CIFAR10, the right pair corresponds to ImageNet
(using ResNet18 for both). Models were tested using their respective near OOD datasets. The panels
corresponding to δ depict AUROC performance minus the initial AUROC performance at δ = 0. The
graphs show the mean over 25 runs and the shaded area around them represents the value range (min
to max) over those runs. All other parameters of the methods were fixed to the optimal setting.
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5 Limitations

WeiPer+KLD has more hyperparameters than other competitors: 6 in total. As discussed in the previ-
ous section, r can be seen as a memory / performance trade-off (see Figure 4). In the supplementary
material (see Figure 6) we investigate the other parameters and find that they all have only one local
maximum in the range we were searching and should thus be easy to optimize. We tried to choose
the same smoothing size s1 = s2 for both densities, but the ablations show that both are optimal
at different sizes. While MSPWeiPer is not really used for CIFAR10 (λ2 ≈ 0) it is beneficial for
CIFAR100 and ImageNet. As WeiPer blows up the dimension we also conduct a memory and time
comparison to other methods in Table 4 and Table 5. We demonstrate that with a combination of a
confidence and a distance based metric it is possible to achieve competitive near results across the
board where all other methods seem to deteriorate in at least one benchmark.

6 Conclusion

We show that multiple random perturbations of the class projections in the final layer of the network
can provide additional information that we can exploit for detecting out-of-distribution samples.
WeiPer creates a representation of the data by projecting the latent activation of a sample onto vector
bundles around the class-specific weight vectors of the final layer. We then employ a new approach to
construct a score allowing the subsequent separation of ID and OOD data. It relies on the fingerprint-
like nature of features of the penultimate and the WeiPer-representations by assuming they were
sampled by the same underlying distribution. In a thorough evaluation, we first show that WeiPer
enhances MSP and ReAct+MSP performance significantly and show that WeiPer+KLD achieves top
scores in most benchmarks, representing the new state-of-the-art solution in post-hoc OOD methods
on near benchmarks.
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A Appendix

A.1 WeiPer: Theoretical details

A.1.1 Weight perturbations

Theorem A.1 (Cuesta-Albertos et al. (2007)). Let X and Y be two RK-valued random vectors.
Suppose the absolute moments mk := E(∥X∥k) are finite and

∑∞
k=1(mk)

−1/k = ∞. If the set
WXY = {w ∈ RK : wTX d

=wTY } has positive Lebesgue measure, then X d
=Y .

We provide a simple proof for the case that WXY = RK . For the complete proof, we refer to
Cuesta-Albertos et al. (2007).

Proof. The characteristic function of a random vector X is defined as

ϕX(w) :=

∫
eiw

TxdX (17)

By the uniqueness theorem, every random vector X has a unique characteristic funtion ϕX . If the
assumption in the theorem holds, then for all realizations x = X(ω) and y = Y (ω), we have

wTx = wTy (18)

and thus ϕX = ϕY . Therefore we have X = Y by the uniqueness.

Note, that is enough cover all the directions in RK instead of covering the whole space with the set
of projections W . Since if tw ̸∈W for t ∈ R, but w ∈W ∩WXY then tw ∈WXY . For δ > 0 our
set of perturbed class projections indeed covers the all directions if r →∞.

To generally apply the theorem, Z must be defined on a bounded set with finite measure (Hausdorff
moment problem), which is true for virtually all practical problems. More importantly, W needs to
be a K-dimensional subset of RK . Note that the theorem also applies for a set of weight matrices

{W ∈ RK×K : WX d
=WY } (19)

when their row vectors form a K dimensional set as their marginal distributions wT
i X

d
=wT

i Y would
be equal for i = 1, ...,K. We are using this theorem solely as motivation since it is not possible to
draw direct implications. However, with a score function S we are measuring properties of the logit
distribution of the training data W fcZtrain = (wT

1 Ztrain, ...,w
T
CZtrain) and check if they match the

properties of some unknown logit distribution W fcZ that might be test data or OOD data. In the
ideal case the logits match in distribution

W fcZtrain
d
=W fcZ if and only if S is maximized, (20)

e.g. if D is a distance and S = −D, S(W fcZtest) = 0 and S(W fcZood) < 0. Now the theorem
says that if we chose a K-dimensional set W of projections and we had a score function SWeiPer that
fulfills the property of Equation (20) on the infinite dimensional space spanned by the projections of
W , not just the distributions on the projection would be equal when SWeiPer is minimized but also the
penultimate distributions Ztrain

d
=Ztest.

A.1.2 MSP on the perturbed logit space

Continuing from the previous section, SWeiPer = MSPWeiPer is a score function on the infinite
dimensional space spanned by W for r →∞, so ideally MSPWeiPer(Ztest) = 0 then not only the logit
distributions match W fcZtrain

d
=W fcZtest, but also their penultimate distributions Ztrain

d
=Ztest which

would make MSPWeiPer a stronger metric than MSP.

A.1.3 PCA on the penultimate space

We draw the following conclusions from Figure 5: The OOD and ID distributions differ much stronger
along the first C principal components, and they are more similar for the other components. This
indicates, most of the signal may lie in the C-dimensional subspace.
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Figure 5: We applied PCA to ZTrain of CIFAR10 and projected Ztrain (blue), Ztest (purple) and Zood
(red, CIFAR100) to the first 20 principal components. We observe density spikes in the first 10
dimensions, likely corresponding to the class clusters. The dimensions 10-19 exhibit less structure as
their densities appear to be Gaussian. Along these directions the ID and OOD data are more similar
compared to the first ten principal components.

