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ABSTRACT

Advancements in machine learning for molecular property prediction have im-
proved accuracy but at the cost of increased complexity and longer training times.
The recent Joint Multi-domain Pre-training (JMP) foundation model has demon-
strated strong performance across various downstream tasks while reducing train-
ing time. However, fine-tuning on small-scale datasets remains time consuming,
and larger datasets with more training samples pose even greater challenges. In
this work, we investigate strategies to enhance efficiency by reducing model size
while preserving performance. Through an analysis of layer contributions in JMP,
we find that later interaction blocks provide diminishing returns, suggesting op-
portunities for model simplification. We explore block reduction strategies, where
we prune the pre-trained model before fine-tuning, and assess their impact on effi-
ciency and accuracy. Our findings reveal that removing two interaction blocks re-
sults in minimal performance drop, reducing model size by 32% while increasing
inference throughput by 1.3×. This confirms that JMP-L is over-parameterized,
and a smaller, more efficient variant can achieve comparable performance at a
lower computational cost. Our study provides insights for developing lighter,
faster, and more scalable foundation models for molecular and materials discov-
ery. The code is publicly available at: github.com/Yasir-Ghunaim/efficient-jmp.

1 INTRODUCTION

Molecular property prediction using density functional theory (DFT) and molecular dynamics (MD)
calculations plays a crucial role in the discovery of novel materials, including pharmaceutical drugs
Sabe et al. (2021), catalysts Nørskov et al. (2011); Tran et al. (2023); Chanussot et al. (2021), metal-
organic frameworks Rosen et al. (2022), and polymers Sharma et al. (2014). However, the high com-
putational cost of DFT and MD calculations limits their feasibility for large-scale, high-throughput
searches. To overcome this challenge, machine learning potentials have been developed to accel-
erate DFT and MD calculations Behler & Parrinello (2007); Bogojeski et al. (2020), based on the
latest large-scale datasets Kolluru et al. (2022), such as Open Catalyst 2020 (OC20) Chanussot et al.
(2021), Open Catalyst 2022 (OC22) Tran et al. (2023), and ODAC23 Sriram et al. (2023). However,
training models from scratch for different tasks remains a major bottleneck for their widespread
adoption. For example, datasets with different applied DFT theories, molecular system sizes, or
chemical diversity increase complexity, thus hindering the generalizability and scalability of ma-
chine learning models in chemistry.

Recent progress in efficient pre-training strategies Zaidi et al. (2022); Zhou et al. (2023), the avail-
ability of extensive DFT and MD datasets Tran et al. (2023); Chanussot et al. (2021); Eastman et al.
(2023); Smith et al. (2020), and the introduction of specialized chemical benchmarks Schreiner et al.
(2022a); Dunn et al. (2020) have led to the emergence of foundation models for molecular property
prediction. Foundation models such as the Joint Multi-domain Pre-training (JMP) model Shoghi
et al. (2023) and MACE-MP-0 Batatia et al. (2023; 2022b;a) have demonstrated remarkable perfor-
mance in diverse molecular tasks. In particular, JMP adapts the pre-train-then-finetune paradigm
from vision and language tasks to molecular property prediction. By pre-training on large datasets,
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JMP captures generalizable molecular representations that enable faster fine-tuning for downstream
tasks, overcoming the need to train models from scratch for each new application.

Although the large variant of JMP (JMP-L) has outperformed state-of-the-art models on 34 out of
40 tasks, its efficiency in fine-tuning and inference has yet to be addressed. With 160M parameters,
JMP-L achieves similar performance to MACE Batatia et al. (2022b), which uses only 3M parame-
ters, suggesting potential over-parameterization. This over-parameterization increases memory and
compute requirements and leads to higher carbon emissions Shoghi et al. (2023), reducing overall
sustainability. Although 160M parameters are relatively small compared to vision and language
models, the parameter-to-data ratio in molecular ML remains disproportionately large. For instance,
MD17 contains only 1,000 training samples with an average of 13 nodes per graph Shoghi et al.
(2023), making such a large model inefficient for small datasets.

