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ABSTRACT

In this paper, we present empirical evidence of skills and directed exploration
emerging from a simple RL algorithm long before any successful trials are observed.
For example, in a manipulation task, the agent is given a single observation of the
goal state (see Fig. 1) and learns skills, first for moving its end-effector, then for
pushing the block, and finally for picking up and placing the block. These skills
emerge before the agent has ever successfully placed the block at the goal location
and without the aid of any reward functions, demonstrations, or manually-specified
distance metrics. Once the agent has learned to reach the goal state reliably,
exploration is reduced. Implementing our method involves a simple modification
of prior work and does not require density estimates, ensembles, or any additional
hyperparameters. Intuitively, the proposed method seems like it should be terrible
at exploration, and we lack a clear theoretical understanding of why it works so
effectively, though our experiments provide some hints.Sawyer bin

Training 
progress

Open/close gripper Push object Roll object between bins Pick and place

Move hand left/rightmove hand front/back Pick up the objectKnock object out of bin

Figure 1: Skills and Directed Exploration Emerge. In this task, we provide the agent with a single goal
observation where the green block is in the left bin. The agent never receives any rewards (not even sparse
rewards). Throughout training, the agent learns skills that increase in complexity. Easier skills seem to enable
the agent to unlock more complex skills: moving the hand is a prerequisite for pushing the object; closing the
gripper is a prerequisite for picking up the object, which is a prerequisite for moving the object to the left bin.

1 INTRODUCTION
Exploration is one of the grand challenges in reinforcement learning (RL) (Thrun, 1992). Effective
exploration algorithms would enable RL agents to solve long-horizon, sparse reward problems with
minimal human supervision: no need for dense reward functions, demonstrations, or hierarchical RL.
While there is a long history of exploration methods, even today’s best methods fail to explore in
settings with sufficiently sparse rewards, and the complexity of sophisticated exploration techniques
means that most researchers today employ limited exploration methods (e.g., adding random noise to
actions (Heess et al., 2015; Lillicrap et al., 2015; Mnih et al., 2013; Fujimoto et al., 2018)).

In this paper, we focus on a specific type of RL problem (Kaelbling, 1993; Chane-Sane et al.,
2021; Liu et al., 2022): the agent is given an observation of the single desired goal state, which
it tries to reach. This problem setting captures many practical problems, from cell biology (grow
a certain cell type) to chemical engineering (create a specific molecule) to video games (navigate
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to the final room). However, this problem setting is exceedingly challenging for standard RL
methods, as the agent does not receive any reward feedback about how it should solve the task. In
continuous settings, the agent will never reach the goal exactly, so no reward signal is ever observed.
Because of the difficulty of this exploration problem, prior work typically assumes that a human
user can provide a dense reward function (Yu et al., 2020; Hansen-Estruch et al., 2022) (or distance
metric/threshold (Venkattaramanujam et al., 2019; Plappert et al., 2018a; Chane-Sane et al., 2021)) or
a set of easier training goals1 (Eysenbach et al., 2022). However, constructing these reward functions
or easier goals is challenging (Liu et al., 2022; Hadfield-Menell et al., 2017) and stymies potential
applications of RL: a chemist who wants to synthesize one particular molecule would have to write
down several “easier” molecules for the RL agent to reach. Our paper lifts the assumptions of prior
work by considering a setting that is easier for human users but significantly more challenging for
RL agents: a single goal state is provided and is used for both training and evaluation.

We present a simple RL algorithm where skills and directed exploration emerge long before any
successful trials are ever observed. For example, in a manipulation task where the agent is given
a single observation of the goal state (see Fig. 1), the agent ends up learning skills for moving its
end-effector, then for pushing the block, then for lifting the block, and finally for picking up the block.
These skills are learned before the agent has ever succeeded at placing the block in the correct location
and without any reward functions, demonstrations, or manually-specified distance metrics. Once the
agent has learned to reliably reach the goal state, it slows exploration. Implementing this method
involves a simple modification of prior work and does not require density estimates, ensembles, or
any additional hyperparameters.

Our method works by learning a goal-conditioned value function via contrastive RL (CRL) (Eysen-
bach et al., 2022) and using that value function to train a goal-conditioned policy. The key ingredient
is embarrassingly simple: when doing exploration, always condition the goal-conditioned policy on
the single target goal. There are several intuitive reasons why we initially thought this method should
work poorly:

(i) Before the single target goal is reached, the value function will predict bogus values for that
goal, so it should be unable to train the policy.

(ii) There is no mechanism to drive exploration. Sampling a curriculum of goals that includes
easy goals and leads to the target goal should perform much better.

This intuition turned out to be fallacious.

Empirically, we evaluate our approach on tasks ranging from bin picking to peg insertion to maze
navigation, finding that it significantly outperforms prior methods that use a manually-designed
curricula of subgoals (Eysenbach et al., 2022), methods that automatically propose subgoals for
training (Chane-Sane et al., 2021), and even methods that use dense rewards (Haarnoja et al.,
2018). While we do not claim that this is the best exploration method, it outperforms all alternative
exploration strategies we have tried. Not only do we observe emergent skills during training, we find
that different random seed initializations learn divergent strategies for solving the problem. While we
still lack a theoretical understanding of why this approach is so effective, experiments highlight that
(1) the contrastive representations used to express the value function are important, and that (2) the
gains are not caused by “overfitting” the policy or the value function to the single target goal.