We argue that instead of taking random projections, we can utilize the class projections. Since we
have a trained classifier at hand, it is likely that the informative dimensions are: span(w1, ...,wC),
the span of the row vectors of W fc. Hence, a better choice than Gaussian vectors for the set of
projections W are vectors w that correlate with these basis vectors in W fc but at the same time
deviate enough such that we obtain new information from projections onto them.

A.1.4 KL divergence: Density definition

We gave a brief description of our construction of the densities in the main paper. The formal
definition is:

pz(t) :=
1

Klb

K∑
i=1

[zi ∈ b(t)]. (21)

Here lb is the bin length, b(t) is the bin range in which t falls, and [.] is the Iverson bracket which
evaluates to one if true or zero if the statement is false. Note that we are dividing by lb such that the
density integrates to one. This is the usual definition for descretizing a density into equal sized bins.

A.1.5 Curse of dimensionality

In contrast to other distance-based methods, our KL divergence score does not suffer from the
curse-of-dimensionality, which deteriorates the performance of methods like KNN Sun et al. (2022)
as investigated by Ghosal et al. (2023). We disregard the dimension and only consider the activations
in the penultimate space or in the perturbed logit space. In our case, more dimensions means more
samples to approximate the activation distribution pz . We believe that our method thrives when
applied to networks with higher dimensional penultimate space, but this still needs to be evaluated in
future experiments. However, in the perturbed logit space, we can control the size of the space with r
(see Figure 4). Our ablation results show that increasing r and thus blowing up the dimensionality
only increases performance.
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A.2 Memory and Time Analysis

Table 4: Time taken in seconds to setup the method or for inference. More precisely, we mea-
sure the time of postprocessor.setup() and postprocessor.inference() in OpenOODs

evaluator.py . We take the mean over 20 iterations and denote the standard deviation after the ±
sign. We mark the maximal time in bold and underline the second longest time taken. We compare
WeiPer+KLD (r = 100 as in the paper) to its closest competitors and show that it is competitive
with other methods in terms of computation time. While WeiPer+KLD is on the higher end of the
spectrum in terms of computation time, it remains comparable to other methods. It’s worth noting
that computation time can be adjusted by trading off performance with lower r values.

Time Weiper+KLD NAC KNN RMDS VIM

Setup
CIFAR10 21.2 ± 0.09 24.4 ± 0.35 10.5 ± 0.03 11.2 ± 0.04 11.1 ± 0.05
CIFAR100 25.2 ± 0.06 24.3 ± 0.24 10.5 ± 0.04 11.3 ± 0.03 11.1 ± 0.05
ImageNet 1975.1 ± 7.4 5676.9 ± 34.6 1599.1 ± 6.5 1631.7 ± 1.7 1636.1 ± 1.9

Inference
CIFAR10 63.2 ± 0.88 41.8 ± 0.24 71.2 ± 0.62 47.9 ± 0.2 53.1 ± 0.44
CIFAR100 104.6 ± 1.37 41.4 ± 0.18 70.9 ± 0.98 97.2 ± 1.05 53.4 ± 0.7
ImageNet 882.0 ± 4.5 223.7 ± 0.9 14507.0 ± 86.6 1167.7 ± 8.1 273.3 ± 1.1

Table 5: Memory consumption in MiB to setup the method or for inference. More precisely,
we compare the memory of postprocessor.setup() and postprocessor.inference() in

OpenOODs evaluator.py before and after its execution with psutil . We take the mean over
20 iterations of the data between the 20% and 80% quantile to diminish the effect of outliers (e.g.,
caused by interfering processes) and denote the standard deviation after the ± sign. We mark the
maximal memory in bold and underline the second highest demand. WeiPer+KLDs (r = 100)
memory consumption for its setup is among the lower demanding methods while it has a comparably
high demand for inference. Note that for optimal results we choose r = 100, but smaller values of
r also provide competitive results (see Figure 4). Thus memory can be traded against performance
where resources are constraint.

Memory Weiper+KLD NAC KNN RMDS VIM

Setup
CIFAR10 2602.6 ± 1 2557.3 ± 6 2736.6 ± 10 2806.0 ± 31 2725.1 ± 13
CIFAR100 2717 ± 10.2 2556.7 ± 4 2732.8 ± 4 2763.5 ± 27 2726.3 ± 14
ImageNet 1464.1 ± 3 1871.6 ± 28 31744.9 ± 18 14965.1 ± 72 13025.0 ± 6

Inference
CIFAR10 5.7 ± 0.3 7.6 ± 1.9 12.0 ± 1.0 5.4 ± 2.7 4.9 ± 1.7
CIFAR100 18.2 ± 8.9 5.6 ± 2.5 11.0 ± 1.3 4.3 ± 0.8 3.1 ± 0.1
ImageNet 121.4 ± 0.4 20.7 ± 0.1 19.0 ± 4.4 13.1 ± 0.1 6.6 ± 0.2

Table 6: AUROC results on ImageNet with ResNet50 on the near and far benchmark with different
training set sizes. Each split is a random sample of the data set with each class appearing exactly as
often as each other class. We chose the optimal set of hyperparameters on ImageNet, but reduced the
number of repeats r to 50 instead of 100.

#Samples 1k 5k 10k 50k 100k 500k 1M

Dnear 69.46 72.57 74.46 77.61 77.70 79.65 80.29
Dfar 85.76 89.79 91.90 94.53 94.47 95.51 95.56
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A.3 Hyperparameters
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Figure 6: KLD specific hyperparamters: We fixed the optimal hyperparameters and varied the one
parameter in question by conducting 10 runs over the same fixed parameter setting on CIFAR10 and
ImageNet as ID against their near OOD datasets. We report the mean and the minimum to maximum
range (transparent). We set r = 5 instead of r = 100 for ImageNet to save resources. Thus the noise
on the results is stronger for the ImageNet ablations. All of the parameters except the kernel sizes
only have a single local maximum which indicates that they should be easy to optimize. The most
important parameters seem to be the kernel sizes s1 and s2 that we use for smoothing followed by
nbins. Note that s1 and s2 have a different optimum, which means it is not possible to simply choose
s1 = s2 and reduce the count of hyperparameters. λ1 = 0 is the score function without the KLD
specific WeiPer application. λ2 is the application of MSPWeiPer which is not beneficial for CIFAR10,
but shows to be effective on ImageNet.

