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ABSTRACT

Generation of graphs is a major challenge for real-world tasks that require under-
standing the complex nature of their non-Euclidean structures. Although diffusion
models have achieved notable success in graph generation recently, they are ill-
suited for modeling the structural information of graphs since learning to denoise
the noisy samples does not explicitly capture the graph topology. To tackle this lim-
itation, we propose a novel generative process that models the topology of graphs
by predicting the destination of the process. Specifically, we design the generative
process as a mixture of diffusion processes conditioned on the endpoint in the data
distribution, which drives the process toward the probable destination. Further, we
introduce new training objectives for learning to predict the destination, and discuss
the advantages of our generative framework that can explicitly model the graph
topology and exploit the inductive bias of the data. Through extensive experimental
validation on general graph and 2D/3D molecular graph generation tasks, we show
that our method outperforms previous generative models, generating graphs with
correct topology with both continuous and discrete features.

1 INTRODUCTION

Generation of graph-structured data has emerged as a crucial task for various real-world problems
such as drug discovery (Simonovsky & Komodakis, 2018), protein design (Ingraham et al., 2019),
and program synthesis (Brockschmidt et al., 2019). To tackle the challenge of learning the underlying
distribution of graphs, diverse deep generative models have been proposed, including models based
on generative adversarial networks (GANs) (De Cao & Kipf, 2018; Martinkus et al., 2022), recurrent
neural networks (RNNs) (You et al., 2018), and variational autoencoders (VAEs) (Jin et al., 2018).

Recently, diffusion models have achieved state-of-the-art performance on the generation of graph-
structured data (Niu et al., 2020; Jo et al., 2022; Hoogeboom et al., 2022). These models learn the
generation process as the time reversal of the forward process, which corrupts the graphs by gradually
adding noise that destroys its topological properties. Since the generative process is derived from
the unknown score function (Song et al., 2021) or noise (Ho et al., 2020), existing graph diffusion
models aim to estimate them in order to denoise the data from noise, which are commonly referred to
as the denoising diffusion models (Figure 1, left).

Despite their success, learning the score or noise is fundamentally ill-suited for the generation of
graphs. Although the key to generating valid graphs is modeling the topological information such as
connectivity, the score or noise does not explicitly model these features. Thereby it is challenging
for the diffusion models to recover the topological properties from the corrupted graphs through
denoising, which leads to failure cases even for small graphs. Ideally, it would be best to directly
learn to predict the resulting graph of the diffusion process for modeling its topology.

However, predicting the destination of the process with denoising diffusion models is not straight-
forward, as the main objective of the diffusion models is to remove noise from the noisy samples
through the reverse process. Few existing works (Hoogeboom et al., 2021; Austin et al., 2021) aim to
predict clean data from the corrupted samples by parameterizing the denoising process. However,
this parameterization is only possible for categorical data with a finite number of states, and thus
cannot generate graphs with continuous features nor utilize such features.

*Equal contribution
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Figure 1: Illustration of the graph generative process. Our DruM (blue) successfully generates a graph
with valid topology by predicting the actual destination, via learning the destination mixture (green) as a
weighted mean of data (Eq. (1)). To this end, we design the generative process (Eq. (4)) as a mixture of endpoint-
conditioned diffusion processes (Eq. (2)), which is driven toward the destination. However, previous diffusion
models (red) often fail to capture the correct topology as they learn the score function or noise for denoising
without the knowledge of the destination. We visualize the generative process of DruM in Appendix E.2.

To address these limitations of existing diffusion models, we propose a novel generative diffusion
process that explicitly models the topology by predicting the destination of the generative process
(Figure 1, right). Specifically, we design the generative process as a mixture of Ornstein-Uhlenbeck
processes conditioned on the endpoint in the data distribution, for which the drift drives the process
toward the destination. We establish a theoretical basis for our proposed destination-driven generation
process (Section 3.1) and introduce new objectives for learning to predict the destination instead of
denoising. Our generative framework can capture the topology of graphs as well as the continuous
features, and further allows to exploit the inductive bias of the data which is crucial for the generation
of real-world graphs (Section 3.2).

We experimentally validate our method on diverse real-world graph generation tasks. We first
validate it on general graph generation benchmarks with synthetic and real-world graphs, on which
it outperforms previous deep graph generative models including graph diffusion models, by being
able to generate graphs with correct topologies. We further validate our method on 2D and 3D
molecule generation tasks to demonstrate its ability to generate graphs with both the continuous and
discrete features, on which ours generates a significantly larger number of valid and stable molecules
compared to the baselines.

Our main contributions can be summarized as follows:

* We observe that previous graph diffusion models cannot accurately model the graph topology as
they learn to denoise each step without the knowledge of the destination of the generative process.

* To fix such a myopic behavior of previous diffusion models, we propose a novel generative process
that directly predicts the destination of the process by leveraging a mixture of diffusion processes.

* We derive theoretical groundwork for our Destination-Driven Diffusion Mixture, and discuss the
practical advantages of our generative framework.

* Our method significantly outperforms previous graph diffusion models on the generation of diverse
real and synthetic graphs, as well as on 2D/3D molecule generation tasks, by being able to generate
graphs with accurate topologies, and both the discrete and continuous features.

2 RELATED WORK

Diffusion Models Diffusion models have been shown to successfully generate high-quality samples
from diverse data domains such as images (Dhariwal & Nichol, 2021), audios (Chen et al., 2021;
Kong et al., 2021; Jeong et al., 2021), and videos (Ho et al., 2022). Despite their success, existing
diffusion models for graphs (Niu et al., 2020; Jo et al., 2022) often fail to generate graphs with
correct structures since the denoising process they use does not explicitly consider the graph topology.
Discrete diffusion model (Vignac et al., 2022) proposed to model the noising process as successive
graph edits for graphs with categorical node and edge attributes, but this is not a desirable solution
for real-world graph generation tasks since it is not applicable to graphs with continuous features,
such as the 3D coordinates of atoms. To address such limitations, we propose a novel graph diffusion
framework that learns to directly predict the destination instead of learning to denoise through
the process, in which the diffusion process drives the trajectories toward the predicted destination
resulting in valid graphs with correct topology.
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Diffusion Bridge Process A line of recent works has improved the generative framework of
diffusion models by leveraging the diffusion bridge processes, which are processes conditioned on an
endpoint. Schrodinger Bridge (Vargas et al., 2021; Wang et al., 2021; Bortoli et al., 2021; Chen et al.,
2022) aims to find both the forward and the backward process that transforms arbitrary distributions
back and forth, using iterative proportional fittings that require heavy computations. More recent
works (Peluchetti, 2021; Wu et al., 2022; Ye et al., 2022) consider learning the generation process as
a mixture of diffusion processes instead of modeling it with a reversal of the noising process as in
denoising diffusion models. However, approximating the drift as in these works cannot accurately
capture the discrete structure of graphs since it does not explicitly consider the topology, and could be
problematic as the drift diverges near the terminal time. Instead, we propose to predict the destination
of the generative process by leveraging the diffusion mixture, allowing it to model the graph topology.

Graph Generative Models Deep generative models for graphs either generate nodes and edges in
an autoregressive manner (You et al., 2018; Liao et al., 2019; Luo et al., 2021) or generate all the nodes
and edges at once (De Cao & Kipf, 2018; Zang & Wang, 2020; Martinkus et al., 2022). Recently,
diffusion models for graphs (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022; Hoogeboom et al.,
2022) have made large progress in generating synthetic graphs as well as 2D and 3D molecular
graphs. However, existing graph diffusion models either fail to capture the graph topology or are
not applicable to general tasks due to the structural limitation of the framework. To overcome these
limitations, we propose a novel graph diffusion framework that explicitly models the topology by
learning to predict the destination. Our graph diffusion framework largely outperforms existing
models (Jo et al., 2022; Vignac et al., 2022; Hoogeboom et al., 2022) on general graph generation as
well as 2D / 3D molecule generation tasks.

3  DESTINATION-DRIVEN DIFFUSION MIXTURE

In this section, we present our novel generative framework, Destination-Driven Diffusion Mixture
(DruM), which learns to predict the destination by designing the generative process as a mixture of
diffusion processes.