2 RELATED WORK

Our work builds on a long line of prior work in exploration methods for reinforcement learning (Jin
et al., 2020; Thrun, 1992; Tokic, 2010; Stadie et al., 2015; Tang et al., 2017; Asmuth et al., 2009;
Kearns & Singh, 2002; McGovern & Barto, 2001), and will study this problem in the specific setting
of goal-conditioned RL (GCRL) (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017;
Lin et al., 2019; Eysenbach et al., 2021; Rudner et al., 2021; Savinov et al., 2018; Ding et al., 2019;
Sun et al., 2019; Ghosh et al., 2020; Lynch et al., 2020; Dosovitskiy & Koltun, 2016; Schmeckpeper
et al., 2020; Nachum et al., 2018; Savinov et al., 2018; Srinivas et al., 2018; Nasiriany et al., 2019;

1Some prior methods automatically propose training goals (Florensa et al., 2017; 2018; Sukhbaatar et al.,
2018; OpenAI et al., 2021), yet these methods require additional machinery and are primarily evaluated on
settings where subgoals lie on a 2-dimensional manifold.
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Eysenbach et al., 2019). This section reviews three types of strategies for exploration. Our proposed
method aims to lift the limitations associated with these prior methods.

Rewards and demonstrations. One of the key challenges with GCRL is the sparsity of the
learning problem, so many prior GCRL methods assume access to a dense, hand-crafted reward
function (Plappert et al., 2018a; Schaul et al., 2015) or a distance metric Trott et al. (2019); Tian
et al. (2021); Hartikainen et al. (2020); Wu et al. (2019). Other methods attempt to make GCRL
more tractable by using expert demonstrations Paul et al. (2019); Ding et al. (2019) to guide learning
and planning. Although well-designed reward functions and expert demonstrations are useful for
training, these components add complexity, and collecting demonstrations can be challenging. Our
method builds upon a growing collection of GCRL algorithms that require neither a reward function
nor demonstrations (Lin et al., 2019; Eysenbach et al., 2022; 2021; Zheng et al., 2024; Sun et al.,
2019; Ghosh et al., 2020) – specifically, we consider a variant of GCRL where only a single goal is
provided for training and evaluation. As such, we could treat it as a single-task problem, but we find
that treating it as a multi-task problem is crucial to achieving good performance.

Exploration and subgoal sampling. Without a dense reward function or expert demonstrations,
the primary challenge of GCRL is effective exploration. One class of exploration strategies adds
noise to the actions (Fujimoto et al., 2018; Lillicrap et al., 2015; Heess et al., 2015; Haarnoja et al.,
2018) or policies (Plappert et al., 2018b; Fortunato et al., 2018). While these methods are simple to
implement, they typically fail to perform directed exploration (Osband et al., 2016a). A second class
of methods formulates an intrinsic exploration reward (Machado et al., 2020; Pathak et al., 2017;
Li et al., 2020; Eysenbach et al., 2018; Conti et al., 2018; Bougie & Ichise, 2020), which the agent
aims to optimize in addition to the rewards provided by the environment. While these methods can
work effectively, they can be challenging to scale to high-dimensional and long-horizon tasks. A
third class of methods use probabilistic techniques, including ensembles (Osband et al., 2016a; Chen
et al., 2017; Yao et al., 2021; Chen et al., 2018; Pearce et al., 2018), posterior sampling (Osband
et al., 2016b; 2018; Dann et al., 2021; Fan & Ming, 2021), and uncertainty propagation (O’Donoghue
et al., 2018; Tosatto et al., 2019) – these methods can excel at directed exploration, though challenges
include tuning the prior and dealing with large ensembles. A fourth class of methods modifies the
goals that are used in training. For example, some methods automatically propose subgoals, breaking
down a hard task into a sequence of easier tasks (Chane-Sane et al., 2021; Zhang et al., 2022; Savinov
et al., 2018; Shah et al., 2022; Zhang et al., 2024). We compare against one prototypical subgoal
sampling method (RIS (Chane-Sane et al., 2021)). Other methods automatically adjust the goal
distribution (Pong et al., 2020; Florensa et al., 2018; Venkattaramanujam et al., 2019) or initial state
distribution (Florensa et al., 2017), so that the difficulty of learning increases throughout training.
Despite excellent results in certain settings, scaling these methods beyond 2D navigation remains
challenging, and the algorithms remain complex.

Multi-task learning for single-task problems The last strategy for exploration is so ubiquitous
it is easy to forget: training on multiple related tasks, even when we only care about performance
on a single difficult task. For example, many prior GCRL methods command a range of goals during
exploration. Intuitively, the easy tasks can be learned with little exploration, and learning those tasks
should enable the agent to solve more challenging tasks (similar to curriculum learning (Bengio et al.,
2009; Matiisen et al., 2019; Campero et al., 2021)). However, actually constructing these multiple
training tasks or goals requires additional human supervision: the human often lays out a “trail of
breadcrumbs”, and the agent learns how to navigate to each (Eysenbach et al., 2022). Our paper will
study the setting where only a single goal is provided for training, yet our experiments will compare
against baselines that have access to training goals with a range of difficulties.

