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Abstract

Human vision, unlike existing machine vision systems, is surprisingly robust1

to environmental variation, including both naturally occuring disturbances (e.g.,2

fog, snow, occlusion) and artificial corruptions (e.g., adversarial examples). Such3

robustness, at least in part, arises from our ability to infer 3D geometry from4

2D retinal projections—the ability to go from images to their underlying causes,5

including the 3D scene. How can we design machine learning systems with such6

strong shape bias? In this work, we view 3D reconstruction as a pretraining method7

for building more robust vision systems. Recent studies explore the role of shape8

bias in the robustness of vision models. However, most current approaches to9

increase shape bias based on ImageNet take an indirect approach, attempting to10

instead reduce texture bias via structured data augmentation. These approaches11

do not directly nor fully exploit the relationship between 2D features and their12

underlying 3D shapes. To fill this gap, we introduce a novel dataset called Geon3D,13

which is derived from objects that emphasize variation across shape features that14

the human visual system is thought to be particularly sensitive. This dataset enables,15

for the first time, a controlled setting where we can isolate the effect of “3D shape16

bias” in robustifying neural networks, and informs more direct approaches to17

increase shape bias by exploiting 3D vision tasks. Using Geon3D, we find that18

CNNs pretrained on 3D reconstruction are more resilient to viewpoint change,19

rotation, and shift than regular CNNs. Further, when combined with adversarial20

training, 3D reconstruction pretrained models improve adversarial and common21

corruption robustness over vanilla adversarially-trained models. This suggests that22

incorporating 3D shape bias is a promising direction for building robust machine23

vision systems.24

1 Introduction25

The human visual system recovers rich three-dimensional (3D) geometry, including objects, shapes26

and surfaces, from two-dimensional (2D) retinal inputs. This ability to make inferences about the27

underlying scene structure from input images—also known as analysis-by-synthesis—is thought to28

be critical for the robustness of biological vision to occlusions, distortions, and lighting variations29

[49, 37, 34]. Current machine vision systems, which emphasize image classification over rich 3D30

scene inferences, are vulnerable to input noise and transformations. Indeed, state-of-the-art vision31

models for object classification perform poorly when the images are taken from unrepresentative32

viewpoints [3]. Moreover, we can construct inputs with slight perturbations that are imperceptible33

to humans but easily fool machine vision, known as adversarial examples [45]. Such instability not34

only makes machine learning systems unreliable, but also raises serious security concerns [39, 31].35

Existing explanations of why adversarial examples exist focus on finite sample overfitting and36
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high-dimensional statistical phenomena [18, 16, 19, 7]. More recently, Ilyas et al. [26] propose “non-37

robust” features that well-generalize to test data as one of the causes behind adversarial examples.38

To make matters worse, they empirically show that such features are prevalent in real datasets, and39

machine vision systems naturally make use of them. This observation implies that unless we pressure40

the system to avoid exploiting “non-robust” features, adversarial examples will continue to exist.41

Therefore, for reliable machine visions systems, we must build learning algorithms that inherently42

emphasize variation that is robust across datasets.43

A promising set of candidates to target for robustness is the “causal” variables that underlie the pixel44

distribution in an image—e.g., the 3D scene structure and how it projects to images. Here we focus45

on learning features to facilitate inferences about one such causal property, the 3D object shape. In46

fact, a recent line of work has started to explore methods to increase shape bias as a way to make47

neural network models more robust to image perturbations [17, 46, 47]. A notable example is given48

by Geirhos et al. [17], who proposes to train a model on Stylized-ImageNet (SIN), which are created49

by imposing various painting styles to images from ImageNet [13]. However, these approaches are50

indirect: They attempt to reduce the reliability of texture-related cues in terms of how well they can51

predict object categories, and then make the assumption that under such a data distribution, the model52

will instead learn to emphasize shape-related cues in the image. Indeed, Mummadi et al. [35] finds53

that increased robustness to common corruptions using the SIN approach is not due to increased54

shape bias, but instead, it arises simply from the data augmentation due to style-variation.Moreover,55

using ImageNet to study shape bias compounds known confounding factors in this dataset, e.g.,56

the ‘photographer bias” (i.e., constrained variability across viewpoints) [2, 3], further complicating57

inferences about shape bias based on the existing work. For example, existing approaches trained on58

ImageNet might learn to associate class labels with a limited range of non-textural, surface-related59

cues such as image contours, but they do not fully or explicitly reflect the relationship between60