To address these limitations, we perform an in-depth analysis of the efficiency of JMP-L. By ex-
amining its interaction block hierarchy, we find that higher-order blocks contribute less to overall
performance. This observation aligns with recent findings in large language models, where deeper
layers often yield diminishing returns Gromov et al. (2024). This motivates our exploration of block
reduction, a pruning strategy that removes the least important layers to improve efficiency while
maintaining accuracy. Additionally, we investigate knowledge distillation techniques tailored to
molecular graph neural networks, integrating them with block reduction to assess their combined
impact. Although pruning Liu et al. (2022) and distillation Zeng et al. (2023) are widely used in
other domains, their application in molecular property prediction, particularly within the pre-train-
then-finetune paradigm, remains underexplored.

Our findings reveal that pruning and distillation significantly improve the efficiency of JMP-L while
preserving comparable performance for most tasks. Specifically, we show that a pruned and distilled
variant of JMP-L achieves comparable accuracy to the original model across in-distribution and out-
of-distribution downstream tasks. By removing two interaction blocks, we reduce the model size
by 32%, decreasing parameter count from 160M to 108M, while improving inference throughput
by 1.3×, compared to the baseline model. These results confirm that JMP-L is over-parameterized
for many tasks, and smaller, more efficient versions can achieve similar performance with reduced
computational cost.

In summary, our contributions are three-fold:

• We develop a lightweight version of JMP-L with 108M parameters (32% reduction),
achieving 1.3 times faster inference while maintaining performance.

• We evaluate the impact of block reduction and knowledge distillation on pre-training across
in-distribution and out-of-distribution downstream tasks.

• We demonstrate that later interaction blocks of JMP-L contribute less to performance, sup-
porting the case for model compression.

2 RELATED WORK

2.1 FOUNDATION MODELS IN MOLECULAR PROPERTY PREDICTION

Pre-trained models have significantly advanced the development of robust architectures across vari-
ous domains. Notable examples include ResNet He et al. (2016) and ViT Dosovitskiy et al. (2021),
which leverage large-scale datasets such as ImageNet Deng et al. (2009) to enhance image pro-
cessing. In contrast, deep learning models for molecular property prediction have primarily been
task-specific Batatia et al. (2023); Kovács et al. (2023), limiting their utility as general-purpose
pre-trained models. Recently, JMP Shoghi et al. (2023) introduced a supervised pre-training strat-
egy on large datasets, establishing a shared knowledge base for various downstream tasks. Built
on GemNet-OC Gasteiger et al. (2022), JMP is the first large-scale foundation model for molecular
property prediction. However, its fine-tuning efficiency remains a challenge, as it requires more than
275 GPU hours to converge Shoghi et al. (2023). In this work, we provide a comprehensive analysis
of JMP and propose a more efficient approach to reduce its computational demands, enhancing its
accessibility and scalability for broader applications.
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2.2 EFFICIENT TRAINING

2.2.1 PRUNING

Pruning is a technique used to reduce the size and complexity of a neural network by eliminating
weights, neurons, layers, or filters without compromising accuracy Sietsma & Dow (1988); Cheng
et al. (2024); Blalock et al. (2020). It is particularly effective when a model is over-parameterized
for its task Sietsma & Dow (1988). Structured pruning, which removes entire layers or filters, has
been shown to improve memory and computational efficiency in various architectures, including
large language models Zhang et al. (2024); Sun et al. (2024), vision transformers Yu et al. (2022),
and graph neural networks (GNNs) Liu et al. (2022). JMP-L, based on the GemNet-OC architecture
Gasteiger et al. (2022), consists of an embedding layer, six interaction layers, and three MLP layers.
Drawing inspiration from pruning techniques in other domains, we investigate the impact of remov-
ing GemNet-OC interaction layers to accelerate fine-tuning and inference while maintaining model
performance.

2.2.2 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a model compression technique that transfers knowledge from a
larger teacher model to a smaller student model, aiming to achieve similar performance with reduced
computational costs Hinton (2015); Bucilua et al. (2006). Initially introduced by Bucilua et al.
Bucilua et al. (2006) and later popularized by Hinton et al. Hinton (2015), KD has been widely
applied in the language Xu et al. (2024), vision Habib et al. (2024), and general graph domains Tian
et al. (2023), mainly in classification tasks. However, large-scale regression tasks such as molecular
simulations introduce unique challenges for KD in density functional theory (DFT) and molecular
dynamics (MD) simulations Ekström Kelvinius et al. (2024). Molecular GNNs operate on structured
data with features distributed across nodes and edges, making direct knowledge transfer from teacher
to student more challenging Ekström Kelvinius et al. (2024). These challenges are amplified when
the teacher and student models differ significantly in architecture, making feature alignment more
difficult. To address these issues, Ekström et al. Ekström Kelvinius et al. (2024) propose specialized
loss functions—node2node (n2n), edge2edge (e2e), edge2node (e2n), and vector2vector (v2v)—to
supplement standard loss functions and enhance the effectiveness of KD in molecular GNNs. These
strategies help bridge the gap between teacher and student models, improving knowledge transfer in
complex molecular systems.

