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ABSTRACT

The discrete entities of symbolic systems and their explicit relations make sym-
bolic systems more transparent and easier to communicate. This is in contrast to
neural systems, which are often opaque. It is understandable that psychologists
often pursue interpretations of human cognition using symbolic characterizations,
and it is clear that the ability to find symbolic variables within neural systems
would be beneficial for interpreting and controlling Artificial Neural Networks
(ANNs). Symbolic interpretations can, however, oversimplify non-symbolic sys-
tems. This has been demonstrated in findings from research on children’s perfor-
mance on tasks thought to depend on a concept of exact number, where recent
findings suggest a gradience of counting ability in children’s learning trajectories.
In this work, we take inspiration from these findings to explore the emergence of
symbolic representations in ANNs. We demonstrate how to align recurrent neural
representations with high-level, symbolic representations of number by causally
intervening on the neural system. We find that consistent, discrete representa-
tions of numbers do emerge in ANNs. We use this to inform the discussion on
how neural systems represent quantity. The symbol-like representations in the
network, however, evolve with learning, and can continue to vary after the neural
network consistently solves the task, demonstrating the graded nature of symbolic
variables in distributed systems.

1 INTRODUCTION

Both biological and artificial Neural Networks (NNs) have powerful modeling abilities. Aside from
the impressive capabilities of human cognition within biological NNs, artificial NNs have had recent
successes crowning them as the “gold standard” in many machine learning communities (Alzubaidi
et al., 2021). Despite their success, the inner workings of NNs remain largely opaque to humans,
partly because representations in NNs are often highly distributed. Individual neurons in NNs often
play multiplex roles (McClelland et al., 1986; Smolensky, 1988). Meanwhile, current tools often
lack the ability to uncover precise mechanisms of artificial NNs (ANNs) from their distributed rep-
resentations.

Symbolic systems, in contrast, defined by clear, discrete entities and explicit rules and relations,
have the benefit of greater interpretability. These systems can often be designed so as to maintain
mechanistic simplicity and interpretablity. Often this comes with the benefit of causal power over
the systems, enabling us to change intermediate components for a desired output. Symbolic systems
can lack, however, the expressivity and performance capabilities of NNs. This is apparent in the field
of natural language processing where NNs such as Transformers (Vaswani et al., 2017) have swept
the field. The field has witnessed a transformation from the power of scalable learning objectives
and model scale using ANNs (Brown et al., 2020; Kaplan et al., 2020), easily surpassing the existing
purely symbolic approaches. Is it possible to gain the interpretability of a symbolic system in these
NNs? How can we explore the causal relationships of ANN representations?

Regardless of the performance differences of symbolic vs neural models, a main goal of scientific
discovery is centered on the generation of simplified, symbolic interpretations of complex systems.
These simplifications are necessary for understanding the essential parts of a system and how they
causally interact. This form of understanding grants goal directed agents causal power over the
system. Indeed, it could be argued that symbolic simplifications are necessary for goal directed
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Figure 1: Diagram of a causal interchange performed on the hidden state of the GRU in the base
sequence. In general, the triangles are Feed Forward Networks (FFNs); the trapezoids are GRU cells;
the thought clouds show the values of our hypothesized symbolic variables where Q is the quantity
and P is the phase; in the circles in the upper right corner, ℓi and ℓi+1 denote cross entropy loss
over predicted logits; and all other shapes other than the DAS Interchange rectangle are either h, for
hidden state vector; p for predicted logits; or y which is a one hot encoding of ground truth token.
During the demonstration phase, ground truth tokens are fed into the GRU. During the response
phase, we use the model predictions as input to the GRU. The trigger token T signals the phase
transition from demonstration to response. For simplicity, we draw an arrow directly from the logits
or one hot encodings into the GRU cell, but in actuality, we use an embedding selected from the
unit with the maximum value. We harvest variables from the source sequence and put them into
the destination sequence for the causal interchange. In this example the source hidden state is hs

2
and the destination hidden state is hd

i where the subscript denotes the index in the sequence, and the
superscript denotes what sequence it is used in—s for source, d for destination (referred to as ”base”
in previous work), and v for intervened. We use a trained model with frozen weights to produce all
predictions. We back-propagate into the DAS Interchange rotation matrix using prediction error
on the expected sequence under the hypothesized symbolic variables and causal interchange. Red
arrows indicate the gradient flow in back-propagation.

agents to successfully interact with the world, or at least to share information with each other about
how to do so.