3.1 DESIGNING THE GRAPH GENERATIVE PROCESS

The key to generating graph-structured data is understanding the underlying topology of graphs,
which is crucial to determining its validity. However, previous diffusion models fail to do so as their
objective is to denoise the noisy graphs, in which the topology is only implicitly captured (Figure 1,
left). Few existing works (Hoogeboom et al., 2021; Austin et al., 2021) aim to predict the clean data
from a noisy sample by parameterizing the denoising process, but are only applicable to categorical
data and thereby not able to generate graphs with continuous features. To overcome the limitation,
we propose to design a generative process that yields a direct prediction of the destination.

Destination Mixture Our goal is to directly predict the destination of the generative process, i.e.
a diffusion process with a terminal distribution identical to the unknown data distribution II*. To
be specific, for a diffusion process represented as a trajectory of random variables {G'+ } ¢, 77, We
aim to predict the terminus of the process given the current state G';. However, identifying the exact
destination at the early stage of the process is problematic, since G resembles the initial noise which
contains almost no information. Hence predicting a single deterministic data point could lead the
generative process in the wrong direction.

To address this problem, we present a new approach to predicting the probable destination which we
define as a weighted mean of the destinations (Figure 1, right). Assuming that the destination of the
process is in the data distribution, the probability of a data point g being the destination is equal to the
transition probability of the process, denoted as pr|.(g|-). Thus we define the probable destination
for G; via the expectation of data with respect to the probability of being the destination as follows:

D(Gy,t) = /g -pr¢(9|Gt) dg, (D

which we refer to as the destination mixture of the process, visualized in Figure 1 as green. In order
to explicitly model this destination mixture, we construct a generative process that is driven toward
the destination which we describe in the following paragraphs.
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Ornstein-Uhlenbeck Bridge Process As a building block of our destination-driven generative
process, we leverage diffusion processes with fixed endpoints, namely the diffusion bridge processes.
We propose to use a new family of bridge processes, namely the Ornstein-Uhlenbeck (OU) bridge
process that generalizes the Brownian bridge used in previous works (Wu et al., 2022; Ye et al., 2022)
and provides more flexibility for designing the generative process (see Appendix A.l for detailed
explanation). To derive this bridge process, we start with a reference OU process defined as:
QZ th = antht + atth,
where « is a constant, oy is a scalar function, and W, is the standard Wiener process. Then the

process conditioned on the endpoint g, denoted as Q9 :=Q(-|G1 = g), can be obtained using the
Doob’s h-transform (Doob & Doob, 1984) (see Appendix A.1 for the derivation):

th = |:Ck0't Gt + — (g — Gt> :|dt + Jtth (2)
U \ Ut
n9(Gi,t)
where the scalar function u; and v; are defined as follows:
T

1
ut:exp(a/ ade), vt:—(lfut_Q). 3)

¢ 2a

The destination of this process is fixed to G = g, since the drift 9 (-, t) of the process in Eq. (2)
forces the trajectory Gy towards the destination g. With the OU bridge processes in hand, we present
a novel generative process for directly predicting the destination.

Destination-Driven Diffusion Mixture As the destination mixture in Eq. (1) is a weighted mean
of endpoints, conceptually, this can be modeled by combining the endpoint-conditioned processes
with respect to these weights. Thereby, we propose to design the generation process by mixing the
OU bridge processes conditioned on the endpoints from the data distribution. Here, we leverage the
concept of the diffusion mixture representation (Brigo, 2008; Peluchetti, 2021), which yields the
representation of a mixture process that combines a collection of diffusion processes. In a nutshell,
the SDE representation of this mixture process is defined to be the weighted mean of the SDE of each
diffusion process in the collection (we provide a formal definition in Appendix A.2).

To be more precise, in order to model the generative process, we mix a collection of OU bridge
processes {Q9 : g €I1*} which is defined by the following SDE:

Pt (Gt) *
dG,; = I(G 1I*(dg) | dt dW 4
t {/77( t )pt(G) (dg)|dt + oy dWy, 4)
where p{ is the marginal density of the bridge process Q9 and p;(-) := [ p?(-)II*(dg) is the margmal

density of the mixture process. Notably, the terminal dlstrlbutlon of the mlxture process is equal
to the data distribution by definition. We refer to this mixture process in Eq. (4) as the OU bridge
mixture, and denote as Q™.

From the SDE representation of OU bridge process in Eq. (2), the drift of Q" can be derived as
follows (see Appendix A.3 for the derivation of the drift):
R . ?(GY) 1.
T](Gt, ) = 0y Gt + (DH (Gt,t) — Gt) 5 DH (Gt,t) = /gpt( t)H (dg) (5)
Ut bt (Gt)

Notice that from the deﬁmtlon of the transition distribution, we can derive the following:

- ptg(Gt) * p(Gt7GT :g>
D" (Gy,t) = /gpt(Gt) II*(dg) = /g (G dg = /g pri:(9/Gt) dg,  (6)
implying that D™(-, ¢) coincides with D(-,t) in Eq. (1), corresponding to the destination mixture of
Q'". Therefore, D™(, t) is the prediction of the final destination, which represents how probable
each data is to be the destination as a weighted mean. Moreover, since the drift of Eq. (5) forces
the process to the direction of D™(-, ), the generation process of the OU bridge mixture is driven
toward the destination mixture, and hence to the actual destination in the data distribution (Figure 1,
right). Thereby, we name our proposed generative process as Destination-Driven Diffusion Mixture
(DruM).

The generative process of DruM is uniquely determined by the constant « and the noise schedule o.
Especially, the noise schedule controls the convergence behavior of DruM, since small o causes a
large drift in Eq. (5) that forces the trajectory to converge quickly, visualized in Appendix D.2.
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3.2 LEARNING THE DESTINATION MIXTURE

In this section, we introduce the objective for learning the destination mixture and the extension for
the attributed graphs. We further discuss the advantages of our method.

Training Objectives  In order to estimate Q'", we define the generative model P as follows:

271
]P)G : th = |:OLO'§Gt + % (uSQ(Gt,t) — Gt>:| dt + Jtth, (7)
t t

where s¢ (-, t) approximates the destination mixture of Eq. (5). Since we want the generative process
to be driven toward the destination in the data distribution, we train sy (-, ¢) so that the trajectories
sampled from the generative model fit the trajectories from the OU bridge mixture Q' As introduced
in previous works (Wu et al., 2022; Liu et al., 2022), we leverage the Girsanov theorem @ksendal
(2003) to upper bound the KL divergence between the data distribution I1*and the terminal distribution
of the generative model PY denoted as pf. (see Appendix A.4 for details):

. 17 . 2
DisI ) < Dien (@ [7) =B |5 [ 52 [sn(G1t) - DGt ae| 4., 9
0

where C'is a constant independent of 8, G ~ Q'™ denotes the sampled trajectories from the OU bridge
mixture, and v, := o, /(u;v;). However, since the ground truth destination mixture of Q' is not
analytically accessible, Eq. (8) cannot be used directly. Therefore, using the property of conditional
expectation, we introduce a new objective for estimating the destination mixture, which is equivalent
to minimizing Eq. (8) (see Appendix A.4 for the derivation):

1 T

During training, the trajectories G'~ Q'™ can be easily obtained by sampling G ~ pg, G ~ IT*,
t~[0,T]) and Gy ~pyjo 1 (G¢|Go, Gr) which is the distribution of Q" at time ¢ given the endpoints
G and Gp. We derive this probability in Appendix A.5 and provide the pseudo-code for the training
in Appendix B.1. Note that the objective of the loss in Eq. (9) is for sy to estimate the destination
mixture DH*(Gt, t), not the exact endpoint G. Additionally, we introduce a simplified loss using a
constant loss coefficient instead of the time-dependent ; in Appendix B.2, which shows improved
performance for modeling continuous features, such as 3-dimensional positions.

Advantages of the Destination Mixture  Learning the destination mixture provides the following
advantages: (1) we can explicitly model the graph topology instead of implicitly capturing them via
the score or noise, (2) we can model both continuous and discrete features, for example, 3-dimensional
molecules with both discrete atom types and continuous coordinates, (3) it is significantly easier to
learn the destination mixture compared to learning the drift function 7)(+, ¢) of the OU bridge mixture,
since the destination mixture is supported inside the bounded data space while 7(-,t) diverges as ¢
approaches the terminal time, and (4) we can exploit the inductive bias of the data for learning the
destination mixture, which is critical for training as it dramatically reduces the hypothesis space. To
be specific, we can leverage the prior knowledge of the data representation such as one-hot encoding
or the categorical type by adding an additional function at the last layer of the model sy, for instance,
softmax function for the one-hot encoded node features and the sigmoid function for the adjacency
matrices (see Appendix B.3 for details). This guarantees that the model learns the representation of a
weighted mean of data. We experimentally verify these advantages in Section 4.