Table 7: The hyperparameter sets for each experiment. The number of repeats r was predefined since
we found increasing it always boosts the performance at the cost of time and memory consumption.

Hyperparameter CIFAR10 CIFAR100 ImageNet-1K ImageNet-1K
(ResNet18) (ResNet18) (ResNet50) (ViT-B/16)

r 100 100 100 100
λ 1.8 2.4 2.4 2.0

nbins 100 100 100 80
λ1 2.5 0.1 2.5 2.5
λ2 0.1 1 0.25 0.1
s1 4 4 40 40
s2 15 40 15 15
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Table 8: Set of values for the hyperparameter search.

Hyperparameter Values
r 100
λ [1.8, 2.0, 2.2, 2.4]

nbins [60, 80, 100]
λ1 [0.1, 1, 2.5, 4]
λ2 [0.1, 0.25, 1, 2.5, 5]
s1 [4, 8, 12, 20, 40]
s2 [15, 25, 40]

A.4 Penultimate layer distribution

CIFAR10 CIFAR100

0.0 0.5 1.0 1.5

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E z
∈Z

tr
a
in

[p
z
](
t)

Mean

0.0 0.5 1.0 1.5

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

p z
(t

)

sample: #2914

0.0 0.5 1.0 1.5

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

p z
(t

)

sample: #8665

−5 0 5 10 15

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E z
∈Z

tr
a
in

[p
W̃
z
](
t)

Mean

−5 0 5 10 15

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p W̃
z
(t

)

sample: #5460

−5 0 5 10 15

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p W̃
z
(t

)

sample: #3930

0 2 4 6 8

t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

E z
∈Z

tr
a
in

[p
z
](
t)

Mean

0 2 4 6 8

t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

p z
(t

)

sample: #4938

0 2 4 6 8

t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

p z
(t

)

sample: #8382

0 20 40

t

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

E z
∈Z

tr
a
in

[p
W̃
z
](
t)

Mean

0 20 40

t

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

p W̃
z
(t

)

sample: #8604

0 20 40

t

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

p W̃
z
(t

)

sample: #6634

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Train OOD Test

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Train OOD Test

Figure 7: Density plots for CIFAR10 and CIFAR100 of a ResNet18 trained for 300 epochs. We
present the densities as in Figure 3, but this time we show it for more datasets and for two different
samples z1, z2 in the penultimate and the perturbed logit space, respectively. The OOD set for the
ID set CIFAR10 is CIFAR100 and vice versa for CIFAR100. The range of the y-axis is adjusted such
that the differences between ID and OOD become visible. We therefore report the mean over the
maximum density maxp of the penultimate dimensions to show, up to which value the maximum
would go. We apply smoothing over ks neighbors in each plot and construct the histograms with nbins
bins. We report the parameters in Table 9. The class clusters and the activation clusters are clearly
visible for CIFAR10 and merge into the bigger cluster for CIFAR100, probably because of the lower
class to non-class ratio. It is harder to see for CIFAR100, but for both datasets, it seems harder for the
OOD data to sample in the class cluster or the activated feature cluster.
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Figure 8: Density plots for ImageNet (ResNet50 and ViT-B/16). We chose SSB-hard as OOD set and
apply the same plotting procedure as defined for CIFAR10/CIFAR100. For the respective plotting
parameters, see Table 9. For ViT-B/16, the class clusters are distinguishable from the non-class
clusters but not for ResNet50. Still, the difference between ID and OOD is captured in the higher
activations which could explain why activation shaping Djurisic et al. (2022); Sun et al. (2021) works
well for ImageNet.

Table 9: Plotting parameters: s is the kernel size for the uniform kernel that was used for smoothing.
and maxp = maxt Ez∈Ztrain [pz](t) denotes the maximum of the mean density of the penultimate
densities pt. The perturbed densities pW̃z are scaled similarly.

nbins s maxp

CIFAR10 1000 2 364.22
CIFAR100 1000 2 32.85
ImageNet (ResNet50) 100 4 1.78
ImageNet (ViT-B/16) 100 4 0.89
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A.5 Full CIFAR results

Table 10: Full CIFAR10 postprocessor results on the three ResNet18 checkpoints provided by
OpenOOD trained with Cross Entropy and standard preprocessing. The ± indicates the standard
deviation of all methods over three different model checkpoints.

Method
CIFAR100 TIN Dnear

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: CIFAR10 / Backbone: ResNet18
OpenMax 86.91±0.31 48.06±3.25 88.32±0.28 39.18±1.44 87.62±0.29 43.62±2.27

MSP 87.19±0.33 53.08±4.86 88.87±0.19 43.27±3.00 88.03±0.25 48.17±3.92
TempScale 87.17±0.40 55.81±5.07 89.00±0.23 46.11±3.63 88.09±0.31 50.96±4.32

ODIN 82.18±1.87 77.00±5.74 83.55±1.84 75.38±6.42 82.87±1.85 76.19±6.08
MDS 83.59±2.27 52.81±3.62 84.81±2.53 46.99±4.36 84.20±2.40 49.90±3.98