One symbolic system is the system of natural or counting numbers – a system that many, but not
all, humans know. In addition to young children, adults in some aboriginal tribes have been found
to lack both number words and the ability to perform numeric equivalence tasks (Gordon, 2004;
Frank et al., 2008; Pica et al., 2004; Pitt et al., 2022). This has sparked intrigue about the necessary
conditions for humans to learn representations of exact number. Is formal education required for
humans to learn about numbers? Can symbolic representations of numbers exist without possessing
words for them? How did humans develop symbolic number systems in the first place?

Theories of the development of numerical abilities have often been cast within a symbolic frame-
work, but recent evidence suggests that many of these theories may fail to capture signs of gradience
in children’s acquisition of number. Gelman & Gallistel (1986) proposed that children’s early perfor-
mance on such tasks depends on 3 symbolic counting principles: one-to-one correspondence, stable
ordering, and cardinality. This theory was challenged, however, by Wynn (1992), who showed
that children who demonstrated the ability to perform counting tasks with very small numbers often
failed to perform correctly with larger values in their count lists. The idea then arose that the induc-
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tion of such principles coincided with the ability perform such tasks with sets containing more than
3 or 4 items. Sarnecka & Carey (2008) offered additional tasks thought to assess reliance on these
principles, but the idea that these principles applied generally to all numbers in the child’s count list
was not supported by the subsequent work of Davidson et al. (2012); instead these authors found ev-
idence of gradual acquisition of the ability to perform such tasks, progressing from smaller to larger
numbers within the child’s count list as several number-relevant abilities improved, consistent with
the view that children’s numerical abilities emerge gradually, and raising the possibility that their
behavior may come to better align with symbolic principles as they gain more and more experience.

In our work, we take inspiration from the number cognition literature to ask if we can find sym-
bolic representations of number in ANNs trained on numeric tasks. We then probe deeper into
the relationship between model performance and symbolic alignment. We first show that we can
find symbolic representations of number in Gated Recurrent Unit (GRU) (Cho et al., 2014) Recur-
rent Neural Networks (RNNs). We source this evidence by training a GRU to 100% accuracy on
held-out test quantities in a counting task, and then we find a causal alignment between the latent
representations of the trained GRU and a symbolic program. We find this alignment using a tech-
nique called Distributed Alignment Search (DAS) (Geiger et al., 2021; 2023) which enables us to
test for the existence of symbolic programs in distributed representations using causal interventions.
We find that the GRUs use a count up, count down strategy which increments and decrements a
single count variable based on the phase of the task. We contrast this with an alternative symbolic
program that solves the counting task with two separate count variables—one to track the target
quantity and another to track the response quantity. We further demonstrate the significance of our
results by showing that the symbolic number alignment does not emerge in models trained on a
similar task that can be solved using an exact token copy operation.

We use our results to demonstrate the utility of symbolic alignments within cognitive models. The
alignments in this paper demonstrate the emergence of symbolic numbers within connectionist mod-
els. These findings have implications for the origins of exact symbolic number systems and for the
necessary conditions for neural systems to learn how to count. These results serve as an initial step
towards the unification of the symbolic and connectionist camps of thought in cognitive modeling.

We then explore deeper into the relationship between the symbolic alignment and the model perfor-
mance to show that the symbolic alignment has a strong correlation with model accuracy, often being
a leading indicator of a training phase transition. The relationship between the two, however, is not
a perfect one-to-one correspondence, and frequently the alignment accuracy continues to change
despite the model’s ceiling task performance. We relate this to the symbolic gradience observed in
children’s number cognition, noting the similarity of these findings to that of children learning to
count. Although this work is in its early stages, it has the potential to enhance our understanding of
the emergence of symbols in the human mind.

