
Published as a conference paper at ICLR 2025

SEPARATE: A SIMPLE LOW-RANK PROJECTION FOR
GRADIENT COMPRESSION IN MODERN LARGE-SCALE
MODEL TRAINING PROCESS

Hanzhen Zhao1, Xingyu Xie2, Cong Fang1,3,∗, Zhouchen Lin1,3,4

{hzzhao, xyxie, fangcong, zlin}@pku.edu.cn
1 State Key Lab of General AI, School of Intelligence Science and Technology, Peking University
2 Department of Mathematics, National University of Singapore
3 Institute for Artificial Intelligence, Peking University
4 Pazhou Laboratory (Huangpu), Guangzhou, Guangdong, China

ABSTRACT

Training Large Language Models (LLMs) presents a significant communication
bottleneck, predominantly due to the growing scale of the gradient to communicate
across multi-device clusters. However, how to mitigate communication overhead
in practice remains a formidable challenge due to the weakness of the methodology
of the existing compression methods, especially the neglect of the characteristics
of the gradient. In this paper, we consider and demonstrate the low-rank properties
of gradient and Hessian observed in LLMs training dynamic, and take advantage
of such natural properties to design SEPARATE, a simple low-rank projection for
gradient compression in modern large-scale model training processes. SEPARATE
realizes dimensional reduction by common random Gaussian variables and an
improved moving average error-feedback technique. We theoretically demonstrate
that SEPARATE-based optimizers maintain the original convergence rate for SGD
and Adam-Type optimizers for general non-convex objectives. Experimental results
show that SEPARATE accelerates training speed by up to 2× for GPT-2-Medium
pre-training, and improves performance on various benchmarks for LLAMA2-7B
fine-tuning.

1 INTRODUCTION

With massive amounts of data, billions of parameters, and multi-device clusters, the remarkable
strides of Large Language Models (LLMs) across multiple disciplines [9, 48, 5, 8] are attributed to
such scalable intrinsic characteristics and training paradigms. However, corresponding challenges
erupt, as multiple rounds of communication of massive model parameters across multi-device clusters
have created a significant communication bottleneck in training process. For example, pre-training
a BERT-Large model (340M parameters) with a single batch size on 16 GPUs shows that 92% of
the training time is spent on gradient all-reduce in backward propagation [49]. Therefore, a critical
problem urgently to be addressed is how to relieve the communication burden while ensuring the
quality of model training.

In response to the aforementioned problem, a variety of gradient compression strategies have been
proposed to reduce the communication overhead of gradients between devices. Such strategies can
be broadly categorized into two compression techniques, including low-precision compressors (e.g.,
SignSGD [6], 1-bit Adam [49] and 1-bit LAMB [29]) and low-rank compressors (e.g., Atomo [57]
and PowerSGD [55]). Moreover, error-feedback technique [46, 49, 29] focuses on compensating for
errors accumulated during compression by changing the objects to compress from the gradient to
the gradient and historical error summation [49, 29]. Error-feedback-based compression algorithms
have been theoretically proven to have lower communication complexity when applied to SGD-Type
optimizers [53, 30, 18].

∗Corresponding author

1

Published as a conference paper at ICLR 2025

However, from the system perspective, how to mitigate communication overhead in practice remains
a core problem and a formidable challenge. For example, low-bit gradients (e.g., less than 8-bit)
are not supported by typical hardware. Thus, quantizing gradients into less than 8 bits can lead to
significant precision loss and numerical instability. For biased low-precision compressors with error-
feedback techniques, which do not support communication primitive all-reduce due to their inherent
structures, they must use all-gather for aggregation. It limits them only suitable for master-server
communication patterns, incompatible with advanced ring-based and tree-based patterns in current
large-scale model training [38] and extremely slows down the communication speed [1]. Therefore,
there remains a significant gap between the performance of these methods in training practice and
their theoretical results. Considering the system-level speed, recent studies [1, 62] indicate that when
training representative LLMs with off-the-shelf DistributedDataParallel (DDP), most of gradient
compressors show longer wall-clock training time than vanilla Adam. Furthermore, integrating
these gradient compressors into commonly used optimizers often requires significant modifications,
necessitating additional effort to ensure compatibility and maintain effective.

These system-level limitations drive us to consider improvements at the methodological level. The
ineffectiveness of these methods stems from inherent flaws in their methodology. Specifically, these
algorithms seldom take the characteristics of the gradient of LLMs into account, leading to additional
computation or communication rounds to compensate for the errors introduced by compression. For
low-precision compressors, the compression ratio is upper bounded by floating-point digit number
32. Worse, vector-wise quantization is independent of the properties of the gradient and is commonly
computationally heavy. Several low-rank compressors [55] consider the low-rank approximation
of gradient, but the compression and decompression are so complex that the time cost in extra
computation is close to or even larger than the saved communication time cost. Therefore, the design
concept of modern "workable" gradient compression algorithms is that

We should design compression algorithms by leveraging the properties of the model, ensuring
the suitability for modern LLMs efficient training ecology, and lightweighting compression and

decompression computation to save time.

Contribution. In this work, we focus on how to design a universal gradient compression technique
in line with the above concept. We propose SEPARATE, a SimplE low-rank Projection for grAdient
compRession in modern lArge-scale model Training procEss, which compresses the gradient to
arbitrary low-dimension one before communication and then reconstructs after, no matter what
optimizers and training frameworks are used. Instead of a low-rank approximation estimate of weight
matrix for parameter-efficient fine-tuning like LoRA [22], we stand on the low-rank structure of the
gradient itself.

The motivation of SEPARATE originally comes from the observation of geometric properties of the
Hessian spectrum during training dynamic. Especially, many studies reveal that the eigen-spectrum
of Hessian is often "top-heavy" [55, 43, 44, 61], indicating that several top eigenvalues are dominant
the trace of Hessian. This fact intuitively suggests the theoretical feasibility of low-rank gradient
compression with restricted variance through careful designed compression strategy. We show the
existence of such low-rank properties in Section 3, and the theoretical validity of SEPARATE in
Section 5.

Let us give a general introduction to SEPARATE to illustrate its effectiveness. Considering gradient
g ∈ Rd to communicate, we generate a common Gaussian random matrix M ∈ Rd×m on each
node and do p = g ×M to compress g. After communication, we use the same random matrix for
decompression g̃ = p×M⊤. Considering that E[1mpMM⊤] = pE[1mMM⊤] = p, we show the
compressor is unbiased, and the compression ratio m is arbitrary. Moreover, the variance analysis
seems to be more important. We show theoretically that the variance is bounded in Section 4, and the
gradient complexity for SGD and Adam-Type optimizers maintains the same order as vanilla SGD
and Adam in Section 5.

We demonstrate that SEPARATE works well in both LLMs pre-training and fine-tuning tasks. To
reduce compression error in training process, we design a novel error-feedback mechanism for
SEPARATE. We estimate more stable compression errors using a moving average of historical errors
and incorporate these errors back into the gradient before compression. We also reset the error
periodically to eliminate bad historical information and select update directions preciously. For

2

Published as a conference paper at ICLR 2025

0 200 400 600
Spectrum of Gradient

0.00

0.02

0.04

0.06 GPT-2-125M
Layer 5 ATTN
Layer 5 MLP
Layer 11 ATTN
Layer 11 MLP

0 250 500 750 1000
Spectrum of Gradient

0.00

0.02

0.04

0.06 GPT-2-345M
Layer 11 ATTN
Layer 11 MLP
Layer 23 ATTN
Layer 23 MLP

0 20 40 60 80 100
Eigenvalue

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

De
ns

ity
 (L

og
 S

ca
le

)

Hessian Spectrum

0 10 20 30 40 50 60 70 80
Eigenvalue

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

De
ns

ity
 (L

og
 S

ca
le

)

Hessian Spectrum

Figure 1: Low-rank gradient and Hessian observations in practice. The two pictures on the left show
the spectrum of gradient matrices of chosen layers in GPT-2-125M and GPT-2-345M respectively.
The X-axis represents the order of eigenvalues from largest to smallest, and the Y-axis represents the
magnitude of eigenvalues. The two pictures on the right show the spectrum of Hessian in ResNet-20
and ResNet-110 trained on CIFAR-10 respectively. The X-axis represents the eigenvalue, and the
Y-axis represents the corresponding density.

GPT-2 [40] pre-training, SEPARATE can improve the training speed of AdamW by 2× times. For
LLAMA2 [51] fine-tuning, SEPARATE can obtain better performance on downstream tasks.

As a gradient projection method, SEPARATE is independent of the choice of optimizers and can
be regarded as a plug-in, which can be simply implemented with a few lines of code in off-the-
shelf frameworks as shown in Algorithm 2. In addition, the method is robust to some extent, and
its performance is insensitive to the selection of hyperparameters. As long as the selection of
compression ratio meets the random direction sampling quantity required in theoretical analysis, the
algorithm can show effective performance.

2 RELATED WORK

Communication Efficient Training. As the scale of models explosively grows in recent years [48,
36, 25, 52], the redundant communication of gradient has become the main bottleneck of training.
Gradient compression [29, 55, 49, 46, 56, 34] is a promising solution for communication-efficient
training among GPUs clusters. In general, the compression techniques can be divided into low-
precision methods [49, 29, 46, 34] and low-rank methods [55, 32, 2]. Besides, several theoretical and
empirical analyses of more general unbiased compressor C [18, 53, 21] are also proposed to show the
effect of gradient compression theoretically. Moreover, ZeRO++ [56] has been proposed to apply
quantization techniques to sharding strategy [41].

Error-feedback Technique. Gradient compression techniques bring information loss during the
training process and impair the training accuracy and performance of the model. The accumulation
of error may cause algorithm divergence [46]. To solve such a problem, the error-feedback technique
was first proposed by [46], which adds the compression error to the gradient before compression
in this iteration. Afterward, various works study the effect of the error feedback technique from
theory to practical methods. Recent works [18, 53] study the theoretical convergence of unbiased
compressor C with error-feedback technique on convex and non-convex settings. Moreover, many
induce the error-feedback technique to adaptive gradient algorithms[27, 15] which is commonly used
in training of large models, such as 1-bit Adam [49] and 0/1 Adam [34]. LoCo [60] first presents the
error-feedback-based efficient training method for the sharding strategy.

Low-rank Approximation. Many studies focus on the low-rank approximation of weight or gradient
matrix in neural network training dynamic and propose the error bound [55, 22]. However, such
a low-rank approximation of weight (e.g., LoRA [22]) may not reach a comparable performance
as full-rank in pre-training [31] and fine-tuning [58]. Some studies show that the Hessian in deep
neural networks is "top-heavy" [43, 33, 44], which means the eigenvalue drops fast and the Hessian
maintains low-rank, and some recent studies theoretically illustrate that the gradient is naturally
low-rank [13, 63]. In fact, some classical methods have considered low-rank estimation of trace, like
the Hutchinson estimator [23]. Such related works provide the potential to design a simple gradient
compression by low-rank projection with restricted variance. Some recent research about training
or gradient accumulation consider the low-rank property of gradient or Hessian, and use random
projection for memory reduction [67, 19], but lack deep analysis on bounded variance.

