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Abstract

We introduce ReplaceAnything3D model (RAM3D), a novel method for 3D object
replacement in 3D scenes based on users’ text description. Given multi-view images
of a scene, a text prompt describing the object to replace, and another describing
the new object, our Erase-and-Replace approach can effectively swap objects in
3D scenes with newly generated content while maintaining 3D consistency across
multiple viewpoints. We demonstrate the versatility of RAM3D by applying it to
various realistic 3D scene types, showcasing results of modified objects that blend
in seamlessly with the scene without impacting its overall integrity.

1 Introduction

The explosion of new media platforms and display devices has sparked a surge in demand for high-
quality 3D content, and thus an increasing need for efficient tools for generating and editing them.
While there has been significant progress in 3D reconstruction and generation, 3D scene editing
remain a less-studied area. In this work, we focus on the task of replacing or adding new 3D objects
to an existing 3D scene using only input language prompts from a user. Compared to other 3D scene
editing methods such as relighting or stylization, this task involves intricate local edits to seamlessly
integrate new objects into the scene without disrupting its overall coherence. This goes beyond just
generating realistic visuals and demands a nuanced understanding of both the global scene context
and the interaction between the newly added object and the rest of the scene.

Naively using text-to-3D methods to generate 3D objects and manually adding them to a scene
can be a tedious process. More importantly, it completely ignores the interaction between objects’
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Figure 1: Our method enables prompt-driven object replacement for a variety of realistic 3D scenes.

appearance and the rest of the scene, such as lighting and shadows. Here, we instead formulate the
task of object replacement as a 3D scene inpainting problem. Specifically, our goal is to seamlessly fill
in the region occupied by the old object with a new object, making it indistinguishable from the rest
of the 3D scene. To avoid manual object placement and blending, we adopt a powerful text-guided
image inpainting model, enabling 3D object replacement based solely on input text prompts.

In this work, we present the ReplaceAnything3D model (RAM3D), a text-guided method for object
replacement in 3D scenes using an Erase-and-Replace strategy. RAM3D takes multiview images of
a static scene as input, along with text prompts specifying which object to erase and what should
replace it. Our approach comprises four key steps: 1) We use a text-to-mask model with a text prompt
to detect and segment the object to be erased from the input images. 2) We use a text-guided 3D
inpainting technique to fill in the background region obscured by the removed object in a multi-view
consistent manner. 3) Next, we use a similar text-guided 3D inpainting technique to generate a
new 3D object corresponding to the input text description, which is seamlessly composited onto the
background in all views. We thus obtain multiview consistent images of the edited 3D scene. 4)
Finally, these updated dataset images are used to reconstruct the modified 3D scene, enabling novel
view synthesis. Instead of relying on generic image editing methods such as Instruct-Pix2Pix [1], we
adopt HiFA [2], a state-of-the-art distillation approach, to distill a pretrained text-to-image-inpainting
model into a 3D scene representation. This allows us to freely add or entirely remove detailed 3D
objects from scenes, a significant challenge for methods like Instruct-Pix2Pix [1] and its derivatives
such as Instruct-NeRF2NeRF [3] due to their reliance on a limited dataset of images and editing
instructions. By integrating a text-guided image inpainting model with a compositional scene structure
that distinguishes the object of interest from the rest of the scene, ReplaceAnything3D can seamlessly
generate edited 3D scenes with new objects harmoniously integrated into their environment. In
summary, our contributions are:

• We introduce a method for text-guided object replacement in 3D scenes that removes the
need for manual 3D modelling.

• We propose a multi-stage approach that supports object replacement or even object addition
in 3D scenes in high-fidelity.

• We present 3D consistent results on multiple scene types (human avatar, forward-facing and
360◦ scenes), and challenging edit prompts requiring detailed texture synthesis.
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2 Related work

Diffusion model for text-guided image editing Diffusion models trained on extensive text-image
datasets have demonstrated remarkable results, showcasing their ability to capture intricate semantics
from text prompts [4, 5, 6]. As a result, these models provide strong priors for various text-guided
image editing tasks [7, 8, 9, 1, 10]. In particular, methods for text-guided image inpainting [11, 12]
enable local image editing by replacing masked regions with new content that seamlessly blends
with the rest of the image, allowing for object removal, replacement, and addition. These methods
are direct 2D counterparts to our approach for 3D scenes, where each view can be treated as an
image inpainting task. However, 3D scenes present additional challenges, such as the requirement for
multi-view consistency and memory constraints due to the underlying 3D representations. In this
work, RAM3D addresses these challenges by combining a pre-trained image inpainting model with
compositional 3D scene representations.

Text-to-3D synthesis With the remarkable success of text-to-image diffusion models, text-to-3D
synthesis has garnered increasing attention. Most work in this area focuses on distilling pre-trained
text-to-image models into 3D models, starting with the seminal works Dreamfusion [13] and Score
Jacobian Chaining (SJC) [14]. Subsequent research has explored various methods to enhance the
quality of synthesized objects [15, 2, 16, 17] and disentangle geometry and appearance [18]. Instead
of relying solely on pre-trained text-to-image models, recent work has utilized large-scale 3D datasets
such as Objaverse [19] to improve the quality of 3D synthesis from text or single images [20, 21].

Here, we move beyond text-to-3D synthesis by incorporating both text prompts and the surrounding
scene information as inputs. This approach introduces additional complexities, such as ensuring the
appearance of the 3D object harmoniously blends with the rest of the scene and accurately modeling
object-object interactions like occlusion and shadows. Combining HiFA [2], a text-to-3D distillation
approach, with a text-to-image-inpainting model, RAM3D aims to create more realistic and coherent
3D scenes that seamlessly integrate the synthesized 3D objects (Figure 1).