3D objects and how they are projected to images. Here, we advocate that using controlled data61

distributions, in terms of both the marginal and joint distributions of texture and shape, is needed to62

isolate and understand the effect of causal scene variables in the context of robustness.63

Thus, to our knowledge, none of the existing approaches directly tested the hypothesis that shape64

bias—learning representations that enable accurate inferences of 3D from 2D, which we refer to65

as “3D shape bias”—will induce robustness. Inspired by the robustness of the human vision, our66

desiderata are that such a robust system should not be easily fooled by naturally occurring challenging67

viewing conditions (e.g., fog, snow, brightness) nor by artificial image corruptions (e.g., due to68

adversarial attacks).69

In this work, we study whether and to what extent 3D shape bias improves robustness of vision70

models. To answer this question, we introduce Geon3D—a novel, controlled dataset comprised of71

simple yet realistic shape variations, derived from the human object recognition hypothesis called72

Geon Theory [5]. This dataset enables us to study 3D shape bias of 3D reconstruction models73

that learn to represent shapes solely from 2D supervision [36]. We find that CNNs trained for 3D74

reconstruction are more robust to unseen viewpoints, rotation and translation than regular CNNs.75

Moreover, when combined with adversarial training, 3D reconstruction pretraining improves common76

corruption and adversarial robustness over CNNs that only use adversarial training. This suggests77

that not only can Geon3D be used to measure how shape bias improves robustness, it can also guide78

the introduction of strong shape bias into machine learning models. Biological vision is not only79

about knowing what is where, but also about making rich inference about the underlying causes of80

scenes such as 3D shapes and surfaces [37, 49, 4]. We hope our findings and dataset will aid further81

studies to build more robust vision models with strong shape bias and encourage the community to82

tackle robustness problems through the lens of 3D inference and perception as analysis-by-synthesis.83

2 Approach84

We first describe the Geon Theory, which our dataset construction relies on. Next, we explain the85

data generation process used in the creation of Geon3D (§2.1), and how we train a 3D reconstruction86

model (§2.2).87
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Arch Barrel Cone Cuboid Cylinder

Truncated Cone Handle Expanded Handle Horn Truncated Pyramid

Figure 1: Examples of 10 Geon categories from Geon3D-10. The full list of 40 Geons we construct
(Geon3D-40) is provided in the Appendix.

2.1 Geon3D Benchmark88

The concept of Geons—or Geometric ions—was originally introduced by Biederman as the building89

block for his Recognition-by-Components (RBC) Theory [5]. The RBC theory argues that human90

shape perception segments an object at regions of sharp concavity, modeling an object as a com-91

position of Geons—a subset of generalized cylinders [6]. Similar to generalized cylinders, each92

Geon is defined by its axis function, cross-section shape, and sweep function. In order to reduce93

the possible set of generalized cylinders, Biederman considered the properties of the human visual94

system. He noted that the human visual system is better at distinguishing between straight and curved95

lines than at estimating curvature; detecting parallelism than estimating the angle between lines; and96

distinguishing between vertex types such as an arrow, Y, and L-junction [25].97

Table 1: Latent features of Geons. S: Straight, C:
Curved, Co: Constant, M: Monotonic, EC: Ex-
pand and Contract, CE: Contract and Expand, T:
Truncated, P: End in a point, CS: End as a curved
surface

Feature Values

Axis S, C
Cross-section S, C
Sweep function Co, M, EC, CE
Termination T, P, CS

Table 2: Similar Geon categories, where only
a single feature differs out of four shape fea-
tures. “T.” stands for “Truncated”. “E.” stands
for “Expanded”.

Geon Category Difference

Cone vs. Horn Axis
Handle vs. Arch Cross-section
Cuboid vs. Cyllinder Cross-section
T. Pyramid vs. T. Cone Cross-section
Cuboid vs. Pyramid Sweep function
Barrel vs. T. Cone Sweep function
Horn vs. E. Handle Termination