3

Published as a conference paper at ICLR 2025

Algorithm 1 SEPARATE: A Simple Low-rank Projection for Gradient Compression
Require: Initialization model parameters, N nodes, one-round communication budget m, error reset

frequency T , β ∈ [0, 1], a common Gaussian random number generator, initialize e0 ∈ B(0, c1)
while k ≤ K do

STEP 1. In each node n compute stochastic gradient gk
n and hk

n = gk
n + ekn;

STEP 2. Generate fresh i.i.d. common random Gaussian vectors ξ1, · · · , ξm ∼ N(0, Id) and
compute [p1,n, · · · , pm,n] with pi,n = ⟨hk

n, ξi⟩ as the low-dimension projection of hk
n;

STEP 3. Do all-reduce and obtain global projected gradient [p̃1, · · · , p̃m];
STEP 4. Compute h̃k

n = 1
m

∑m
i=1 p̃i · ξi and use h̃k

n for model weight update in node n;
STEP 5. Update error ek+1

n = (1− β)ekn + β(hk
n − h̃k

n) if k%T ̸= 0, or ek+1
n = 0 if k%T = 0

(error reset);
end while

3 LOW-RANK PROPERTY OF GRADIENT AND HESSIAN IN TRAINING

Through some phenomena observed in practice and simple theoretical analysis of Transformer [54],
we further illustrate the widespread existence of the low-rank property of gradient. Moreover, we
also demonstrate that the eigen-spectrum of Hessian is "top-heavy", consistent with some previous
work about Hessian spectrum of neural networks [43, 44]. We study these observations practically
in this work. As shown in Figure 1, the landscape of gradient in representative LLMs training
possesses low-rank property. Specificaly, We observe the spectrum of GPT-2-Small (125M, with
12 Transformer-based layers) and GPT-2-Medium (345M, with 24 Transformer-based layers). We
observe the gradient spectrums of attention and MLP in middle layer and last layer, respectively. The
eigenvalues of grad drop fast, especially in MLP layers. This phenomenon is more pronounced in
larger models. Based on recent study on Transformer’s dynamic [50], we theoretically prove that the
gradient of MLP layer in Transformer shows low-rank property over time in Appendix D.

Moreover, we study the spectrum of Hessian of trained deep neural networks. In fact, early studies
[43]have discovered that the eigenvalues of simple networks (e.g., 3-layer networks) drop fast. As
shown in Figure 1, we study the spectrums of Hessian of different scales of ResNet [20] trained on
CIFAR-10 [3]. Except several extremely large eigenvalues, most of eigenvalues of the Hessian are
close to zero. It is more obvious in larger network structures. This means that a lot of the directions
along the loss are almost flat, and the trace of Hessian is bounded much less than O(d), which ensures
our theoretically analysis in Section 5.

4 SEPARATE: A SIMPLE LOW-RANK PROJECTION

Considering low-rank property of gradient and "top-heavy" observation of Hessian, a natural idea
of gradient compression is to randomly project the gradient to low-dimensional subspace. As the
sample is up to a certain level (usually much less than dimension d), the dominant information
of gradient can be exactly recovered. This leads to our SEPARATE method. The core idea of
SEPARATE is composed with two parts. First, we design a Gaussian random projection compressor
for dimensionality reduction of gradient. Hessian-trace-bounded proposes the theoretical guarantee
for random projection. Second, to solve the critical challenge that the compression error in gradient
compression would accumulate during the training process, we propose a novel moving average error
feedback technique to ensure practical utility. We introduce SEPARATE method in Algorithm 1.

4.1 COMMON RANDOM PROJECTION COMPRESSOR

For classic multi-node parallel training, each node computes its local stochastic gradient gk
n with their

mini-batch data. Then through communication like all-reduce each node obtains the global gradient
for model update.

As mentioned early, we take the low-rank property of gradient and "top-heavy" property of Hessian
into account to design a variance-bounded low-rank projection for gradient compression, applicable
to most of practical scenarios in large-scale model training. Specifically, for the gradient vector g,
each node generates m common random Gaussian variables ξi, · · · , ξm ∼ N(0, Id). Then each node

4

Published as a conference paper at ICLR 2025

computes
pi = ⟨g, ξi⟩ ,∀i ∈ [m]. (1)

After compression, each node constructs [p1, · · · , pm] as the compressed gradient for communication
like all-reduce. Then they obtain the global [p̃1, · · · , p̃m],and reconstruct the gradient as

g̃ =
1

m

m∑
i=1

p̃i · ξi. (2)

Then we theoretically illustrate the unbiasedness and variance-bounded property of our common
random projection in Lemma 4.1 and Lemma 4.2 as below. The proof details are shown in Appendix
B.

Lemma 4.1. g̃ is an unbiased estimator of g,

Eξ1,···ξm
g̃ = g. (3)

Lemma 4.2. The variance of g̃ under norm ∥·∥A, where A is a given positive semi-definite symmetric
matrix, can be bounded by 3tr(A)

m ∥g∥2 − 1
m∥g∥2A,

Eξ1,··· ,ξm
∥g̃ − g∥2A ≤ 3tr(A)

m
∥g∥2 − 1

m
∥g∥2A. (4)

Remark 4.3. Lemma 4.1 directly indicates the unbiasedness of common random projection, which
is standard for low-rank compression techniques [55, 67, 19]. What we really highlight is Lemma
4.2, which illustrate that the variance of our compression strategy under the Mahalanobis norm can
be bounded by the trace of given matrix. Considering the standard convergence analysis of SGD or
Adam-Type optimizers, the second order factor of Taylor expansion of the objective function can be
written as Mahalanobis norm under Hessian matrix, and the "top-heavy" property ensures the trace
of Hessian is much smaller than dL, where d is the dimension and L is Lipschitz constant defined
in Assumption 5.2. This provides the potential for SEPARATE-based algorithms to surpass other
compressors in the order of d in convergence speed. We show the theoretical results in Section 5.

4.2 MOVING AVERAGE ERROR FEEDBACK

Error-feedback technique is widely used in gradient compression methods [46, 42, 60] to mitigate
the information loss during compression. It is worth considering how error-feedback works for
our common random projection compressor, even though Lemma 4.1 and Lemma 4.2 show the
unbiasedness and trace-bounded variance, because the accumulated error in continuous updates may
cause wide deviation. One straight solution is to use the gradient compression error from the previous

iteration as ekn = argmine∈Rd

∥∥∥e− (h̃k
n − gk

n

)∥∥∥2 = h̃k
n − gk

n, where gk
n is the original gradient on

the n-th node and h̃k
n is the reconstruction of compressed gradient. However, we empirically discover

the instability of this estimate, because for single-step iteration, random vectors for projection may
have a large deviation from the direction of true gradient. This means potential abrupt fluctuations of
ekn, especially for several continuous iterations with a series of random vectors with very different
directions. This may lead to the whole training process converging to another suboptimal region.
This phenomenon is particularly prominent when training from scratch, changing the shape of loss
curve and the convergence result of loss (see Section 6.3). To solve this problem, inspired by the idea
of momentum technique in the analyses of accelerated gradient descent [37], we take the moving
average of the historical compression error and the current one to maintain the continuity to some
degree:

ekn = argmin
e∈Rd

β

2

∥∥∥e− (h̃k
n − gk

n

)∥∥∥2+1− β

2

∥∥e− ek−1
n

∥∥2 = (1− β) ek−1
n + β

(
h̃k
n − gk

n

)
, (5)

where β ∈ [0, 1] represents the trade-off between two factors. We demonstrate that the moving
average error feedback can reduce the total accumulated error when applying it to SGD or Adam-Type
optimizers in Lemma C.2 and Lemma C.3. In brief, we simply formulate the iteration of SGD and
Adam-Type optimizers as θk = θ0 −

∑k
i=i η

i ◦ gi, where θ means the model’s weight and ◦ means

5

Published as a conference paper at ICLR 2025

the Hadamard product of two vectors. Our analysis shows that moving average error-feedback
effectively reduces the accumulated gap of weights updated by g and by g̃ as∥∥∥∥∥

k∑
i=1

ηi ◦ gi −
k∑

i=1

ηi ◦ g̃i

∥∥∥∥∥ ≤ O
(
η∥ek∥

)
, (6)

which means as the training goes on, the accumulated compression error of the top k rounds is only of
ek-order, instead of the accumulation from e0 to ek. Compared with vanilla error feedback technique
[46], taking moving average of the historical error maintains stability to some extent and reduces the
variance of accumulated error.

Moreover, we consider the compression error in the early training process cannot guide the later
iteration, so we reset the compression error after a given number of iterations like 128. Combining the
techniques above we propose SEPARATE method in Algorithm 1. Our SEPARATE can be applied to
all the gradient-based optimizers with a few lines of codes, as shown in Algorithm 2.

5 CONVERGENCE GUARANTEE

In this section, we propose the convergence guarantee of our SEPARATE method. We consider the
following non-convex optimization problem

min
θ

f(θ) = Eζ∼D [F (θ, ζ)] , (7)

where F is the non-convex optimization objective and θ is the model weight to update. Data is
sampled from a given distribution D. We focus on the convergence rate of SEPARATE-based SGD
and Adam-Type Optimizer to find an ϵ-approximate first-order stationary point of the objective f(·).
For such SEPARATE-based optimizers, they update the model weight as below:

SGD : θk+1 = θk − ηh̃k, Adam-Type :

mk = (1− β1)m

k−1 + β1h̃
k,

ηk = η × v
(
h̃0, · · · , h̃k

)
,

θk+1 = θk − ηk ◦mk,

(8)

where β1 ∈ (0, 1), and v(·) computes a series of pre-conditioners based on different AdamType
optimizers. For example, v(·) computes the inverse of the second order moment of Adam’s gradient
like v

(
h̃0, · · · , h̃k

)
= 1/

√
vk + δ where vk = (1− β2)v

k−1 + β2(h̃
k)2. Adam-Type optimizers

differ from various definitions of v(·) [27, 15, 47]. We analyze them uniformly.

Like the common analysis of the convergence rate of general non-convex objective [24, 59], we
define the ϵ-approximate first-order stationary point as below.
Definition 5.1 (ϵ-stationary point). The model weight θ is an ϵ-appriximate first-order stationary
point of f if ∥∇f(x)∥ ≤ ϵ.

Definition 5.1 means for SGD and Adam-Type optimizers, we need to find the iteration round K
such that mink∈[K] E

∥∥∇f(θk)
∥∥ ≤ ϵ, or more tightly

1

K

K−1∑
k=0

E
∥∥∇f(θk)

∥∥2 ≤ ϵ2. (9)

Moreover, we formally present some assumptions to constrain the objective function and the op-
timization problem. Assumption 5.2 and 5.3 are commonly used to describe the properties of the
objective in stochastic setting [24, 16]. Assumption 5.4 ensures the trace of Hessian is bounded
globally, which is also common in practical applications [43].
Assumption 5.2 (L-smoothness). The function f is L-smooth if it satisfies

∥f(θ1)− f(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1,θ2 ∈ Rd. (10)

Assumption 5.3 (Stochastic Gradient Boundness). The stochastic gradient gk on each device is
unbiased and its infinite norm and variance are bounded as:

E∥gk∥∞ ≤ c∞, E
∥∥∇f(θk)− gk

∥∥2 ≤ σ2, ∀k ∈ [K]. (11)

6

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Steps

3.2

4.0

4.8

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
AdamW (16-bit)
SEPARATE(CR=4)
SEPARATE(CR=8)
SEPARATE(CR=16)
POWERSGD

(a) Loss against Steps

0 40000 80000 120000 160000
Times(s)

3.2

4.0

4.8

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
AdamW (16-bit)
SEPARATE(CR=4)
SEPARATE(CR=8)
SEPARATE(CR=16)
POWERSGD

2x SpeedUp

(b) Loss against Time

GPT-2-125M GPT-2-345M

Model Size

0

200

400

600

800

1000

1200

1400

Ti
me
(m
s)

GPT-2 Single Step Time Cost

AdamW

SEPARATE-4

SEPARATE-8

SEPARATE-16

(c) Single Step Time

Figure 2: Loss curve and single step time cost of vanilla AdamW and SEPARATE with different
compression ratios (CR) on GPT-2-345M trained with 10B tokens OpenWebtext dataset. (a) shows
the loss against the iteration steps, and (b) shows the loss against the wall-clock time. (c) shows the
single-step time cost of vanilla AdamW and SEPARATE with different compression ratios.