3D Editing Many existing 3D editing methods focus on editing an individual object’s appearance or
geometry [22, 23, 24, 25, 26]. For scene-level editing, recent works primarily address object removal
tasks for forward-facing NeRF scenes [27, 28, 29]. Instruct-NeRF2NeRF [3] and similar followup
works [30, 31, 32] offer a comprehensive approach to both appearance editing and object addition,
leveraging InstructPix2Pix [1] to update the scene dataset. However, as they modify the entire scene,
they struggle to synthesise objects with complex geometrical texture patterns, and completely fail to
remove objects from scenes. Blended-Nerf [26] and DreamEditor [33] allow localized object editing
but do not support object removal. One closely related work is [28], which can remove and replace
objects using one single image reference from the user. However, since this method relies only
on a single inpainted image, it cannot handle regions with large occlusions across different views,
and thus is only applied on forward-facing scenes. Another closely related work is RePaint-NeRF
[34], which similarly allows text-guided scene editing on a masked region, but uses SDS loss to
update a pretrained NeRF towards the text content. In contrast, RAM3D adopts an Erase-and-Replace
approach for localized scene editing, instead of modifying the existing geometry or appearance of the
scene’s content, leading to superior qualitative results when compared to RePaint-NeRF.

Unlike NeRF editing methods, the recently proposed Gaussian Editor [35], uses 3D Gaussian Splats
[36] as its underlying representation. Exploiting the explicit nature of this representation, this
method enables localised edits by selectively updating targeted Gaussians, using guidance from
InstructPix2Pix [1]. Like our work, it also supports adding new objects to scenes. Similarly to [28], a
single scene image is inpainted in 2D, providing a reference image of the new object. A pre-existing
image-to-3D object model [37] then generates a 3D object from the segmented reference image, in
isolation from the original scene. The coarse object mesh is transformed back into a 3D Gaussian
representation and integrated into the scene through a laborious modelling process where the object
is is manually placed into the scene. More importantly, the new object is not guaranteed to integrate
seamlessly into the surrounding scene, which results in visible artifacts and quality issues when the
method is applied to 360◦ scenes. In contrast, RAM3D performs distillation using the inpainting
network as a diffusion prior, which leads to harmonious blending between the new object and its
surroundings, even when applied to 360◦ scenes with challenging edit prompts.
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Figure 2: An overview of RAM3D Erase and Replace stages.

3 Method

3.1 Preliminary

Distilling diffusion models Dreamfusion [13] proposes a technique called Score Distillation
Sampling (SDS) to compute gradients from a 2D pre-trained text-to-image diffusion model, to
optimize the parameters of 3D neural radiance fields (NeRF). Recently, HiFA [2] significantly
improves the quality of text-to-3D object generation by introducing an alternative loss formulation to
SDS that can be computed explicitly for a Latent Diffusion Model (LDM). Let θscene be the parameters
of a implicit 3D scene, y is a text prompt, ϵϕ(zt, t, y) be the pre-trained LDM model with encoder E
and decoder D, θscene can be optimized using:

LHiFA(ϕ, z,x) = Et,ϵw(t)
[
∥z− ẑ∥2 + λRGB∥x− x̂∥2

]
(1)

where z = E(x) is the latent vector by encoding a rendered image x of θscene from a camera viewpoint
from the training dataset, ẑ is the estimate of latent vector z by the denoiser ϵϕ, and x̂ = D(ẑ) is a
recovered image obtained through the decoder D of the LDM. Note that for brevity, we incorporate
coefficients related to timesteps t to w(t).

Here we deviate from the text-to-3D synthesis task where the generated object is solely conditioned
on a text prompt. Instead, we consider a collection of scene views as additional inputs for the
synthesized object. To achieve this, we utilize the HiFA distillation loss function and timestep-
annealing strategy, in conjunction with an open-source text-to-image inpainting LDM. This LDM
ϵψ(zt, t, y,m) requires not only a text prompt y, but also a binary mask m indicating the area to be
filled in.

3.2 Overview

The input to RAM3D consists of a collection of n images Ii, corresponding camera viewpoints vi
and a text prompt yerase describing the object the user wishes to replace. Using this text prompt
we can obtain masks mi corresponding to every image and camera viewpoint using a pretrained
text-to-mask model LangSAM [38]. Note that these masks are not necessarily multi-view consistent.
We additionally provide a text prompt yreplace describing a new object to replace the old object.
Our goal is to modify the masked object in every image in the dataset to match the text prompt
yreplace, in a 3D-consistent manner. We can then reconstruct the edited scene using any choice of
3D representations such as NeRF [39] or Gaussian Splats [36] to obtain renderings of the edited 3D
scene from novel viewpoints.

Figure 2 illustrates the overall pipeline of our Erase and Replace framework. Instead of modifying
existing objects’ geometry and appearance to match the target text descriptions like other methods
[3, 33], we adopt an Erase-and-Replace approach. Firstly, for the Erase stage, we remove the
masked objects completely and inpaint the occluded region in the background, using a neural field
θbg. Secondly, for the Replace stage, we generate new objects using a neural field θfg, compositing
them so that they blend in with the inpainted background scene. Finally, we create a new training set
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using the edited images and camera poses from the original scene, and reconstruct the modified 3D
scene using any choice of 3D representations for novel view synthesis.

To enable text-guided object replacement in 3D scenes, we distill an open-source text-to-image
inpainting LDM using the HiFA loss function (Equation 1) and timestep annealing strategy [2] . Note
that LDM distillation using 3D Gaussian Splats is still challenging to optimise, leading to blurry
results and thus requiring further refinement process in recent text-to-3D-object works [40, 41]. We
therefore opt to use a NeRF-based representation instead, for RAM3D’s Erase and Replace stages
(Sections 3.3, 3.4). To circumvent the memory constraints and slow training speed inherent to NeRF’s
implicit representations, we propose a Bubble-NeRF representation (see Figure 3, Left side) which
only models the localised part of the scene that is affected by the editing operation, instead of the
whole scene.

3.3 Erase stage

In the Erase stage, we aim to remove the object described by yerase from the scene and inpaint the
occluded background region in a multi-view consistent manner. To do so, we optimise RAM3D
parameters θbg which implicitly represent the inpainted background scene. Note that the Erase stage
only needs to be performed once to remove the desired object, after which the Replace stage (Section
3.4) can be used to generate different objects or even add new objects to the scene, as demonstrated
in the Results section. As a pre-processing step, we use LangSAM [38] with text prompt yerase to
obtain a mask mi for each image in the dataset. We then dilate each mi to obtain halo regions hi
around the original input mask (see Figure 3, Left side).