Our focus in this paper is not the RBC theory or whether it is the right way to think about how we see98

shapes. Instead, we wish to build upon the way Biederman characterized these Geons. Biederman99

proposed using two to four values to characterize each feature of Geons. Namely, the axis can be100

straight or curved; the shape of cross section can be straight-edged or curved-edged; the sweep101

function can be constant, monotonically increasing / decreasing, monotonically increasing and then102

decreasing (i.e. expand and contract), or monotonically decreasing and then increasing (i.e. contract103

and expand); the termination can be truncated, end in a point, or end as a curved surface. A summary104

of these dimensions is given in Table 1.105

Representative Geon classes are shown in Figure 1. For example, the “Arch” class is uniquely106

characterized by its curved axis, straight-edged cross section, constant sweep function, and truncated107

termination. These values of Geon features are nonaccidental—we can determine whether the axis is108

straight or curved from almost any viewpoint, except for a few accidental cases. For instance, an109
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arch-like curve in the 3D space is perceived as a straight line only when the viewpoint is aligned in a110

way that the curvature vanishes. These properties make Geons an ideal dataset to analyze 3D shape111

bias of vision models. For details of data preparation, see Appendix.112

2.2 3D reconstruction as pretraining113

To explore advantages of direct approaches to induce shape bias in vision models, we turn our114

attention to a class of 3D reconstruction models. The main hypothesis of our study is that the task of115

3D reconstruction pressures the model to obtain robust representations.116

Recently, there has been significant progress in learning-based approaches to 3D reconstruction,117

where the data representation can be classified into voxels [11, 41], point clouds [15, 1], mesh [28, 21],118

and neural implicit representations [33, 10, 40, 44]. We focus on neural implicit representations,119

where models learn to implicitly represent 3D geometry in neural network parameters after training.120

We avoid models that require 3D supervision such as ground truth 3D shapes. This is because we are121

interested in models that only require 2D supervision for training and how inductive bias of 2D-to-3D122

inference achieves robustness.123

Specifically, we use Differentiable Volumetric Rendering (DVR) [36], which consists of a CNN-based124

image encoder and a differentiable neural rendering module. We train DVR to reconstruct 3D shapes125

of Geon3D-10. For more details of DVR and 3D reconstruction, we refer the readers to the Appendix.126

3 Experimental Results127

In this section, we demonstrate how 3D shape bias improves model robustness. We evaluate robustness128

in terms of the Geon3D-10 classification accuracy under various image perturbations. Our 3D-shape-129

biased classifier is based on the image encoder of the 3D reconstruction model (DVR) that is pretrained130

to reconstruct Geon3D-10. We add a linear classification layer on top of the image encoder, and131

then finetune, either just that linear layer (DVR-Last) or the entire encoder (DVR), for Geon3D-10132

classification. Notice that the inputs to all models during classification are only RGB images. (Camera133

matrices are only used for the rendering module during pretraining for 3D reconstruction.) Our134

baseline is a vanilla neural network (Regular) that is trained normally for Geon3D-10 classification.135

To see the difference between 3D shape bias and 2D shape bias in the sense of [17], we also evaluate136

the following models, which are hypothesized to rely their prediction more on shape than texture.137

Stylized is a model trained on Stylized images of Geons. We follow the same protocol as [17] by138

replacing the texture of each image of Geon3D-10 by a randomly selected texture from paintings139

through the AdaIn style-transfer algorithm [24]. Adversarially trained network (AT) is a network140

that uses adversarial examples during training [32]. Through extensive experiments, Zhang and141

Zhu [50] demonstrate that AT models develop 2D shape bias, which is considered to explain, in142

part, the strong adversarial robustness of AT models. In our experiments, we use L∞ and L2 based143

adversarial training. InfoDrop [43] is a recently proposed model that induces 2D shape bias by144

decorrelating each layer’s output with texture. The method exploits the fact that texture often repeats145

itself, and hence is highly correlated with and can be predicted by the texture information in the146

neighboring regions, whereas shape-related features such as edges and contours are less coupled at the147

locality of neighboring regions. To control for variation in network architectures, we use ImageNet-148

pretrained ResNet18 for all models we tested. The image encoder of DVR is also initialized using149

ImageNet-pretrained weights before training for 3D reconstruction of Geons.150

Background variations To quantify the effect of textures, we prepare three versions of Geon3D-151

10: black background, random textured background (Geon3D-10-RandTextured), and correlated152

background (Geon3D-10-CorrTextured). For Geon3D-10-RandTextured, we replace each black153

background with a random texture image out of 10 texture categories chosen from the Describable154

Textures Dataset (DTD) [12].For Geon3D-10-CorrTextured, we choose 10 texture categories from155