3 SINGLE-GOAL EXPLORATION WITH CONTRASTIVE RL

3.1 PRELIMINARIES

Notation. We consider a controlled Markov process (i.e., an MDP without a reward function)
defined by time-indexed states st and actions at. Our experiments will use continuous states and
actions. The initial state is sampled s0 ∼ p0(s0) and subsequent states are sampled from the
Markovian dynamics st+1 ∼ p(st+1 | st, at). Without loss of generality, we assume that episodes
have an infinite horizon; finite horizon problems can be handled by augmenting the dynamics with an
absorbing state. We assume that the algorithm is given as input the single target goal state s∗ and
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aims to learn a policy π(at | st) by interacting with the environment. Unlike prior work, we do not
assume that a distribution of goals for exploration is given; we do not assume that either a dense or
sparse reward function is given.

Following prior work (Eysenbach et al., 2021; Schroecker & Isbell, 2020), we define the objective as
maximizing the probability of reaching the goal. Formally, define the γ-discounted state occupancy
measure (Ho & Ermon, 2016; Syed et al., 2008; Dayan, 1993) as

ρπ(sf ) ≜ (1− γ)

∞∑
t=0

γtpπt (st = sf ), (1)

where pπt (st = sf ) is the probability of being at state sf at time step t. In continuous settings, pπt (sf )
is a probability density. The objective is to find a policy that maximizes the likelihood of the single
target goal under this occupancy measure:

max
π

ρπ(sf = s∗). (2)

In discrete settings, this objective is equivalent to the standard discounted reward objective with a
reward function r(st, at) = 1(st = s∗); in continuous settings, it is equivalent to using a reward
function r(st, at) = p(s′ = s+ | st, at). Intuitively, this corresponds to maximizing the time spent at
the goal. The hyperparameter γ ∈ [0, 1) is part of the problem description.

Contrastive RL. Our method builds on contrastive RL (Eysenbach et al., 2022), prior work that
uses temporal contrastive learning to solve goal-conditioned RL problems. This method was designed
for a slightly different setting, where the input is a distribution over goals p(g), and the aim was
to learn a goal-conditioned policy π(a | s, g) for reaching each of these goals. Contrastive RL is
an actor-critic method. The critic C(s, a, sf ) is learned so that it outputs the (relative) likelihood
that an agent starting at state s and taking action a will visit state sf . Following prior work, we
parameterize the critic as the dot product between two learned representations, ϕ(s, a)Tψ(sf )). The
representations are not normalized. We will write the loss function in terms of these representations,
which will turn out to be key for achieving good exploration.

To define the learning objective, we introduce a few distributions. Define p(s, a) as the marginal
distribution over state-action pairs in the replay buffer, and define ρ(sf | s, a) as the empirical
discounted state occupancy measure, conditioned on a state s and action a. Define ρ(sf ) as the
corresponding marginal distribution over future states. Contrastive RL uses these distributions to train
the critic with a contrastive learning objective. Following prior work, we learn these representations
using the infoNCE contrastive objective (Oord et al., 2018) together with a LogSumExp regularization
that prior analysis (Eysenbach et al., 2022) has shown is necessary when using the infoNCE objective
for control:

max
ϕ(s,a),ψ(sf )

E
(s,a)∼p(s,a),s(1)f ∼ρ(sf |s,a)

s
(2:N)
f ∼ρ(sf )

[
log

(
eϕ(s,a)

Tψ(s
(1)
f )∑N

j=1 e
ϕ(s,a)Tψ(s

(j)
f )

)
︸ ︷︷ ︸

infoNCE

−0.01 · log
( N∑
j=1

eϕ(s,a)
Tψ(s

(j)
f )

)2

︸ ︷︷ ︸
LogSumExp regularization

]
.

(3)

In practice, this loss is implemented by sampling a random (st, at) pair from the replay buffer and
then sampling a future state sf = st+∆ by looking ∆ ∼ GEOM(1− γ) steps ahead. The negative
examples are obtained by shuffling the future states (i.e., sampling from the product of two marginal
distributions).

Once learned, the representations encode a Q-value (Eysenbach et al., 2022): ϕ(s, a)Tψ(sf ) =
logQ(s, a, sf )−log ρ(sf ), where the Q value is defined with respect to the reward function introduced
above. The policy is learned to maximize this (log) Q-value:

max
π

Ep(s)p(g)π(a|s,g)
[
ϕ(s, a)Tψ(sf ) + αH(π(·|s, sf ))

]
, (4)

where α is an adaptive entropy coefficient. Intuitively, the actor loss chooses the action a that
maximizes the alignment between ϕ(s, a) and ψ(s∗).
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Algorithm 1 Single-goal Exploration with Contrastive RL. The difference from most prior methods is
that exploration is done by commanding a single difficult goal s∗, rather than sampling goals with a range of
difficulties.