At each training step, we sample image Ii, camera vi, mask mi, and halo region hi for a random
i ∈ {1..n}, providing them as inputs to RAM3D to compute training losses (Figure 2, Left side) (we
henceforth drop the subscript i for clarity). RAM3D volume renders the implicit 3D representation
θbg over rays emitted from camera viewpoint v which pass through the visible pixels in m and h (the
Bubble-NeRF region). The RGB values of the remaining pixels on the exterior of the Bubble-NeRF
are sampled from I (see Figure 3, Left side). These rendered and sampled pixel rgb-values are
arranged into a 2D array, and form RAM3D’s inpainting result for the given view, xbg. Following
the HiFA distillation objective (see Section 3.1), we use the frozen LDM’s E to encode xbg to obtain
zbg, add noise, denoise with ϵψ to obtain ẑbg, and decode with D to obtain x̂bg. We condition ϵψ
with I , m and the empty prompt, since we do not aim to inpaint new content at this stage.

We now use these inputs to compute LHiFA (see Equation 1). We next compute Lrecon and Lvgg on h
(see Figure 3), guiding the distilled θbg towards an accurate reconstruction of the background.

Lrecon = MSE(xbg ⊙ h, I ⊙ h) (2)

Lvgg = MSE(vgg16(xbg ⊙ h), vgg16(I ⊙ h)) (3)

This step is critical to ensuring that RAM3D inpaints the background correctly (see Figure 7).
Following [42], we compute depth regularisation Ldepth, leveraging the geometric prior from a
pretrained depth estimator [43]. In summary, the total loss for the Erase stage is:

LErase = LHiFA + λreconLrecon + λvggLvgg + λdepthLdepth (4)

3.4 Replace stage

In the Replace stage, we aim to add a new object described by yreplace into the inpainted scene. To
do so, we optimise the foreground neural field θfg to render xfg, which is then composited with xbg

to form x. Unlike θbg in the Erase stage, θfg does not seek to reconstruct the background scene,
but instead only the LDM-inpainted object which is located on the interior of m. Therefore in the
Replace stage, RAM3D does not consider the halo rays which intersect h, but only those intersecting
m (Figure 3, Right side). These rendered pixels are arranged in the masked region into a 2D array
to give the foreground image xfg, whilst the unmasked pixels are assigned an RGB value of 0. The
accumulated densities are similarly arranged into a foreground alpha map A, whilst the unmasked
pixels are assigned an alpha value of 0. We now composite the foreground xfg with the background
xbg using alpha blending:

x = A⊙ xfg + (1−A)⊙ xbg (5)
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Figure 3: Left: Erase stage. The masked region (blue) serves as a conditioning signal for the
LDM, indicating the area to be inpainted. The surrounding nearby pixels form the halo region h
(green), which is also rendered by RAM3D during the Erase stage. The union of these 2 regions is
the Bubble-NeRF region, whilst the remaining pixels are sampled from the input image (red).
Right: Replace stage. RAM3D volumetrically renders the masked pixels (shown in blue) to give
xfg. The result is composited with xbg to form the combined image x.

Using the composited result x, we compute LHiFA as before, but now condition ϵψ with the prompt
yreplace, which specifies the new object for inpainting. As we no longer require the other losses, we
set λrecon, λvgg, λdepth to 0.

Since the Erase stage already provides us with a good background, in this stage, θfg only needs to
represent the foreground object. To encourage foreground/background disentanglement, on every
k-th training step, we substitute xbg with a constant-value RGB tensor, with randomly sampled RGB
intensity. This guides the distillation of θfg to only include density for the new object; a critical
augmentation to avoid spurious floaters over the background (see Figure 7, Left side).

3.5 Reconstructing the edited scene

Once the inpainted background and objects have been generated inside the Bubble-NeRF region
(Figure 3) during the Erase and Replace stages, we composite the Bubble-NeRF renderings onto all
original scene images. We finally obtain a full 3D representation of the edited scene by applying an
off-the-shelf scene reconstruction method such as NeRF or Gaussian splats [36].
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Figure 4: Left: Qualitative comparison with Reference-Guided Inpainting [28] (images adapted from
the original paper) for object replacement .
Right: Qualitative comparison with Blended-NeRF [12] for object replacement. Our method
generates results with higher quality and capture more realistic lighting and details.
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Figure 5: Qualitative comparison with Gaussian Editor [35]. We show results for 3 challenging edit
prompts on the GARDEN scene (top 2 rows) and FACE scene (bottom 2 rows). In the GARDEN scene,
our method generates more realistic objects which are better integrated with the surrounding scene.
In the FACE scene, our method generates more detailed texture patterns and geometry which are
better aligned with the edit prompts.

4 Results

We conduct experiments on real 3D scenes varying in complexity: forward-facing scenes, 360◦

scenes and human avatar. For forward-facing scenes, we show results for the STATUE and RED-NET
scene from SPIn-NeRF dataset [27], as well as the FERN scene from NeRF [39]. For 360◦ scene, we
show results from the GARDEN scene from Mip-NeRF 360◦[44]. For the avatar result, we use the
FACE dataset from Instruct-NeRF2NeRF [3]. On each dataset, we train RAM3D with a variety of
yreplace, generating a diverse set of edited 3D scenes (Figure 1). Please refer to the supplemental video
for more qualitative results for object replacement using personalized content.

Note that RAM3D performs localised scene editing for 3D object replacement, conditioned by an
edit region mask and replacement object description prompt, as shown in Figure 2. For fair apples-
to-apples comparison, we mostly compare with other state-of-the-art localised editing methods (see
Figure 4, Figure 5, Table 1). This scope contrasts with the separate but related track of global scene
editing methods, which can modify an entire scene based on instruction-style prompts, but do not
support object replacement or removal [3, 30, 31, 32]. We nevertheless provide qualitative and
quantitative comparison with global-editing methods in the Appendix (Sections F, G).

4.1 Qualitative Comparisons

Figure 4 shows qualitative comparison with two methods for NeRF-based 3D object replacement;
Blended-NeRF [12] and the method by [28]. In Figure 5 we compare our method with a state-of-the-
art 3D Gaussian Splat-based scene editing framework [35], which supports object removal, addition
and replacement. In the Appendix (Section F), we additionally compare with DreamEditor [33],
Repaint-NeRF [34], generic scene editing method Instruct-NeRF2NeRF [3] and various similar
InstructPix2Pix-based [1] followup works [30, 31, 32].