4 EXPERIMENTS

4.1 GENERAL GRAPH GENERATION

Datasets and Metrics We evaluate the quality of generated graphs on three synthetic and real
datasets used as benchmarks in previous works (Martinkus et al., 2022; Vignac et al., 2022). (1)
Planar: 200 synthetic graphs which are planar and connected, (2) Stochastic Block Model (SBM):
200 community graphs with up to 5 communities, and (3) Proteins: 918 proteins graphs where each
node represents the amino acids. We follow the evaluation setting of Martinkus et al. (2022) using
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Table 1: Generation results on the general graph datasets. Best results are highlighted in bold, where smaller
MMD and larger V.U.N. indicates better results. The baseline results are taken from Martinkus et al. (2022) and
Vignac et al. (2022), or obtained by running the open-source codes. The hyphen (-) denotes out-of-resources that
take more than 2 weeks.

Planar SBM Proteins
Synthetic, |V| = 64 Synthetic, 44 < |V/| < 187 Real, 100 < |V| <500

Deg. Clus. Orbit Spec. V.UN. Deg. Clus. Orbit Spec. V.UN. Deg. Clus. Orbit Spec.
Training set 0.0002  0.0310  0.0005  0.0052 100.0 0.0008  0.0332  0.0255  0.0063 100.0 0.0003  0.0068  0.0032  0.0009
GraphRNN 0.0049 02779  1.2543  0.0459 0.0 0.0055  0.0584  0.0785  0.0065 5.0 0.0040  0.1475  0.5851  0.0152
GRAN 0.0007  0.0426  0.0009  0.0075 0.0 0.0113  0.0553  0.0540  0.0054 25.0 0.0479  0.1234  0.3458  0.0125
SPECTRE 0.0005  0.0785  0.0012  0.0112 25.0 0.0015  0.0521  0.0412  0.0056 525 0.0056  0.0843  0.0267  0.0052
EDP-GNN 0.0044 03187  1.4986  0.0813 0.0 0.0011  0.0552  0.0520  0.0070 35.0 - - - -
GDSS 0.0041 02676  0.1720  0.0370 0.0 0.0212  0.0646  0.0894  0.0128 5.0 0.0861  0.5111 0.732 0.0748
DiGress 0.0003  0.0372  0.0009  0.0106 75 0.0013  0.0498  0.0434  0.0400 74 - - - -

DruM (Ours)  0.0005  0.0353  0.0009  0.0062 90.0 0.0007  0.0492  0.0448  0.0050 85.0 0.0019  0.0660  0.0345  0.0030
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Figure 2: (Left) Topology analysis through the generative process. We compare the sparsity of the destination
mixture from DruM (blue) against the trajectory of GDSS (red), and visualize the V.U.N results of DruM in
green. (Middle) MMD results of the destination mixture from DruM through the generative process. The
dotted lines indicate the MMD results of the training set. (Right) Complexity of DruM with and without using
the inductive bias, measured by the Frobenius norm of the Jacobian of the models.

the same data split. We measure the maximum mean discrepancy (MMD) of four graph statistics
between the generated graphs and the graphs from the test set: degree (Deg.), clustering coefficient
(Clus.), count of orbits with 4 nodes (Orbit), and the eigenvalues of the graph Laplacian (Spec.).
Additionally, to verify that the model truly learns the target distribution, we report the percentage
of valid, unique, and novel (V.U.N.) graphs among the generated graphs, for which the validness is
defined as satisfying the specific property of the dataset: planarity and connectedness for Planar and
statistical test for SBM. For more details, please see Appendix C.1.

Baselines We compare DruM against the following graph generative models: GraphRNN (You
et al., 2018), which is an autoregressive model based on RNN, GRAN (Liao et al., 2019), an
autoregressive model with attention, SPECTRE (Martinkus et al., 2022), a one-shot model based
on GAN, EDP-GNN (Niu et al., 2020), a score-based model for adjacency matrix, GDSS (Jo et al.,
2022), a continuous diffusion model, and DiGress (Vignac et al., 2022), a discrete diffusion model.
We provide the details of the training and the sampling of DruM in Appendix B, and describe further
implementation details in Appendix C.1.

Results Table | shows that our DruM outperforms all the baselines on all datasets. Especially,
DruM achieves the highest validity (V.U.N.) metric, as it accurately learns the underlying topology
of the graphs by directly predicting the destination of the process, compared to the previous graph
diffusion models. Notably, our method outperforms DiGress by a large margin in V.U.N., even
though we do not use specific prior distribution nor structural feature augmentation that are utilized in
DiGress. This is because we generate both the adjacency matrices and the eigenvectors of the graph
Laplacian as node features, thereby capturing detailed topological information of the final graphs. We
provide the visualization of the generated graphs and the diffusion process of DruM in Appendix E,
which demonstrate that DruM is able to capture the characteristics of each dataset.

Topology Analysis To show how the destination-driven process of DruM results in graphs with
correct topology, we conduct an analysis on the estimated destination mixture of DruM. Figure 2
(Left) shows that the sparsity of the estimated destination mixture from DruM gradually increases
and achieves the sparsity of the data at an early stage, while GDSS recovers the sparsity abruptly at
the late stage of the reverse diffusion process. Further, we observe that the V.U.N. of the estimated
destination mixture increases after achieving the desired sparsity, finally resulting in 90% validity.
This shows that predicting the destination allows it to better capture the global topologies. Moreover,
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Table 2: Generation results on the 2D molecule datasets. We report the average of 3 different runs except
for the results of Vignac et al. (2022) on ZINC250k dataset that takes more than 1 week. The best results are
highlighted in bold. The baseline results are taken from Jo et al. (2022) or attained by running the open-source
codes. We provide the results of uniqueness, novelty and variance in Appendix D.1

QM9 (v| <9 ZINC250k (|v| < 38)
Method Valid (%)t  FCD/  NSPDK|  Scaft  Valid (%)t FCD)  NSPDK|  Scaf.
Training set 100.0 0.0398 0.0001 0.9719 100.0 0.0615 0.0001 0.8395
MoFlow Zang & Wang (2020) 91.36 4.467 0.0169 0.1447 63.11 20.931 0.0455 0.0133
GraphAF (Shi et al., 2020) 74.43 5.625 0.0207 0.3046 68.47 16.023 0.0442 0.0672
GraphDF (Luo et al., 2021) 93.88 10.928 0.0636 0.0978 90.61 33.546 0.1770 0.0000
EDP-GNN Niu et al. (2020) 47.52 2.680 0.0046 0.3270 82.97 16.737 0.0485 0.0000
GDSS (Jo et al., 2022) 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
DiGress (Vignac et al., 2022) 98.19 0.095 0.0003 0.9353 92.13 3.606 0.0025 0.3549
DruM (Ours) 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299
QM9 (v| < 29) GEOM-DRUGS (V| < 181) :-?;;y - (E;Egdrd. pe ﬁﬁm
N 100
Method Atom Stab.(%) Mol. Stab.(%) Atom Stab.(%) Mol. Stab.(%) 2517\
80
G-Schnet (Gebauer et al., 2019) 95.7 68.1 - - g 2.0 S
EN-Flow (Satorras et al., 2021) 85.0 4.9 75.0 0.0 815 60 >
GDM (Hoogeboom et al., 2022) 97.0 63.2 75.0 0.0 % 1.0 40 E
EDM (Hoogeboom et al., 2022) 98.7 £0.1 82.0 £0.4 81.3 0.0 N 20 g
Bridge (Wu et al., 2022) 98.7 +0.1 81.8 +£0.2 81.0 £0.7 0.0 0.5
< lo
DruM (Ours) 98.81 +0.03  87.34+0.19  82.96 +0.12 0.51 +0.03 0.0 500 1000

Timesteps

Figure 3: (Left) Generation results on the 3D molecule datasets. Best results are highlighted in bold which is
the average of 3 different runs. The baseline results are taken from Hoogeboom et al. (2022) and Wu et al. (2022).
(Right) Convergence of the generative process. We compare the convergence of the destination mixture from
DruM and the trajectory of EDM, measured with L2 distance from the final result of each process. Atom and
molecule stabilities are measured with the destination mixture from DruM.

we plot the MMD results of the estimated destination mixture from DruM through the diffusion
timesteps in Figure 2 (Middle), which shows that the local characteristics of graphs are improved
progressively through the generation process converging to that of the training set.