Assumption 5.4 (Hessian-domination). The function f is A-Hessian dominated if there exists a
positive semi-definite symmetric matrix A such that ∇2f(θ) ⪯ A,∀θ ∈ Rd.

Now we present the main theorem of the convergence rate of SEPARATE-based SGD and Adam-Type
optimizers in general non-convex setting. The proof of two Theorems can be seen in Appendix C.

Theorem 5.5 (SEPARATE-based SGD convergence). Suppose Assumption 5.2, 5.3 and 5.4 hold.
Let e0 ∈ B(0, c1), namely ∀x ∈ B(0, c1),∥x∥ ≤ c1. Let m ≤ tr(A)

L and η ≤ m
4tr(A) . With

η = O
(
d−1/2ϵ2

)
in SEPARATE-based SGD, after K = Ω

(
d1/2ϵ−4

)
iterations in Algorithm 1, it

holds

1

K

K∑
k=0

E
∥∥∥∇f(θ̃k)

∥∥∥2 ≤ O
(
ϵ2
)
. (12)

Remark 5.6. This improved convergence rate under standard non-convex stochastic setting is derived
from our analysis of trace-bounded variance in Lemma 4.2. In the common analysis of compression
techniques, compression reduces the amount of information through single step communication by
O(d) times, or with O(d)-variance [2]. Moreover, considering error feedback technique brings
bias, the analysis is commonly element-wise [2, 46]. Thus the convergence rate is often dimensional
dependent O

(
dϵ−4

)
, but they assume it is default and usually ignore this item [46]. Considering

modern LLMs training, the dimension of parameters is often extremely large and cannot be ignored.
Fortunately, our analysis provides an improved rate on the order of d from O(d) to O

(
d1/2

)
under natural defined Assumption 5.3 from "top-heavy" Hessian observation. It is the first gradient
compression method to achieve such rate to the best of our knowledge.

Theorem 5.7 (SEPARATE-based Adam-Type convergence). Suppose Assumption 5.2, 5.3 hold.
Assume cl ≤ ∥v(·)∥∞ ≤ cu and ∥ηk − ηk−1∥∞ ≤ ηβ1(1 − β1)

K−kcu. Let e0 ∈ B(0, c1),
η ≤ min

{
cl

2Lc2u
,

β1c
0.5
l

5c1.5u (1−β1)L

}
. With η = O

(
d−1ϵ2

)
and β1 = O

(
d−1ϵ2

)
in SEPARATE-based

Adam-Type optimizers, after K = Ω
(
dϵ−4

)
iterations in Algorithm 1, it holds

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ O

(
ϵ2
)
. (13)

Remark 5.8. Because different coordinates of the gradient are updated with different step sizes in
Adam-Type optimizers, the convergence rate is inevitably dependent on dimension d, and combined
with compression and error feedback, Adam-Type optimizers are often O(d) at the order of d.
Theorem 5.7 shows that integrating SEPARATE with various Adam-Type optimizers does not affect
their convergence speed. Thus SEPARATE-based Adam-Type optimizers share the same stochastic
gradient complexity as O

(
ϵ−4
)

when ignoring the dimensional factor d.

7

Published as a conference paper at ICLR 2025

Table 1: Performance comparison with representative communicatio-efficient methods. We fine-
tune LLAMA2-7B on the alpaca-gpt4 dataset and evaluate the performance on downstream tasks,
including commonsense reasoning, world knowledge, math, and code.

Method TriQA GSM8K MBPP NQ WinoG Arc-e Arc-c PIQA HellaS Avg.S Avg.R

Adam 49.39 15.69 19.40 3.07 46.09 72.31 53.90 57.07 26.45 38.15 3.22
PowerSGD 50.78 18.65 22.40 2.52 40.57 62.43 42.71 52.88 30.12 35.90 3.00
1-bit Adam 62.08 16.53 16.80 5.15 49.57 49.21 37.97 52.88 22.04 34.69 3.22
ZeRO++ 57.49 18.42 22.20 1.72 49.88 43.03 30.85 47.61 33.97 33.91 3.22
SEPARATE 57.18 20.17 21.40 4.18 49.25 72.66 49.83 52.99 29.73 39.71 2.22

6 EXPERIMENTS

6.1 SOTA COMPARISON WITH COMMUNICATION EFFICIENT METHODS

We evaluate SEPARATE on both pre-training and fine-tuning tasks of LLMs. The experiment setting
details are shown in Appendix E.

Pre-Training GPT-2 from Scratch. We train GPT-2-345M with vanilla AdamW optimizer as a
baseline and compare the convergence speed of our SEPARATE-based AdamW optimizer with
baseline and PowerSGD [55]. We set different compression ratios of SEPARATE and compare the
convergence speed of iteration steps and wall-clock time, respectively in Figure 2 (a) and (b). Figure
2 (a) demonstrates that though high compression ratio results in more steps to reach the same loss,
SEPARATE-based optimizer with the proper compression ratio even has a faster convergence speed
of iteration steps. Figure 2 (b) shows that SEPARATE can accelerate the training speed up to 2×
for GPT-2-345M pre-training by trade-off the compression ratio and one-step cost, compared with
baseline and PowerSGD. Thus we think effective designing algorithms based on low-rank gradient
and Hessian of model ensures accurate training with lower cost. Moreover, we test the single-step
time cost of vanilla AdamW and SEPARATE with different compression ratios on GPT-2-125M and
GPT-2-345M. We find that when model scale increases, the effect of SEPARATE is more remarkable,
so SEPARATE is significant in training large-scale models.

Fine-tuning LLAMA2 and Evaluating on Downstream Tasks. We follow Llama-Accessory [66]
and fine-tune LLAMA2-7B[51] model on alpaca-gpt4 [39] dataset for three epochs, and evaluate
the ability of fine-tuned model on several downstream tasks including commonsense reasoning,
world knowledge, math and code. We report the scores obtained on these evaluation benchmarks
in Table 1. We compute the average score (Avg.S, ↑) and average rank (Avg.R, ↓) of each method.
The results indicate that SEPARATE outperforms other low-rank or low-bit optimizers with error
feedback and ZeRO++, even beyond the performance of vanilla Adam optimizer without compression
on the comprehensive performance of all the downstream tasks. Moreover, other communication-
efficient optimizers have much worse performance than SEPARATE and vanilla Adam, especially on
commonsense reasoning tasks. The possible reason for this result is that their last-iteration-based
error feedback cannot deal with the accumulated error during the whole process, while SEPARATE is
applied with the moving average of the historical error to stabilize the error and error reset mechanism
to remove useless information.

6.2 ABLATION EXPERIMENTS

We conduct ablation experiments to explore the effect of each component in SEPARATE, including
1)error-feedback technique (Err.Fed.), 2)moving average update of error (Err.Avg.) and 3)error
reset mechanism (Err.Re.). For training from scratch, without error-feedback and moving average
techniques, the training process becomes unstable and cannot converge. We show the results in
Section 6.3. For fine-tuning tasks, we fine-tune the LLAMA2-7B model on alpaca-gpt4 dataset,
applying SEPARATE on Adam optimizer with bfloat16 precision. The results are shown in Table 2.

Error-feedback Technique. We first study the effect of directly applying the vanilla error-feedback
technique on the common random projection compressor of SEPARATE. Comparing SEPARATE1
with SEPARATE2, we can observe that directly applying error-feedback technique even slightly

8

Published as a conference paper at ICLR 2025

Table 2: Effects of components in SEPARATE to the performance of LLAMA2-7B fine-tuned on
alpaca-gpt4 dataset, including error-feedback technique (Err.Fed.), moving average on error (Err.Avg.)
and error reset mechanism (Err.Re.).

Method Err.Fed. Err.Avg. Err.Re. GSM8K MBPP NQ Arc-e Arc-c PIQA Avg.
SEPARATE1 False N/A N/A 21.53 22.00 4.57 71.25 49.15 52.61 36.86
SEPARATE2 True False N/A 20.17 21.80 4.35 69.14 51.19 52.29 36.49
SEPARATE3 True True N/A 20.92 22.00 4.49 69.49 51.53 52.23 36.77
SEPARATE4 True True 512 20.39 21.40 4.46 70.02 49.49 52.45 36.37
SEPARATE5 True True 128 20.17 21.40 4.18 72.66 49.83 52.99 36.87

Table 3: Effect of different compression ratios of SEPARATE to the performance of LLAMA2-7B
fine-tuned on alpaca-gpt4 dataset, where SEPARATE-X means we set the compression ratio at X.

Method TriQA GSM8K MBPP NQ WinoG Arc-e Arc-c PIQA HellaS Avg.
SEPARATE-8 55.43 18.88 21.00 4.13 45.78 74.07 50.85 52.83 32.43 39.49
SEPARATE-16 57.18 20.17 21.40 4.18 49.25 72.66 49.83 52.99 29.73 39.71
SEPARATE-64 59.00 19.03 20.40 4.54 49.8 68.43 48.47 52.88 28.59 39.02
SEPARATE-128 58.93 18.65 22.40 4.79 50.28 65.78 47.46 52.67 27.79 38.75

impairs the whole fine-tuning performance, especially on commonsense reasoning tasks such as
WinoG, Arc and PIQA. This may be due to the randomness of projection directions. When the random
projection directions are far from the dominant directions of Hessian in several continuous iterations,
the variance of error will become extremely large and misguide the next iteration. Thus we need
another technique to smooth errors and drop the misleading information arising from randomness.

Moving Average Update of Error. We use the moving average of the historical error and the current
one to replace the direct error from the last iteration, to reduce the instability of vanilla error-feedback
technique. Comparing SEPARATE2 and SEPARATE3 we can find that the moving average update of
error improves the whole fine-tuning performance, especially on Arc-c and MBPP tasks. However,
because of the randomness of the compressor, the accumulated misleading information of inexact
directions still impairs the performance compared with SEPARATE1.

Error Reset Mechanism. We notice that random projection may generate bad directions far
away from the dominant ones of Hessian even with unbiased estimate. Especially compared with
quantization methods some bad projections may cause extremely large error. To solve the accumulated
bad random information arising from the random projection in the compression error, we design error
reset mechanism to reset the accumulated error frequently. Comparing SEPARATE3, SEPARATE4
and SEPARATE5, we find that the appropriate set of error reset frequency T can improve the
performance, and too large set of error reset frequency still causes the misleading information
accumulation and worse accuracy.

6.3 HYPER-PARAMETERS CHOICE OF SEPARATE

Random Seed Choice of Projection. In the SEPARATE method, we introduce extra randomness
due to the random projection. Thus in practice we need to set an extra random seed for commonly
generating the same random Gaussian vectors on different devices. In order to clarify that our method
works not depending on the choice of seed, we select different common random seeds for projection
to repeat training GPT-2-350M with compression ratio 16. The results are shown in Figure 3 (a),
where we randomly set seed as 3407, 4396 and 37, and the results make no difference.