Compared to method by [28] on the left side of Figure 4, RAM3D achieves comparable object
replacement results while handling more complex lighting effects such as shadows between the
foreground and background objects. Note that the method by [28] only works with forward facing
scenes, and thus cannot handle 360◦ scenes such as the GARDEN scene like our method. In Figure
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Figure 6: Given user-defined masks, ReplaceAnything3D can add completely new objects that
blend in with the rest of the scene. Furthermore, due to its compositional structure, RAM3D can
add multiple objects to 3D scenes while maintaining realistic appearance, lighting, and multi-view
consistency (bottom right).

4 right side, we note that RAM3D generates more realistic and detailed objects that blend in better
with the rest of the scene. Meanwhile, Blended-NeRF only focuses on synthesizing completely new
objects without taking the surrounding scenes into consideration. The synthesized object therefore
looks saturated and outlandish compared to the rest of the scene. Moreover, due to the memory
constraint of CLIP [45] and NeRF, Blended-NeRF only works with image resolutions 2-times smaller
than ours (1008×756 vs. 504×378).

Figure 5 shows qualitative comparison with GaussianEditor [35], a state-of-the-art scene-editing
framework which supports object deletion, addition, and general editing capabilities. Applying it to
the GARDEN scene, we first use the delete functionality to remove the vase from the table, followed
by the addition functionality to insert the new object. Note that this method generates the new object
in isolation, using a prior image-to-3D method [37], resulting in visible artifacts on the surface of the
table where the new object interacts with the surrounding scene. Furthermore, since this method is
not guaranteed to place the new object correctly, its position in the scene requires post-hoc manual
adjustment - see Appendix (Section H) for further details.

Applying GaussianEditor to the FACE scene, we use the general editing functionality. The explicit
Gaussian Splat formulation allows edits to be localised to the relevant Gaussians (corresponding to
the man’s torso), which is selected using a user interface. The editing process is then guided towards
the desired prompt using 2D guidance from InstructPix2Pix [1], and we observe similar limitations to
other InstructPix2Pix-based scene-editing methods [3, 32, 31, 30] (see Appendix F). In particular,
we observe that GaussianEditor struggles to synthesise detailed texture patterns on the man’s torso,
unlike RAM3D. Furthermore, we notice that the geometry of the man’s clothes appears unchanged
in the GaussianEditor results, whereas our method successfully generates geometrical details such as
the shirt collar and jacket lapels, matching the edit prompt in each case.

Adding multiple objects In addition to replacing objects in the scene, our method can add new
objects based on users’ input masks. Figure 6 demonstrates that completely new objects with realistic
lighting and shadows can be generated and composited to the current 3D scene. Notably, as shown in
Figure 6-bottom right, our method can add more than one object to the same scene while maintaining
realistic scene appearance and multi-view consistency.

4.2 Quantitative Results

3D scene editing is a highly subjective task. Thus, we mainly show qualitative results and comparisons,
and refer readers to the supplemental video for additional results. However, we follow [3] and report
CLIP Text-Image Direction Similarity, which measures the alignment of the performed object
replacement with the input text description. Additionally, we also quantitatively measure temporal
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Table 1: We compute a CLIP-based alignment metric, and optical flow-based temporal consistency
metric for various datasets and prompts. RAM3D shows the best overall edit prompt alignment and
temporal consistency. (Top) GARDEN, (Middle) FACE, (Bottom) FERN.

Prompts CLIP Text-Image Direction Similarity ↑ Warping error (×10−2) ↓

Ours GaussianEditor Ours GaussianEditor

Pineapple 0.2246 −0.0631 1.2600 1.4600
Chess 0.0874 0.1857 1.2400 1.6700
Mushroom 0.1289 0.1030 1.2000 1.3900
Popcorn 0.2024 0.0400 1.3000 1.6800

Checker 0.0446 0.0016 0.4300 0.7600
Hawaiian 0.2169 0.1689 0.4900 0.8100
Tartan 0.1015 0.0379 0.4700 0.6700

Ours BlendedNerf Ours BlendedNerf

Mushroom 0.0928 0.0535 2.3900 2.9500
Strawberry 0.3165 0.2224 2.3800 3.2300

(a) (b) (c) (d) (e)

Figure 7: Left: Results for 2 RAM3D variants trained on the Statue scene for the Erase stage. a)
Training without any supervision on the halo region surrounding the inpainting mask. The training
objective is ambiguous and the Bubble-NeRF model collapses to a hazy cloud. b) Adding halo
losses (Lrecon and Lvgg) for the halo region surrounding the Bubble-NeRF guides the distillation of
θbg towards the true background, as observed on rays which pass nearby to the occluding object.
RAM3D can now inpaint the background scene accurately.
Right: Results for 3 RAM3D variants, on the statue scene for prompt "A corgi". RGB samples are
shown with accumulated NeRF density (alpha map) in the top-left corner. The bubble rendering
region is shown as a dotted blue line. c) A monolithic scene representation which contains both
the foreground and background. d) A compositional scene model but without random background
augmentation. e) Our full model.

consistency by calculating the Warping Error, following [46, 47, 48]. Specifically, (1) we use RAFT
[49] to calculate the optical flow of test videos, with each frame being a rendered novel view of the
original scene, (2) warp the corresponding frames from the modified scene according to it, and (3)
measure the warping error. We compare RAM3D quantitatively with 2 state-of-the-art NeRF-based
and Gaussian-Splatting-based methods ([35], [50]) for the object-replacement task on three datasets.

In Table 1, we show that RAM3D achieves better overall prompt alignment (highest CLIP Text-
Image Direction Similarity) than existing works, and the best temporal consistency (lowest warping
error) across all methods and datasets. Interestingly, although Blended-NeRF directly optimizes for
CLIP-similarity between the generated objects and target text prompts, it still achieves a lower score
than our method. Furthermore, we observe that our model’s superior appearance synthesis quality
(when compared to GaussianEditor in Figure 5) is also reflected in the quantitative results in Table 1.
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4.3 Ablation studies

We conduct a series of ablation studies to demonstrate the effectiveness of our method and training
strategy. In Figure 7 Right side, we show the benefits of our compositional foreground/background
structure and background augmentation training strategy. Specifically, we train a version of RAM3D
using a monolithic NeRF to model both the background and the new object (combining θbg and θfg).
In other words, this model is trained to edit the scene in one single stage, instead of separate Erase
and Replace stages. We observe lower quality background reconstruction in this case, as evident from
the blurry hedge behind the corgi’s head in Figure 7c.