Exploiting the Inductive Bias To validate that exploiting the inductive bias of the data is critical for
reducing the hypothesis space, we compare DruM against a variant of it without a transformation
function at the last layer in the model. Figure 2 (Right) shows the complexity of the models sg trained
on the Planar dataset, which verify that the transformation at the last layer significantly reduces the
complexity of the model for predicting the destination. Especially, the larger complexity gap at the
end of the process suggests that using the inductive bias is crucial for learning the exact destination.

4.2 2D MOLECULE GENERATION

We further validate DruM on 2D molecule generation tasks to show that it can accurately generate
graphs with both the node features and the topologies of the target graphs.

Datasets and Metrics We evaluate the quality of generated 2D molecules on two molecule datasets
used as benchmarks in Jo et al. (2022). QM9 (Ramakrishnan et al., 2014) consists of small molecules
with up to 9 atoms while ZINC250k (Irwin et al., 2012) consists of larger molecules up to 38 atoms.
Following the evaluation setting of Jo et al. (2022), we evaluate the models with four metrics: (1)
Validity, which is the percentage of the valid molecules among the generated molecules without any
post-hoc correction such as valency correction or edge resampling. (2) Fréchet ChemNet Distance
(FCD) (Preuer et al., 2018), which measures the distance between the feature vectors of generated
molecules and the test set using ChemNet, evaluating the chemical properties of the molecules. (3)
Neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & De Grave, 2010),
which measures the MMD between the generated molecular graphs and the molecular graphs from the
test set incorporating both the node and edge features, assessing the quality of the graph structure. (4)
Scaffold similarity (Scaf.) which measures the cosine similarity of the frequencies of Bemis-Murcko
scaffolds (Bemis & Murcko, 1996) that evaluates the ability to generate similar substructures. See
Appendix C.2 for more details.

Baselines We compare DruM against the following molecular graph generative models:
MoFlow (Zang & Wang, 2020) is a one-shot flow-based model. GraphAF (Shi et al., 2020)
and GraphDF (Luo et al., 2021) are autoregressive flow-based model. EDP-GNN, GDSS, and
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DiGress are diffusion models previously explained in the general graph generation tasks. See further
implementation details in Appendix C.2.

Results Table 2 shows that our method achieves the highest validity on all datasets verifying that
DruM can generate valid molecules without correction. Further, DruM outperforms the baselines in
FCD and NSPDK metrics which demonstrates that the molecules synthesized by DruM are similar to
the molecule from the training set in both chemical and graph-structure aspects. Especially, DruM
achieves the highest scaffold similarity indicating that DruM is able to generate similar substructures,
for instance ring structures, from that of the training set. We visualize the generated molecules in
Appendix E where they share similar substructures with the molecules from the training set.

4.3 3D MOLECULE GENERATION

To show that DruM is able to generate graphs with both continuous and discrete features, we validate
it on 3D molecule generation tasks, which come with discrete atom types and continuous coordinates.

Datasets and Metrics We evaluate the generated 3D molecules on two molecule datasets used in
Hoogeboom et al. (2022). QM9 (Ramakrishnan et al., 2014) consists of small molecules up to 29
atoms, while GEOM-DRUGS (Axelrod & Gomez-Bombarelli, 2022) consists of larger molecules up
to 181 atoms. We evaluate the quality of the generated molecules with two stability metrics: Atom
stability is the percentage of the atoms with valid valency. Molecule stability is the percentage of
the generated molecules that consist of stable atoms. For more details, please see Appendix C.3.

Baselines We compare DruM against 3D molecule generative models: G-Schnet (Gebauer et al.,
2019) is an autoregressive model based on the 3d point sets. EN-Flow (Satorras et al., 2021) is
a flow-based model. GDM and EDM (Hoogeboom et al., 2022) are denoising diffusion models.
Bridge (Wu et al., 2022) is a diffusion model based on the diffusion mixture that learns to approximate
the drift. For DruM, we follow the training setting of Hoogeboom et al. (2022) using EGNN (Satorras
et al., 2021) model. We describe further implementation details in Appendix C.3.

Results As shown in the table of Figure 3, our method yields the highest atom stability compared to
all the baselines on both datasets. Furthermore, DruM achieves significantly higher molecule stability
compared to the state-of-the-art diffusion model EDM, since DruM learns to predict the destination
directly instead of learning to denoise. To the best of our knowledge, DruM is the first generative
model to achieve non-zero molecule stability in the GEOM-DRUGS dataset which consists of large
molecules. We visualize the generated molecules that are stable and the generative process of DruM
in Appendix E, which demonstrates that the estimated destination mixture predicts the final molecule
at an early stage of the process, leading to stable molecules. We further observe that DruM is able to
generate more graphs that are connected in GEOM-DRUGS, shown in Table 5 of the Appendix.

Stability Analysis To further investigate the superior performance of DruM in generating more
stable molecules, we conduct an analysis on the convergence and the stability of DruM. Figure 3
(Right) shows the convergence of the destination mixture from DruM and the trajectory of EDM
through the generative process. We observe that for DruM, both the atom types and the coordinates
converge rapidly to the final destination. After the convergence, the stability increases as it has
sufficient steps to calibrate the details to produce valid molecules, which can be observed in the
visualized generative process in Figure 18 of Appendix. As for EDM, the coordinates linearly
converge while the resulting atom types do not. Thus, the generated molecules of EDM can have a
mismatch between the atom types and the positions, which leads to lower molecule stability.

5 CONCLUSION

In this work, we proposed a novel graph generation framework, DruM, that explicitly models the
topological properties of the graphs. Unlike existing graph diffusion models that estimate the score or
the noise, our framework directly predicts the destination of the generative process, thereby accurately
capturing the topologies of the final graphs. Specifically, DruM constructs the generation process as
a mixture of diffusion bridges, that drives the generation process toward the destination in the data
distribution. We extensively validated DruM on diverse graph generation tasks, including 2D/3D
molecular generation, on which ours significantly outperforms previous graph generation methods.
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Appendix

Organization The appendix is organized as follows: In Section A, we provide the derivations of
the results from the main paper. In Section B, we explain the details of our generative framework
including the training objectives, the sampling method, and the model architectures. In Section C,
we provide experimental details for the generation tasks and further present additional experimental
results in Section D. Lastly, in Section E, we visualize the generated graphs and molecules, with
visualized diffusion processes.

A DERIVATIONS

A.1 DIFFUSION BRIDGE PROCESSES

Here we derive the Ornstein-Uhlenbeck (OU) bridge process using Doob’s h-transform, and show
that the Brownian bridge process is a special case of the OU bridge process.