1: Initialize policy πθ(a | s, g), replay buffer B, classifier with logits ϕ(s, a)Tψ(sf ).
2: while not converged do
3: Collect one trajectory of experience using π(a | s, sf = s∗), add to buffer B.
4: Update representations ϕ(s, a), ψ(sf ) and policy π(a | s, sf ) using contrastive RL.
5: Return policy π(a | s, g = s∗).

3.2 OUR APPROACH

Figure 2: Single-goal exploration. (Left) Our
method uses a single difficult goal for both data col-
lection and evaluation. It is exceedingly unlikely
that a random policy would ever reach this goal.
(Right) Typical methods for goal-conditioned RL
use a range of different goals for data collection,
even if the user only cares about success at reach-
ing a single difficult goal. These different goals can
be provided by the user (Eysenbach et al., 2022)
or generated with a GAN (Florensa et al., 2018),
VAE (Nasiriany et al., 2019), or planning (Chane-
Sane et al., 2021; Savinov et al., 2018; Zhang et al.,
2022).

We now describe our approach to tackling the
problem of learning to reach a single goal state. Our
approach is a simple modification of contrastive RL:
rather than asking the human user to provide many
training goals for exploration, we always command
the policy to collect data with the single hard goal
s∗ (see Fig. 2). No other modifications are made to
the algorithm. We choose the single hard goal to be
the goal position that defines success in a single task
environment, such as closing a box, inserting a peg,
or reaching the end of a maze The critic loss is the
same as contrastive RL (Eq. 3). The actor loss is the
same (Eq. 4). We will call this method “single [hard]
goal CRL.” Note that the single-goal in the algorithm
name refers to the goal used for data-collection, not
the goals used for policy updates. For training the
actor, we use goals sampled from future states in the
replay buffer. (Eq. 4 Ablation experiments (Fig. 10)
show that only training the actor on the single goal
decreases performance. We summarize the approach
in Alg. 1.

4 EXPERIMENTS

The main aim of our experiments is to evaluate the performance of single-goal contrastive RL
compared to its multi-goal counterpart as well as prior baselines. We do so on four exploration-heavy,
goal-reaching tasks, involving robotic manipulation and maze navigation. All experiments were run
with five random seeds, and error bars in the plots depict the standard error. Hyperparameters can be
found in Appendix B and code to reproduce our results is available online: https://anonymous.
4open.science/r/sgcrl-C100/

Tasks. We measure the efficacy of our method on four goal-reaching tasks taken from prior
work (Eysenbach et al., 2024), which are chosen to measure long horizon exploration. The tasks
include three robotic manipulation environments (Yu et al., 2020) and one maze navigation environ-
ment (Eysenbach et al., 2019). The robotic manipulation tasks require controlling a sawyer robot to
grasp an object (e.g., a block, lid, or peg) and accurately place it in a predetermined location (e.g.,
in a bin, on top of a box, or inside a hole). The point spiral task is a 2D maze navigation task. We
quantify success in each episode by whether the agent reached sufficiently close to the goal in at least
one state in an episode. This 0/1 sparse reward signal is used by a few of our baselines but is not
needed by contrastive RL.

These tasks present exceedingly difficult exploration challenges. To quantify the difficulty, we
measured the success rate under a uniform random policy: for each of the sawyer environments, we
did not see a single success state in 75,000,000 environment steps (600,000 episodes); for the point
spiral environment, we did not see a single success state in 40,000,000 environment steps (400,000
episodes). Previous methods solve these tasks with the aid of dense rewards (Yu et al., 2020), or
with a rich curriculum of subgoals (Eysenbach et al., 2019), but the single-goal CRL agents must
accomplish these tasks with no hand-crafted rewards, demonstrations, or subgoals.
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Figure 3: Single goal Exploration is Highly Effective. We compare single hard goal exploration (command the
single hard goal in every trial) to “range of difficulties” exploration (sampling uniformly from a human-provided
set of easy/medium/hard goals). In each of the four environments, single-goal exploration yields considerably
higher success rates, all while being easier for the human user.

4.1 SINGLE-GOAL EXPLORATION IS EXCEEDINGLY EFFECTIVE.
Sawyer box

Training 
progress

Nudge lid into placePick up lidPush lid awayReaching

Touch lid Punch lid to flip over Pick and place lid

Figure 4: Skills and Directed Exploration for Putting a Lid on a Box: This manipulation task contains an
open box and a lid. The single fixed goal has the lid placed neatly on top of the center of the box. The images
above show skills acquired throughout the course of learning. Note that some skills unlock subsequent skills
(e.g., reaching is a prerequisite for picking, which is a prerequisite for placing) while others look like open-ended
“play” (flipping the lid over, pushing the lid away from the box).

A single goal works well. We find that Contrastive RL effectively solves these four tasks: equipped
only with a single target goal, the agent automatically explores the environments and learns complex
manipulation skills (see Fig. 3). We compare this method to an “oracle” variant that is trained
on human-designed goals that vary in difficulty, ranging from easy goals to the single hard goal.
Surprisingly, our proposed method significantly outperforms this “range of difficulties” method.