MDSEns 61.29±0.23 91.87±0.10 59.57±0.53 92.66±0.42 60.43±0.26 92.26±0.20
RMDS 88.83±0.35 43.86±3.49 90.76±0.27 33.91±1.39 89.80±0.28 38.89±2.39
Gram 58.33±4.49 91.68±2.24 58.98±5.19 90.06±1.59 58.66±4.83 90.87±1.91
EBO 86.36±0.58 66.60±4.46 88.80±0.36 56.08±4.83 87.58±0.46 61.34±4.63

OpenGAN 52.81±7.69 94.84±3.83 54.62±7.68 94.11±4.21 53.71±7.68 94.48±4.01
GradNorm 54.43±1.59 94.54±1.11 55.37±0.41 94.89±0.60 54.90±0.98 94.72±0.82

ReAct 85.93±0.83 67.40±7.34 88.29±0.44 59.71±7.31 87.11±0.61 63.56±7.33
MLS 86.31±0.59 66.59±4.44 88.72±0.36 56.06±4.82 87.52±0.47 61.32±4.62
KLM 77.89±0.75 90.55±5.83 80.49±0.85 85.18±7.60 79.19±0.80 87.86±6.37
VIM 87.75±0.28 49.19±3.15 89.62±0.33 40.49±1.55 88.68±0.28 44.84±2.31
KNN 89.73±0.14 37.64±0.31 91.56±0.26 30.37±0.65 90.64±0.20 34.01±0.38
DICE 77.01±0.88 73.71±7.67 79.67±0.87 66.37±7.68 78.34±0.79 70.04±7.64

RankFeat 77.98±2.24 65.32±3.48 80.94±2.80 56.44±5.76 79.46±2.52 60.88±4.60
ASH 74.11±1.55 87.31±2.06 76.44±0.61 86.25±1.58 75.27±1.04 86.78±1.82
SHE 80.31±0.69 81.00±3.42 82.76±0.43 78.30±3.52 81.54±0.51 79.65±3.47
GEN 87.21±0.36 58.75±3.97 89.20±0.25 48.59±2.34 88.20±0.30 53.67±3.14

WeiPer+MSP 88.17±0.20 44.99±2.15 89.82±0.22 36.42±1.47 89.00±0.20 40.71±1.72
WeiPer+ReAct 88.02±0.47 47.87±5.09 89.63±0.37 37.81±5.30 88.83±0.41 42.84±5.11
WeiPer+KLD 89.70±0.27 37.42±0.91 91.38±0.35 30.70±0.43 90.54±0.29 34.06±0.49

Method
MNIST SVHN Textures Places365 Dfar

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: CIFAR10 / Backbone: ResNet18
NAC 94.86±1.36 15.14±2.60 96.05±0.47 14.33±1.24 95.64±0.44 17.03±0.59 91.85±0.28 26.73±0.80 94.60±0.50 18.31±0.92

OpenMax 90.50±0.44 23.33±4.67 89.77±0.45 25.40±1.47 89.58±0.60 31.50±4.05 88.63±0.28 38.52±2.27 89.62±0.19 29.69±1.21
MSP 92.63±1.57 23.64±5.81 91.46±0.40 25.82±1.64 89.89±0.71 34.96±4.64 88.92±0.47 42.47±3.81 90.73±0.43 31.72±1.84

TempScale 93.11±1.77 23.53±7.05 91.66±0.52 26.97±2.65 90.01±0.74 38.16±5.89 89.11±0.52 45.27±4.50 90.97±0.52 33.48±2.39
ODIN 95.24±1.96 23.83±12.34 84.58±0.77 68.61±0.52 86.94±2.26 67.70±11.06 85.07±1.24 70.36±6.96 87.96±0.61 57.62±4.24
MDS 90.10±2.41 27.30±3.55 91.18±0.47 25.96±2.52 92.69±1.06 27.94±4.20 84.90±2.54 47.67±4.54 89.72±1.36 32.22±3.40

MDSEns 99.17±0.41 1.30±0.51 66.56±0.58 74.34±1.04 77.40±0.28 76.07±0.17 52.47±0.15 94.16±0.33 73.90±0.27 61.47±0.48
RMDS 93.22±0.80 21.49±2.32 91.84±0.26 23.46±1.48 92.23±0.23 25.25±0.53 91.51±0.11 31.20±0.28 92.20±0.21 25.35±0.73
Gram 72.64±2.34 70.30±8.96 91.52±4.45 33.91±17.35 62.34±8.27 94.64±2.71 60.44±3.41 90.49±1.93 71.73±3.20 72.34±6.73
EBO 94.32±2.53 24.99±12.93 91.79±0.98 35.12±6.11 89.47±0.70 51.82±6.11 89.25±0.78 54.85±6.52 91.21±0.92 41.69±5.32

OpenGAN 56.14±24.08 79.54±19.71 52.81±27.60 75.27±26.93 56.14±18.26 83.95±14.89 53.34±5.79 95.32±4.45 54.61±15.51 83.52±11.63
GradNorm 63.72±7.37 85.41±4.85 53.91±6.36 91.65±2.42 52.07±4.09 98.09±0.49 60.50±5.33 92.46±2.28 57.55±3.22 91.90±2.23