We summarize the contributions of this paper as follows:

1. We demonstrate how and why to use DAS to interpret recurrent cognitive models

2. We find the emergence of symbol-like counting variables in models trained to solve a nu-
meric matching task, serving as a proof-of-principle for symbolic representations of num-
ber in human cognition

3. We find that the symbolic representations of number strongly co-vary with model perfor-
mance, although there is not a perfect one-to-one correspondence

4. We use our findings to enhance our understanding of emergent symbolic variables in neural
systems, making a crucial step towards unifying symbolic and connectionist frameworks

2 METHODS

2.1 OVERVIEW

At a high level, we first train a model to solve a counting task, and then we use Distributed Alignment
Search (DAS) (Geiger et al., 2021; 2023) to find alignments between symbolic abstractions and
neural representations via gradient descent. Specifically, DAS learns a rotation matrix as a change-
of-basis matrix to align a linear subspace of neural representations with a causal variable. The
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training objective for the rotation matrix is to influence the model to predict counterfactual outputs
based on the intervention. To evaluate how well the NN aligns with the symbolic abstraction, we
perform causal interventions on held out data. These causal interventions enable the experimenter to
verify whether or not the model is performing the task in a way that is consistent with the existence
of the hypothesized causal abstraction.

2.2 TASKS

The tasks we focus on in this work consist of variable length sequences of tokens. We compare two
relatively simple counting tasks in this framework. The first task is called the Copy Task, and the
second is called the Counting Task. Both tasks begin by uniformly sampling a target quantity from 1
to 20. After determining the target quantity, the sequence is constructed from two phases. The first
is called the demonstration phase which begins with a Beginning of Sequence (BOS) token and
continues with a number of demonstration tokens provided by the environment. Once the number of
demonstration tokens following the BOS token is equal to the initially sampled target quantity, the
environment provides a trigger token indicating the beginning of the response phase. The model is
then tasked with outputting the same number of tokens as was observed in the demonstration phase
followed by an End of Sequence (EOS) token to indicate that it has finished with its response. The
Copy and the Counting task variants differ as follows:

Copy Task: other than the BOS, trigger, and EOS tokens, there is a single token type used to
indicate the target quantity during the demonstration phase, and the same token type is
used during the response phase. It is possible to solve this task without using a notion of
quantity, by copying the literal sequence of tokens in the demonstration sequence.

Counting Task: in addition to the BOS, trigger, and EOS tokens, there are 3 demonstration token
types and a single response token type that is different from each of the possible demonstra-
tion token types. During the demonstration phase, the demonstration tokens are uniformly
sampled from the possible demonstration token types. The response phase deterministically
uses the unique response token type. Success in this task requires some notion of quantity,
as the model cannot solve the task by simply copying the demonstration sequence.

During DAS training we sampled 1000 sequences for training, and 500 samples of held out target
quantities for validation. The held out target quantities were 4, 9, 14, and 17, selected to be relatively
evenly distributed amongst the possible quantities.

2.3 COUNTING MODEL

We trained Gated Recurrent Units (GRUs) (Cho et al., 2014) to solve the aforementioned tasks.
GRUs are a specific type of RNN that are similar to a Long Short-Term Memory (LSTM) networks
except for a key advantage of GRUs being that they have a single recurrent state vector. The hidden
state, ht, of the GRU at a particular step, t, is updated according to the following equations:

rt = σ(Wirxt + bir +Whrht + bhr) (1)
zt = σ(Wizxt + biz +Whzht + bhz) (2)
nt = tanh(Winxt + bin + rt ∗ (Whnht + bhn)) (3)

ht+1 = (1− zt) ∗ nt + zt ∗ ht (4)