While we have never seen a random policy solve any of these tasks, our method achieves its first
success within thousands of trials: 3,197 trials for sawyer box, 9,329 trials for sawyer bin,
15,895 trials for sawyer peg, and 11,724 trials for the spiral task.2

Early training: agent develops an emergent curriculum of skills. Not only does single-goal
CRL consistently achieve high success rates on manipulation tasks, but it also demonstrates complex
and directed exploration techniques during early training. To observe the agent’s behavior throughout
training, we saved learning checkpoints at fixed intervals and visualized the agent’s behavior at each

2These numbers are averaged across the random seeds.
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Training 
progress

Grasp pegreaching Recover from mistakesKnock peg against box

Push peg away Slide peg to box Insert peg into hole

Figure 5: Skills and Directed Exploration for Peg Insertion: This manipulation task contains a peg and
box with a narrow hole; the single fixed goal is a state where the peg is inside the hole. The agent acquires a
sequence of increasingly complex skills throughout training, some of which are important for solving the task
(e.g., reaching, grasping) while others are more “playful” (e.g., knocking the peg against the box). The agent
also learns to recover from mistakes (see Fig. 8).
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Figure 6: Quantifying Exploration. We analyze
“single hard goal” exploration by discretizing the
object’s XY position and counting the cumulative
number of unique positions visited throughout
training. Exploration starts to plateau after the agent
can successfully reach the goal (compare with Fig. 3).

(a) “Push and flick”
(seed = 3)

(b) “gently pick”
(seed = 4)

Figure 7: Different random seeds learn different
strategies. Other seeds learn a policy whose strategy
depends on the initial position of the block.

checkpoint (see Figures 1, 4 and 5). We found that the agent learns simple skills before complex
ones. For example, in all three environments, the agent (1) first learns how to move its end-effector to
varying locations, (2) then learns how to nudge and slide the object, and (3) finally learns to pick up
and direct the object. We observe a wide array of exploratory behavior in early training that is not
directly connected to the goal: from punching the box lid to flip it over (Fig. 4) to pushing the block
far away in a random direction (Fig. 1).

First successes: agent trades off exploration for exploitation. As the agent learns to reach the
goal more consistently, the agent’s behavior becomes less exploratory, qualitatively similar to UCB
exploration (Guo et al., 2020; Osband et al., 2016b; 2018; Dann et al., 2021; Fan & Ming, 2021). To
quantify exploration, we discretized the state space of the robotic manipulation environments and
recorded the cumulative number of unique positions visited throughout training. Fig. 6 shows that the
growth rate of this exploration metric decreases as the success rate increases (compare with Fig. 3).
For the sawyer box and sawyer peg environments, the agent achieves a high success rate earlier
in training, which corresponds to the earlier plateau of the unique grid cells curve. For the sawyer
bin environment, the agent takes longer to reach high success, and the exploration metric does not
start leveling out until the end of training. This trend highlights how single-goal CRL develops a
self-directed exploration strategy that automatically trades off between exploration and exploitation.

Consistent successes: agent finds diverse paths to the goal. Not only is the performance of
single-goal CRL reproducible (all random seeds solve the manipulation tasks), but policies trained
with different random seeds learn qualitatively different goal-reaching strategies. For example,
Fig. 7 shows the strategies learned by different random seeds on the sawyer bin task. One seed
consistently moves the block flush against the wall of the red bin and flicks it into the blue bin.
Another seed tends to grasp the block, lift it, and gently drop it in the blue bin. A third seed chooses

7
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between these strategies depending on whether the block starts near the wall or away from the wall.
Without explicit human guidance in the form of rewards, demonstrations, or subgoals, we see multiple
creative and divergent strategies emerge for solving the same problem.
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Figure 8: Robustness to perturbations: Single
(Hard) Goal exploration results in policies that are
more robust to environment perturbations, as com-
pared to policies trained with goals ranging in dif-
ficulty. The success rate remains high even when
the object is perturbed at the start (“static”) or in the
middle (“dynamic”) of an episode, likely because its
effective exploration means that it has seen a wide
range of states during training.

Further training: agent develops robustness and
self-recovery. During later stages of training, we
observe that the agent demonstrates robustness and
learns to recover from mistakes. For example, in
the sawyer peg environment, when the agent
drops the peg, it is able to recover by bending down
and grasping the peg again. To quantify robustness,
we ran perturbation experiments in the sawyer
peg and sawyer box environments, in which
we randomly perturbed the target object’s location
between 0 and 0.05 meters along each of the three
axes. We tested two settings: (1) perturbation at the
start of the episode (“static perturbations”) and (2) in
the middle of an episode (“dynamic perturbations”:
t = 20 for sawyer box and t = 50 for sawyer
peg). As shown in Fig. 8, single goal exploration is
robust to static perturbations and somewhat robust
to dynamic perturbations, notably outperforming
multi-goal CRL in three out of four scenarios. We
hypothesize that this is also the result of better
exploration, which leads to learned representations
that generalize better across unusual or unseen states.