We also demonstrate the advantage of using random background augmentation in separating the
foreground object from the background (see Section 3.4). Without this augmentation, the model
is unable to accurately separate the foreground and background alpha maps, resulting in a blurry
background and floaters that are particularly noticeable when viewed on video (Figure 7d). In
contrast, our full composited model trained with background augmentation successfully separates the
foreground and background, producing sharp results for the entire scene (Figure 7e).

In Figure 7 Left side, we show the importance of the Halo region supervision for the Erase stage.
Without it, our model lacks important nearby spatial information, and thus cannot successfully
generate the background scene.

5 Conclusion

We introduce RAM3D, a text-guided 3D object replacement method for 3D scenes, offering a potential
editing tool for VR/MR, gaming, and film production. With an Erase-and-Replace approach, RAM3D
can effectively replace objects with significantly different contents that blends seamlessly with the
original 3D scene. Our method can also add new objects while maintaining realistic appearance and
multi-view consistency. We demonstrate the effectiveness of RAM3D in various realistic 3D scenes
(including human avatar, forward-facing and 360◦ scenes), and superior synthesis quality compared
to current state-of-the-art NeRF and Gaussian Splatting based methods.

For future work, our Bubble-NeRF method could be extended to other representations such as 3D
Gaussian splats [36], similar to DreamGaussian [40]. Other interesting future directions include
disentangling geometry and appearance to enable more fine-grained control for scene editing, ad-
dressing multi-face problems using prompt-debiasing methods [51] or models that are pre-trained on
multiview datasets [52, 53], and developing amortized models for faster editing, similar to [54].
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A Appendix

In this appendix, we first provide an Impact statement in Section B. We next provide the results of a
User Study in Section C. We provide additional results by our ReplaceAnything3D model (RAM3D)
in Section E, as well as additional comparisons with other methods in Sections F and G. In Section
D, we show additional ablation results to further validate our method. We give further details on
running the GaussianEditor comparisons in Section H. We provide implementation details in Section
I. Finally, we discuss current limitations of our method in Section J.

In the video submission, we show additional qualitative results and comparisons, which better
showcase the multi-view consistency of the edited scenes by RAM3D.

B Impact Statements

Our work contributes to the advancement of 3D generative machine learning, a field with significant
ethical considerations, such as the potential for the creation and dissemination of deceptive or
manipulated visual content. We acknowledge these concerns and emphasize our commitment to
responsible research and development practices. We believe that this technology has the potential to
empower professionals in creative industries and individuals seeking to create 3D content responsibly,
and we are dedicated to addressing ethical challenges in its deployment.

C User Study

We performed a User Study† comparing our results with 3 closely related scene works; Gaussian
Editor [35], BlendedNeRF [50] and InstructNeRF2NeRF [3]. 15 participants were asked to compare
the results from RAM3Dwith these models on a variety of scenes and prompts. Users were asked to
choose the result which best matches the input prompt, and which shows the highest visual quality.
We report the preference rates for each model in Tables 2 and 3; note that our model’s results are
preferred overall across both categories.

Table 2: User Study: GARDEN scene and FACE scene
Criterion Prompt Matching (3 d.p) ↑ Visual Quality (3 d.p) ↑
Prompt Ours IN2N GaussianEditor Ours IN2N GaussianEditor

Pineapple 0.867 0.067 0.067 0.867 0.067 0.067
Plushie Mushroom 0.933 0.000 0.067 0.933 0.000 0.067
Chess 1.000 0.000 0.000 1.000 0.000 0.000
Popcorn 1.000 0.000 0.000 1.000 0.000 0.000

Checkered Jacket 0.800 0.000 0.200 0.530 0.067 0.400
Hawaiian Shirt 0.667 0.000 0.333 0.267 0.067 0.667
Tartan Jacket 0.733 0.067 0.200 0.533 0.000 0.467

Table 3: User Study: FERN scene
Criterion Prompt Matching (3 d.p) ↑ Visual Quality (3 d.p) ↑
Prompt Ours BlendedNeRF Ours BlendedNeRF

Mushrooms 0.533 0.467 0.533 0.467
Strawberry 0.800 0.200 0.800 0.200

D Additional ablation studies

We performed additional ablation studies to validate our model design (considering both Erase
and Replace training stages), including testing the importance of HiFA and Depth loss terms, and
Halo-region supervision.

†All activities relating to this User Study took place whilst Edward Bartrum was a visiting student at KAIST;
respondents were KAIST researchers.
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In Figure 8 we show Replace-stage results using simple SDS loss (with random diffusion timestep
sampling), adding a corgi in the statue scene. The results show slightly less detailed texture synthesis
as the RGB-space HiFA loss component is removed. Nevertheless, note that our pipeline still
synthesises the new object in the correct position, which is orthogonal to synthesis quality. We
additionally provide quantitative ablation results in Table 5, which show that using simple SDS loss
leads to only a slight drop in CLIP Text-Image Direction Similarity, whilst removing background
augmentation or training our model in a single stage also lead to worse performance.

In Figure 9 we show the performance of our model on the Erase-stage task, with Halo supervision
and Depth loss components removed, and compare these variants to our full model. We run a
state-of-the-art image segmentation model [55] on each model variant’s results, to detect the main
segmentation mask inside a bounding box around the statue region. As shown in Figure 9, (purple
region), the original statue segmentation mask is still detected for our No Halo and No Depth loss
model variants. However, for our full model, the statue mask is not detected; SAM instead correctly
detects the hedge region behind the statue. This implies that our full method has successfully removed
the statue, and realistically filled in the background, including the disoccluded region of the hedge.
For a quantitative comparison of these model variants, see Table 4.

No Halo No Depth loss Full

CLIP Sim. ↑ 0.020 0.087 0.145
Table 4: Erase-stage ablation results. We report CLIP Text-Image Direction Similarity scores for all
model variants, using the prompt “A white plinth in a park, in front of a path”, on the STATUE scene.
Note that our full model performs best.

SDS 1 stage No BG aug Full

CLIP Sim. ↑ 0.217 0.218 0.214 0.232
Table 5: Replace-stage ablation results. We report CLIP Text-Image Direction Similarity scores for
all model variants, using the prompt “A corgi on a white plinth”, on the STATUE scene. Note that our
full model performs best.