The standard loss function L0 for molecular GNNs, as outlined in Eq. 1, accounts for both energy
and force predictions:

L0 = αELE(Ê, E) + αFLF(F̂ ,F ) (1)

where E and F represent the ground truth energy and forces, while Ê and F̂ denote their predicted
counterparts. The terms LE and LF correspond to the energy and force loss functions, respectively,
weighted by αE, αF ∈ R.

For knowledge distillation Hinton (2015), the loss function in Eq. 1 is augmented with an auxiliary
distillation loss LKD, resulting in the following formulation:

L = L0 + λLKD.

In this work, we aim to develop a more efficient variant of the foundational model JMP-L without
compromising its performance. Since JMP is built on GemNet-OC Gasteiger et al. (2022), we focus
on the node2node and edge2edge losses as key components of the distillation process. Unlike previ-
ous studies that apply distillation only at the final task level, our primary objective is to enhance the
efficiency of the foundational model itself while systematically assessing its impact on downstream
tasks. Specifically, we examine how distillation influences the model’s generalization capabilities,
providing deeper insights into its performance across diverse molecular property prediction tasks.

2.2.3 PRUNING COUPLED WITH DISTILLATION

Aggressive structured pruning can severely degrade model performance. For instance, brute-force
structural pruning methods, such as L2-based filter-wise pruning, have led to a 50-fold performance
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drop in LLMPruner Ma et al. (2023). However, in large models, aggressive pruning combined with
fine-tuning can significantly reduce the number of layers—sometimes by half—while incurring min-
imal performance loss Gromov et al. (2024). Techniques such as parameter-efficient fine-tuning,
quantization, and low-rank adapters further help preserve model accuracy post-pruning Gromov
et al. (2024). Recent KD approaches, such as those proposed by Ekström et al. Ekström Kelvinius
et al. (2024), require training the student model from scratch, demanding substantial computational
resources. To our knowledge, no prior work has explored the combined use of pruning and dis-
tillation for DFT and MD molecular property prediction. Our approach applies distillation to a
pre-trained, block-reduced network, offering the potential for improved accuracy while significantly
reducing both training and inference time.

3 BLOCK REDUCTION FOR EFFICIENT FOUNDATION MODELS

3.1 PRELIMINARIES

Our work builds upon the GemNet-OC architecture Gasteiger et al. (2022), though our analysis can
be applied to similar architectures.

In particular, we define fθ : R4×n → Rn×d as a function that maps a molecular graph—represented
by the 3D positions and atomic numbers of n atoms—to a feature space. The feature extraction
process is formulated as:

f(x) = concat(f1(x), f2 ◦ f1(x), . . . , fb ◦ fb−1 ◦ · · · ◦ f2 ◦ f1(x)) (2)
where the model extracts features through b sequential blocks. Each block fi : Rn×d → Rn×d (for
i > 1) refines the representations, while the initial block f1 : Rn → Rn×d is an embedding layer that
performs the initial transformation. The resulting feature space is of dimension Rn×(d×b), obtained
by concatenating outputs from all b blocks. This extracted feature representation is then processed
through a sequence of multilayer perceptron (MLP) layers, known as FinalMLP in GemNet-OC.

g(x) = gm ◦ gm−1 ◦ · · · ◦ g2 ◦ g1(x)
where g1 : Rn×(d×b) → Rn×d transforms the concatenated features into d, with g(x) : Rn×(d×b) →
Rn×d providing the final transformation. Finally, the output of g(x) is passed to a prediction head
h(x), which predicts the three-dimensional force vector for each atom and the molecule’s energy.
The full model is the composition between the feature extractor and the MLP layers given by the
following:

F (x) = h ◦ g ◦ f(x). (3)
For the GemNet-OC architecture used by JMP-L, b = 7 (one embedding layer and six interaction
blocks) and m = 5, resulting in 160.1M parameters in total. JMP-L is shown on top in Figure 1.