ReAct 92.81±3.03 33.77±18.00 89.12±3.19 50.23±15.98 89.38±1.49 51.42±11.42 90.35±0.78 44.20±3.35 90.42±1.41 44.90±8.37
MLS 94.15±2.48 25.06±12.87 91.69±0.94 35.09±6.09 89.41±0.71 51.73±6.13 89.14±0.76 54.84±6.51 91.10±0.89 41.68±5.27
KLM 85.00±2.04 76.22±12.09 84.99±1.18 59.47±7.06 82.35±0.33 81.95±9.95 78.37±0.33 95.58±2.12 82.68±0.21 78.31±4.84
VIM 94.76±0.38 18.36±1.42 94.50±0.48 19.29±0.41 95.15±0.34 21.14±1.83 89.49±0.39 41.43±2.17 93.48±0.24 25.05±0.52
KNN 94.26±0.38 20.05±1.36 92.67±0.30 22.60±1.26 93.16±0.24 24.06±0.55 91.77±0.23 30.38±0.63 92.96±0.14 24.27±0.40
DICE 90.37±5.97 30.83±10.54 90.02±1.77 36.61±4.74 81.86±2.35 62.42±4.79 74.67±4.98 77.19±12.60 84.23±1.89 51.76±4.42

RankFeat 75.87±5.22 61.86±12.78 68.15±7.44 64.49±7.38 73.46±6.49 59.71±9.79 85.99±3.04 43.70±7.39 75.87±5.06 57.44±7.99
ASH 83.16±4.66 70.00±10.56 73.46±6.41 83.64±6.48 77.45±2.39 84.59±1.74 79.89±3.69 77.89±7.28 78.49±2.58 79.03±4.22
SHE 90.43±4.76 42.22±20.59 86.38±1.32 62.74±4.01 81.57±1.21 84.60±5.30 82.89±1.22 76.36±5.32 85.32±1.43 66.48±5.98
GEN 93.83±2.14 23.00±7.75 91.97±0.66 28.14±2.59 90.14±0.76 40.74±6.61 89.46±0.65 47.03±3.22 91.35±0.69 34.73±1.58

WeiPer+MSP 92.76±1.49 24.21±4.35 92.05±0.60 24.85±1.34 91.29±0.58 28.35±2.80 89.57±0.39 38.06±2.96 91.42±0.44 28.87±1.29
WeiPer+ReAct 92.42±1.58 25.33±5.17 91.42±1.33 28.63±6.44 91.18±0.87 28.38±6.45 89.92±0.47 35.64±2.46 91.23±0.62 29.50±3.35
WeiPer+KLD 94.40±1.47 19.98±4.08 94.30±0.41 19.48±4.08 93.20±0.46 19.48±0.18 90.60±0.24 31.88±1.20 93.12±0.34 23.72±0.79
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Table 11: Full CIFAR100 postprocessor results on the three ResNet18 checkpoints provided by
OpenOOD trained with Cross Entropy and standard preprocessing.

Method
CIFAR10 TIN Dnear

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: CIFAR100 / Backbone: ResNet18
OpenMax 74.38±0.37 60.17±0.97 78.44±0.14 52.99±0.51 76.41±0.25 56.58±0.73

MSP 78.47±0.07 58.91±0.93 82.07±0.17 50.70±0.34 80.27±0.11 54.80±0.33
TempScale 79.02±0.06 58.72±0.81 82.79±0.09 50.26±0.16 80.90±0.07 54.49±0.48

ODIN 78.18±0.14 60.64±0.56 81.63±0.08 55.19±0.57 79.90±0.11 57.91±0.51
MDS 55.87±0.22 88.00±0.49 61.50±0.28 79.05±1.22 58.69±0.09 83.53±0.60

MDSEns 43.85±0.31 95.94±0.16 48.78±0.19 95.82±0.12 46.31±0.24 95.88±0.04
RMDS 77.75±0.19 61.37±0.24 82.55±0.02 49.56±0.90 80.15±0.11 55.46±0.41
Gram 49.41±0.58 92.71±0.64 53.91±1.58 91.85±0.86 51.66±0.77 92.28±0.29
EBO 79.05±0.11 59.21±0.75 82.76±0.08 52.03±0.50 80.91±0.08 55.62±0.61

OpenGAN 63.23±2.44 78.83±3.94 68.74±2.29 74.21±1.25 65.98±1.26 76.52±2.59
GradNorm 70.32±0.20 84.30±0.36 69.95±0.79 86.85±0.62 70.13±0.47 85.58±0.46

ReAct 78.65±0.05 61.30±0.43 82.88±0.08 51.47±0.47 80.77±0.05 56.39±0.34
MLS 79.21±0.10 59.11±0.64 82.90±0.05 51.83±0.70 81.05±0.07 55.47±0.66
KLM 73.91±0.25 84.77±2.95 79.22±0.28 71.07±0.59 76.56±0.25 77.92±1.31
VIM 72.21±0.41 70.59±0.43 77.76±0.16 54.66±0.42 74.98±0.13 62.63±0.27
KNN 77.02±0.25 72.80±0.44 83.34±0.16 49.65±0.37 80.18±0.15 61.22±0.14
DICE 78.04±0.32 60.98±1.10 80.72±0.30 54.93±0.53 79.38±0.23 57.95±0.53

RankFeat 58.04±2.36 82.78±1.56 65.72±0.22 78.40±0.95 61.88±1.28 80.59±1.10
ASH 76.48±0.30 68.06±0.44 79.92±0.20 63.35±0.90 78.20±0.15 65.71±0.24
SHE 78.15±0.03 60.41±0.51 79.74±0.36 57.74±0.73 78.95±0.18 59.07±0.25
GEN 79.38±0.04 58.87±0.69 83.25±0.13 49.98±0.05 81.31±0.08 54.42±0.33

WeiPer+MSP 79.24±0.20 59.69±1.20 83.39±0.06 49.28±0.26 81.32±0.10 54.49±0.63
WeiPer+ReAct 79.00±0.18 60.41±1.10 83.40±0.05 49.65±0.33 81.20±0.09 55.03±0.52
WeiPer+KLD 79.20±0.10 59.90±0.62 83.54±0.07 48.78±0.24 81.37±0.02 54.34±0.29