After each update step in the sequence, we make a prediction pt+1 of the next token, yt+1, using
softmax classification on the vector ht+1. Concretely, we feed ht+1 into a Feed Forward Network
(FFN) with a single hidden layer of 80units, a Gaussian Error Linear Unit (GELU) nonlinearity
(Hendrycks & Gimpel, 2023), dropout applied on the hidden activations with 0.5 probability to
drop (Srivastava et al., 2014), and a softmax applied to the outputs of the second layer to create
a probability distribution over possible output tokens. We use the cross entropy of the predictions
with the ground truth tokens as the loss, L, and minimize the loss using batch gradient decent with
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a batch size of 128. The loss for a batch of training data is calculated as follows:

Li = −
S−1∑
t=1

y⊤t log(pt) (5)

L =
1

NS

N∑
i=1

Li (6)

Where i refers to the index of a single sequence in the batch, t is the index of the step in the sequence
of length S where the 0th step is not predicted, yt is a ground truth, one-hot encoded column vector,
and pt is the output of the softmax function at the end of the FFN.

We used the ground truth tokens as input at each step in the sequence during the demonstration
phase (i.e., teacher-forcing) up to and including the trigger token. After the trigger token, we use the
predicted token of the current time step as the input token for the next time step (i.e., autoregressive)
prediction vector to select the input token for the next step.

We used PyTorch with AutoGrad (Paszke et al., 2019), an Adam optimizer (Kingma & Ba, 2017)
with default settings, an initial learning rate of 0.001, a learning rate decay schedule following that
described in the original transformer paper (Vaswani et al., 2017). We trained 5 model seeds, each
for 300. Models were trained using Nvidia Titan X GPUs. All models achieved > 99.99% accuracy
on both training and validation sequences, where accuracy refers to the proportion of responses with
the correct number of response tokens after the trigger token and ending with an EOS token.

2.4 RECURRENT DAS

Causal abstraction is a hypothesis testing framework that manually tests if the causal mechanism of a
variable in a symbolic program abstracts the causal mechanism of neural representations relative to a
particular alignment (Geiger et al., 2021). Distributed Alignment Search (DAS) (Geiger et al., 2023)
is a recent variant of causal abstraction where it turns the brute-force hypothesis search process into
an optimization problem. DAS actively learns a linear subspace in the vector space by rotating the
original neural representations with an orthogonal matrix. The question remains, how do we find
this subspace?

In this work, we fix the number of dimensions of the subspace. We allow these dimensions to be
contiguous within the rotated representation under the assumption that a learned rotation matrix will
be able to adapt to the particular dimensions that we isolate for the intervention. This narrows the
number of possible choices to the range 0-D, where D is the dimensionality of the hidden state
vector, ht. We then perform a hyper-parameter search, trying different sizes of the subspace based
on alignment performance. For our studies, we fix the subspace to be 10 dimensions given that the
performance appeared relatively unchanged between approximately 5 and 15 dimensions.

With a fixed number of dimensions established, we can now write the the DAS intervention as
follows:

hv
i = R−1(m ∗Rhs

j + (1−m) ∗Rhd
i ) (7)

Where hs and hd refer to the GRU’s hidden states under the source and destination sequences re-
spectively. hv is the resulting, intervened hidden state. The subscripts i and j refer to the indices
of the hidden states within their respective sequences. m is a binary mask (meaning it has discrete
values of 1 or 0) that we use to select the neural subspace to intervene upon. Conceptually, we use
m to inject some number of units from the rotated source vector to the rotated destination vector. R
is the learned rotation matrix that is constrained to be orthonormal.

The last piece of the DAS procedure is creating the training signal for the causal intervention. See
Figure 1 for a diagram of the full process. To create the training signal, we use the symbolic causal
program to generate the tokens we would expect under the causal intervention. We then use these
tokens for the same autoregressive, next token prediction task that we used to train the neural model
on the original task. We use the model’s accuracy on the counting problems to evaluate the validity
of the alignment. In the case where there exists a meaningful alignment between the neural model
and the symbolic program, we expect the model’s accuracy to be high under the causal interventions.
In the case where there does not exist a valid alignment, the resulting accuracy should be low.
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Table 1: Alignment Results

Task Program Variable Acc
Counting Stack Quantity 0.94±0.02
Counting Stack Phase 0.91±0.02
Counting Match Demo Quant 0.40±0.03
Counting Match Resp Quant 0.35±0.02

Copy Stack Quantity 0.52±0.05
Copy Stack Phase 0.60±0.07
Copy Match Demo Quant 0.24±0.02
Copy Match Resp Quant 0.30±0.06

In sequence based modeling, the ordering of the tokens conveys important information. We have
the option of which indices to sample for the destination and source vectors when performing DAS.
In this work, we exclude indices that correspond to BOS, trigger, and EOS tokens. We show results
that uniformly sample the source and destination indices j and i from both the demonstration and
response phases.