3.2 INTERACTION BLOCK IMPORTANCE

Interaction blocks are a fundamental component of machine learning potential models (e.g.,
SchNet Schütt et al. (2017), GemNet-OC Gasteiger et al. (2021)), enabling richer representations
and capturing long-range atomic interactions. These models stack multiple interaction blocks in
a sequential manner to build higher-body representations and model complex atomic relationships
effectively. However, quantifying each interaction block’s contribution to the final prediction is not
straightforward, as interactions are highly interdependent and difficult to isolate.

To address this, we propose an approach to measure interaction block importance within the
GemNet-OC backbone used by JMP-L. We employ GradCAM Selvaraju et al. (2017) to assess
each block’s impact on the final output. First, we extract and concatenate the output features from
all b blocks, as formulated in Eq.2. Using these features (f ) and Eq. 3, we compute the model’s
output and its corresponding loss, L0. We then compute the gradient ∇CAM of f with respect to L0

and determine each block’s relevance r using:

r = ReLU (f ◦ ∇CAM) .

Following the GradCAM methodology, we apply a ReLU activation to emphasize features that pos-
itively contribute to the model’s prediction. To quantify the contribution of each interaction block,
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Figure 1: Block Reduction for Efficient Foundation Models. The top model represents the founda-
tion model JMP-L, where interaction blocks extract features, which are concatenated and processed
by FinalMLP before making predictions. The bottom model is its pruned version, constructed by
removing low-importance blocks and adjusting FinalMLP. To mitigate performance degradation,
we apply both feature distillation (node-to-node and edge-to-edge) and output distillation to transfer
knowledge from the original model.

we decompose the relevance map r, which represents the overall importance of features, into b par-
titions. Each partition ri corresponds to the feature dimension d of a specific interaction block.
Finally, we compute the importance score for each block by averaging ri across both the feature and
batch dimensions, providing a measure of its overall contribution to the final prediction.

3.3 BLOCK REDUCTION STRATEGIES

Although the pre-trained GemNet-OC (JMP-L) achieves strong performance when fine-tuned across
various tasks and datasets, its fine-tuning remains computationally expensive. This inefficiency
arises from its large architecture and the high computational cost of each forward pass. For instance,
fine-tuning JMP-L on rMD17—containing only 1,000 graphs—still requires 160.1M parameters.
Given the small scale of rMD17, this parameter count appears disproportionately large, limiting the
practicality of leveraging such a powerful pre-trained model efficiently.

In this work, we aim to improve the efficiency of foundation pre-trained models through block
reduction. Specifically, we explore different strategies to construct a reduced model F̂ (x) = h ◦ ĝ ◦
f̂(x), where:

f̂(x) = concat(f1(x), f2 ◦ f1(x), . . . , fb′ ◦ fb′−1 ◦ · · · ◦ f2 ◦ f1(x))
and

ĝ(x) = gm ◦ gm−1 ◦ · · · ◦ g2 ◦ g′1(x)

with g′1 : Rn×(d×b′) → Rn×d and b′ < b.

This formulation reduces the original architecture by removing the last b− b′ interaction blocks and
adjusting the dimensionality of the first MLP block (g′1) accordingly. However, removing interaction
blocks disrupts the alignment between the feature extractor f̂ and the FinalMLP ĝ, as it alters the
structure of the extracted features. To address this misalignment, we explore three main strategies
to restore compatibility between the reduced feature extractor and the FinalMLP.

Random MLP. Random MLP is the simplest baseline, where we resize the first MLP layer g′1 and
randomly initialize its weights. This approach assumes that the features extracted by the remaining
interaction blocks are still useful and that the weights of g′1 can be learned effectively during fine-
tuning. We refer to this strategy as RandomMLP in the experimental section.

Sliced MLP. In the Sliced MLP strategy, we retain the parameters of the first MLP layer g′1 from
the original model, truncating it to match the reduced dimensionality of the features. This assumes
that the preserved parameters provide a good initialization for fine-tuning, maintaining continuity
between the pre-trained and pruned model. Unless otherwise stated, all of our block reduction
experiments follow this strategy.
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Knowledge Distillation. In the knowledge distillation approach, we introduce a learning paradigm
tailored for block reduction. Specifically, we follow Ekström Kelvinius et al. (2024) by distilling the
force predictions of the pre-trained model F into its block-reduced counterpart F̂ . This is achieved
by optimizing the following objective:

min
θ

Ex∼D∥F̂θ(x)− Fθ0(x)∥1
where D represents the data distribution used during the pre-training phase of F .