DTD and introduce spurious correlations between Geon category and texture class (i.e., each Geon156

category is paired with one texture class). Examples of Geon3D with textured background are shown157

in Figure 3 (Right). These three versions of our dataset allow us to analyze more realistic image158

conditions as well as to test robustness despite variation and distributional shifts in textures.159

4
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Figure 2: Accuracy per Geon category under unseen viewpoints. Even though all models perform
reasonably well, there is still a range of overall accuracy values. In addition, we see that when
networks make a mistake, it is often between similar Geon categories (see Table 2 for a list of similar
Geon categories). Regular: a baseline model; InfoDrop: a shape-biased model; AT: adversarially
trained; Stylized: a network trained on “stylized” version of Geon3D; DVR: We use pretrained
weights of the image encoder of Differentiable Volumetric Rendering (3D reconstruction model),
a 3D reconstruction model, and finetune all of its layers on the Geon3D-10 classification task.
DVR-Last refers to the version where we finetune only the last classification layer.

3.1 3D shape bias improves generalization to unseen views and reduces similar category160

confusion161

One of the crucial but often overlooked examples of 3D shape bias that human vision has is “visual162

completion” [38], which refers to our ability to infer portions of surface that we cannot actually see.163

For instance, when we look at the top-left image in Figure 3, we automatically recognize it as a whole164

cube, even though we cannot see its rear side. We view the task of 3D reconstruction as a way to165

build such an ability into neural networks. In this section, we investigate how such 3D shape bias of166

DVR improves classification of similar Geon categories under unseen viewpoints, testing both DVR167

(where we finetune all layers of the image encoder) and DVR-Last (where we finetune only the top168

classification layer of the image encoder).169

The results of per-category classification are shown in Figure 2. We say two Geons are similar when170

there is only a single shape feature difference, as summarized in Table 2. We see that networks often171

misclassify similar Geon categories. The vanilla neural network (Regular) often misclassifies “Cone”172

vs. “Horn”, “Handle” vs. “Arch”, “Cuboid” vs. “Truncated pyramid”, as well as “Truncated cone” vs.173

“Truncated pyramid”.The Geon pairs the InfoDrop model misclassifies include: “Arch” vs. “Handle”,174

“Cyllinder” vs. “Barrel”, “Cuboid” vs. ”Cyllinder” and “Truncated pyramid” vs. “Truncated cone”,175

which are all pairs with single shape feature difference.176

Notably, the Stylized model, which is hypothesized to increase bias towards shape-related features,177

makes a number of mistakes for similar Geon classes (i.e. “Horn” vs. “Cone”, “Cone” vs. “Truncated178

pyramid”, and “Truncated cone” vs. “Truncated pyramid”), similar to the Regular model. This result179

is consistent with the finding that the Stylized approach [17] does not necessarily induce proper shape180

bias [35].181

AT-L∞ and DVR-Last perform better than the models listed above, yet still struggle to distinguish182

“Truncated Pyramid” from “Truncated Cone”, where the difference is whether the cross-section183

is curved or straight (see Table 2). On the other hand, DVR successfully distinguishes these two184

categories. This shows that 3D pretraining before finetuning for the task of classification facilitates185
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Truncated Cone Barrel

Figure 3: (Left) We humans recognize the top image as a whole cube, automatically filling in the
surfaces of its rear, invisible side, although, in principle, there are infinitely many scenes consistent
with the sense data , one of which is shown in the bottom image [38]. This illustrates that certain
shapes are more readily perceived by the human visual system than others. (Middle) Examples of
“Truncated Cone” that are misclassified as “Barrel” by DVR, next to “Barrel“ exemplars shown at
similar viewpoints.(Right) Example images from Geon3D-10 with textured backgrounds.

recognition of even highly similar shapes. The hardest pair for DVR is “Truncated cone” vs. “Barrel”,186

but the errors the model make appear sensible (Figure 3, middle panel): For example, when the camera187

points at the smaller side of the “Truncated Cone”, then there is uncertainty whether the surface188

extends beyond self-occlusion by contracting (which would be consistent with the “Barrel” category)189

or the surface ends at the point of self-occlusion (which would be consistent with the category190

“Truncated Cone”). Indeed, when we inspected the samples of “Truncated Cone” misclassified as191

“Barrel” by DVR, we found that for half of those images, the larger side of “Truncated Cone” was192

self-occluded. Future psychophysical work should quantitatively compare errors made by these193

models to human behavior.194

Accuracy under rotation and translation (shifting pixels) CNNs are known to be vulnerable to195

rotation and shifting of the image pixels [2]. As shown in Table 3, our model (DVR) pretrained with196