For the training, we used 10000 destination-source sequence pairs with 1000 pairs for validation.
Similar to the standard model training, we used the held out target quantities 4, 9, 14, and 17 for
the validation sequences. Using held out target quantities gives more insight into the generalization
capabilities of the models’ solutions. It also gives insight into DAS’s capabilities, as it is a relatively
young technique for interpreting neural models. We used a learning rate of 0.001 and a batch size
of 512 sequence pairs. We trained the rotation matrix until convergence on the autoregressive loss.

2.5 CAUSAL MODELS

As previously described, DAS requires that the experimenter first has a testable, high level, symbolic
causal program. DAS then finds the best alignment of this program within the neural model. We
tested for the existence of two different causal programs. The Stack Program is an algorithm in
which the model uses a Quantity variable to track the count and a Phase variable to track the phase
of the sequence. It increments the Quantity during the demonstration phase and decrements it down
during the response phase, knowing to stop when it hits 0. We included Algorithms 1 and 2 to
detail a step-by-step account of a single sequence step in the the Stack program. In contrast, the
Match Program uses a Phase variable and two count variables—Demo Quant and Resp Quant. It
increments these count variables during the demonstration and response phase respectively knowing
to stop when Demo Quant is equal to Resp Quant during the response phase.

We note the existence of an infinite number of equivalent implementations of each of these programs
respectively. For example, an equivalent program to Stack is one where the program immediately
adds and subtracts 1 from the Quantity variable before carrying out the rest of the program as we
have described. DAS only has the ability to discriminate between programs that are causally distinct
from one another. We wish to acknowledge that there are many more experiments that we could do
to further refine the symbolic program(s) in this work. We leave this exploration, however, to future
work.

3 RESULTS/DISCUSSION

We begin by addressing the symbol-like nature of the NN task solutions and by demonstrating that
DAS can help us identify which symbolic program the NNs find. We can see from Table 1 the
results of our DAS alignments. First, we note that we see relatively high alignment accuracies in the
Quantity and Phase variables from the Stack program for the Counting Task models compared to the
results from the Match program. We see this comparative difference when comparing the Quantity
variable to both the Demo Quant and Resp Quant variables. These comparisons suggest that the
Stack model characterizes the solutions better than the Match program.
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Figure 2: The relationship between model accuracy and DAS accuracy over the course of training.
Each point is from a training snapshot of a single model seed trained on the Counting Task. The
topmost panel shows the models’ task performance in darker hues with circle markers and shows
the Quantity DAS alignment performance for that same model snapshot in lighter hues with triangle
markers. Here we see that the learning transition of the DAS alignment correlates with the model
performance transition although they do not have a perfect correspondence. In the lower panel, the x-
axis shows the model performance on the task at that snapshot with the DAS alignment performance
for that same snapshot on the y-axis. Each color in the lower panel corresponds to a different model
seed. We see from the lower panel that DAS performance appears to be a leading indicator of the
model’s learning transition.

To further explore the meaning of our results, we compare models trained on the Copy and Counting
tasks. The purpose of this comparison is to demonstrate that our findings for the Counting Task mod-
els are not merely performing an object dependent, copy operation, but rather performing an object
independent numeric operation. We see from the comparatively low alignments of the Copy Task
models that the two training variants have resulted in networks with different solutions. Although
we cannot make claims about the exact nature of the model solutions from this result, we can use it
to further delineate the interpretation of our alignment accuracies.