Ornstein-Uhlenbeck Bridge Process  First, we consider the simple case when the reference process
is given as a standard OU process without a time-dependent diffusion coefficient:

Q : th = Oétht+th, (]0)

where « is a constant. Then the Doob’s h-transform on Q yields the representation of an endpoint-
conditioned process Q9 := Q(-|Gr = g) defined by the following SDE:

Q¢ : dG, = oG, +VgtlogﬁT‘t(g|Gt)} dt + dW,, (11)

where ﬁT|t(g|Gt) is the transition probability from time ¢ to 7" of the standard OU process in
Eq. (10). Since the standard OU process has a linear drift, the transition probability is Gaussian, i.e.
pr1e(g9|Gr) = N(g; 1, 3¢, where the mean /14 and the covariance X, satisfies the following ODEs
(from the results of Eq.(5.50) and Eq.(5.51) of Sirkkd & Solin (2019)):

dpy 3
—_— = — =1+ 2a3. 12
dt ape d+ + 202 ( )
The ODE with respect to ¥, can be modified as:
d
¢ Be=e, (13)

which has the following closed-form solutions:
1
=Gy, By = 5 (a7 — 1)1 for = e*T=1), (14)

Therefore, the SDE representation of the standard OU bridge process with fixed endpoint g is given
as follows:

~—2 \ ~
_ut ut

2
4G, = [aGt + a (g — Gt)] At + dW,. (15)
Now to derive the bridge process for the general OU process with a time-dependent diffusion
coefficient defined by the following SDE:
Q: dG; = ao?Gdt + o, dWy, (16)

where o, is a scalar function, we leverage the time change (Section 8.5. of @ksendal (2003)) with
By = f(f o2dr. Since the time change with 3; of the diffusion process in Eq. (10) is equivalent to
the diffusion process of Eq. (16), the transition probability pr;(g|G) of the general OU process
satisfies the following:

pr|t(91Gt) = Dy, (9|Gr) a7

12
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Thereby, the general OU bridge process conditioned on the endpoint g is defined by the following
SDE:

2
Q9 : dG, = [aafGt + %t(ui - Gtﬂ dt + o, dW, (18)
t t
where the scalar function u; and v, are given as:
T 1
up = e*Pr =P = exp (a/ O'_,2_dT) ;o= —(1—u;?). (19)
+ 2«

Brownian Bridge Process We show that the Brownian bridge process is a special case of the OU
bridge process. When the constant « of the OU bridge process approaches 0, the scalar function
converges to 1 that leads to the convergence of v; as follows:

1 _ 1 _ _
Vg = %(1 — Uy 2) = % (1 — e 2olbr Bt)) — Br — B,
which is due to the Taylor expansion of the exponential function. Therefore, the OU bridge process

for o — 0 is modeled by the following SDE:

2
O

~ Br— B
which is equivalent to the SDE representation of the Brownian bridge process. Compared to the OU

bridge process in Eq. (18), the Brownian bridge process has a simpler SDE representation with less
flexibility for the design.

th (g — Gt) dt + O'tth, (20)

Note that the Brownian bridge is an endpoint-conditioned process with respect to a reference Brownian
Motion defined by the following SDE:

th = atth, (21)
which is a diffusion process without drift, and also a special case of the OU process that is used for

the reference process of the OU bridge process.

A.2 DIFFUSION MIXTURE REPRESENTATION
In this section, we provide the formal definition of the diffusion mixture representation (Brigo, 2008;

Peluchetti, 2021).

Consider a collection of diffusion processes { Z}}ca defined by the SDEs:
Q*:dz) =nNZy, t)dt + o} dW, | Z) ~p) (22)

where p)) are the initial distributions and W are independent standard Wiener processes, and p;
denotes the marginal distribution of the process Z;'. Define the mixture of marginal distributions
and the mixture of initial distributions with respect to a mixing distribution £ on the collection A as
follows:

pe(z) = /A PNHLEAN) | polz) = /A PAE)LAN), 23)

Then there exists a diffusion process Z; that induces a marginal distribution p; defined by the
following SDE:

Qf :dZ; = n(Zy, t)dt + 0, dW , Zy ~ po, 24)

where the drift and diffusion coefficients are given as the weighted mean of the corresponding
coefficients of Q*:

_ Ay Py (2) o2 = o\ 21 (2)
w0 = [reolow .ot = [ @il

which is the full statement of the diffusion mixture representation.

L(dN), (25)
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In order to prove this, it is enough to show that p, defined in Eq. (23) is the solution to the Fokker-
Planck equation of Eq. (24), which is given as follows:

28 — 9. (alolent) - 3oV ) o

Using the definition of Eq. (23) and the Fokker-Planck equations with respect to Q* for A € A, we
can derive the following result:

s 2 [tcan = [ Sneeay
:/ {—Vz- (n (2, )pp(2) — ;(UA)?VZI??(Z))] L(dX)
= [ [P - v cay

= v (nia) [ nA<z7t>§f By - 3 [nia) [ 2 zan])

1
=5 () - 502V (2)) @

which proves that p; is the solution to the Fokker-Planck equation of Eq. (24).

A.3 OU BRIDGE MIXTURE

Now we use the diffusion mixture representation described in Appendix A.2 to derive the OU bridge
mixture. Consider a mixture of the collection of OU bridge processes with endpoints in the data
distribution, i.e. {Q9}gem-. We mix this collection of processes with the data distribution IT* as the
mixing distribution, which is represented by the following SDE:

e | g P (G) (s
Q" . dG, = / (ozafGt—F g (Ut—Gt)> AL (dg)] dt + o, dW,

1 pf(Gt)
= el — I1*(dg) — G dt dW
et + Ut (Ut /gpt(Gt) ( g) ! o ‘

o (1
= |0y Gt + — (UDH (Gt, t) — Gt):| de + O'tth (28)
t

where the fact that p;(z) = [ pf (z)II*(dg) is used for the second equality.

A.4 DERIVATION OF THE L0OSS OBJECTIVE

Further, we provide the derivation of the objectives in Eq. (8) and Eq. (9) in the main paper. First, we
leverage the Girsanov theorem @ksendal (2003) to upper bound the KL divergence between the data
distribution IT* and the terminal distribution of PY denoted as p4-:

Drp(I*|p%) < Drr(Q™ |[PY) (29)
II*
= D (QF ||P8)+E@n*{log ;%9 ] (30)
1
:EGNQH*[—logpg(Go)—i—Q/ llor !t (ne(Ge,t) — (G, )| dt} +C (31)
0
0 1 r 2 11 2
:EGNQH*[—long(GO)—i—z/ 2s0(Gyt) — D (Gt,t)H dt} 10, 32)
0

where the first inequality is known as the data processing inequality, p§ is a predetermined prior
distribution that is easy to sample from, for instance, standard Gaussian distribution, and C; is a
constant independent of 6. The Eq. (32) corresponds to the objective of Eq. (8) in the main paper.

14



Published at the MLDD workshop, ICLR 2023

Furthermore, using the property of the conditional expectation, minimizing the expectation of Eq. (32)
is equivalent to minimizing the following loss:

1 /T i 2
Boor |3 [ 9 [su(@ut) - DG al

1 T
f/ 72 ||s0(Gr,t) —gIIth] + s (33)
0

= Eg~ni~,g~os {2

1 T
= EG~@H*[2/O V; lse(Ge,t) — GTth} + .

where (', is a constant independent of 6. Thereby, we obtain the loss presented in Eq. (9).

A.5 ANALYTICAL COMPUTATION OF THE PROBABILITY

In order to practically use the loss in Eq. (9), we provide the analytical form for the probability
Ptjo,7(G¢|Go, Gr) of the following OU bridge process:

o2

Q9 : dG, = [aafGt + -+

Ut

(u% - Gtﬂ dt + 0,dW,. (34)

First, we use the Bayes theorem as follows:

p(Gt, Gr|Go) _ P(G1l|Gt, Go) p(G|Go) _ p(Gr|G) p(G|Go)
p(Gr|Go) p(Gr|Go) p(Gr|Go)

where the last equality is due to the Markov property of G. The transition distributions in this

equation are Gaussian with the mean and the covariance satisfying the ODEs of Eq. (12), which could
be further computed as follows:

pb|a(Gb|Ga> = N(Gb§ub\aGa7ui|avb\aI) for 0<a<b<T,

p(G|Go,Gr) = ER)

b
1 _ (36)
where up|, = exp (a/a crde) s Ubla = %(1 — ubli)
Thereby, the probability p(G¢|Go, G) is also Gaussian from the results of Eq. (35):
Gr|G G:|G -
P(Gi|Go, Gy) = UETGIHEIGD) _ g5, 5, G7)

p(Gr|Go)

where the mean and the covariance have analytical form computed from the product of Gaussian
distributions as follows:

- Gl Ut|o =
ir = Got+ —L Gy, =
UtjoVT|0 Uurtvrio Callo]

UTieteo g (38)