To further align the representations between the original and pruned models, we incorporate node-
to-node (n2n) and edge-to-edge (e2e) distillation. This extends the objective to:

min
θ

Ex∼D

∥F̂ (x; θ)− F (x; θ0)∥1 +
n′∑
i=1

∥ĝi(f̂(x); θ)− gi(f(x); θ0)∥1

 .

The first term represents output distillation, while the second term ensures feature-level consistency
between the pruned and original models. Our full pipeline is illustrated in Figure 1.

It is important to note that all prior block reduction approaches operate on the pre-trained founda-
tional model. Thus, block reduction produces a generalist model, which must still undergo fine-
tuning on task-specific datasets to become a specialized model for a given application.

4 EXPERIMENTS

4.1 DEEPER LAYERS CONTRIBUTE LESS

To develop a more efficient pre-trained version of JMP-L for diverse downstream tasks, we analyze
the contribution of each interaction block to the final output prediction on the pre-training distribu-
tion, as outlined in Sec.3.2. Figure 2 reveals a gradual decline in relevance toward the deeper layers,
with the sixth and seventh blocks exhibiting the lowest contribution. This suggests that these blocks
can be removed with minimal impact on performance. While the embedding block (f1) also shows
low relevance, it directly feeds into the first interaction block (f2), which initializes message passing
and is crucial for propagating atomic interactions. Removing the embedding block could introduce
significant structural disruptions, potentially degrading performance, and is therefore not considered
for block reduction.

Figure 2: Block Relevance Analysis. We show the contribution of each output block in JMP-
L to the final prediction. f1 represents the embedding output, while f2 to f7 correspond to the six
interaction blocks. We observe diminishing returns in deeper interaction blocks, making them strong
candidates for pruning.

4.2 BLOCK REDUCTION AND DISTILLATION IN PRE-TRAINING

We investigate the effectiveness of block reduction (BR) and knowledge distillation (KD) during
the pre-training phase. As shown in our block importance analysis, the deeper interaction blocks in

6



Published at the ICLR 2025 Workshop on AI for Accelerated Materials Design

Table 1: Force MAE Evaluation During Pre-training. We evaluate the impact of our block re-
duction (BR) approach on pre-training performance, comparing results with and without knowledge
distillation (KD). The reported values represent the force MAE (meV/Å) across OC20, OC22, ANI-
1x, and Transition-1x datasets. Note: The block count excludes the embedding output.

# of Blocks OC20 OC22 ANI-1x Transition-1x

BR 2 106.6 (-89.6) 111.9 (-89.0) 711.8 (-689.3) 188.3 (-175.5)
+ KD 2 52.1 (-35.1) 56.3 (-33.4) 144.4 (-121.9) 53.3 (-40.6)

BR 3 94.1 (-77.1) 99.3 (-76.3) 615.1 (-592.6) 149.6 (-136.9)
+ KD 3 42.1 (-25.2) 45.6 (-22.7) 97.6 (-75.1) 39.1 (-26.4)

BR 4 65.3 (-48.4) 68.9 (-46.0) 443.4 (-421.0) 99.8 (-87.1)
+ KD 4 26.7 (-9.8) 34.5 (-11.6) 58.1 (-35.7) 24.2 (-11.4)

BR 5 39.1 (-22.1) 45.7 (-22.7) 220.0 (-197.6) 48.5 (-35.8)
+ KD 5 19.8 (-2.8) 25.8 (-2.9) 30.1 (-7.7) 16.0 (-3.3)

JMP-L (Teacher) 6 17.0 22.9 22.5 12.7

JMP-L contribute less to the final prediction compared to the earlier ones. This raises a key ques-
tion: how much do these later blocks impact prediction performance, and if their removal leads to
degradation, to what extent can knowledge distillation recover the lost performance? To answer this,
we explore a combined approach of block reduction and knowledge distillation, assessing whether
distilling knowledge from the full model into a block-reduced version can maintain performance
while significantly reducing computational costs.