Figure 8: Corgi in STATUE scene, using SDS loss instead of HiFA

Figure 9: STATUE Erase stage ablation: (SAM segmentation shown in purple). From Left to Right:
No Halo supervision, No Depth Loss, Full model - which successfully removed the original statue.
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E Personalized ReplaceAnything3D

In addition to text prompts, RAM3D enables users to replace or add their own assets to 3D scenes.
This is achieved by first fine-tuning a pre-trained inpainting diffusion model with multiple images
of a target object using Dreambooth [56]. The resulting fine-tuned model is then integrated into
RAM3D to enable object replacement in 3D scenes. As shown in Figure 10, after the fine-tuning
stage, RAM3D can effectively replace or add objects to new 3D scenes.

Input images

Re
pl

ac
e

Ad
d

Figure 10: Users can personalize a 3D scene by replacing or adding their own assets using a fine-tuned
RAM3D. We achieve this by first fine-tuning an inpainting diffusion model with five images of the
target object (left), and then combining it with RAM3D to perform object replacement and addition
with custom content.

F Additional qualitative comparisons

In Figure 14, we compare our approach with a naive 2D baseline where each image is processed
individually. For each image in the training set (first column), we mask out the foreground object
(statue) and replace it with a new object (corgi) using a pre-trained text-to-image inpainting model
(Figure 14-second column). We then train a NeRF scene with these modified images. As shown in
Figure 14-third column, this results in a corrupted, inconsistent foreground object since each view is
very different from each other, in contrast to our multi-view consistent result.

In Figure 11, we compare RAM3D with Instruct-NeRF2NeRF [3], a general scene-editing framework.
We note that this method struggles to handle cases where the new object is significantly different
from the original one (for example, replace a vase and flowers with a pineapple or a chess piece in
Figure 11 second and third column). RAM3D can also generate objects with challenging texture
such as the tartan pattern on the jacket, while Instruct-NeRF2NeRF struggles due to its naive reliance
on inconsistent dataset updates from Instruct-Pix2Pix [1]. More importantly, Instruct-NeRF2NeRF
significantly changes the global structure of the scene even when the edit is supposed to be local (for
example, only change the clothing). This is undesirable, especially for human face editing where
the rest of the identity should be maintained after the edits. Finally, RAM3D is capable of removing
objects from the scene completely, whilst Instruct-NeRF2NeRF cannot (Figure 11 column 1).

In Figure 12 we additionally show FACE dataset results obtained using 3 followup works to Instruct-
NeRF-to-NeRF [31, 32, 30]. These methods also rely on InstructPix2Pix [1] to provide a 2D
image editing prior, and could not successfully edit the scenes in our experiments, resulting in poor
image quality as shown in Figure 12. We note that all of these methods are limited by the paired
training dataset of text editing instructions and images before/after the edit that was used to train
InstructPix2Pix. GaussianEditor, when used in general editing mode, also faces the same limitation
as it relies on InstructPix2Pix to update the selected gaussians, as demonstrated in the FACE dataset
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Figure 11: Comparison with Instruct-NeRF2NeRF, a general scene-editing framework [3]. Note
that unlike our method, Instruct-NeRF2NeRF modifies the entire scene, cannot synthesise complex
texture patterns in the FACE scene and completely fails to generate a pineapple or chess piece object
in the 360◦ GARDEN scene.

Table 6: CLIP-based metrics for GARDEN and FACE datasets, comparing our method with [3]

Prompts CLIP Text-Image Direction Similarity ↑ CLIP Direction Consistency ↑

Ours InstructNeRF2NeRF Ours InstructNeRF2NeRF

Pineapple 0.2041 0.0661 0.9590 0.9660
Chess 0.1200 0.0061 0.9457 0.9705

Checker 0.0736 −0.0400 0.9909 0.9931
Hawaiian 0.1805 0.1436 0.9908 0.9884
Tartan 0.0953 0.0714 0.9914 0.9897

results (Figure 5). In contrast to these methods, RAM3D distills a state-of-the-art image-inpainting
diffusion model to provide a 2D generative prior, which has been finetuned for inpainting real images,
and consequently provides better 2D guidance for the object replacement scene editing task.

In Figure 13 Left side, we present qualitative comparison with RepaintNeRF [34], for object replace-
ment using the NeRF Fortress scene. Note that the Erase-and-Replace approach and Bubble-NeRF
formulation adopted by RAM3D can generate higher fidelity novel content, with a more complete
shape for the apple. In contrast, note that RePaint-NeRF generates an incomplete shape which appears
to be partially cut off by the boundary of the fortress in the input scene. We hypothesise that this
artifact is a consequence of the training procedure used by RepaintNeRF, in which the entire input
scene is modified directly with diffusion guidance.

In Figure 13 Right side, we demonstrate our model’s competitive performance with DreamEditor
[10]. It is important to note that DreamEditor has limitations in terms of handling unbounded scenes
due to its reliance on object-centric NeuS [57]. Additionally, since DreamEditor relies on mesh
representations, it is not clear how this method will perform on editing operations such as object
removal, or operations that require significant changes in mesh topologies.
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Figure 12: Qualitative comparison with Collaborative Score Distillation (CSD) [32], ViCA-NeRF
[31] and EfficientNeRF2NeRF [30]. All approaches apart from our RAM3D were unsuccessful in
producing results with intricate texture details for both the checkered and tartan jackets. Results were
obtained using official publicly available implementations. Note that in the case of CSD, there is
no officially released 3D editing implementation at the time of writing. We therefore followed the
official instructions to incorporate CSD image edits into the Instruct-NeRF2NeRF framework.

G Additional quantitative comparisons

In Table 6, we provide further quantitative results, comparing our method to Instruct-NeRF2NeRF [3].
We follow [3], reporting the same metrics for both CLIP Text-Image Direction Similarity and CLIP
Direction consistency (instead of warping error using optical flow in Section 4.2). However, we note
that Instruct-NeRF2NeRF sometime scores higher for CLIP Direction consistency than our method
on edit prompts where it completely fails (see Figure 11). For example, for the edit "checkered jacket"
in the FACE dataset, Instruct-NeRF2NeRF not only fails to create the checker pattern but also removes
high-frequency details in the background, resulting in a solid color background. We hypothesize that
this boosts the CLIP-based temporal consistency score even when the edit is unsuccessful. Therefore,
we refer readers to the comparisons in the supplemental video for more details.