A.6 DESTINATION MIXTURE FOR ATTRIBUTED GRAPHS

We extend the framework of DruM for the generation of attributed graphs with node features. A
graph G with IV nodes is defined by the node features X € RV*" and the adjacency matrix A € RV,
where F is the dimension of the node features and the adjacency represents the topology as well as the
edge features. Representing the trajectory of the diffusion process as G; = (X, Ay) € RVEx RV
for time ¢ € [0, T, we can derive the OU bridge mixture Q" for attributed graphs from Eq. (4) as

follows:
dXt UX(Gt t) 01t dW1 t
= ’ dt ) )
<dAt> (’I’ZA(Gt, t) + 02t dWQ’t ’ (39)
where the noise schedules o1 ; and o2 ; are scalar functions, W ; and W ; are independent Wiener
processes, and the drift of the OU bridge mixture is defined as follows:

2
Dx (Gy,t
ix(Grt) =n0% X, + (X(H _ Xt)

Z;t D 1;(1; t) 40
(G, t)=az03, Ay + 2 (M - At)
’ V2.t U2t
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Algorithm 1 Training of DruM Algorithm 3 PC Sampler for DruM

Input: Graph G Input: Trained model sg, number of sampling steps
1: Sample t ~ [0, — ¢] and Gy ~ N(0,1) K, number of correction steps per prediction M, step
2: Sample G ~ pyjo.7(G¢|Go, G) > Section A.5 size dt, score-to-noise ratio r, scaling coefficient e
30 v or/urvy Output: Sampled graph G
4: Lo+ ilse(Gy,t) — G| > Eq. (9) 1: Sample number of nodes N from the training set.
5: Update 6 using Lg 2: Go ~N(0,In) i> Start from noise

3:t+0

4: for k = 1to K do

Algorlth@ 2 Sampling from DruM ' B e o2 (LSQ(Gt, p— Gt)
Input: Trained model sg, number of sampling steps AN
K, step size dt 6: W~ N(0,1y)
1: Sample number of nodes N from the training set. /- G <= ndt + 0y Vdtw > Predictor
2: Go ~ N(0,In) &> Start from noise 8:  form =1to M do . ~
3:t+0 9: 77<_05Gt+1% (u%se(Gt,t)—Gt)
4: fork =1 t;) Kdoa2 ) 10: w ~ N(0,Ix)
5 maoiG+ TH(;80(Gr,t) — Gr) 11 e 2(rlwll2/[17]l2)?
6:  w~N(0,I) 12: Giiar — Gy + e + €sv/2ew > Corrector
70 Gigar — ndt + opV/diw > Predictor 13:  end for
8 t+t4+dt 14: t+t+dt
9: end for 15: end for
10: G < quantize(G:) > Quantize if necessary 16: G + quantize(G:) > quantize if necessary
11: Return: Graph G 17: Return: graph G

with the destination mixture for this process given as
Dx(Gt t) / p? (Gt) *
’ = II*(dg). 41
(DA(Gt,t) gpt(Gt) ( g) ( )

Notably, Dx (G4, t) and D4 (G, t) are the destination mixtures of the node features and the adjacency
matrices, respectively for given graph G;. Thereby, our extended framework allows us to directly
model the graph topology via learning D (-, t) as well as the node features with Dx (-, t). Especially,
the generation process of Eq. (39) is applicable to both the continuous and discrete features. We
provide the training objective for the attributed graphs in Appendix B.2.

B DETAILS OF DRUM

In this section, we provide the details of the training and sampling methods of DruM and the models
used in our experiments. We provide the pseudo-codes for training and sampling with an explicit
form of loss objectives. Further, we discuss the hyperparameters of DruM.

B.1 OVERVIEW

We provide the pseudo-code of the training and sampling of our generative framework in Algorithm 1
and 2, respectively. We further provide the implementation details of the training and sampling for
each generation task in Section C.

B.2 TRAINING OBIJECTIVE

Random Permutation The general graph datasets, namely Planar and SBM, contain only 200
graphs. Thus to ensure the permutation equivariant nature of the graph dataset, we apply random
permutation to the graphs of the training set during training. To be specific, for a graph data
G = (X, A) in the trianing set and random permutation matirx P, we use the permuted data
(PTX, PT AP) for training, where P7 denotes the transposed matrix. We empirically found that
this leads to more stable training.
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Simplified Loss We provide the explicit form of simplified loss explained in Section 3.2, which
uses constant loss coefficient c instead of the time dependent v, as follows:

1 T
»C(Q) = ]EGNQH* [QA C2 ||89(Gt,t) - GTH2dt . (42)

We empirically found that using this loss is beneficial for the generation of continuous features such
as eigenvectors of the graph Laplacian or 3D coordinates.

Attributed Graphs Especially for the generation of attributed graphs G = (X, A), the training
loss for learning the destination mixture for X and A can be derived from the objective in Eq. (9)
using our extended framework of Eq. (39). Specifically, for the model s¢(G4,t) = (sf, sg‘), we use
the following objective:

1T 2 AT 2
£(0) = Eggne [2 [ el (@t = XalPar+ 5 [ 3, st (Get) - Arffar| @)
0 0
where ) is the hyperparameter. We use A = 5 for all our experiments, and empirically observed that
changing A did not make much difference for sufficient training epochs.

B.3 MODEL ARCHITECTURE

For the general graph and 2D molecule generation tasks, we leverage the graph transformer network
introduced in Dwivedi & Bresson (2020) and Vignac et al. (2022). The node features and the
adjacency matrices are updated with multiple attention layers with global features obtained by the
self-attention-based FiLM layers (Perez et al., 2018). We additionally use the higher-order adjacency
matrices following Jo et al. (2022). For general graph generation tasks, we add the sigmoid function
to the output of the model since the entries of the weighted mean of the data are supported in the
interval [0, 1]. For 2D molecule generation tasks, we apply the softmax function to the output of the
node features to model the one-hot encoded atom types, and further apply the sigmoid function to the
output of the adjacency matrices. Note that we do not use the structural augmentation as in Vignac
et al. (2022). For the 3D molecule generation task, we use EGNN (Satorras et al., 2021) in order to
model the E(3) equivariance of the molecule data. Specifically, EGNN computes the messages with
the E(3) equivariant objects such as length two coordinates. We additionally add the softmax function
at the last layer to model the one-hot encoded atom types.

B.4 PREDICTION-CORRECTION SAMPLER FOR DRUM

Sampling from the generative model of Eq. (7) requires solving the SDE. If our model sg can perfectly
approximate the destination mixture of Eq. (5), a simple Euler-Maruyama method would be enough
to simulate the generative model which is true for most of the experiments. However, for some cases,
since sy is trained on the marginal distribution p;, G outside of p; could cause incorrect predictions
that lead to an undesired destination. To address the limitation, we leverage the predictor-corrector
(PC) sampling method introduced in Song et al. (2021) for solving Eq. (7). Using the corrector
method such as Langevin dynamics (Song et al., 2021), we force G to be drawn from p; which
ensures a more accurate estimation of the destination mixture. We provide the pseudo-code of the PC
sampler for our DruM in Algorithm 3.

B.5 HYPERPARAMETERS OF DRUM

Since the generative process of DruM is a mixture of OU bridge processes in Eq. (2), it is uniquely
determined with the noise schedule o, and constant . Through our experiments, we use « = —1/2
and a decreasing linear noise schedule, starting from o2 and ends in o7 defined as follows:

02 =(1—t)ol +to? for 0 <o; <op<1 (44)

We perform a grid search for the hyperparameters o and o4 in {0.4,0.6,0.8,1.0} and {0.1,0.2,0.3},
respectively, where the search space slightly differs for each generation task.
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C EXPERIMENTAL DETAILS

C.1 GENERAL GRAPH GENERATION

Datasets and Evaluation Metrics Planar graph dataset consists of 200 synthetic planar graphs
where each graph has 64 nodes. We determine that a graph is a valid Planar graph if it is connected and
planar. SBM graph dataset consists of 200 synthetic stochastic block model graphs with the number
of communities uniformly sampled between 2 and 5 where the number of nodes in each community
is uniformly sampled between 20 and 40. The probability of the inter-community edges and the
intra-community edges are 0.3 and 0.05, respectively. We determine that a graph is a valid SBM graph
if it has the number of communities between 2 and 5, and the number of nodes in each community
between 20 and 40, and further using the statistical test introduced in Martinkus et al. (2022). Proteins
graph dataset (Dobson & Doig, 2003) consists of 918 real protein graphs with up to 500 nodes in each
graph. The protein graph is constructed by considering each amino acid as a node and connecting two
nodes if the corresponding amino acids are less than 6 Angstrom. For our experiments, we use the
datasets provided by Martinkus et al. (2022). We follow the evaluation setting of Liao et al. (2019),
using total variation (TV) distance for measuring MMD which is considerably fast, especially for
large graphs compared to using the earth mover’s distance (EMD) kernel. Moreover, we use the
V.U.N. metric following Martinkus et al. (2022) that measures the proportion of valid, unique, and
novel graphs among the generated graphs where the validness is defined as satisfying the specific
property of the dataset explained above.