Settings: We use the same pre-training datasets as in Shoghi et al. (2023), including OC20 Chanus-
sot et al. (2021), OC22 Tran et al. (2023), ANI-1x Smith et al. (2020), and Transition-1x Schreiner
et al. (2022b), totaling 120M training samples. Following our block reduction (BR) strategy, we
sequentially remove interaction blocks starting from the last one, as indicated by the importance
analysis in the previous section. This allows us to construct progressively smaller versions of JMP-
L, retaining 5, 4, 3, and 2 interaction blocks. To mitigate potential performance degradation, we
apply a brief knowledge distillation (KD) phase to each pruned model using less than 1.5% of the
pre-training datasets. We find that running KD for under 2 GPU-days on an A100 is sufficient for
convergence. We report performance using the mean absolute error (MAE).

Observations: Table 1 presents the results of block reduction (BR) and knowledge distillation (KD)
during the pre-training stage. As expected, removing interaction blocks leads to a performance drop
proportional to the number of blocks removed. Notably, OC20 and OC22 show smaller performance
drops, likely due to their higher force loss weight during pre-training Shoghi et al. (2023), making
the model less sensitive to deeper block removal. Applying both BR and KD significantly reduces
the performance gap with the teacher model. For instance, with 5 blocks, the performance difference
narrows to just -2.8 and -2.9 meV/Å for OC20 and OC22, respectively. These results demonstrate
the effectiveness of combining BR and KD in maintaining predictive accuracy during pre-training.
Next, we analyze how well these pruned models perform on downstream tasks.

4.3 MAIN RESULTS

We now evaluate the pruned versions of JMP-L across different downstream tasks and knowledge
transfer strategies, aiming to identify the most efficient fine-tuning approach for optimal downstream
performance. A key question is whether distilling during pre-training is more effective than applying
block reduction alone. To answer this, we compare against the following baselines.

Baselines: We evaluate the following fine-tuning strategies:

• BR (Block Reduction): Remove interaction blocks and slice their corresponding weights in the
first layer of FinalMLP.

• BR/RandomMLP: A simpler variant of BR, where instead of pruning the first layer of FinalMLP,
we randomly initialize a smaller version to match the reduced number of interaction blocks.
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• BR+KD (Block Reduction + Knowledge Distillation): Load the pruned and distilled version of
JMP-L, where knowledge distillation has been applied during pre-training.

In addition, we report the original performance of JMP-L from Shoghi et al. (2023) alongside our
reproduced version. The key distinction is that our fine-tuning process is constrained by a fixed
computational budget, which we describe next.

Settings: We evaluate the baselines on a representative set of targets from the datasets used in Shoghi
et al. (2023), specifically: Aspirin (rMD17 Chmiela et al. (2017)), U0 (QM9 Ramakrishnan et al.
(2014)), Solvated Amino Acids (SPICE Eastman et al. (2023)), Ac-Ala3-NHMe (MD22 Chmiela
et al. (2023)), and Band Gap (QMOF Rosen et al. (2021)). For a fair comparison, since the baselines
differ in computational demands, we fine-tune each model for 1 GPU-day on a V100, except for
QM9, which requires 2 GPU-days to approach convergence. We then evaluate the models on the
test set of the corresponding dataset and target. We present our findings in Figure 3.

Figure 3: Evaluation on downstream tasks. We evaluate the performance across various down-
stream tasks using different block reduction strategies: block reduction (BR), block reduction with a
randomly initialized MLP (BR/RandomMLP), and block reduction combined with knowledge dis-
tillation (BR+KD). Performance is measured in MAE: meV/Å for force targets, meV for the QM9
energy target, and eV for the QMOF band gap target. The original JMP-L model utilizes 6 blocks.

Block Reduction is a Strong Baseline: Figure 3 highlights the surprising effectiveness of BR
(shown in blue) across datasets. In particular, the 5-block model matches the performance of the
6-block reproduced JMP-L baseline. Even the 4-block model remains competitive across most tasks
and outperforms the original JMP-L on the QM9 target. These results suggest that for tasks with
longer convergence times, such as QM9, a compressed model not only reduces computational costs
but may also converge faster and even surpass the full model’s performance. However, when further
reducing to 3 or 2 blocks, we observe a more pronounced drop in performance, indicating that the
model may be underfitting the task.