Note that there are minor variations in the CLIP Text-Image Direction Similarity scores that we
report for RAM3D between Tables 1 and 6. This discrepancy is due to a requirement to evaluate
GaussianEditor [35] and InstructNeRF2NeRF [3] results on 2 different rendering paths, as these 2
models are trained with different camera conventions (OPENCV vs PINHOLE cameras).
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Figure 13: Left: Qualitative comparison with RepaintNeRF [34] for object replacement. Figure
adapted from the original RepaintNeRF paper.
Right: Qualitative comparison with DreamEditor [10] for object addition ("Add a red top hat").
Figure adapted from the original DreamEditor paper.

H Gaussian Editor Framework Limitations

We use the official, publicly available GaussianEditor code implementation to obtain results on the
GARDEN and FACE scene shown in Figure 5. When obtaining results for the GARDEN scene (top
row) we first use the Delete functionality to remove the vase from the table. However, we found that
we were unable to replicate the quality of the object removal results reported in the GaussianEditor
paper [35]. In particular, we found that the mask-dilation and hole-fixing refinement phase of the
Delete method resulted in a cloudy semi-transparent artifact in the area occupied by the removed
gaussians (we show the before/after results for this refinement stage in Figure 15). Therefore, in order
to compare with the strongest possible baseline, we opted to use the Deletion result from before this
refinement step (shown on the left side of Figure 15).

We subsequently use the GaussianEditor Add functionality to incorporate the new object into the
scene. We found that the new object was initially placed far from the table by GaussianEditor, which
provides a user interface for repositioning the object along the z-values of a camera ray passing
through the centre of the reference image. We show the before/after results of this manual depth
adjustment in Figure 16, when adding the pineapple object onto the table.

I Implementation details

I.1 NeRF architecture

We use an Instant-NGP [58] based implicit function for the RAM3D NeRF architecture, which
includes a memory- and speed-efficient Multiresolution Hash Encoding layer, together with a 3-layer
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2D DDIM inpainted results
(training views)  

OursNeRF trained with
2D DDIM inpainted results

Original

Figure 14: Qualitative comparisons between our method RAM3D (last column) with a naive 2D
baseline method, which produces view-inconsistent results (third column). This is because each input
image is processed independently and thus vary widely from each other (second column).

Delete result
after re�nement

Delete result 
before re�nement

Figure 15: Results obtained using GaussianEditor to remove the vase object from the GARDEN scene.
Note that GaussianEditor’s proposed mask dilation and hole-fixing refinement stage causes a cloudy
artifact to appear above the table, where the vase was originally placed. We therefore use the result
on the left, prior to refinement, when adding new objects to replace the vase.

MLP, hidden dimension 64, which maps ray-sample position to RGB and density. We do not use
view-direction as a feature. NeRF rendering code is adapted from the nerf-pytorch repo [59].

I.2 Monolithic vs Erase+Replace RAM3D

We use a 2-stage Erase-and-Replace training schedule for the STATUE, RED-NET and GARDEN scenes.
For the FERN scene, we use user-drawn object masks which cover a region of empty space in the
scene, therefore object removal is redundant. In this case, we perform object addition by providing
the input scene-images as background compositing images to RAM3D. For the FACE scene, the torso
region in which we aim to generate new content overlaps entirely with the mask region - we therefore
train a monolithic RAM3D to inpaint new content in the mask in a single training stage.
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Object insertion
before depth adjustment

Object insertion
after depth adjustment

Figure 16: We observe that the Object Adding functionality of GaussianEditor does not place new
objects into the scene in the correct position. The images on the left show the initial pineapple object
placement (far from the table), output by GaussianEditor. The images on the right show the results
after manually refining the position of the pineapple, by adjusting its depth along a ray passing
through the centre of the reference image.

I.3 Input Masks

We obtain inpainting masks for object removal by passing dataset images to an off-the-shelf text-to-
mask model [38], which we prompt with 1-word descriptions of the foreground objects to remove. The
prompts used are: STATUE scene: "statue", GARDEN scene: "Centrepiece", FACE scene: "Clothes",
RED-NET scene: "Bag". We dilate the predicted masks to make sure they fully cover the object.

For the Erase stage, we compute nearby pixels to the exterior of the inpainting mask, and use them as
the Halo region (see Figure 3). We apply reconstruction supervision on the Halo region as detailed
in I.5. For the object-addition experiments in the FERN scene, we create user-annotated masks in a
consistent position across the dataset images, covering an unoccupied area of the scene.

In Figure 17, we show an example of the input masks, which can be obtained through either using
LangSAM and a text prompt to describe the object to be replaced or by manual user placement to add
more objects to the 3D scene.

Mask for replacing "tree trunk" using 
LangSAM (e.g: "Add strawberry")

User-defined mask for object adding 
(e.g: "Add bunny")

Figure 17: Examples of input masks: the red arrow indicates examples of input masks for object
replacement, while the blue arrow shows examples of input masks for object addition.

I.4 Cropping the denoiser inputs

The LDM denoising U-net takes input images of size 512×512. In contrast, RAM3D outputs are of
equal resolution to the input scene images, which can be non-square. To ensure size compatibility,
we need to crop and resize the RAM3D outputs to 512×512 before passing them to the denoiser (see
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Figure 2). For the STATUE, FACE and GARDEN scenes, we resize all images to height 512 and take
a centre-crop of 512×512, which always contains the entire object mask region. For the RED-NET
scene, the object mask is positioned on the left side of the images; we therefore select the left-most
512 pixels for cropping.

For the FERN scene, input images are annotated with small user-provided masks. We find that the
previous approach provides too small of a mask region to the LDM’s denoiser. In this case, we train
RAM3D using the original dataset downsampled by a factor of 2 to a resolution of 2016×1512, and
select a rectangular crop around the object mask. We compute the tightest rectangular crop which
covers the mask region, and then double the crop-region height and width whilst keeping its centre
intact. Finally, we increase the crop region height and width to the max of the height and width,
obtaining a square crop containing the inpainting mask region. We apply this crop to the output of
RAM3D and then interpolate to 512×512 before proceeding as before.