Implementation Details We follow the standard setting of Martinkus et al. (2022) using the same
data splitting and evaluation procedures. We report the baseline results taken from Martinkus et al.
(2022) and Vignac et al. (2022), or the results obtained from running the open-source codes using the
hyperparameters given by the original work. We could not report the results of EDP-GNN (Niu et al.,
2020) and DiGress (Vignac et al., 2022) on the Proteins dataset as they took more than 2 weeks using
their official codes. For the diffusion models including our proposed method, we set the diffusion
steps to 1000 for a fair comparison.

For our proposed DruM, we train our model sy for 30,000 epochs for all datasets using a constant
learning rate with AdamW optimizer (Loshchilov & Hutter, 2017) and weight decay 10~ 2, applying
the exponential moving average (EMA) to the parameters (Song & Ermon, 2020). We perform the
hyperparameter search explained in Section B.5 for the lowest MMD and highest V.U.N. results. We
initialize the node features with the eigenvectors of the graph Laplacian of the adjacency matrices,
which we further scale with constant. During training (Algorithm 1), we sample the noise for the
adjacency matrices to be symmetric with zero diagonals. For the generation (Algorithm 2), we
generate both the node features and adjacency matrices starting from noise, and we quantize the
entries of the resulting adjacency matrices to obtain 0-1 adjacency matrices. Empirically, we found
that the entries of the resulting sample lie very close to the desired values 0 and 1, for which the L1
distance between the resulting sample and the quantized sample is smaller than 10~2.

C.2 2D MOLECULE GENERATION

Datasets and Evaluation Metircs QM9 Ramakrishnan et al. (2014) dataset consists of 133,885
molecules with up to 9 heavy atoms of four types. ZINC250k Irwin et al. (2012) dataset consists of
249,455 molecules with up to 38 heavy atoms of 9 types. Molecules in both datasets have 3 edge
types, namely single bond, double bond, and triple bond. For our experiments, we follow the standard
procedure Shi et al. (2020); Luo et al. (2021); Jo et al. (2022) of kekulizing the molecules using the
RDKit library (Landrum et al., 2016) and removing the hydrogen atoms from the molecules in the
QM9 and ZINC250k datasets. To evaluate the generated molecules, we measure the validity (before
any post-hoc correction), FCD Preuer et al. (2018), NSPDK MMD Costa & De Grave (2010), and
scaffold similarity. Among these, FCD and NSPDK MMD metrics measure the distribution similarity
between the test dataset and generated samples while scaffold similarity evaluates the similarity of
the generated scaffolds.

Implementation Details We report the results of the baselines taken from Jo et al. (2022), except
for the results of the Scaffold similarity (Scaf.) and the results of DiGress, which we obtained by
running the open-source codes. Especially, the 2D molecule generation results of DiGress on QM9
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dataset are different compared to the results reported in its original paper, since we have used the
preprocessed dataset following the setting of Jo et al. (2022) for a fair comparison with other baselines.
Similar to the general graph generation tasks, we set the diffusion steps to 1000 for all the diffusion
models.

For our DruM, we train our model sy with a constant learning rate with AdamW optimizer and
weight decay 10712, applying the exponential moving average (EMA) to the parameters. We perform
the hyperparameter search similar to that of the general graph generation tasks. Especially for DruM,
we follow Jo et al. (2022) by using the adjacency matrices in the form of A € {0, 1,2, 3} where
N is the maximum number of atoms in a molecule and each entries indicating the bond types: O for
no bond, 1 for the single bond, 2 for the double bond and 3 for the triple bond. Further, we scale the
entries with a constant scale of 3 in order to bound the input of the model in the interval [0, 1], and
rescale the final sample of the generation process to recover the bond types. We also sample the noise
for the adjacency matrices to be symmetric with zero diagonals during training. We quantize the
entries of the resulting adjacency matrices to obtain the discrete bond types {0, 1, 2, 3}. Empirically,
we found that the entries of the resulting sample lie very close to the desired bond types {0, 1, 2, 3},
for which the L1 distance between the resulting sample and the quantized sample is approximately 0.

C.3 3D MOLECULE GENERATION

Datasets and Evaluation Metircs QM9 Ramakrishnan et al. (2014) dataset consists of 133,885
molecules with up to 29 atoms of five types including hydrogen atoms. The node features of QM9
dataset include the one-hot representation of atom type and atom number. GEOM-DRUGS Axelrod
& Gomez-Bombarelli (2022) dataset consists of 430,000 molecules with up to 181 atoms of fifteen
types including hydrogen atoms. GEOM-DRUGS dataset contains different conformations for each
molecule. Among many conformations, the 30 lowest energy conformations for each molecule are
retained. For the GEOM-DRUGS dataset, we utilize the one-hot representation of atom type without
the atom number. To evaluate the generated molecules, we measure the atom and molecule stability
by predicting the bond type between atoms with the standard bond lengths, and then checking the
valency.

Implementation Details We follow the standard setting of Hoogeboom et al. (2022) for a fair
comparison: for the QM9 experiment, we use EGNN with 256 hidden features and 9 layers and train
the model, and for the GEOM-DRUGS experiment, we use EGNN with 256 hidden features and 4
layers and train the model. We report the results of the baselines taken from Hoogeboom et al. (2022)
and Wu et al. (2022).

For our DruM, we train our model sy for 1,300 epochs with batch size 256 for the QM9 experiment,
and for 13 epochs with batch size 64 for the GEOM-DRUGS experiment. We apply EMA to the
parameters of the model with a coefficient of 0.999 and use AdamW optimizer with learning rate
10~* and weight decay 10~ '2. The 3D coordinates and charge values are scaled as x4 and x0.1,
respectively, and we use the simplified loss with a constant ¢ = 100. We perform the hyperparameter
search with smaller values for coordinates in {0.1, 0.2, 0.3} and higher values for node features in
{0.6, 0.7, 0.8, 0.9, 1.0}. For the generation, we use the Euler-Maruyama predictor.

C.4 COMPUTING RESOURCES

For all experiments, we use NVIDIA GeForce RTX 3090 and 2080 Ti and implement the source code
with PyTorch Paszke et al. (2019).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 2D MOLECULE GENREATION

We provide the standard deviation results in Table 3 and Table 4. We additionally report the following
two metrics: Novelty is the proportion of the molecules generated that are valid and not in the training
set, and Uniqueness is the proportion of the molecules generated that are valid and unique, where
valid molecules are the ones that do not violate the chemical valency rule.
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Table 3: 2D molecule generation results on the QM9 dataset. The baseline results are taken from Jo et al.
(2022) or obtained by running the open-source codes. Best results are highlighted in bold.

Method Valid (%)t FCD | NSPDK | Scaf. T Uniq (%) T Novelty (%) 1
MoFlow (Zang & Wang, 2020) 91.36 £1.23 4.467 £0.595 0.017 £0.003 0.1447 +0.0521 98.65 £0.57 94.72 +£0.77
GraphAF*(Shi et al., 2020) 74.43 £2.55 5.625 £0.259 0.021 +0.003 0.3046 £0.0556  88.64 +2.37 86.59 £1.95
GraphDF (Luo et al., 2021) 93.88 +4.76 10.928 +0.038 0.064 -£0.000 0.0978 +0.1058 ~ 98.58 +0.25 98.54 +0.48
EDP-GNN (Niu et al., 2020) 47.52 +3.60 2.680 £0.221 0.005 +0.001 0.3270 £0.1151 99.25 +0.05 86.58 +£1.85
GDSS (Jo et al., 2022) 95.72 +£1.94 2.900 +0.282 0.003 £0.000 0.6983 £0.0197  98.46 +0.61 86.27 +2.29
DiGress (Vignac et al., 2022) 98.19 £0.23 0.095 £0.008  0.0003 £0.000  0.9353 £0.0025  96.67 +0.24 25.58 +2.36
DruM (ours) 99.69 +0.19 0.108 +0.006 0.0002 +0.000 0.9449 +0.0054 96.90 +0.15 24.15 +0.80

Table 4: 2D molecule generation results on the ZINC250k dataset. Baseline results are taken from Jo et al.
(2022) or obtained by running the open-source codes. Best results are highlighted in bold. Since DiGress (Vignac
et al., 2022) takes more than 1 week on ZINC250k dataset, we report the result from a single run.