β in Moving Average of Error. SEPARATE method introduces an extra hyper-parameter β for
moving average update of error. We tested the effect of β selection on the convergence speed. We
test different β in the first 10000 steps of GPT-2-345M training. The results in Figure 3 (b) show
that SEPARATE is sensitive to the choice of β. If we set β = 1, which means we do not use moving
average update of error, the convergence speed shows down remarkably in the first few steps, and in
the subsequent iterations it seriously deviates from the optimal dynamic. Setting β = 0.95 seems to

9

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Steps

3.2

4.0

4.8

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
SEED=3407
SEED=4396
SEED=37

(a) Choice of Seed

0 2000 4000 6000 8000 10000
Steps

4.5

6.0

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
beta=1.00
beta=0.95
beta=0.90
beta=0.85

(b) Choice of Error β

GPT-2-125M GPT-2-345M LLAMA2-7B
Model

0

10

20

30

40

Pe
ak

 M
em

or
y(

GB
)

Peak Memory
BASELINE
SEPARATE

(c) Peak Memory

Figure 3: Hyper-parameter choice of SEPARATE and memory cost report. (a) shows the effect
of different common random seeds to SEPARATE training with compression ratio 16. (b) shows
the effect of different β choices of moving average update of error to SEPARATE training with
compression ratio 16. (c) shows the peak memory in Adam and SEPARATE training on different
models with compression ratio 16.

be acceptable, and when decreasing β, the convergence speed slows down again. When β ≤ 0.80,
the training dynamic becomes unstable with loss value increasing to NaN, which we do not present.

Compression Ratio. We conduct experiments to test the effect of the scale of compression ratio on the
performance of models. One advantage of SEPARATE is that SEPARATE can set the compression
ratio by users themselves instead of 4 or 8 (at most 32) like quantization methods. We set the
compression ratio as 8,16,64, and 128, respectively, and tested the performance of the fine-tuned
model on downstream tasks. The results are shown in Table 3. The results show that increasing
the compression ratio to a certain extent enhances the performance of the model, due to the certain
noise improving the generalization of models. Besides, an overlarge compression ratio reduces the
performance of models, but the accuracy loss is within the acceptable range because if we compress
the gradient 128 times, the communication cost is a quarter of 1-bit quantization methods and the
performance is better than it. We also find that with different compression ratios, SEPARATE focuses
on different types of tasks, so users can set the ratio adaptively.

6.4 MEMORY COST OF SEPARATE

We report the peak memory in Figure 3 (c). Results show the peak memory when training or fine-
tuning corresponding models, which demonstrates that the extra memory of SEPARATE is negligible
in comparison with the communication cost it saves. Moreover, by expanding the random vector
buffer, we can save time in generating random Gaussian vectors, which means we can use some
memory cost to exchange computational time in compression and decompression to accelerate the
training process.

7 CONCLUSION

In this paper, we propose a simple low-rank projection for gradient compression in modern large-
scale model training process named SEPARATE. We have carried out theoretical analysis and a
lot of experimental verification to illustrate SEPARATE provides an easy way to apply gradient
compression to all types of gradient-based optimizers across various training frameworks, while
maintaining high-quality training performance and achieving significant compression. SEPARATE
holds great potential for future research, particularly in the reduction of the memory cost in the
training process. Intuitively, by updating the optimizer state in the low-dimension subspace, it
has the potential to save optimizer state memory, and this potential is similar to its ability to save
communication overhead. In addition, SEPARATE with adaptive selection of the compression ratio
is also worth studying, providing more general framework. In summary, we think SEPARATE is
helpful for the further study and popularization of large-scale models.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported by National Key R&D Program of China (2022ZD0160300) and the NSF
China (No.s 62376008 and 62276004).

REFERENCES

[1] Saurabh Agarwal et al. “On the utility of gradient compression in distributed training systems”.
In: Proceedings of Machine Learning and Systems 4 (2022), pp. 652–672.

[2] Alham Fikri Aji and Kenneth Heafield. “Sparse communication for distributed gradient de-
scent”. In: arXiv preprint arXiv:1704.05021 (2017).

[3] Krizhevsky Alex. “Learning multiple layers of features from tiny images”. In: https://www. cs.
toronto. edu/kriz/learning-features-2009-TR. pdf (2009).

[4] Jacob Austin et al. “Program synthesis with large language models”. In: arXiv preprint
arXiv:2108.07732 (2021).

[5] Yutong Bai et al. “Sequential modeling enables scalable learning for large vision models”. In:
arXiv preprint arXiv:2312.00785 (2023).

[6] Jeremy Bernstein et al. “signSGD: Compressed optimisation for non-convex problems”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 560–569.

[7] Yonatan Bisk et al. “Piqa: Reasoning about physical commonsense in natural language”. In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 34. 05. 2020, pp. 7432–
7439.

[8] Andreas Blattmann et al. “Align your latents: High-resolution video synthesis with latent
diffusion models”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023, pp. 22563–22575.

[9] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pp. 1877–1901.

[10] Peter Clark et al. “Think you have solved question answering? try arc, the ai2 reasoning
challenge”. In: arXiv preprint arXiv:1803.05457 (2018).

[11] Karl Cobbe et al. “Training verifiers to solve math word problems”. In: arXiv preprint
arXiv:2110.14168 (2021).

[12] OpenCompass Contributors. “Opencompass: A universal evaluation platform for foundation
models”. In: GitHub repository (2023).

[13] Romain Cosson et al. “Low-Rank Gradient Descent”. In: IEEE Open Journal of Control
Systems (2023).

[14] Ning Ding et al. “Delta tuning: A comprehensive study of parameter efficient methods for
pre-trained language models”. In: arXiv preprint arXiv:2203.06904 (2022).

[15] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online learning
and stochastic optimization.” In: Journal of machine learning research 12.7 (2011).

[16] Cong Fang, Zhouchen Lin, and Tong Zhang. “Sharp analysis for nonconvex sgd escaping from
saddle points”. In: Conference on Learning Theory. PMLR. 2019, pp. 1192–1234.

[17] Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. http : / / Skylion007 .
github.io/OpenWebTextCorpus. 2019.

[18] Eduard Gorbunov et al. “MARINA: Faster non-convex distributed learning with compression”.
In: International Conference on Machine Learning. PMLR. 2021, pp. 3788–3798.

[19] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-Rank Adapters Are Secretly Gradient
Compressors. 2024. arXiv: 2402.03293 [cs.LG]. URL: https://arxiv.org/abs/
2402.03293.

[20] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[21] Yutong He, Xinmeng Huang, and Kun Yuan. “Unbiased Compression Saves Communication
in Distributed Optimization: When and How Much?” In: Advances in Neural Information
Processing Systems 36 (2024).

[22] Edward J Hu et al. “Lora: Low-rank adaptation of large language models”. In: arXiv preprint
arXiv:2106.09685 (2021).

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293

Published as a conference paper at ICLR 2025

[23] M.F. Hutchinson. “A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines”. In: Communication in Statistics- Simulation and Computation 18 (Jan.
1989), pp. 1059–1076. DOI: 10.1080/03610919008812866.

[24] Prateek Jain, Purushottam Kar, et al. “Non-convex optimization for machine learning”. In:
Foundations and Trends® in Machine Learning 10.3-4 (2017), pp. 142–363.

[25] Albert Q Jiang et al. “Mixtral of experts”. In: arXiv preprint arXiv:2401.04088 (2024).
[26] Mandar Joshi et al. “Triviaqa: A large scale distantly supervised challenge dataset for reading

comprehension”. In: arXiv preprint arXiv:1705.03551 (2017).
[27] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv

preprint arXiv:1412.6980 (2014).
[28] Tom Kwiatkowski et al. “Natural questions: a benchmark for question answering research”. In:

Transactions of the Association for Computational Linguistics 7 (2019), pp. 453–466.
[29] Conglong Li et al. “1-bit LAMB: communication efficient large-scale large-batch training

with LAMB’s convergence speed”. In: 2022 IEEE 29th International Conference on High
Performance Computing, Data, and Analytics (HiPC). IEEE. 2022, pp. 272–281.

[30] Zhize Li et al. “Acceleration for compressed gradient descent in distributed and federated
optimization”. In: arXiv preprint arXiv:2002.11364 (2020).

[31] Vladislav Lialin et al. “Relora: High-rank training through low-rank updates”. In: The Twelfth
International Conference on Learning Representations. 2023.

[32] Yujun Lin et al. “Deep gradient compression: Reducing the communication bandwidth for
distributed training”. In: arXiv preprint arXiv:1712.01887 (2017).

[33] Yuanshi Liu et al. Accelerated Gradient Algorithms with Adaptive Subspace Search for
Instance-Faster Optimization. 2023. arXiv: 2312.03218 [cs.LG].

[34] Yucheng Lu et al. “Maximizing communication efficiency for large-scale training via 0/1
adam”. In: arXiv preprint arXiv:2202.06009 (2022).

[35] David Luebke. “CUDA: Scalable parallel programming for high-performance scientific com-
puting”. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to
macro. IEEE. 2008, pp. 836–838.

[36] Deepak Narayanan et al. “Efficient large-scale language model training on gpu clusters us-
ing megatron-lm”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 2021, pp. 1–15.

[37] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer
Science & Business Media, 2013.

[38] Pitch Patarasuk and Xin Yuan. “Bandwidth optimal all-reduce algorithms for clusters of
workstations”. In: Journal of Parallel and Distributed Computing 69.2 (2009), pp. 117–124.

[39] Baolin Peng et al. “Instruction tuning with gpt-4”. In: arXiv preprint arXiv:2304.03277 (2023).
[40] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog

1.8 (2019), p. 9.
[41] Samyam Rajbhandari et al. “Zero: Memory optimizations toward training trillion parameter

models”. In: SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. 2020, pp. 1–16.

[42] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. “EF21: A new, simpler, theoretically better,
and practically faster error feedback”. In: Advances in Neural Information Processing Systems
34 (2021), pp. 4384–4396.

[43] Levent Sagun, Leon Bottou, and Yann LeCun. “Eigenvalues of the hessian in deep learning:
Singularity and beyond”. In: arXiv preprint arXiv:1611.07476 (2016).

[44] Levent Sagun et al. Empirical Analysis of the Hessian of Over-Parametrized Neural Networks.
2018. arXiv: 1706.04454 [cs.LG]. URL: https://arxiv.org/abs/1706.
04454.

[45] Keisuke Sakaguchi et al. “Winogrande: An adversarial winograd schema challenge at scale”.
In: Communications of the ACM 64.9 (2021), pp. 99–106.

[46] Frank Seide et al. “1-bit stochastic gradient descent and its application to data-parallel dis-
tributed training of speech dnns”. In: Fifteenth annual conference of the international speech
communication association. 2014.

12

https://doi.org/10.1080/03610919008812866
https://arxiv.org/abs/2312.03218
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/1706.04454

Published as a conference paper at ICLR 2025

[47] Noam Shazeer and Mitchell Stern. “Adafactor: Adaptive learning rates with sublinear memory
cost”. In: International Conference on Machine Learning. PMLR. 2018, pp. 4596–4604.

[48] Mohammad Shoeybi et al. “Megatron-lm: Training multi-billion parameter language models
using model parallelism”. In: arXiv preprint arXiv:1909.08053 (2019).