Method
MNIST SVHN Textures Places365 Dfar

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: CIFAR100 / Backbone: ResNet18
NAC 93.15±1.63 21.97±6.62 92.40±1.26 24.39±4.66 89.32±0.55 40.65±1.94 73.05±0.68 73.57±1.16 86.98±0.37 40.14±1.86

OpenMax 76.01±1.39 53.82±4.74 82.07±1.53 53.20±1.78 80.56±0.09 56.12±1.91 79.29±0.40 54.85±1.42 79.48±0.41 54.50±0.68
MSP 76.08±1.86 57.23±4.68 78.42±0.89 59.07±2.53 77.32±0.71 61.88±1.28 79.22±0.29 56.62±0.87 77.76±0.44 58.70±1.06

TempScale 77.27±1.85 56.05±4.61 79.79±1.05 57.71±2.68 78.11±0.72 61.56±1.43 79.80±0.25 56.46±0.94 78.74±0.51 57.94±1.14
ODIN 83.79±1.31 45.94±3.29 74.54±0.76 67.41±3.88 79.33±1.08 62.37±2.96 79.45±0.26 59.71±0.92 79.28±0.21 58.86±0.79
MDS 67.47±0.81 71.72±2.94 70.68±6.40 67.21±6.09 76.26±0.69 70.49±2.48 63.15±0.49 79.61±0.34 69.39±1.39 72.26±1.56

MDSEns 98.21±0.78 2.83±0.86 53.76±1.63 82.57±2.58 69.75±1.14 84.94±0.83 42.27±0.73 96.61±0.17 66.00±0.69 66.74±1.04
RMDS 79.74±2.49 52.05±6.28 84.89±1.10 51.65±3.68 83.65±0.51 53.99±1.06 83.40±0.46 53.57±0.43 82.92±0.42 52.81±0.63
Gram 80.71±4.15 53.53±7.45 95.55±0.60 20.06±1.96 70.79±1.32 89.51±2.54 46.38±1.21 94.67±0.60 73.36±1.08 64.44±2.37
EBO 79.18±1.37 52.62±3.83 82.03±1.74 53.62±3.14 78.35±0.83 62.35±2.06 79.52±0.23 57.75±0.86 79.77±0.61 56.59±1.38

OpenGAN 68.14±18.78 63.09±23.25 68.40±2.15 70.35±2.06 65.84±3.43 74.77±1.78 69.13±7.08 73.75±8.32 67.88±7.16 70.49±7.38
GradNorm 65.35±1.12 86.97±1.44 76.95±4.73 69.90±7.94 64.58±0.13 92.51±0.61 69.69±0.17 85.32±0.44 69.14±1.05 83.68±1.92

ReAct 78.37±1.59 56.04±5.66 83.01±0.97 50.41±2.02 80.15±0.46 55.04±0.82 80.03±0.11 55.30±0.41 80.39±0.49 54.20±1.56
MLS 78.91±1.47 52.95±3.82 81.65±1.49 53.90±3.04 78.39±0.84 62.39±2.13 79.75±0.24 57.68±0.91 79.67±0.57 56.73±1.33
KLM 74.15±2.59 73.09±6.67 79.34±0.44 50.30±7.04 75.77±0.45 81.80±5.80 75.70±0.24 81.40±1.58 76.24±0.52 71.65±2.01
VIM 81.89±1.02 48.32±1.07 83.14±3.71 46.22±5.46 85.91±0.78 46.86±2.29 75.85±0.37 61.57±0.77 81.70±0.62 50.74±1.00
KNN 82.36±1.52 48.58±4.67 84.15±1.09 51.75±3.12 83.66±0.83 53.56±2.32 79.43±0.47 60.70±1.03 82.40±0.17 53.65±0.28
DICE 79.86±1.89 51.79±3.67 84.22±2.00 49.58±3.32 77.63±0.34 64.23±1.65 78.33±0.66 59.39±1.25 80.01±0.18 56.25±0.60

RankFeat 63.03±3.86 75.01±5.83 72.14±1.39 58.49±2.30 69.40±3.08 66.87±3.80 63.82±1.83 77.42±1.96 67.10±1.42 69.45±1.01
ASH 77.23±0.46 66.58±3.88 85.60±1.40 46.00±2.67 80.72±0.70 61.27±2.74 78.76±0.16 62.95±0.99 80.58±0.66 59.20±2.46
SHE 76.76±1.07 58.78±2.70 80.97±3.98 59.15±7.61 73.64±1.28 73.29±3.22 76.30±0.51 65.24±0.98 76.92±1.16 64.12±2.70
GEN 78.29±2.05 53.92±5.71 81.41±1.50 55.45±2.76 78.74±0.81 61.23±1.40 80.28±0.27 56.25±1.01 79.68±0.75 56.71±1.59

WeiPer+MSP 79.81±1.37 52.31±3.65 80.90±1.22 59.31±1.96 78.87±0.62 59.56±1.85 80.22±0.17 56.82±0.50 79.95±0.66 57.00±1.40
WeiPer+ReAct 79.09±1.36 53.91±3.98 81.90±0.64 56.00±3.52 79.77±0.36 56.78±0.91 80.49±0.15 55.74±0.43 80.31±0.39 55.61±0.79
WeiPer+KLD 77.93±2.09 55.51±5.58 79.55±0.97 59.80±2.70 78.56±0.79 59.63±1.55 80.00±0.24 56.90±0.85 79.01±0.54 57.96±0.98
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A.6 Full ImageNet results

Table 12: Full ImageNet postprocessor results on ResNet50 trained with Cross Entropy and standard
preprocessing. We achieve three out of five best AUROC performances outperforming the competi-
tion.