Method Valid (%)t FCD | NSPDK | Scaf. 1 Uniq (%)1  Novelty (%) 1
MoFlow (Zang & Wang, 2020)  63.11 +£5.17  20.931 £0.184  0.046 £0.002  0.0133 £0.0052  99.99 £0.01  100.00 0.00
GraphAF (Shi et al., 2020) 68474099  16.023 £0451  0.044 £0.005  0.0672 00156  98.64 £0.69  99.99 +0.01
GraphDF (Luo et al., 2021) 90.61 £430  33.546 £0.150  0.177 £0.001  0.0000 £0.0000  99.63 £0.01  100.00 0.00
EDP-GNN Niu et al. (2020) 82974273  16737£1300  0.049 £0.006  0.0000 £0.0000  99.79 £0.08  100.00 0.00
GDSS (Jo et al., 2022) 97.01 £0.77  14.656 £0.680  0.019 £0.001  0.0467 £0.0054  99.64 £0.13  100.00 £0.00
DiGress (Vignac et al., 2022) 92.13 3.606 0.0025 0.3549 99.96 100.00
DruM (ours) 98.65 +0.25 2.257 +0.084 0.0015 £0.0003 0.5299 +0.0441 99.97 40.03 99.98 +0.02

Figure 4: (Left) Generation results on the Planar dataset. Best results are highlighted in bold, where
smaller MMD and larger V.U.N. indicates better results. (Right) Generated graphs by learning the drift. The
visualized graphs are randomly sampled from the set of generated graphs.

Planar

Deg. Clus. Orbit Spec. V.U.N.
Training set 0.0002  0.0310  0.0005  0.0052 100.0
GraphRNN (You et al., 2018) 0.0049 02779 1.2543  0.0459 0.0
SPECTRE (Martinkus et al., 2022) ~ 0.0005  0.0785  0.0012  0.0112 25.0
EDP-GNN (Niu et al., 2020) 0.0044  0.3187 1.4986  0.0813 0.0
GDSS (Jo et al., 2022) 0.0041 02676  0.1720  0.0370 0.0
DiGress (Vignac et al., 2022) 0.0003  0.0372  0.0009 0.0106 75
Drift 0.0008  0.0845  0.0075  0.0126 15
DruM (Ours) 0.0005  0.0353  0.0009  0.0062 90.0

D.2 FURTHER ANALYSIS

Comparison with Learning the Drift We additionally report the generation result of learning the
drift similar to the previous work (Wu et al., 2022), on the Planar dataset. Table in Figure 4 shows
that learning the drift performs poorly, generating only 15% valid, novel, and unique graphs. The
generated Planar graphs in Figure 4 demonstrate that it fails to capture the correct topology, resulting
in non-planar graphs.

Early Stopping for Generation Process =~ We provide additional MMD results of diffusion
processes in Figure 5, which show that the estimated destination mixture converges to the exact
destination around 800 diffusion steps for all datasets.

Role of the Diffusion Coefficient Here, we demonstrate the effect of the diffusion coefficient o; on
the convergence of the generative process. Figure 6 (Sampled Graph) shows that the smaller values
of o, (i.e. 0.2~0.1) lead to fast convergence of the trajectory to the actual destination, compared to
the larger o;. On the other hand, as shown in Figure 6 (Destination Mixture), the larger o; for the
continuous features makes it hard to predict the actual destination since it destroys the topology of
graphs with strong noise, and leads to slow convergence of the destination mixture.
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Figure 5: Additional MMD results of the destination mixture of DruM through the generative process. The
dotted lines indicate the MMD results of the training set.
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Figure 6: Convergence of sampled graphs and destination mixtures with varying o¢ and o, values.

E VISUALIZATION

In this section, we visualize the generated graphs and molecules of DruM, and further provide
visualization of the diffusion processes for diverse generation tasks.

E.1 GENERATED SAMPLES OF DRUM

General Graphs Graphs from the training set and the generated graphs of DruM are visualized
in Figure 7,8, and 9. The visualized graphs are randomly selected from the training set and the
generated graph set. Note that we visualize the entire graph for the Proteins dataset, unlike Martinkus
et al. (2022) which visualizes the largest connected component since the baselines fail to consistently
generate connected graphs. For DruM, we found that 92% of the generated graphs are connected.

(a) Training set (b) DruM (Ours)
Figure 7: Visualization of graphs from the Planar dataset and the generated graphs of DruM.
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(a) Training set (b) DruM (Ours)
Figure 8: Visualization of graphs from the SBM dataset and the generated graphs of DruM.

(a) Training set (b) DruM (Ours)
Figure 9: Visualization of graphs from the Proteins dataset and the generated graphs of DruM.
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2D Molecules We provide the visualization of the molecules from the training set and the generated
2D molecules in Figure 10 and 11. These molecules are randomly selected from the training set and
the generated molecule set.
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(a) Training set (b) DruM (Ours)

Figure 10: Visualization of molecules from the QM9 dataset and the generated molecules of DruM for the
2D molecule generation experiment.

(a) Training set (b) DruM (Ours)

Figure 11: Visualization of the molecules from the ZINC250k dataset and the generated molecules of
DruM for the 2D molecule generation experiment.
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3D Molecules We visualize the generated molecule for the 3D
molecule generation experiment in Figure 12, and 13. Note that the vi-
sualized molecules are all stable. For the GEOM-DRUGS experiment,
we observe that a few of the generated molecules are not connected as
pointed out in Hoogeboom et al. (2022). To measure how many graphs
are connected, we report the percentage of the connected graphs. Ta-
ble 5 shows that DruM can generate a significantly larger number of
connected molecules compared to EDM Hoogeboom et al. (2022).

Table 5:  Percentage of
connected graphs on GEOM-
DRUGS experiment with 3
different runs.

Methods Connected (%)

EDM 37.70 £0.79
DruM (Ours) 56.57 £0.31

(a) Training Set (b) DruM (Ours)

Figure 12: Visualization of the molecules from the QM9 dataset and the generated molecules of DruM for

the 3D molecule generation experiment.

(a) Training Set (b) DruM (Ours)

Figure 13: Visualization of the molecules from the GEOM-DRUGS dataset and the generated molecules

of DruM for the 3D molecule generation experiment.
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E.2 GENERATIVE PROCESS OF DRUM

Here we visualize the generative process of DruM. We visualize the generative process of general
graphs in Figure 14, 15, and 16. We also visualize the generative process of the 3D molecules
in Figure 17 and 18. We further provide the animation of the generative process in the attached

supplementary file.

t=0 t=0.25

Planar

t=0 1=0.25
Figure 14: Visualization of the generative process of DruM. We visualize the destination mixture from DruM
on the Planar dataset.
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Figure 15: Visualization of the generative process of DruM. We visualize the destination mixture from DruM
on the SBM dataset.

Proteins

t=1

t=0.8

t=0 t=0.3 t=0.7

Figure 16: Visualization of the generative process of DruM. We visualize the destination mixture from DruM

on the Proteins dataset.
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Sampled Destination Sampled
Graph Mixture Graph
Gi 59(Gt,t) G,

Destination
Mixture
Sp (Gt7 f)

t=0 t=0.2 t=10.4 t=0.6 t=0.8 t=1
Figure 17: Visualization of the 3D molecule generative process of DruM on QM9 dataset. In the first row, we
visualize the trajectory G4, and in the second row, we visualize the estimated destination mixtures from DruM.
Note that the visualized molecules are stable.
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Figure 18: Visualization of the 3D molecule generative process of DruM on GEOM-DRUGS dataset. In
the first row, we visualize the trajectory G, and in the second row, we visualize the destination mixtures from
DruM. Note that the visualized molecules are stable. The atom types and 3D coordinates in the green circle are
calibrated after the estimated destination mixtures are converged at an early stage.
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