4.2 THE RL ALGORITHM IS KEY

We compare against a number of algorithms to investigate the importance of the underlying RL
algorithm: is single goal exploration useful for other goal-conditioned RL algorithms?

Baselines. We compare single-goal CRL against prior methods that aim to address the sparse
reward problem by making additional assumptions or employing additional machinery for exploration.
Reinforcement learning with imagined subgoals (RIS) (Chane-Sane et al., 2021)maintains a high-level
policy that predicts subgoals halfway to the end goal and learns the behavioral policy to reach both the
subgoal and the end goal. We also employ a few variants of Soft Actor-Critic (SAC) with additional
assumptions: SAC with sparse rewards, SAC+HER with sparse rewards, and SAC with dense rewards.
In the sparse rewards setting, the agent receives a reward of 1 near the goal and 0 otherwise. In the
dense reward setting, the agent receives a continuous reward tailored to the environment, using the
distance to the goal for the spiral task and the Metaworld (Yu et al., 2020) reward function for sawyer
tasks. Table 1 summarizes the assumptions for each method.

Results. As shown in Fig. 9 single-goal contrastive RL significantly outperforms these alternative
methods, showing that the underlying RL algorithm is important for single goal exploration. Notably,
prior methods rarely reach the goal at all, with the exception of RIS on the simplest task (point
spiral). To verify that our implementation of SAC was correct, we also plotted the reward function
throughout training (recall that SAC has access to a reward function, while other methods do not) and
observed that it increases throughout the course of learning.

4.3 WHY DOES SINGLE-GOAL EXPLORATION WORK?

In this section, we present ablation experiments that provide insight into the workings of single-goal
CRL. We find that using single-goal data collection and an inner product critic are both key to the
effectiveness of the method. Additionally, the performance boost of single-goal data collection does
not seem to be due to overfitting of the policy parameters on the task.

The effectiveness of single-goal exploration is not explained by overfitting. One possible
explanation for the method’s success is that the algorithm overfits its policy parameters on the single-
goal task. That is, if the agent only collects data conditioned on the single goal, the algorithm does

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Baselines: Assumptions for methods used in the experiments below.

Requirements
Algorithm Exploration Exploration Goals Dense Rewards Distance Threshold

Contrastive RL single goal (ours) % % %

multiple goals ! % %

SAC (sparse rewards) single goal % % !

SAC (dense rewards) single goal % ! !

SAC (sparse rewards) + HER single goal % % !

RIS single goal % % !
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Figure 9: The RL Algorithm Matters. We compare several underlying RL algorithms all using single-goal
exploration, with Table 1 highlighting the assumptions of each method. CRL outperforms these prior methods,
showing that (i) single-goal exploration is only effective with the right underlying RL algorithm and that (ii) with
this algorithm, we can achieve considerably higher performance while making fewer assumptions (no rewards).
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Figure 10: Ablation experiments. While our
method uses an actor loss that uses many goals (Eq. 4),
alternatives that train the policy with a single goal per-
form no better.
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Figure 11: The importance of representations.
Single goal exploration is less effective with using
a monolithic critic architecture (as opposed to an inner
product architecture), suggesting that the contrastive
representations may drive exploration.

not just overfit the policy parameters to reach the single goal, but also learns useful representations
for states along the path from the starting point to the goal. To test this hypothesis, we compared
our method (which randomly samples different goals (see Eq. 4)) with a variant that always uses the
single hard goal in the actor loss. Note that this single hard goal is the one that is used for evaluation.
If overfitting were occurring, we would expect that modifying the actor loss to only train on the
single goal would boost performance. However, the results in Fig. 10 show that this is not the case.
When data are collected with a single goal, using a single goal in the actor loss degrades performance
(purple vs. blue (ours)). When data are collected with multiple goals, using a single goal in the actor
loss gives only a slight boost performance (red vs. black). In short, the performance of single goal
exploration is not explained by overfitting.
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Representations are important. Our next set of experiments study how the representations might
drive exploration. To do this, we replaced the inner product critic function (ϕ(s, a)Tψ(sf )) with
a monolithic critic function (Q(s, a, sf )), which takes as input a concatenated array of the state,
action, and goal.3 The results, shown in Fig. 11, show that single-goal exploration is not effective
with using a monolithic critic network. We found that using this modified critic function resulted no
performance boost for the single-goal strategy, and in fact the single-goal method performed worse
than the multi-goal method. This experiment suggests that the contrastive representations ϕ(s, a)T
and ψ(sf ) could be important in driving single-goal exploration, though the precise mechanism for
how they drive exploration remains unclear. In summary, single-goal exploration is only effective
when combining the right algorithm (CRL) with the right critic architecture. In Appendix A, we show
that environment dynamics are reflected in the contrastive representations early in training.

5 CONCLUSION

In this paper, we showed that skills and directed exploration emerges from a straightforward RL
algorithm: contrastive RL where every trajectory is collected by trying to reach a single fixed goal.
The resulting method has many appealing properties of prior exploration methods: in each episode
the agent seems to try to visit some new state or attempt some new behavior. We do not see the
random dithering that is common with naïve exploration methods like ϵ-greedy. Moreover, this
method does not require any additional hyperparameters: this is in contrast to even the simplest
exploration algorithms today, which require a scale parameter (e.g., Gaussian noise in TD3 (Fujimoto
et al., 2018)). And, while prior exploration algorithms include a schedule (more hyperparameters!)
for gradually decreasing the degree of exploration throughout the course of learning, such behavior
emerges automatically from our proposed method.