3D reconstruction performs better than all other models under rotation and shift even though it is not197

explicitly trained to defend against those attacks. We observe that DVR-Last performs second best,198

indicating that this “for free” robustness to rotation and shift is largely in place even when finetuning199

on the classification task is restricted to only linear decoding of the categories.200

Table 3: Accuracy of shape-biased classifiers against rotation and shifting of pixels on Geon3D under
unseen viewpoints. We randomly add rotations of at most 30◦ and translations of at most 10% of the
image size in each x, y direction. We report the mean accuracy and standard deviation over 5 runs of
this stochastic procedure over the entire evaluation set.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR-LAST DVR

ROTATION 82.18(1.06) 80.76(0.69) 78.47(0.57) 87.00(0.57) 89.58(0.48) 90.44(0.30) 93.46(0.44)

SHIFT 72.28(0.43) 71.86(0.63) 61.44(0.29) 53.84(0.71) 61.50(1.11) 73.24(0.73) 76.52(0.89)

3.2 Robustness against Common Corruptions201

In this section, we show that, when combined with adversarial training, 3D pretrained models202

(denoted as DVR+AT-L2 and DVR+AT-L∞) improve robustness against common image corruptions,203

above and beyond what can be accomplished just using adversarial training. For these models, we204

use adversarial training during the finetuning of the 3D reconstruction model for the Geon3D-10205

classification task. Here we evaluate the effect of 3D shape bias not only in the somewhat sterile206

scenario of the clean, black background images, but also using the background-textured versions207

of our dataset. To do this, we train all models using Geon3D-10-RandTextured, where we replace208

the black background with textures randomly sampled from DTD (see Figure 3, right panel, for209

examples). During evaluation, we use unseen viewpoints.210
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The results are shown in Table 4. We see that starting adversarial training from DVR-pretrained211

weights improves robustness across all corruption types, over what can be achieved by only either212

AT-L2 or AT-L∞. DVR-AT and AT models fail on “Contrast” and “Fog”. This has been a known213

issue for AT [18], which requires future work to explore. While Stylized performs best under certain214

corruption types, we can see that DVR-AT-L2 leads to broader robustness across the corruptions we215

considered.216

Table 4: Accuracy of classifiers against common corruptions under unseen viewpoints. All models
are trained and evaluated on Geon3D-10 with random textured background. Pretraining on 3D shape
reconstruction using DVR leads to broader robustness relative to other models.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.741 0.596 0.701 0.691 0.464 0.758 0.513
PIXELATE 0.608 0.458 0.653 0.623 0.415 0.719 0.470
DEFOCUS BLUR 0.154 0.152 0.402 0.490 0.298 0.605 0.349
GAUSSIAN NOISE 0.222 0.465 0.601 0.555 0.412 0.701 0.470
IMPULSE NOISE 0.187 0.270 0.497 0.322 0.136 0.594 0.148
FROST 0.144 0.269 0.638 0.142 0.209 0.148 0.240
FOG 0.338 0.281 0.659 0.187 0.120 0.264 0.130
ELASTIC 0.427 0.314 0.428 0.416 0.266 0.499 0.307
JPEG 0.414 0.422 0.634 0.629 0.434 0.731 0.484
CONTRAST 0.408 0.286 0.673 0.141 0.120 0.179 0.135
BRIGHTNESS 0.525 0.518 0.702 0.500 0.388 0.549 0.429
ZOOM BLUR 0.334 0.238 0.560 0.518 0.327 0.639 0.378

3.3 Robustness to Distributional Shift in Backgrounds217

In this section, we evaluate network’s robustness to distributional shift in backgrounds. To do218

this, we train all the models on Geon3D-10-CorrTextured, where we introduce spurious correlation219

between textured background and Geon category. Therefore, during training, a model can pick up220

classification signal from both the shape of Geon as well as background texture. To evaluate trained221

models for background shift, we prepare a test set that breaks the correlation between Geon category222

and background texture class by cyclically shifting the texture class from i to i+ 1 for i = 0, ..., 9,223

where the class 10 is mapped to the class 0. This is inspired by [17], where they create shape-texture224

conflicts to measure 2D shape bias in networks trained for ImageNet classification. However, in our225

case, distributional shift from training to test set is designed to isolate and better measure shape bias226

by fully disentangling the contributions of texture and shape.227

The results are shown in Table 5. We see that 2D shape biased models all perform worse than the228