These results demonstrate that symbol-like representations of discrete numbers do emerge in neural
models that have only been trained to produce the same number of items that they first observed. This
is a proof of principle that neural systems do not need formal instruction for symbolic representations
of number to emerge, nor do they need built in counting principles to inform their learning. This has
implications for the mechanisms by which humans developed symbolic number systems. Perhaps
the need to keep track of specific quantities arose in some cultures, creating task situations that
depended on the ability to learn to represent exact quantities.

We turn now to the developmental trajectory of the causal alignments displayed in Figure 2. We can
see from the performance curves in the upper panel that both the model accuracy and DAS perfor-
mance begin a transition away from 0% at similar epochs. They also exhibit similar performance
trajectories. We note that in all cases, the jump in DAS alignment accuracy precedes that of the
model, as shown in the bottom panel of Figure 2. This result can be contrasted with a hypothetical
result in which the alignment curves lag behind the performance of the model. In this hypothetical,
alternative case, a possible interpretation could have been that the network develops unique solutions
for many different input-output pairs and progressively unifies these solutions. The results that we
see in Figure 2 can be used as evidence for an early sign of an emergent, symbol-like solution in the
NNs even at earlier training epochs. Perhaps this is to be expected in light of works like Saxe et al.
(2019) and Saxe et al. (2022) which show an inherent tendency for NNs to find solutions that share
network weights.
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Despite the similarities between the model performance and alignment performance in Figure 2, we
can see that the alignment performance often fails to achieve 100% alignment. Furthermore, the
alignment performance continues to vary despite the models’ ceiling task performance. We interpret
these results as a reminder that representations in distributed systems exist on a continuum despite
seemingly discrete, symbolic performance on the task. These results have an analogy to children’s
number cognition in which children may appear to possess a symbol-like understanding of exact
numbers and their associated principles, but when probed deeper, the symbol-like picture falls apart.
This can also be related to the Large Language Model (LLM) literature, in which the notion of sharp
changes in performance as a function of LLM scale have been demonstrated to be a function of
metric rather than a sudden change in innate ability Schaeffer et al. (2023).

We use these results to highlight the nuances of symbolic interpretations in cognitive science. In
one light, we have shown that we can find causal symbols within the distributed representations
of the neural systems. We have also shown that these symbol-like representations emerge in a
way that correlates with model performance. These results can inform our thoughts on the nature
of distributed solutions in cognitive models—symbol-like representations are perhaps an inherent
property of general distributed solutions, at least when the task is one that can be solved by relying
on such representations. In another light, however, we see that it is easy to overly simplify our
understanding of a distributed system based on task performance alone. There is a nuanced picture
to distributed solutions that must be considered to understand the full picture of human cognition.

Lastly, we highlight the utility of DAS for interpreting distributed systems. In this work, DAS has
revealed a crucial piece of the puzzle to understanding number representations in neural systems.
DAS also demonstrated the subtle, graded nature of distributed solutions, which we see in human
cognition. These findings serve as a bridge between connectionist and symbolic frameworks for
understanding human cognition, suggesting that DAS will continue to be a useful tool for under-
standing the computations performed in cognitive models that rely on ANN systems.
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Algorithm 1 One sequence step of the Stack Program
q ← Quantity, p← Phase, y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

q ← 0, p← 0
return sample(DEMO) ▷ sample a demo token

else if y ∈ DEMO then ▷ DEMO is set of demo tokens
q ← q + 1
return sample(DEMO)

else if y == TRIG then ▷ TRIG is trigger token
p← 1

else if y == RESP then ▷ RESP is response token
q ← q − 1

end if
if (q == 0) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return RESP

Algorithm 2 One sequence step of the Match Program
d← DemoQuant, r ← RespQuant, p← Phase, y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

d← 0, r ← 0, p← 0
return sample(DEMO) ▷ sample a demo token

else if y ∈ DEMO then ▷ DEMO is set of demo tokens
d← d+ 1
return sample(DEMO)

else if y == TRIG then ▷ TRIG is trigger token
p← 1

else if y == RESP then ▷ RESP is response token
r ← r + 1

end if
if (d == r) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return RESP
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