Pre-training Distillation Works in Certain Scenarios: While KD improved performance on the
pre-training datasets (as discussed in Section 4.2), its effectiveness on downstream tasks varies, as
shown by BR+KD (yellow in Figure 3). For example, KD improves performance on rMD17 when
using 2 or 3 blocks, but it hurts the performance with 4 and 5 blocks. This could be due to the fact
that the last two blocks of JMP-L contribute less to downstream tasks (as indicated by BR results),
meaning that distilling from these less relevant blocks during pre-training may introduce noise and
distort useful features. Interestingly, KD improves performance for the 5-block model in QM9,
suggesting a potential edge case where distillation benefits from specific task characteristics.

JMP-L’s FinalMLP Layer May Indicate Distribution Shifts: The BR/RandomMLP baseline (red
in Figure 3) exhibits inconsistent behavior across different tasks. In QMOF, SPICE, and MD22,
randomly initializing the first layer of FinalMLP had little impact on performance, suggesting a
distribution shift between pre-training and downstream tasks. Conversely, BR/RandomMLP shows a
noticeable performance drop in rMD17 and QM9, indicating that the learned FinalMLP features are
more relevant to these tasks. This observation also aligns with the improved performance of BR+KD
in rMD17 and QM9, where KD effectively preserves useful representations. These findings suggest
that FinalMLP features could serve as indicators of distribution differences across tasks, highlighting
variations in task similarity to the pre-training distribution.
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4.4 EVALUATING TRAINING AND INFERENCE EFFICIENCY

We complement our analysis with both training and inference times. For training time, Figure
4 illustrates the convergence speed over a fixed budget of 1 GPU-day for models with 3, 4, and
6 blocks. Compared to the 6-block (full JMP-L) model, the 4-block model demonstrates faster
convergence on QM9 after 8 hours of training, lags behind on MD22, and achieves comparable
convergence on the other datasets.

We complement our analysis with both training and inference times. For training efficiency, Figure 4
shows the convergence speed over a fixed 1 GPU-day budget for models with 3, 4, and 6 blocks. On
QM9, the 4-blocks model achieves a lower loss than the 6-blocks model after 8 hours of training,
though neither has fully converged. In contrast, it lags behind on MD22 and shows comparable
convergence on the other datasets.

Figure 4: Convergence Speed Analysis. We present the training time and corresponding perfor-
mance of JMP-L with 3, 4, and 6 blocks. Performance is measured in MAE: meV/Å for force
targets, meV for the QM9 energy target, and eV for the QMOF band gap target.

To assess inference efficiency, we use the QMOF dataset, which has a large average graph size.
Using a V100 GPU, we evaluate the models on a subset of the QMOF validation set and report
the results in Table 2. Reducing the model from 6 blocks to 5 blocks slightly improves infer-
ence throughput, increasing it from 19.1 to 21.8 samples/s, with further gains as more blocks are
removed—though at the cost of some performance degradation. Among the pruned models, the
4-block model achieves the best trade-off, offering a significant increase in throughput while main-
taining competitive performance.

Table 2: Inference Efficiency Analysis. We evaluate the impact of block reduction on JMP-L’s
efficiency using a subset of the QMOF validation set. Reducing interaction blocks lowers computa-
tional cost and improves inference speed. The 4-block model provides the best trade-off, achieving
a 1.3x speedup with a 32% reduction in parameters.

Blocks Throughput
(samples/s)

GFlops
(Billion)

Parameters
(M)

6-blocks (JMP-L) 19.1 1.74 160.9

5-blocks 21.8 (+2.7) 1.45 (-0.29) 134.5 (-16.4%)
4-blocks 25.6 (+6.5) 1.16 (-0.58) 108.2 (-32.7%)
3-blocks 30.8 (+11.7) 0.87 (-0.87) 81.9 (-49.1%)
2-blocks 38.0 (+18.9) 0.59 (-1.15) 55.5 (-65.5%)

5 CONCLUSION

In this work, we explored strategies to enhance the efficiency of foundation models for molecular
property prediction. By analyzing the role of individual layers in JMP-L, we found that deeper in-
teraction blocks contribute less to predictive accuracy, making them suitable candidates for pruning.
Our results show that reducing JMP-L’s parameter count by 32% improves inference throughput by
1.3× while maintaining comparable performance. Additionally, we demonstrated that knowledge
distillation can help mitigate performance degradation in certain tasks. We hope this study inspires
further research into efficient training and inference for molecular property prediction, paving the
way for lighter models in molecular and materials discovery.
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