3D shape-biased model (DVR+AT-L∞). Combining AT with 3D pretraining improves classification229

accuracy more than 10 % with respect to the best performing variant of AT.230

Interestingly, comparing randomized vs. correlated background experiments reveals a stark difference231

between the two commonly used perturbations in adversarial training (L2 vs. L∞). Unlike our232

analysis with uncorrelated, randomized backgrounds, we find that adversarial training using L2 norm233

completely biases the model towards texture (no apparent shape bias) when such spurious correlation234

between texture and shape category exists.235

Table 5: Accuracy of shape-biased classifiers against distributional shift in backgrounds. Here, all
models are trained on Geon3D-10-CorrTextured (with background textures correlated with shape
categories) and evaluated on a test set where we break this correlation. See Appendix for results
using other common corruptions, where we find DVR+AT-L∞ provides broadest robustness across
the corruptions we tested.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

0.045 0.121 0.268 0.015 0.311 0.219 0.439

3.4 3D Pretraining Improves Adversarial Robustness236

In this section, we show that 3D pretrained AT models improve adversarial robustness over vanilla AT237

models. We attack our models using L∞-PGD [32], with 100 iterations and ε/10 to be the stepsize,238
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Figure 4: Robustness comparison between AT-L∞ and DVR+AT-L∞ with increasing perturbation
budget ε on three variations of Geon3D-10. We use L∞-PGD with 100 iterations and ε/10 to be the
stepsize. See Appendix for AT-L2 results, where we also find that 3D pretraining improves vanilla
AT models.

where ε is the perturbation budget. We compare AT-L∞ and DVR+AT-L∞ for black, randomly239

textured, and correlated textured backgrounds. The results are shown in Figure 4. In the black240

background set, while 3D pretrained AT slightly performs worse than vanilla AT for smaller epsilon241

values, it significantly robustifies AT-trained models for large epsilons. A small but appreciable gain242

in robustness can be seen for the other two backgrounds types. These pattern of results are consistent243

across attack types, with DVR providing significant robustness over vanilla AT under the L2 regime244

(see Appendix).245

3.5 How important is 3D inference?246

In this section, we investigate the importance of causal 3D inference to obtain good representations.247

That is, we explore the impact of having an actual rendering function constrain the representations248

learned by a model. Our goal in this section is not to further evaluate the robustness of these features,249

but to measure the efficiency of representations learned under the constraint of a rendering function250

for the basic task of classification.251

To isolate this effect, we compare DVR to Generative Query Networks (GQN) [14]—a scene252

representation model that can generate scenes from unobserved viewpoints—on novel exemplars253

from the Geon3D-10 dataset, but using views seen during training. The crucial difference between254

DVR and GQN is that GQN does not model the geometry of the object explicitly with respect to an255

actual rendering function. Therefore, the decoder of GQN, which is another neural network based256

on ConvLSTM, is expected to learn rendering-like operations solely from an objective that aims257

to maximize the log-likelihood of each observation given other observations of the same scene as258

context. To control for the difference of network architecture, we train DVR using the same image259

encoder architecture as GQN, since when we used ResNet18 as an image encoder, GQN did not260

converge.261

Examples of generated images of Geons from GQN are shown in Figure 5 (Left). As we can see,262

GQN successfully captures the object from novel viewpoints.263

To assess the power of representations learned by GQN in the same way as DVR, we take the264

representation network and add a linear layer on top. We then finetune the linear layer on 10-Geon265

classification, while freezing the rest of the weights. We compare this model to the architecture-266

controlled version of the DVR-Last model.267

Since GQN can take more than one view of images, we prepare 6 models that are finetuned based on268

either of {1, 2, 4, 8, 16, 32}-views. The resulting test accuracy of finetuned GQN encoders against269

the number of views is shown in Figure 5 (Right). Despite the strong viewpoint generalization of270

GQN, we see that finetuned GQN requires more than 2 views (i.e., 3 or 4 views) to reach the DVR271

level accuracy, and only outperforms DVR after we feed more than 8 views. This suggests that the272

inductive bias from 3D inference is more efficient to obtain good representations.273

4 Related Work and Discussions274

3D datasets. Inspired by the success of ImageNet, there have been efforts to create large-scale275

datasets for 3D vision tasks. ShapeNet [8] provides a large-scale, annotated 3D model dataset. OASIS276
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Figure 5: Left: Example Geon images rendered from GQN based on 3 views. Right: GQN Test
Accuracy v.s. the number of views. As a reference, we also plot the 1-view DVR accuracy. Here, we
used the same architecture for the image encoders of DVR and GQN.