Method
SSB-hard NINCO Dnear

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: ImageNet-1K / Backbone: ResNet50
OpenMax 71.37 77.33 78.17 60.81 74.77 69.07

MSP 72.09 74.49 79.95 56.88 76.02 65.68
TempScale 72.87 73.90 81.41 55.10 77.14 64.50

ODIN 71.74 76.83 77.77 68.16 74.75 72.50
MDS 48.50 92.10 62.38 78.80 55.44 85.45

MDSEns 43.92 95.19 55.41 91.86 49.67 93.52
RMDS 71.77 77.88 82.22 52.20 76.99 65.04
Gram 57.39 89.39 66.01 83.87 61.70 86.63
EBO 72.08 76.54 79.70 60.58 75.89 68.56

GradNorm 71.90 78.24 74.02 79.54 72.96 78.89
ReAct 73.03 77.55 81.73 55.82 77.38 66.69
MLS 72.51 76.20 80.41 59.44 76.46 67.82
KLM 71.38 84.71 81.90 60.36 76.64 72.54
VIM 65.54 80.41 78.63 62.29 72.08 71.35
KNN 62.57 83.36 79.64 58.39 71.10 70.87
DICE 70.13 77.96 76.01 66.90 73.07 72.43

RankFeat 55.89 89.63 46.08 94.03 50.99 91.83
ASH 72.89 73.66 83.45 52.97 78.17 63.32
SHE 71.08 76.30 76.49 69.72 73.78 73.01
GEN 72.01 75.73 81.70 54.90 76.85 65.32

WeiPer+MSP 73.01 75.16 82.35 52.53 77.68 63.84
WeiPer+ReAct 71.20 80.39 82.49 53.36 76.85 66.87
WeiPer+KLD 74.73 74.12 85.37 48.67 80.05 61.39

Method
iNaturalist Textures Openimage-O Dfar

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: ImageNet-1K / Backbone: ResNet50
NAC 96.52 - 97.90 - 91.45 - 95.29 -

OpenMax 92.05 25.29 88.10 40.26 87.62 37.39 89.26 34.31
MSP 88.41 43.34 82.43 60.87 84.86 50.13 85.23 51.45

TempScale 90.50 37.63 84.95 56.90 87.22 45.40 87.56 46.64
ODIN 91.17 35.98 89.00 49.24 88.23 46.67 89.47 43.96
MDS 63.67 73.81 89.80 42.79 69.27 72.15 74.25 62.92

MDSEns 61.82 84.23 79.94 73.31 60.80 90.77 67.52 82.77
RMDS 87.24 33.67 86.08 48.80 85.84 40.27 86.38 40.91
Gram 76.67 67.89 88.02 58.80 74.43 75.39 79.71 67.36
EBO 90.63 31.30 88.70 45.77 89.06 38.09 89.47 38.39

GradNorm 93.89 32.03 92.05 43.27 84.82 68.46 90.25 47.92
ReAct 96.34 16.72 92.79 29.64 91.87 32.58 93.67 26.31
MLS 91.17 30.61 88.39 46.17 89.17 37.88 89.57 38.22
KLM 90.78 38.52 84.72 52.40 87.30 48.89 87.60 46.60
VIM 89.56 30.68 97.97 10.51 90.50 32.82 92.68 24.67
KNN 86.41 40.80 97.09 17.31 87.04 44.27 90.18 34.13
DICE 92.54 33.37 92.04 44.28 88.26 47.83 90.95 41.83

RankFeat 40.06 94.40 70.90 76.84 50.83 90.26 53.93 87.17
ASH 97.07 14.04 96.90 15.26 93.26 29.15 95.74 19.49
SHE 92.65 34.06 93.60 35.27 86.52 55.02 90.92 41.45
GEN 92.44 26.10 87.59 46.22 89.26 34.50 89.76 35.61

WeiPer+MSP 92.44 29.77 86.62 55.16 88.94 39.75 89.33 41.56
WeiPer+ReAct 95.75 21.03 91.88 34.95 91.64 33.53 93.09 29.83
WeiPer+KLD 97.49 13.59 96.18 22.17 92.94 30.49 95.54 22.08
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Table 13: Full ImageNet postprocessor results on ViT/16-B trained with Cross Entropy and standard
preprocessing.

Method
SSB-hard NINCO Dnear

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: ImageNet-1K / Backbone: ViT16-B
OpenMax 68.60 89.19 78.68 88.33 73.64 88.76

MSP 68.94 86.41 78.11 77.28 73.52 81.85
TempScale 68.55 87.35 77.80 81.88 73.18 84.62

MDS 71.57 83.47 86.52 48.77 79.04 66.12
RMDS 72.87 84.52 87.31 46.20 80.09 65.36
EBO 58.80 92.24 66.02 94.14 62.41 93.19

GradNorm 42.96 93.62 35.60 95.81 39.28 94.71
ReAct 63.10 90.46 75.43 78.51 69.26 84.49
MLS 64.20 91.52 72.40 92.97 68.30 92.25
KLM 68.14 88.35 80.68 66.14 74.41 77.25
VIM 69.42 90.04 84.64 57.41 77.03 73.73
KNN 65.98 86.22 82.25 54.73 74.11 70.47
DICE 59.05 89.77 71.67 81.10 65.36 85.44
ASH 53.90 93.50 52.51 95.37 53.21 94.43
SHE 68.04 85.73 84.18 56.02 76.11 70.88
GEN 70.09 82.23 82.51 59.33 76.30 70.78

WeiPer+MSP 68.98 85.09 80.66 64.85 74.82 74.97
WeiPer+ReAct 68.52 85.48 81.07 62.67 74.79 74.08
WeiPer+KLD 68.26 85.60 81.73 60.45 75.00 73.02