I.5 Loss functions

During the Erase training stage, we find it necessary to backpropagate reconstruction loss gradients
through pixels close to the inpainting mask (See Ablation Figure 7), to successfully reconstruct the
background scene. We therefore additionally render pixels inside the Halo region (Section I.3, Figure
3), and compute reconstruction loss Lrecon and perceptual loss Lvgg on these pixels, together with
the corresponding region on the input images. Note that the masked image content does not fall
inside the Halo region in the input images - therefore Lrecon and Lvgg only provide supervision on the
scene backgrounds. For the reconstruction loss, we use mean-squared error computed between the
input image and RAM3D’s RGB output. For perceptual loss, we use mean-squared error between
the features computed at layer 8 of a pre-trained and frozen VGG-16 network [60]. In both cases,
the loss is calculated on the exterior of the inpainting mask and backpropagated through the Halo
region. During the Replace training phase, following [2], we apply LBGT+

loss between our rendered
output x, and the LDM denoised output x̂, obtaining gradients to update our NeRF-scene weights
towards the LDM image prior (see HiFA Loss in Figure 2, eqn 11 [2]). No other loss functions are
applied during this phase, thus loss gradients are only backpropogated to the pixels on the interior of
the inpainting masks. For memory and speed efficiency, RAM3D only renders pixels which lie inside
the inpainting mask at this stage (Figure 3), and otherwise samples RGB values directly from the
corresponding input image.

Finally, following [42], we apply depth regularisation using the negative Pearson correlation coef-
ficient between our NeRF-rendered depth map, and a monocular depth estimate computed on the
LDM-denoised RGB output. The depth estimate is obtained using an off-the-shelf model [43]. This
loss is backpropogated through all rendered pixels; i.e the union of the inpainting mask and Halo
region shown in Figure 3. We do not apply this regularisation during the Replace stage. In summary,
the total loss function for the Replace stage is:

Ltotal = LBGT+ + λdepthLdepth + λreconLrecon + λvggLvgg (6)

with loss weights as follows: λrecon = 3, λvgg = 0.03, λdepth = 3.

We use the Adam optimiser [61] with a learning rate of 1e-3, which is scaled up by 10 for the
Instant-NGP hash encoding parameters.

I.6 Training details

Each dataset is downsampled to have a shortest image side-length (height) equal to 512, so that square
crops provided to the LDM inpainter include the full height of the input image. The FERN scene is an
exception, in which we sample a smaller 512 image crop within dataset images with a downsample
factor of 2.

Following [13, 2], we find that classifier-free guidance (CFG) is critical to obtaining effective gradients
for distillation sampling from the LDM denoiser. We use a CFG scale of 30 during the Replace
stage, and 7.5 during the Erase stage. We also adopt the HiFA noise-level schedule, with t_min
= 0.2, t_max = 0.98, and use stochasticity hyperparameter η = 0. In the definition of LBGT+ loss
(see eqn 11 in [2]), we follow HiFA and choose a λrgb value of 0.1. We render the RAM3D radiance
function using a coarse-to-fine sampling strategy, with 128 coarse and 128 fine raysamples. During
the Replace training stage, we swap the composited background image with a randomly chosen plain
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(a) (b)

Figure 18: We show 2 failure cases for RAM3D. a) a challenging multi-object prompt results in
an incoherent combination of both objects. b) we observe a multi-face problem which results in
unrealistic geometry for the watermelon slice.

(a) (b)

Figure 19: We show 2 additional failure cases for RAM3D. a): Editing object properties changes
object identity. b): replacing the statue with much larger objects leads to degraded synthesis quality.

RGB image at every 3rd training step. As shown in the Ablation Figure 7, this step is critical to
achieving a clean separation of foreground and background.

We train RAM3D for 20,000 training steps, during both Erase and Replace training stages. Training
takes approximately 12 hours on a single 32GB V100 GPU. The output of our Replace stage RAM3D
training is a set of multiview images which match the input scene images on the visible region, and
contain inpainted content on the interior of the masked region which is consistent across views. To
obtain novel views, we train NeRFs with standard novel view synthesis methods using RAM3D
edited images and the original scene cameras poses as training datasets. We use nerf-pytorch [59] for
LLFF scenes (STATUE, FERN, RED-NET SCENES), the nerf-studio [62] Nerfacto model for the FACE
scene and Gaussian Splatting [36] for the GARDEN scene.

J Limitations

As noted in Appendix 4.1, RAM3D is capable of adding multiple objects to scenes by using multiple
prompts. However, we note in Figure 18 a) that adding multiple objects using a single edit prompt
can sometimes result in an implausible composition which lacks a coherent spatial relationship.
Furthermore, as ReplaceAnything3D is based on text-to-image model distillation techniques, our
method suffers from similar artifacts to these methods, such as the Janus multi-face problem, as
shown in Figure 18 b).

Our Erase-and-Replace approach might remove important structural information from original objects,
so it is not suitable for editing objects’ properties such as appearance or geometry (for example,
turning the statue gold, see Figure 19 a).). Our method generates a Bubble NeRF from scratch
inside the edit region, meaning that the structural information regarding the original statue is lost.
Consequently, our model generates an entirely new statue, with gold appearance.

We note that our method works best when Erasing and Replacing objects of similar size. A significant
size mismatch between Erased and Replaced objects may lead to degraded synthesis quality. This
can be observed in Figure 19 b), (replacing the statue with a bus).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide our goal for the paper, a short description of the method and
overview of the results included in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dedicate a section to discuss current limitations with examples for failure
cases, and discuss future direction to rectify this (see Appendix section J).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not focus on theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on data pre-processing and training steps in the Appendix
section I.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We base our method on open-source pre-trained models without proposing
new datasets. Comprehensive implementation and necessary infrastructure details for our
method are provided in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive details on data preprocessing, implementation, and
necessary infrastructure for our method in the Appendix section I.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our method is applied for each scene instead of large datasets of multiple
scenes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on training time, process, and our infrastructure description
(Appendix section I.6).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include an Impact Statements section in our Appendix (section B).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We utilize MIT-licensed datasets and open-source models, all of which have
been widely used in prior publications.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provided the questions that were asked in our User Study in Appendix
Sec. C, whilst the relevant videos are shown in the video on our project page. Respondents
participated voluntarily and were not compensated.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: Our User Study (Appendix Sec. C) did not incur risks to study participants
and does not require specific approval.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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