[49] Hanlin Tang et al. “1-bit adam: Communication efficient large-scale training with adam’s con-
vergence speed”. In: International Conference on Machine Learning. PMLR. 2021, pp. 10118–
10129.

[50] Yuandong Tian et al. “Joma: Demystifying multilayer transformers via joint dynamics of mlp
and attention”. In: arXiv preprint arXiv:2310.00535 (2023).

[51] Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models”. In: arXiv preprint
arXiv:2307.09288 (2023).

[52] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In: arXiv
preprint arXiv:2302.13971 (2023).

[53] Alexander Tyurin and Peter Richtárik. “DASHA: Distributed nonconvex optimization with
communication compression, optimal oracle complexity, and no client synchronization”. In:
arXiv preprint arXiv:2202.01268 (2022).

[54] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information process-
ing systems 30 (2017).

[55] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. “PowerSGD: Practical low-rank
gradient compression for distributed optimization”. In: Advances in Neural Information Pro-
cessing Systems 32 (2019).

[56] Guanhua Wang et al. “Zero++: Extremely efficient collective communication for giant model
training”. In: arXiv preprint arXiv:2306.10209 (2023).

[57] Hongyi Wang et al. “Atomo: Communication-efficient learning via atomic sparsification”. In:
Advances in neural information processing systems 31 (2018).

[58] Wenhan Xia, Chengwei Qin, and Elad Hazan. “Chain of lora: Efficient fine-tuning of language
models via residual learning”. In: arXiv preprint arXiv:2401.04151 (2024).

[59] Xingyu Xie et al. “Adan: Adaptive Nesterov momentum algorithm for faster optimizing deep
models”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

[60] Xingyu Xie et al. “LoCo: Low-Bit Communication Adaptor for Large-scale Model Training”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2025).

[61] Xingyu Xie et al. “Optimization hyper-parameter laws for large language models”. In: arXiv
preprint arXiv:2409.04777 (2024).

[62] Hang Xu et al. “Compressed communication for distributed deep learning: Survey and quanti-
tative evaluation”. In: (2020).

[63] Greg Yang, James B Simon, and Jeremy Bernstein. “A spectral condition for feature learning”.
In: arXiv preprint arXiv:2310.17813 (2023).

[64] Pengyun Yue et al. CORE: Common Random Reconstruction for Distributed Optimization
with Provable Low Communication Complexity. 2023. arXiv: 2309.13307 [cs.LG].

[65] Rowan Zellers et al. “Hellaswag: Can a machine really finish your sentence?” In: arXiv preprint
arXiv:1905.07830 (2019).

[66] Renrui Zhang et al. “Llama-adapter: Efficient fine-tuning of language models with zero-init
attention”. In: arXiv preprint arXiv:2303.16199 (2023).

[67] Jiawei Zhao et al. “Galore: Memory-efficient llm training by gradient low-rank projection”. In:
arXiv preprint arXiv:2403.03507 (2024).

[68] Yanli Zhao et al. “Pytorch fsdp: experiences on scaling fully sharded data parallel”. In: arXiv
preprint arXiv:2304.11277 (2023).

13

https://arxiv.org/abs/2309.13307

Published as a conference paper at ICLR 2025

Algorithm 2 SEPARATE: PyTorch-like
random_variable_buffer.Initialization() ♯ initialize the variable buffer
def Communication_hook (model.weight): ♯ definition hook function for overlap computation

projected_grad = Project (grad, random_variable_buffer) ♯ random project the grad
Communication(projected_grad)
grad = Reproject(projected_grad, random_variable_buffer)
random_variable_buffer.Update() ♯ update variable buffer with new random variables

for model.weight in model.weights:
model.weight.register_hook(Communication_hook)
♯ register hook for each layer’s weight of the model

A DISCUSSION

In this section, we make a discussion about some related methods for memory-efficient training, the
details of our method application, and the robustness. Such a discussion provides us with a clearer
understanding of the domain, practicability, and extensibility of our method.

Compared with Memory-Efficient Training. Memory-efficient training is another area of efficient
training, focusing on how to reduce the memory cost during training process. We notice that random
projection is also used for memory reduction, such as Flora for gradient accumulation [19] and GaLore
for memory-efficient update in compact space [67]. These approaches seem to show similarity and
potential in combination with our method, but we consider different sides of efficient training. It is
usually a trade-off because there are key bottlenecks about the extra computational cost for memory
reduction. Communication in modern LLMs training framework (e.g., Megatron-LM [48]) overlaps
between local computation and global all-reduce. This allows us to tolerate only minimal extra
computational preprocessing overhead, lest long synchronization times cause the wall-clock training
time to rise. One matrix projection is almost at the limit of tolerance, and SVD is almost intolerable.
To the best of our knowledge, only our "simple but efficient operation" can manage to reduce the
training wall-clock time.

Details of SEPARATE Application. For the common random projection compressor shown in
Algorithm 1, we introduce common random vector generators on different nodes of the distributed
training clusters. This setup leads our analysis, but it does not incur any additional overhead in actual
application, because we can easily set a dedicated common random seed to generate the same random
variables on each node during initialization. Moreover, we could easily apply SEPARATE to all kinds
of gradient-based optimizers and can be regarded as a plug-in, which can be simply implemented
with a few lines of code in off-the-shelf frameworks as shown in Algorithm 2. This means that our
method is also the first gradient compression technique that can be seamlessly integrated with FSDP
rather than DDP to the best of our knowledge.

Robustness with Few Parameter Tuning. We expect to propose a simple and effective gradient
compression method that can be efficiently adapted to existing LLMs training frameworks. Therefore,
we expect the method to have a certain degree of robustness, that is, it does not depend on the resetting
of hyperparameters. In our experiments, all hyperparameters are derived from the default settings
of the corresponding model trained under the corresponding framework. In other words, we do
not adjust the hyperparameters individually for SEPARATE. We show the hyperparameters setting
in Appendix E. In addition, the method introduces the compression ratio. Our variance analysis
and the main theorem demonstrate that, provided the selection of the compression ratio aligns with
the conditions in our theoretical analysis (Theorem 5.5 and 5.7), our method can exhibit effective
performance. This theoretical underpinning ensures that our method is robust within the specified
compression ratio. Second, in practical applications, especially for models with a substantial number
of parameters, such as those in the millions or billions, we can defaultly set the compression ratio as
16, 32 or 64. As illustrated in Table 3, the performance differences between compression ratios of
16, 32, or 64 times for gradient information are minimal. Consequently, the choice of compression
ratio is more influenced by the user’s device constraints rather than the intrinsic characteristics of the
model.

14

Published as a conference paper at ICLR 2025

B PROPERTIES OF SEPARATE COMPRESSOR

In this section, we propose several properties of the expectation and variance of the common random
projection compressor in SEPARATE. The first analysis of such properties is proposed in the research
of distributed optimization theory [64]. Let a represent the vector for communication and ã represent
the estimate one generated by the compressor. In Lemma 4.1 and Lemma 4.2, we show that ã is an
unbiased estimator, and the variance of ã can be tr(A)-bounded under arbitrary matrix A-norms,
respectively.
Lemma B.1. ã is an unbiased estimator of a,

Eξ1,···ξm
ã = a. (14)

Proof of Lemma 4.1.

Eξ1,·,ξm ã = Eξ1,··· ,ξm

[
1

m

m∑
i=1

⟨a, ξi⟩ · ξi

]
= Eξ1

ξ1ξ
⊤
1 a = Ia

= a

(15)

Lemma B.2. The variance of ã under norm ∥ · ∥A, where A is a given positive semi-definite
symmetric matrix, can be bounded by 3tr(A)

m ∥a∥2 − 1
m∥a∥2A,

Eξ1,··· ,ξm
∥ã− a∥2A ≤ 3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (16)

Proof of Lemma 4.2. For the simplicity of notation, we use Eξ to denote Eξ1,··· ,ξm
.

Eξ∥ã− a∥2A = Eξ

∥∥∥∥∥ 1

m

m∑
i=1

(⟨a, ξ⟩ · ξ − a)

∥∥∥∥∥
2

A

= Eξ

[
1

m2

m∑
i=1

(
a⊤ξiξ

⊤
i Aξiξ

⊤
i a− a⊤Aa

)]

=
1

m
Eξ1a

⊤ξ1ξ
⊤
1 Aξ1ξ

⊤
1 a− 1

m
∥a∥2A.

(17)

Let A = U⊤DU be the eigenvalue decomposition of A where D = diag{b1, · · · , bd} is a diagonal
matrix, and ζ = Uξ1 be a linear transformation of the random variable ξ1. We have

Eξ1

[
ξ1ξ

⊤
1 Aξ1ξ

⊤
1

] a
= Eζ

[
U⊤ζζ⊤Dζζ⊤U

]
= U⊤Eζ

[
d∑

i=1

biζ
2
i · ζζ⊤

]
U

b
= U⊤

(
d∑

i=1

bi · I+ 2D

)
U

c
= tr(A) · I+ 2A

⪯ 3tr(A) · I.

(18)

In a
=, we use ζ ∼ N(0, Id) based on the rotational invariance of the standard Gaussian distribution.

In b
=, we use the second and forth moment of standard Gaussian variables: Eζ2

i = 1 and Eζ4
i = 3. In

c
=, we use tr(U⊤DU) = tr(U⊤UD) = tr(D). The last inequality of (18) is due to tr(A) · I ⪰ A.
Combining (18) and (17), we have

Eξ1,··· ,ξm
∥ã− a∥2A ≤ 3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (19)

15

Published as a conference paper at ICLR 2025

C DEFERRED PROOF IN SECTION 5

C.1 USEFUL LEMMAS

In this Section, we propose several useful lemmas for the proof of our main theorem in Section 5.

Lemma C.1. For the gradient h̃k
n = 1

m

∑m
i=1 p̃i · ξi where p̃i = 1

N

∑N
n=1 pi,n is the global average

of pi,n in each machine after communication in Algorithm 1, we have

h̃k = gk +
1

β

(
ek − ek+1

)
, (20)

where h̃k = 1
N

∑N
n=1 h̃

k
n, gk = 1

N

∑N
n=1 g

k
n and ek = 1

N

∑N
n=1 e

k
n.

Proof of Lemma C.1. For the estimate h̃k defined in Lemma C.1, we have

h̃k =
1

N

N∑
n=1

h̃k
n

=
1

N

N∑
n=1

1

m

m∑
i=1

1

N

N∑
n=1

〈
hk
n, ξi

〉
· ξi

=
1

m

m∑
i=1

1

N

N∑
n=1

〈
hk
n, ξi

〉
· ξi

=
1

N

N∑
n=1

(
hk
n +

1

m

m∑
i=1

〈
hk
n, ξi

〉
· ξi − hk

n

)

=
1

N

N∑
n=1

gk
n + ekn − δkn

(21)

where δkn = hk
n − 1

m

∑m
i=1

〈
hk
n, ξi

〉
· ξi. Taking average of δkn, we have

δk =
1

N

N∑
n=1

(
hk
n − 1

m

m∑
i=1

〈
hk
n, ξi

〉
· ξi

)
= hk − h̃k

=
1

β

(
ek+1 − (1− β)ek

)
,

(22)

where the last equality uses ek+1 = (1− β)ek + β(hk − h̃k) which is the average of the iteration of
ek+1
n in Algorithm 1. Combining the two equalities above, we have

h̃k = gk + ek − δk = gk +
1

β

(
ek − ek+1

)
. (23)

We complete the proof of Lemma C.1.