Method
iNaturalist Textures Openimage-O Dfar

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Benchmark: ImageNet-1K / Backbone: ViT16-B
NAC 93.72 - 94.17 - 91.58 - 93.16 -

OpenMax 94.93 19.62 73.07 40.26 87.36 73.82 89.27 55.50
MSP 88.19 42.40 85.06 56.46 84.86 56.19 86.04 51.69

TempScale 88.54 43.09 85.39 58.16 85.04 59.98 86.32 53.74
MDS 96.01 20.64 89.41 38.91 92.38 30.35 92.60 29.97

RMDS 96.10 19.47 89.38 37.22 92.32 29.57 92.60 28.76
EBO 79.30 83.56 81.17 83.66 76.48 88.82 78.98 85.35

GradNorm 42.42 91.16 44.99 92.25 37.82 94.53 41.75 92.65
ReAct 86.11 48.25 86.66 55.88 84.29 57.67 85.69 53.93
MLS 85.29 72.94 83.74 78.94 81.60 85.82 83.54 79.23
KLM 89.59 43.48 86.49 50.12 87.03 51.75 87.70 48.45
VIM 95.72 17.59 90.61 40.35 92.18 29.61 92.84 29.18
KNN 91.46 27.75 91.12 33.23 89.86 34.82 90.81 31.93
DICE 82.50 47.90 82.21 54.83 82.22 52.57 82.31 51.77
ASH 50.62 97.02 48.53 98.50 55.51 94.79 51.56 96.77
SHE 93.57 22.16 92.65 25.63 91.04 33.57 92.42 27.12
GEN 93.54 22.92 90.23 38.30 90.27 35.47 91.35 32.23

WeiPer+MSP 91.23 35.55 88.08 48.62 88.15 46.30 89.15 43.49
WeiPer+ReAct 91.49 33.04 88.31 47.37 88.56 43.26 89.45 41.22
WeiPer+KLD 92.09 29.32 89.36 46.10 89.51 39.05 90.32 38.16

A.7 Compute resources

All experiments are conducted on a local machine with the following key specifications: AMD EPYC
7543 (32-Core Processor) with 256GB RAM and 1x NVIDIA RTX A5000 (24GB VRAM). To
streamline the experimental process, we pre-compute the penultimate output of each backbone model
and dataset combination. This is possible as we do not alter the training objective for our evaluation,
achieving a reduction of disk usage to <2.8GB when stored as FP16 tensors compared to sum of the
original dataset sizes of CIFAR10, CIFAR100 and ImageNet-1K.

For all benchmarks, the 24GB VRAM suffices for both, the model inference and postprocessor
optimization. Depending on the chosen batch size, this offers a runtime / VRAM trade-off and is
therefore well achievable on smaller GPUs.

Excluding the inference step for the penultimate output, we report an inference time for the postpro-
cessor optimization of 18 seconds for CIFAR10 and <10 minutes for ImageNet-1K per iteration. An
iteration refers to processing the full dataset starting from the penultimate layer output. For the full
duration without pre-processing, one would add the inference time of the respective ResNet[18/50]
or ViT/16-B model.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract introduces the key contribution WeiPer, the KL-Divergence-based
scoring function and the setting in which it outperforms its competition. Furthermore,
our introduction briefly presents our methods mechanism and lists our contributions and
mentions its limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Limitations section, we address two points of critique that we feel are
most relevant: the number of hyperparameters and the memory consumption (also analyzed
in Table 5). In our methods section, we clearly state our assumptions which are be justified
by observations (e.g. in the figures) and by the empirical results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our paper only includes one theoretical result (Theorem A.1) which is proofed
in Cuesta-Albertos et al. (2007). However, we provide a proof for our case.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: With the use of the standardized OpenOOD benchmark, the results of our
paper are well reproducible. We provide details on the hyperparameter choices in Table 7
and Table 8 and the exact code to reproduce the results with the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our implementation in the supplementary material. It is integrated
in the OpenOOD framework, which makes it easy to setup. All required packages will be
installed when setting up OpenOOD. The benchmark datasets are publicly available. When
published, we will release a public GitHub repository with our implementation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the training details of the used baseline models and their check-
points in the Experiments section. With our method functioning in a post-hoc fashion, these
training checkpoints remain unchanged. The optimization details for our postprocessor are
also located in section 4. For the specific hyperparameter ranges and found configurations
see Table 7 and Table 8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: Due to WeiPers random nature our results exhibit noise dependent on the
hyperparameter r and we display the minimum to maximum range in Figure 4 and Figure 6.
We chose minimum to maximum results instead of standard deviation as the maximal
performing perturbations could be strategically sampled.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the memory usage / performance trade-off in Figure 4. In Ap-
pendix A.7, we report on specifications of our machine, GPU usage and execution times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects or participants. The datasets
conform with the NeurIPS Code of Ethics, specifically, the listed concerns. Our work does
not introduce new data.
Our work aims to contribute to safety in AI. It proposed a method that is applicable to various
applications that utilize Machine Learning, but is neither obstructing nor contributing to
areas with a larger societal impact.
Finally, our research conforms with the NeurIPS Code of Conduct.
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We classify our contribution as foundational research, as it is a tool to improve
Machine Learning models in various use cases. Hence, a specific assessment of the societal
impact is difficult.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Both, data and models, are not prone to a high risk of misuse, see questions 9.
and 10. Hence, we propose no safeguards in our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our work builds on data, the evaluation framework OpenOOD and previous
OOD detectors that are introduced and cited in the Experiments section and Related Work
section, respectively. Our contribution is licensed by CC BY 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The implementation of our contribution is well annotated and we provide
optimization details as well as a thorough description of our method, as it is the key
contribution of our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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