[9] is tailored for tasks of recovering 3D properties from a single-view image, and Rel3D [20] is a277

benchmark for grounding spatial relations. While these large-scale datasets target 3D vision tasks,278

Geon3D aims to serve as a diagnostic tool to benchmark how 3D shape bias impacts robustness.279

Indeed, even though existing learning-based 3D shape reconstruction models can perform well when280

trained on a single category, these models struggle at multi-category settings (reconstructions become281

visibly worse when these models are trained on multiple categories of ShapeNet simultaneously).282

This failure complicates inferences one can make about the role of shape bias in robustness: Is it283

because the model does not perform well on the reconstruction task to begin with or is it that shape284

bias has no benefit? As we demonstrate in this work, despite its simplicity relative to these larger285

datasets, Geon3D reveals that the current vision models struggle with image corruptions and that286

shape bias induces robustness.287

Part-level robustness vs. Object-level robustness288

To achieve robustness against distributional shifts for complex, real-world objects, we believe it289

is important to have robust part-whole understanding, which inherently requires understanding of290

simple geometric objects like Geon3D as a first step. While other 3D datasets such as RotationNet291

[27] can serve as a testbed for object-level robustness, Geon3D aims to serve as a benchmark for292

part-level robustness, which is an essential step to achieve object-level robustness. We believe that a293

simple dataset like Geon3D allows more robustness researchers to explore techniques that are actively294

being developed in the 3D vision community.295

Analysis-by-synthesis. Our proposal of using 3D inference to achieve robust vision shares the296

same goal as analysis-by-synthesis [30, 49, 48]. Given 2D images, these models attempt to find297

scene parameters such as shape, appearance, and pose, traditionally via top-down stochastic search298

algorithms like Markov Chain Monte Carlo, and then utilize a graphics engine to reconstruct input.299

More recently, Efficient Inverse Graphics network (EIG) is proposed [48]. EIG employs a CNN300

to infer scene parameters of a probabilistic generative model, which is based on a multistage 3D301

graphics program, and use the aforementioned generative model to synthesize input images. Just302

like inverse graphics model, such image encoder in 3D reconstruction model has to encode a useful303

representation for 3D reconstruction. For 3D reconstruction models like DVR, we can consider that304

scene parameters are implicitly represented in the latent space of the encoder, but importantly, learned305

with respect to a proper rendering function. Even though previous work considered adversarial306

robustness of variational autoencoders [42], our study is first to evaluate robustness arising from307

analysis-by-synthesis type computations under 3D scenes.308

Compositionality and 3D reconstruction. From the perspective of analysis-by-synthesis ap-309

proaches, robust recognition of a general complex object should come with the ability to reconstruct it.310

For such robust recognition, a model needs to learn part-to-whole relationships from images [23, 29]311

along with each part geometry. We believe that signals from 3D reconstruction can help a recognition312

model to reliably learn part-to-whole relationships, just like how 3D inference improves robustness.313

Developing such a 3D inference-based recognition model to compose and analyze complex objects is314
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an important step towards solving robustness problems of more complex datasets such as ImageNet-C315

[22] and ObjectNet [3].316

5 Conclusion317

We introduce Geon3D—a novel image dataset to facilitate 3D shape bias research in neural network318

communities. This dataset allows us to study shape bias of a class of 3D reconstruction models that319

only requires 2D supervision. We demonstrate that CNNs trained for 3D reconstruction improve320

robustness against viewpoint change and spatial transformation such as rotation and shift. We321

also study other shape-biased models, and show that not a single model is adequately robust to all322

corruption types we consider on Geon3D. From a divide-and-conquer perspective, it is desirable to323

solve robustness problems associated with a simple shape dataset like Geon3D on the way to tackling324

more complex ones like ImageNet. Finally, we believe that achieving near-perfect robustness on325

Geon3D is one of the important but simple-to-check conditions that a human-like object recognition326

system needs to satisfy, as it should operate based on fundamental understanding of the 3D structure327

of our world.328
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