There remain two important outstanding questions raised by our experiments. First, we lack a clear
understanding of why skills and directed exploration emerge. Our experiments provide some hints
(representations are important; it is not explained by overfitting), yet much theoretical work remains
to be done to understand exactly what is driving the exploration. A rich theoretical understanding of
the mechanisms driving the exploration here is important not only for explaining the success of this
method, but it may also provide insights into how to adapt the method here to other settings. Second,
how can we leverage the success of the proposed method to address exploration in other problem
settings (e.g., if a reward function were given or if not even a single fixed goal were available). The
“impossible goal” and “hard goal" experiments in Appendix C provides one simple approach, but
there likely exist significantly better methods of exploiting the emergent exploration properties that
we have observed in the single-goal setting.

The emergence of divergent strategies for solving the bin picking task points towards broader research
questions about autonomous capabilities. The RL research community has built much scaffolding
to help agents succeed. However, we have shown that without this scaffolding, agents develop
unexpected and unique methods for problem-solving. Perhaps this seemingly creative behavior
emerges not in spite of but because of the lack of human guidance. We encourage future research to
explore what RL can accomplish in the absence of human intervention.

Limitations. The primary limitation of our work is a lack of theoretical analysis explaining why
skills and directed exploration emerge. Empirically, our experiments are focused primarily on
manipulation tasks; we encourage future work to study applications to other settings.

Reproducibility Statement. We provide the source code (https://anonymous.4open.
science/r/sgcrl-C100/) for reproducing the primary results of the paper, shown in Fig-
ure 3. The codebase supports experiments on all four environments, for both the single-goal and
multi-goal versions of the CRL algorithm. The hyperparameters used for the CRL algorithm and
baselines are given in Appendix B.

3In this experiment only, we decreased the batch size from 256 to 32 for both methods, as otherwise we
encountered out-of-memory errors for the monolithic method.
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A ENVIRONMENT DYNAMICS ARE VISIBLE IN THE NORMS OF CONTRASTIVE
REPRESENTATIONS

To further investigate our predictions about targeted exploration and robustness arising from the
building of rich representations early in training, we visualized the norms of the contrastive goal
encoder ||ψ(sg)||22 at an early checkpoint, shown in Figure 12. We target goal encoder norms since
we observe that mean goal encoder norms over the training distribution rollout positions closely
correlate with training loss, and hypothesize that these norms reflect environment-learning.

Specifically, we fix the end-effector distance to the target distance for gripping, uniformly randomly
sample many states xi corresponding to both the agent end-effector and object being at xi, and
plot the corresponding values ||ψ(xi)||22 from an early (pre-first-success) encoder checkpoint on the
sawyer bin task.

As shown in Figure 12, we find interpretable patterns corresponding to a map of environment
dynamics, such as high goal encoder norms at the location of the impassable bin walls and bin bottom.
We hypothesize that these strongly-represented environment features contribute to the development
of higher-level skills and ultimately behaviors such as perturbation robustness.

Figure 12: Contrastive representations capture environment dynamics (impassable bin walls
and floor) in an interpretable way. We plot the log of the goal encoder norms, log(||ψ(sg)||22), for
various observations where the end effector and block are at the same location. We show a top-down
view at box-height (left) and side view (right). We find that the impassable bin wall is visible both
from the top view (thin strip of lighter blue) and side view (vertical spike of red), represented by
relatively higher norms. Example policy rollouts (colored lines) from checkpoints at the same stage
in training are overlaid for reference, with their starting positions marked as red diamonds and the
goal marked as a gold star.
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B EXPERIMENTAL DETAILS

Table 2: Hyperparameters for our method and the baselines.

hyperparameter value

Contrastive RL (CRL) (Eysenbach et al., 2022)
batch size 256
learning rate 3e-4
discount 0.99
actor target entropy 0
hidden layers sizes (policy, critic, representations) (256, 256)
initial random data collection 10,000 transitions
replay buffer size 1e6
samples per insert1 256
representation dimension (dim(ϕ(s, a)), dim(ψ(sg))) 64
actor minimum std dev 1e-6
SAC (Haarnoja et al., 2018)
batch size 256
learning rate 3e-4
discount 0.99
hidden layers sizes (policy, critic) (256, 256)
target EMA term 5e-3
initial random data collection 10,000 transitions
replay buffer size 1e6
samples per insert1 256
actor minimum std dev 1e-6
RIS (Chane-Sane et al., 2021)
batch size 256
learning rate 1e-3 (critic), 1e-4 (policy)
high-level policy learning rate 1e-4
discount 0.99
hidden layers sizes (policy, high-level policy, critic) (256, 256)
initial random data collection 10,000 transitions
replay buffer size 1e5
Polyak coefficient for target networks 5e-3
valid state KL constraint (ϵ) 1e-4
subgoal KL penalty (α) 0.1
high-level policy weight regularization (λ) 0.1
1 How many times is each transition used for training before being discarded.
2 We collectN transitions, add them to the buffer, and then doN gradient steps using the experience sampled randomly from the buffer.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C HARD AND IMPOSSIBLE GOALS

Figure 13: Single-goal exploration with an impossible goal.