Lemma C.2. Suppose the setting in Theorem 5.5 hold, and we use h̃k in Algorithm 1 to update the
model weight θk in SGD as

θk+1 = θk − ηh̃k. (24)
Then we have

E

∥∥∥∥∥
k∑

i=0

(h̃i − gi)

∥∥∥∥∥ ≤ 1 + (1− β)k+1

β
c1. (25)

Proof of Lemma C.2. Consider the expectation of ∥ek+1∥ about the random Gaussian variables
ξ1, · · · , ξm and the stochastic mini-batch as below

E∥ek+1∥ = E
[
Eξ1,··· ,ξm∥ek+1∥

]
. (26)

16

Published as a conference paper at ICLR 2025

First we have

Eξ1,··· ,ξm∥ek+1∥ = Eξ1,··· ,ξm∥(1− β)ek + β(hk − h̃k)∥
≤ (1− β)Eξ1,··· ,ξm

∥ek∥+ Eξ1,··· ,ξm
∥β(hk − h̃k)∥

= (1− β)∥ek∥,
(27)

where the first inequality uses h̃k is the unbiased estimate of hk. Thus we have

E∥ek+1∥ ≤ (1− β)E∥ek∥ ≤ (1− β)k+1∥e0∥ ≤ (1− β)k+1c1. (28)

Considering the accumulated bias of h̃k and hk, based on Lemma C.1 we have

E

∥∥∥∥∥
k∑

i=0

(h̃i − gi)

∥∥∥∥∥ =
1

β
E

∥∥∥∥∥
k∑

i=0

ei − ei+1

∥∥∥∥∥ ≤ 1

β

(
E∥ek+1∥+ c1

)
≤ 1 + (1− β)k+1

β
c1. (29)

Lemma C.3. Suppose the setting in Theorem 5.7 hold, and we use h̃k in Algorithm 1 to update
te model weight θk in Adam-Type optimizers as (8). Then consider the following two sequences
{mk}Kk=0 and {m̃k}Kk=0 as:

mk = (1− β1)m
k−1 + β1g

k,

m̃k = (1− β1)m̃
k−1 + β1h̃

k.
(30)

Assume that for the sequence {ηk}Kk=0, each element of ηk satisfies

ηcl ≤ ηki ≤ ηcu, |ηki − ηk−1
i | ≤ ηβ1(1− β1)

K−kcu,∀i ∈ [d], k ∈ [K]. (31)

Then we have

E

∥∥∥∥∥
K∑
i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥ ≤ 2c1cuη
√
d

β
. (32)

Proof of Lemma C.3. First we extend the iterations of {mk}Kk=0 and {m̃k}Kk=0:

mk = (1− β1)m
k−1 + β1g

k = (1− β1)
k−1m0 + β1

k∑
t=1

(1− β1)
k−tgt, (33)

and

m̃k = (1− β1)m̃
k−1 + β1h̃

k = (1− β1)
k−1m0 + β1

k∑
t=1

(1− β1)
k−th̃t. (34)

Based on Lemma C.1, we have

k∑
i=0

ηi ◦
(
m̃i −mi

)
≤ β1

β

k∑
i=0

ηi ◦

(
i∑

t=0

(1− β1)
i−t(et − et+1)

)
. (35)

Then we element-wisely analyse the upper bound of the accumulated error as below. We use the
non-blackbody letters to represent the element of vectors for convenience with some symbolic abuse.∣∣∣∣∣β1

β

k∑
i=0

ηi
i∑

t=0

(1− β1)
i−t(et − et+1)

∣∣∣∣∣
=

∣∣∣∣∣β1

β

k∑
t=0

(
k−1∑
i=t

(ηi − ηi−1)(1− β1)
i−t − ηk−1(1− β1)k−t

)
et

∣∣∣∣∣ .
(36)

17

Published as a conference paper at ICLR 2025

Then using Lemma C.2, we take the expectation of the accumulated error as below:

E

∥∥∥∥∥
k∑

i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥
≤

√
d · E

∥∥∥∥∥
k∑

i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥
∞

≤
√
d · E sup

n∈[d]

∣∣∣∣∣β1

β

k∑
t=0

(
k−1∑
i=t

(ηin − ηi−1
n)(1− β1)

i−t − ηk−1
n (1− β1)k−t

)
etn

∣∣∣∣∣
≤ β1c1cuη

√
d

β
E

∣∣∣∣∣β1

k−1∑
t=1

t(1− β1)
t +

k−1∑
t=1

(1− β1)
t

∣∣∣∣∣
≤ 2c1cuη

√
d

β
.

(37)

For the first inequality we use the property of vector norm that ∥ · ∥ ≤
√
d∥ · ∥∞. For the second

inequality we use the definition of vector’s infinite norm. For the third inequality we use the
assumption that |ηi−ηi−1| ≤ ηβ1(1−β1)

K−icu,∀i ∈ [K] to obtain the upper bound of each element,
and use Lemma C.2 to estimate the upper bound of E|etn| that E|etn| ≤ E|e0n| ≤ c1 . For the forth
inequality we use the summation of series to obtain that β1

∑k−1
t=1 t(1−β1)

t+
∑k−1

t=1 (1−β1)
t ≤ 2

β1
.

Thus we have

E

∥∥∥∥∥
k∑

i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥ ≤ 2c1cuη
√
d

β
. (38)

Lemma C.4. Consider the moving average iteration like AdamType as

mk = (1− β)mk−1 + βgk, (39)

where gk = ∇f(θk) + ξk is the stochastic gradient with Eξk = 0 and E∥ξk∥2 ≤ σ2. Then we have

E
∥∥mk −∇f(θk)

∥∥2 ≤ (1− β)E
∥∥mk−1 −∇f(θk−1)

∥∥2 + (1− β)2L2

β
E
∥∥θk−1 − θk

∥∥2 + β2σ2.

(40)

Proof of Lemma C.4. Based on the iteration of m we have

mk−∇f(θk) = (1−β)
(
mk−1 −∇f(θk−1)

)
+(1−β)

(
∇f(θk−1)−∇f(θk)

)
+β
(
gk −∇f(θk)

)
.

(41)
Then taking expectation of both sides we have

E
∥∥mk −∇f(θk)

∥∥2 = (1− β)2E
∥∥mk−1 −∇f(θk−1)

∥∥2 + (1− β)2E
∥∥∇f(θk−1)−∇f(θk−1)

∥∥2
+ β2σ2 + 2(1− β)2E

(〈
mk−1 −∇f(θk−1),∇f(θk−1)−∇f(θk−1)

〉)
≤ (1− β)2(1 + a)E

∥∥mk−1 −∇f(θk−1)
∥∥2

+ (1− β)2
(
1 +

1

a

)
E
∥∥∇f(θk−1)−∇f(θk−1)

∥∥2 + β2σ2

≤ (1− β)E
∥∥mk−1 −∇f(θk−1)

∥∥2
+

(1− β)2

β
E
∥∥∇f(θk−1)−∇f(θk−1)

∥∥2 + β2σ2

≤ (1− β)E
∥∥mk−1 −∇f(θk−1)

∥∥2 + (1− β)2L2

β
E
∥∥θk−1 − θk

∥∥2 + β2σ2.

(42)

18

Published as a conference paper at ICLR 2025

C.2 PROOF OF THEOREM 5.5

Proof. Consider the two SGD-based iteration {θk}Kk=1 as:

θk+1 = θk − ηgk = θ0 − η

k∑
i=0

gi (43)

and {θ̃k}Kk=1 as:

θ̃k+1 = θ̃k − ηh̃k = θ0 − η

k∑
i=0

gi + η

k∑
i=0

(
gi − h̃i

)
. (44)

For k ∈ [K], due to the L-smooth assumption of the objective f and Lemma C.1, we have

E
∥∥∥∇f(θ̃k)−∇f(θk)

∥∥∥ ≤ LE
∥∥∥θ̃k − θk

∥∥∥ = ηLE

∥∥∥∥∥
k−1∑
i=0

(
gi − h̃i

)∥∥∥∥∥ ≤ (1 + (1− β)k)ηLc1
β

.

(45)

Next, we write the second-order Taylor expansion of f(θk+1) at θk as below:

f(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+ 1

2
⟨A(θk+1 − θk),θk+1 − θk⟩. (46)

Taking expectation of (46) with condition on the iteration before k and random Gaussian variables to
both sides of (46), using Lemma 4.1, Lemma 4.2 and Assumption 5.4, we have

Ef(θk+1) ≤ E
[
f(θk) +

〈
∇f(θk),θk+1 − θk

〉
+ η2

(
3tr(∇2f(θk))

2m

∥∥∥∇f(θ̃k)
∥∥∥2 + ∥∥∥∇f(θ̃k)

∥∥∥2
A

)]
≤ Ef(θk)− ηE

〈
∇f(θk),∇f(θ̃k)

〉
+ ηE

〈
∇f(θk),∇f(θ̃k)−∇f(θk)

〉
+ η2

(
3tr(A)

2m
+ L

)
E
∥∥∥∇f(θ̃k)

∥∥∥2
a
≤ Ef(θk)− η

∥∥∥∇f(θ̃k)
∥∥∥2 + ηE

〈
∇f(θk),∇f(θ̃k)−∇f(θk)

〉
+ ηE

〈
∇f(θ̃k)−∇f(θk),∇f(θ̃k)

〉
+ η2 · 5tr(A)

2m
E
∥∥∥∇f(θ̃k)

∥∥∥2
≤ Ef(θk)− η

∥∥∥∇f(θ̃k)
∥∥∥2 +O

(
η

(
(1 + (1− β)k)ηLc1

β

√
dc∞

))
+ η2 · 5tr(A)

2m

(∥∥∥∇f(θ̃k)
∥∥∥2 + σ2

N

)
(47)

where in
a
≤ we use m ≤ tr(A)

L . Then, using η ≤ m
4tr(A) , we have

1

K

K∑
k=0

E
∥∥∥∇f(θ̃k)

∥∥∥2 ≤
8
(
f(θ̃0)− f(θ̃∗)

)
3ηK

+O
(
(2− β)ηLc1

β

√
dc∞

)
+O

(
ησ2

N

)
. (48)

By letting η = O
(
d−1/2ϵ2

)
, K = Ω

(
d1/2ϵ−4

)
. we have

1

K

K∑
k=0

E
∥∥∥∇f(θ̃k)

∥∥∥2 ≤ O
(
ϵ2
(
f(θ̃0)− f(θ̃∗) +

(2− β)Lc1
β

c∞ +
σ2

N

))
= O

(
ϵ2
)
. (49)

Thus we finish the proof of Theorem 5.5.

19

Published as a conference paper at ICLR 2025

C.3 PROOF OF THEOREM 5.7

Proof. We also consider two AdamType-based iteration {θk}Kk=1 as:

θk+1 = θk − ηk ◦mk = θ0 −
k∑

i=0

ηi ◦mi, (50)

where mk = (1− β1)m
k−1 + β1g

k, and {θ̃k}Kk=1 as:

θ̃k+1 = θ̃k − ηk ◦ m̃k = θ0 −
k∑

i=0

ηi ◦ m̃i = θ0 −
k∑

i=0

ηi ◦mi +

k∑
i=0

ηi ◦ (mi − m̃i), (51)

where m̃k = (1− β1)m̃
k−1 + β1h

k. Based on Lemma C.3, we have

E
∥∥∥∇f(θ̃k)−∇f(θk)

∥∥∥ ≤ LE
∥∥∥θ̃k − θk

∥∥∥ = LE

∥∥∥∥∥
k∑

i=0

ηi ◦ (mi − m̃i)

∥∥∥∥∥ ≤ 2Lc1cuη
√
d

β
, (52)

and

E
∥∥∥θ̃k − θk

∥∥∥2 = E

∥∥∥∥∥
k∑

i=0

ηi ◦ (mi − m̃i)

∥∥∥∥∥
2

≤ 4c21c
2
uη

2d

β2
. (53)

Based on the L-smooth assumption of the objective f , we have

Ef(θk+1) ≤ Ef(θk) + E
〈
∇f(θk),θk+1 − θk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2
= Ef(θk)− E

〈
∇f(θk),ηk ◦mk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2
= Ef(θk)− E

〈
∇f(θ̃k),ηk ◦mk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2
+ E

〈
∇f(θ̃k)−∇f(θk),ηk ◦mk

〉
≤ Ef(θk)− E

〈
∇f(θ̃k),ηk ◦mk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2 + 2Lc1cuc∞η2d

β

= Ef(θk) +
1

2
E
∥∥∥√ηk ◦

(
∇f(θ̃k)−mk

)∥∥∥2 − 1

2
E
∥∥∥√ηk ◦ ∇f(θ̃k)

∥∥∥2
− 1

2
E
∥∥∥√ηk ◦mk

∥∥∥2 + L

2
E
∥∥ηk ◦mk

∥∥2 + 2Lc1cuc∞η2d

β

≤ Ef(θk) +
cuη

2
E
∥∥∥∇f(θ̃k)−mk

∥∥∥2 − clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2
+

(
Lc2uη

2

2
− clη

2

)
E
∥∥mk

∥∥2 + 2Lc1cuc∞η2d

β

≤ Ef(θk) +
cuη

2
E
∥∥∥∇f(θ̃k)−mk

∥∥∥2 − clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2
− clη

4
E
∥∥mk

∥∥2 + 2Lc1cuc∞η2d

β
.

(54)

For the first inequality we use (52). For the second inequality we use the upper and lower bound of η.
For the third inequality we set η ≤ cl

2Lc2u
. Then based on Lemma C.4 we have

E
∥∥∥mk −∇f(θ̃k)

∥∥∥2 ≤ (1− β1)E
∥∥∥mk−1 −∇f(θ̃k−1)

∥∥∥2 + (1− β1)
2L2

β1
E
∥∥∥θ̃k−1 − θ̃k

∥∥∥2 + β2
1σ

2

N
.

(55)

For the second factor we have

E
∥∥∥θ̃k−1 − θ̃k

∥∥∥2 ≤ 3

(
E
∥∥θk−1 − θk

∥∥2 + E
∥∥∥θ̃k − θk

∥∥∥2 + E
∥∥∥θ̃k−1 − θk−1

∥∥∥2) . (56)

20

Published as a conference paper at ICLR 2025

Thus, we have

E
∥∥∥mk −∇f(θ̃k)

∥∥∥2 ≤ (1− β1)E
∥∥∥mk−1 −∇f(θ̃k−1)

∥∥∥2 + 3c2uη
2(1− β1)

2L2

β1
E∥mk−1∥2

+
β2
1σ

2

N
+

24L2c21c
2
uη

2d

β2
.

(57)

By adding equation (54) at θk+1 and a× equation (57) at θk+1, we have

Ef(θk+1) + aE
∥∥∥mk+1 −∇f(θ̃k+1)

∥∥∥2 ≤ Ef(θk) +
(cuη

2
+ a(1− β1)

)
E
∥∥∥∇f(θ̃k)−mk

∥∥∥2
− clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2 − (clη

4
− 3ac2uη

2(1− β1)
2L2

β1

)
E
∥∥mk

∥∥2
+

aβ2
1σ

2

N
+

2Lc1cuc∞η2d

β
+

24aL2c21c
2
uη

2d

β2
.

(58)

Letting a = ηcu
β1

and G(θk) = Ef(θk) + ηcu
β1

E
∥∥∥mk+1 −∇f(θ̃k+1)

∥∥∥2, we have

G(θk+1) ≤ G(θk)− clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2 − (clη

4
− 3c3uη

3(1− β1)
2L2

β2
1

)
E
∥∥mk

∥∥2
+

cuηβ1σ
2

N
+

2Lc1cuc∞η2d

β
+

24L2c21c
3
uη

3d

β1β2

≤ G(θk)− clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2 − clη

8
E
∥∥mk

∥∥2
+

cuηβ1σ
2

N
+

2Lc1cuc∞η2d

β
+

24L2c21c
3
uη

3d

β1β2
,

(59)

where we set η ≤ β1c
0.5
l

5c1.5u (1−β1)L
. Then we sum the inequality above from k = 0 to K − 1 and obtain

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ 2(G(θ0)−G(θK))

ηclK
+

2cuβ1σ
2

clN
+

4Lc1cuc∞ηd

clβ

+
48L2c21c

3
uη

2d

clβ1β2
.

(60)

Considering that

G(θ0)−G(θK) ≤ Ef(θ0)− Ef(θK) +
ηcu
β1

E
∥∥∥m0 −∇f(θ̃0)

∥∥∥2
≤ Ef(θ0)− Ef(θ∗) +

ηcuσ
2

β1N
,

(61)

and letting Ef(θ0)− Ef(θ∗) = ∆, we have

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ 2∆

ηclK
+

2cuσ
2

clKβ1N
+

2cuβ1σ
2

clN
+

4Lc1cuc∞ηd

clβ

+
48L2c21c

3
uη

2d

clβ1β2
.

(62)

Finally setting K = Ω
(
dϵ−4

)
, η = O

(
d−1ϵ2

)
and β1 = O

(
d−1ϵ2

)
, we have

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ O

(
ϵ2
)
. (63)

We end the proof of Theorem 5.7.

21

Published as a conference paper at ICLR 2025

D LOW-RANK PROPERTY OF GRADIENT IN TRAINING DYNAMIC

In this section, we give an simple theoretical analysis to demonstrate that the gradient of project-up
layers of MLP in Transformer-based models becomes low-rank with training time. Our analysis is
based on recent study on the framework of Transformer dynamic, JoMA [50], and fix an error in
related study [67].

We follow the definitions and assumptions of Transformer in JoMA [50], and compute the dynamic
of project-up layer in Transformer MLP as below.
Lemma D.1. Suppose the embedding matrix U ∈ Rm×M is fixed, where M represents the vocabulary
size. The active function is linear and the back propagation gradient is stationary [50]. The weight
matrix is W ∈ Rm×n. Let ∆ = [∆1, · · · ,∆n], where ∆j = Eq[gjx] ∈ RM . gj is the back
propagated gradient of hidden node j in MLP, Eq represents the conditional expectation given the
query q, and x represents the token distribution in the previous layer, for example, the activation
output of the previous layer. Following the same definitions and assumptions in JoMA [50], the
project-up matrix V = U⊤W ∈ RM×n satisfis

V̇ =
1

A
exp

(
V ◦V

2

)
◦∆, (64)

where A is the normalization of softmax.

Proof. Let V = [v1, · · · ,vn] and W = [w1, · · · ,wj]. Following the Theorem 2 in study of JoMA
framework [50], for each hidden node j, vj = U⊤wj satisfies

v̇j =
1

A
∆j ◦ exp

(
v2
j/2
)
, (65)

where v2
j = vj ◦ vj is the element-wise product of vector. Then we notice that Lemma D.1 is the

matrix form of equation (65).

With Lemma D.1, we analyse the training dynamic of V. Row-wisely write V as V =[
u⊤
1 , · · · ,u⊤

M

]⊤
and ∆ as ∆ =

[
δ⊤1 , · · · , δ⊤M

]⊤
. Based on Lemma D.1, for j ∈ [M], we have

u̇j =
1

A
exp

(
u2
j/2
)
◦ δj =

1

A
diag

(
exp

(
u2
j/2
))

δj (66)

Based on the assumption that the back propagation gradient is stationary and x is the output of
previous layer, which means it is given. Thus the ∆j is constant, and the direction of uj is controlled
by a diagonal matrix. Let u̇j = Dj(t)δj , where Dj(t) is a diagonal matrix with initialization
Dj(0) = 0. Then we have

Ḋj(t) =
1

A
diag

(
exp

(
D2

j (t)δ
2
j

2

))
. (67)

Let a2j = maxi∈[n] δ
2
ji and b2j = mini∈[n] δ

2
ji. Then we have

1

A
diag

(
exp

(
D2

j (t)b
2
j

2

))
⪯ Ḋj(t) ⪯

1

A
diag

(
exp

(
D2

j (t)a
2
j

2

))
. (68)

Element-wisely analyze the diagnoal matrix Dj(t) = diag (dj1(t), · · · , djn(t)). For i ∈ [n], we
have

1

A
exp

(
d2ji(t)b

2
j

2

)
≤ ḋji ≤

1

A
exp

(
d2ji(t)a

2
j

2

)
. (69)

For dynamic like ẋ = Ceβ
2x2

, we have

x(t) =
1

β
erf−1

(
2βC√

π
t

)
, (70)

22

Published as a conference paper at ICLR 2025

Table 4: Comparison of SEPARATE with previous common gradient compression algorithms in
standard application metrics, including gradient complexity , real communication time, memory
cost, ring-based communication support, and sharding support. Here, Ψ represents the scale of
model parameters, N represents the number of nodes in distributed cluster, B is the communication
bandwidth (bytes/s), r is the dimension of low-rank subspace of gradient to PowerSGD, and m is the
random Gaussian samples in SEPARATE in Algorithm 1. Here we only consider the order of ϵ in
gradient complexity, ignoring others especially the dimension of parameters d. We discuss the order
of d in detail in Section 5. We consider the mixed-precision setting for memory overhead.

Methods
Gradient

Complexity
Communication Cost Memory Cost

Ring-based
Comm.

Gradient
Sharding

SGD O
(
ϵ−4
)

4Ψ(N − 1)/(BN) 2Ψ + 6Ψ/N ✓ ✓

Adam [27] O
(
ϵ−4
)

4Ψ(N − 1)/(BN) 2Ψ + 14Ψ/N ✓ ✓

1-bit Adam [49] O
(
ϵ−4
)

0.625ΨN/B 18Ψ ✗ ✗

1-bit LAMB [29] O
(
ϵ−4
)

0.625ΨN/B 22Ψ ✗ ✗

PowerSGD [55] ✗ 4r
√
Ψ(N − 1)/(BN) 14Ψ + 2r

√
Ψ ✓ ✓

SEPARATE-SGD O
(
ϵ−4
)

4m(N − 1)/(BN) 4Ψ + 6Ψ/N ✓ ✓

SEPARATE-Adam O
(
ϵ−4
)

4m(N − 1)/(BN) 4Ψ + 14Ψ/N ✓ ✓

where erf(x) is Gaussian error function. Then we have
√
2

bj
erf−1

(√
2

π

bj
A
t

)
≤ dji(t) ≤

√
2

aj
erf−1

(√
2

π

aj
A
t

)
. (71)

Since the bound is independent of i, for each j we have
√
2

bj
erf−1

(√
2

π

bj
A
t

)
I ⪯ Dj(t) ⪯

√
2

aj
erf−1

(√
2

π

aj
A
t

)
I. (72)

It demonstrates that for each line of V, the direction of uj is near to the direction of δj with error
dependent to aj and bj . Next we show that the change of direction from one line to another is very
different resulting in low-rank property of V. Let

h(t, a) =

√
2

a
erf−1

(√
2

π

a

A
t

)
. (73)

Then we have h(t, bj)I ⪯ Dj(t) ⪯ h(t, aj)I. Considering limt→
√
πA/

√
2a h(t, a) → +∞, let

j∗ = argmaxj bj be the row with the largest entry of bj . Then if bj∗ ≥ aj for all j ̸= j∗, when
t → t∗ =

√
πA/

√
2bj∗ , we have Dj∗(t) ⪰ h(t, bj∗)I → +∞ but Dj(t) ⪯ h(t, aj)I is still finite

because t
′
=

√
πA/

√
2aj ≥ t∗.