C.1 IMPOSSIBLE GOALS.

To further probe single goal exploration, we tried commanding a goal that was impossible to reach in
a maze navigation task. One might expect to see completely random behavior, or see no behavior at
all. Visualizing the trajectories visited throughout training (Fig. 15), we observe that the agent seems
to try to navigate to that impossible goal but then gets stuck. This pattern suggests that commanding
an impossible goal is a plausible strategy for improving exploration. However, it fails to explore a
fair number of states, suggesting that there are likely more effective ways of inducing exploration in
settings without a single fixed goal.

C.2 HARD GOALS.

We also created a harder version of the sawyer box environment in which the agent must first place a
block in the box and then place the lid on top of the box (see Fig. 14). In this environment, it is unclear
how to even construct a reasonable path of subgoals since the required behavior is non-linear. While
single-goal CRL was not able to consistently solve this environment (success rate < 0.05 throughout
training), we observed unexpected emergent skills during training which were not observed in the
simpler environments. The emergent strategies include (1) placing the block on top of the box lid and
trying to scoop the block into the box, (2) raising the block high, dropping it, and hitting it into the box,
and (3) taking advantages of physical inaccuracies of the simulation software, namely the stickiness
of the objects. We showcase a few of these emergent skills in a video uploaded to the code repository:
https://anonymous.4open.science/r/sgcrl-C100/sawyer_box_hard.mp4

Figure 14: Sawyer Box Hard. We construct a new environment which requires multi-step planning. The agent
must but the block in the box and then close the box with the lid
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D VISUALIZING EMERGENT EXPLORATION IN POLICY ROLLOUTS
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Figure 15: Rollouts at early checkpoints indicate distinct exploratory behavior. Here we plot action and
state rollouts after PCA and t-SNE dimensionality reduction for the first 10 checkpoints of the model on the
Sawyer Peg environment.

To further analyze the progression of exploration and skill learning, we apply dimensionality reduction
on the states encountered and the actions taken for one episode at the first 10 checkpoints of the
single-goal CRL model on the sawyer peg environment. The checkpoints were saved at fixed time
intervals (e.g. every 15 minutes), which corresponded to 3,300 trials in the environment. We observe
that the action and state rollouts for early checkpoints (2,3,4) tend to be more spatially separated
in the PCA and T-SNE plots, indicating unique exploratory behavior, whereas the rollouts for later
checkpoints (8,9,10) have more overlap, indicating the algorithm has converged to similar behavior
patterns once the single-goal has been reached.
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E EVALUATION OF SINGLE-GOAL METHOD ON MULTIPLE GOALS
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Figure 16: Generalization to multiple goals. Single-goal CRL can still reach goals along the path from the
starting point to the goal.

We evaluate single-goal CRL and multi-goal CRL on the distribution of goals used for data collection
in the multi-goal algorithm in addition to the single, hard goal used for evaluation in the main text.
Figure 16 shows that single-goal CRL retains the ability to reach these goals (i.e. accomplish multiple
tasks) without being explicitly guided to learn those tasks. The finding is most prominent in the
Sawyer Box and Sawyer Peg tasks. This evaluation, in combination with the ablation experiment
(see Fig. 10), suggests that single-goal CRL is not overfitting its policy parameters on a single task.
Instead it performs multi-task learning, which surprisingly improves performance on the single task
as well compared to prior methods.
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F SENSITIVITY OF REPRESENTATIONS TO STATE DIMENSIONS
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Figure 17: Representation sensitivity to state dimensions evolves throughout training. We probe single-goal
CRL representations trained on the Sawyer Box environment for sensitivity to three state dimensions - the
hand y position, the object y position, and the object z position (height). For each checkpoint, we measure the
representation sensitivity by the l2 distance between the initial state representation before (s10) and after (s20) a
small perturbation of 0.1 to the given state dimension: ||ϕ(s10, a0)− ϕ(s20, a0)||2.

We further probe the single-goal CRL representation for sensitivity to three state dimensions in the
sawyer box environment: The y position of the hand (end-effector), the y position of the object (box
lid position on table), and the z position of the object (box lid height). These dimensions were chosen
because changing these dimensions requires increasing levels of skill; moving the end-effector y
position is easy, moving the object y position is medium difficulty, and changing the object height
is hard. For each training checkpoint, we measure the representation sensitivity by the l2 distance
between the initial state representation before (s10) and after (s20) a small perturbation of 0.1 to the
given state dimension: ||ϕ(s10, a0)− ϕ(s20, a0)||2. We find that the representations are more sensitive
to the object y position during earlier stages of training and more sensitive to the object z position
during later stages of training. This shift in sensitivity to the difficulty of the state dimension suggests
that the method automatically develops a reasonable curriculum for exploration.
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