Such analysis demonstrates that the magnitude of each row of V changes drastically. The dominant
direction of V will become extremely large when others are still in a small range over time. V will
become near rank-1 over time and V̇ has lower rank because Ḋ have D on exponents. Such analysis
is consistent with what we observed in Figure 1 in Section 3.

E EXPEIMENT DETAILS

E.1 MODEL CONFIGURATIONS

We pre-train the GPT-2-345M [40] model on OpenWebtext dataset [17] of 10B tokens from scratch.
We show the results in Figure 2. Second, we compare the SEPARATE with several representative
baselines to fine-tune the LLAMA2-7B model and evaluate on downstream tasks. The baselines

23

Published as a conference paper at ICLR 2025

Table 5: Compare SEPARATE with LoRA. Suppose that the weight matrix W ∈ Rm×n, the low-rank
reparameterized size of LoRA is r, and the compression ratio of SEPARATE is k.

SEPARATE LoRA
Weight mn mn+ nr +mr

Grad Comm. mn/k nr +mr

Pre-train ✓ ✗

Fine-tune ✓ ✓

Table 6: Performance comparison with LoRA. We fine-tune LLAMA2-7B on the alpaca-gpt4
dataset and evaluate the performance on downstream tasks, including commonsense reasoning, world
knowledge, math, and code.

Method TriQA GSM8K MBPP NQ WinoG Arc-e Arc-c PIQA Avg.

Adam 49.39 15.69 19.40 3.07 46.09 72.31 53.90 57.07 39.62

Adam-LoRA 62.08 16.53 16.80 5.15 49.57 49.21 37.97 52.88 36.27

SEPARATE 57.18 20.17 21.40 4.18 49.25 72.66 49.83 52.99 40.96

include typical low-rank optimizers with error feedback technique like PowerSGD [55], representative
low-bit optimizers like 1-bit Adam [49], and recent quantization efficient training strategy ZeRO++
[56]. For fairness, we use SEPARATE-based Adam for comparison. In this section, we propose
the experiment details including model and hyper-parameters settings. Without special emphasis all
experiments are under bfloat16 precision.

GPT-2. We conducted the training of GPT-2-345M model [40] from scratch on the OpenWebtext
[17] dataset on 8× NVIDIA 3090 24G GPUs cluster. We ran a total of 50000 iterations and processed
a total of 10B tokens. The experiment was configured with PyTorch DDP training framework without
model and pipeline parallelism to simplify the experimental setting and fit existing devices. Our
global batch size was 8× 512. We set the learning rate at 6.0e-4 with the cosine decay down to the
minimum 6.0e-5 after 2000 iterations of warm-up. We also used the gradient accumulation and set
the gradient accumulation step at 4. We used the global gradient norm clipping of 1 and set the
AdamW with β1 = 0.9, β2 = 0.95 and weight decay as 0.1.

LLAMA2-7B. We conducted the fine-tuning of LLAMA2-7B [51] model on alpaca-gpt4 dataset
[39] within the PyTorch FSDP [68] framework. We followed protocols from LLAMA-Accessory
[66] and fine-tuned LLAMA2-7B for three epochs on 8× NVIDIA A6000 48G GPUs cluster. To fit
the devices we set the data parallelism at 4 and model parallelism at 2 without pipeline parallelism.
We set the global batch size at 32, the learning rate of 2e-5, gradient clipping of 2 and gradient
accumulation step at 8.

E.2 BENCHMARKS

Following the previous work [66], we conducted evaluation on chosen benchmarks on the popular
OpenCompass [12] platform. We chose the benchmarks including commonsense reasoning, world
knowledge, math and code as follows:

• Commonsense Reasoning: Hellaswag [65], Winogrande [45], ARC-Easy [10], ARC-
Challenge [10] and PIQA [7].

• World Knowledge: NaturalQuestions [28] and TriviaQA [26].
• Math: GSM8K [11].
• Code: MBPP [4].

E.3 APPLICATION TO TRAINING PROCESS AS A PLUG-IN

SEPARATE can be easily applied to real large-scale model training tasks. SEPARATE only needs
small amount of extra computation costs, which can be formulated as tensor multiplication form that

24

Published as a conference paper at ICLR 2025

Algorithm 3 G-SEPARATE: General Version of Simple Low-rank Projection
Require: Initialization model parameters with L layers, N nodes, layer-wise communication ratio
{ml}Ll=1, layer-wise {βl}Ll=1, βl = 0.95,∀l ∈ [L], error reset frequency Te, adaptive update
frequency Ta, a common Gaussian random number generator, initialize e0 ∈ B(0, c1)
while k ≤ K do

STEP 1. In each node n compute stochastic gradient gk
n,l and hk

n,l = gk
n,l + ekn,l;

STEP 2. Generate fresh i.i.d. common random Gaussian vectors ξ1, · · · , ξmk
l
∼ N(0, Id)

and compute [p1,n,l, · · · , pmk
l ,n,l

] with pi,n,l = ⟨hk
n,l, ξi⟩ as the low-dimension

projection of hk
n,l;

STEP 3. Do all-reduce and obtain global projected gradient [p̃1,l, · · · , p̃mk
l ,l
];

STEP 4. Compute h̃k
n,l =

1
mk

l

∑mk
l

i=1 p̃i,l · ξi and use h̃k
n,l for model weight update

in node n;
STEP 5. Update error

ek+1
n,l = (1− βk

l)e
k
n,l + βk

l (h
k
n,l − h̃k

n,l) if k%Te ̸= 0,
ek+1
n,l = 0 if k%Te = 0 (error reset);

STEP 6. Layer-wisely update compression ratio and βl

mk+1
l = int

(
1 +mk

l ·
(
1 +

⟨h̃k
n,l,g

k
n,l⟩

∥h̃k
n,l∥·∥g

k
n,l∥

))
,

βk+1
l = max

{
min

{
βk
l ·
(
1 +

⟨h̃k
n,l,g

k
n,l⟩

∥h̃k
n,l∥·∥g

k
n,l∥

)
, 0.99

}
, 0.90

}
if k%Ta = 0,

mk+1
l = mk

l ,
βk+1
l = βk

l , if k%Ta ̸= 0;
end while

is well supported by modern computational device architectures like CUDA [35]. By using hook
mechanism in PyTorch, we can compress the latter layer’s gradient and do communication while
the optimizer computes the former layer’s gradient in backpropagation process. Thus we properly
arrange the overlapped computation and communication order, the time cost of compression can
be hidden in the backpropagation computation, and SEPARATE can realize faster training time.
Moreover, SEPARATE can be applied to ring-based or tree-based communication. Different from
quantization methods, SEPARATE is not troubled by numerical anomalies like overflow or underflow,
so it well supports reduce-scatter operation. SEPARATE also supports sharding strategy which is
commonly used for training large language models [41]. Even though the gradient is separated into
different nodes, the linearity of random projection ensures the correctness of SEPARATE’s results.
We propose an example that how to use SEPARATE as a plug-in by hook mechanism in Algorithm 2.

Besides, SEPARATE brings extra memory costs for training because of the store of error and random
variables. Setting up a random variable buffer, we can reduce the memory costs by reusing this part
of memory to store the stream of random variables. In summary, from the results in Table 4, it is
evident that SEPARATE demonstrates superior properties compared to other methods.

E.4 ADDITIONAL EXPERIMENTS

Parameter-efficient fine-tuning (PEFT) techniques accelerate the application of pre-trained language
models to different downstream tasks without the need to fine-tune all of the model’s parameters [14].
Among them, the popular Low-Rank Adaptation (LoRA [22]) reparameterizes the weight matrix to
low-rank approximations and fine-tuning the reparameterized ones. We compare SEPARATE with
popular LoRA on scopes of application and performance on downstream tasks in Table 5 and Table 6.
The results demonstrate that SEPARATE has better versatility and effect than LoRA.

E.5 GENERAL VERSION OF SIMPLE LOW-RANK PROJECTION

25

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Steps

5.0

7.5

10.0

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
AdamW(16 bit)
SEPARATE
G-SEPARATE

Figure 4: Loss curve of vanilla Adam, SEP-
ARATE with compression ratio 8, and G-
SEPARATE on GPT-2-345M trained with
10B tokens OpenWebtext dataset.

In this section, we study how to adaptively select
the compression ratio and β for moving average
error feedback. We expect to dynamically adjust
these hyperparameters by combining the character-
istics of the parameters at each layer of the model
and the training dynamic. Our research focuses
on two aspects. First, the adaptive strategy needs
to remain simple and efficient to ensure the over-
all training wall-clock time is reduced. Thus, we
still do not consider the strategies that require pe-
riodic heavy computations, such as periodic SVD.
Second, considering the robustness of our method
shown in Appendix A, we think the dynamic adjust-
ment of hyperparameters should not be too sharp
to avoid instability in training. Under this consid-
eration, we get the general version of SEPARATE
in Algorithm 3.

We layer-wisely compute the cosine similarity of the gradient estimate and the gradient itself fre-
quently to evaluate the estimate accuracy, and update the compression ratio and β in moving average
error feedback dynamically. As shown in Algorithm 3 STEP 6, if the estimate is accurate, we try to
use a more aggressive compression ratio and a larger β in the nest stage, and vice versa. All steps in
Algorithm 3 are layer-wise, and we use the subscript l to represent the operation on the l-th layer.
The initialization of ml can be arbitrary such as 16, 32 or 64. The adaptive mechanism can adjust it
to the proper region of the corresponding layer through several dynamic update processes.

We pre-train GPT-2-345M on 10B tokens OpenWebtext dataset from scratch to verify the effectiveness
of G-SEPARATE. We follow the same hyperparameter setting of our pre-training experiment in
Appendix E.1. For G-SEPARATE, we set the adaptive update frequency Ta = 2000 to ensure the
stability of training. The results shown in Figure 4 indicate that the adaptive extension more slightly
fits the baseline, but shares the similar performance of the original algorithm in total.

26

	Introduction
	Related Work
	Low-rank Property of Gradient and Hessian in Training
	SEPARATE: A Simple Low-rank projection
	Common Random Projection Compressor
	Moving Average Error Feedback

	Convergence Guarantee
	Experiments
	SOTA Comparison with Communication Efficient Methods
	Ablation Experiments
	Hyper-parameters Choice of SEPARATE
	Memory Cost of SEPARATE

	Conclusion
	Discussion
	Properties of SEPARATE Compressor
	Deferred Proof in Section 5
	Useful Lemmas
	Proof of Theorem 5.5
	Proof of Theorem 5.7

	Low-rank Property of Gradient in Training Dynamic
	Expeiment Details
	Model Configurations
	Benchmarks
	Application to Training Process as a Plug-in
	Additional Experiments
	General Version of Simple Low-rank Projection

