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Abstract

Open-vocabulary semantic segmentation seeks to label each pixel in an image1

with arbitrary text descriptions. Vision-language foundation models, especially2

CLIP, have recently emerged as powerful tools for acquiring open-vocabulary3

capabilities. However, fine-tuning CLIP to equip it with pixel-level prediction4

ability often suffers three issues: 1) high computational cost, 2) misalignment5

between the two inherent modalities of CLIP, and 3) degraded generalization ability6

on unseen categories. To address these issues, we propose H-CLIP, a symmetrical7

parameter-efficient fine-tuning (PEFT) strategy conducted in hyperspherical space8

for both of the two CLIP modalities. Specifically, the PEFT strategy is achieved9

by a series of efficient block-diagonal learnable transformation matrices and a10

dual cross-relation communication module among all learnable matrices. Since11

the PEFT strategy is conducted symmetrically to the two CLIP modalities, the12

misalignment between them is mitigated. Furthermore, we apply an additional13

constraint to PEFT on the CLIP text encoder according to the hyperspherical energy14

principle, i.e., minimizing hyperspherical energy during fine-tuning preserves the15

intrinsic structure of the original parameter space, to prevent the destruction of16

the generalization ability offered by the CLIP text encoder. Extensive evaluations17

across various benchmarks show that H-CLIP achieves new SOTA open-vocabulary18

semantic segmentation results while only requiring updating approximately 4% of19

the total parameters of CLIP.20

1 Introduction21

The aim of open-vocabulary semantic segmentation is to create a segmentation model capable of22

labeling each pixel in an image with categories that are not limited to a specific closed set according to23

text descriptions. Vision-language foundation models [43, 5, 34, 39, 11, 17, 26, 21, 27, 13, 18, 29, 10,24

28, 45], especially CLIP [39], are often utilized to endow open-vocabulary recognition capabilities.25

Consequently, open-vocabulary semantic segmentation essentially boil down to transferring these26

vision-language foundation models, originally trained with image-level supervision, to perform27

pixel-level predictions.28

To this end, current methods [52, 48, 7, 50] typically fine-tune CLIP on a benchmark dataset with29

segmentation annotations, i.e., COCO [2], to equip it with the segmentation ability. However, this30

often leads to three main issues. First, fine-tuning CLIP on limited categories would affect its31

generalization ability, resulting in significant performance degradation on unseen categories. Second,32

current fine-tuning strategies are usually asymmetrical, which inevitably causes a misalignment33

between the two inherent modalities of CLIP, i.e., image and text [52], which may lead to sub-34

optimal performance. Third, although remarkable performance gains, these approaches often rely on35

computationally extensive full fine-tuning, which raises concerns about scalability and affordability.36
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To address these issues, we propose a symmetric parameter-efficient fine-tuning (PEFT) strategy37

for CLIP, dubbed H-CLIP. Specifically, we implement this PEFT through a partial orthogonal fine-38

tuning (POF) strategy, which introduces a series of efficient block-diagonal learnable transformation39

matrices into the hyperspherical space. Then, to preserve CLIP’s generalization ability, we leverage40

the hyperspherical energy principle [32, 38], which suggests that maintaining the same hyperspherical41

energy during fine-tuning preserves the intrinsic structure, i.e., generalization ability. In light of this,42

we upgrade our POF by incorporating orthogonal constraints in the learnable matrices for updating43

CLIP’s text encoder, as orthogonal transformations keep the hyperspherical energy unchanged during44

fine-tuning. Subsequently, we introduce a dual cross-relation communication (DCRC) module to45

explicitly encourage cross-modal and cross-layer communications within all learnable matrices.46

This communication not only preserves the hyperspherical energy but also further mitigating the47

misalignment problem.48

Extensive results demonstrate that H-CLIP achieves new state-of-the-art open-vocabulary semantic49

segmentation results across three benchmarks by fine-tuning CLIP with approximately 4% of the50

total parameters of CLIP.51

2 Related Work52

2.1 Open-vocabulary Semantic Segmentation53

Prior open-vocabulary semantic segmentation works typically perform this task through leveraging54

CLIP [39]. initial efforts like [56] directly fine-tune CLIP on mainstream segmentation datasets, e.g.,55

COCO [2]. However, they claim that fine-tuning CLIP’s encoder significantly reduces its ability56

to generalize to unseen classes. To address this issue, some methods [15, 8, 51, 49] swing to the57

opposite extreme, fine-tuning an additional mask generator [6] for segmentation while keeping CLIP58

frozen to maintain generalization-oriented recognition. However, this frozen parameter space lacks59

segmentation awareness, resulting in a misalignment between regions and text descriptions [30].60

Other studies [52, 50, 7] propose an advanced solution that fine-tunes only selected parameters, e.g.,61

certain layers of CLIP, to enable pixel-level predictions while keeping most of CLIP’s parameters62

fixed, thus minimizing losing of generalization. Although the advantages are remarkable, these63

methods often work with a very small learning rate, implicitly encouraging a small deviation from64

the pre-trained CLIP, limiting the segmentation performance. In a nutshell, the trade-off between65

preserving CLIP’s generalization and learning segmentation knowledge persists, hindering the final66

performance. Based on the paradigm of existing fine-tuning-based methods, our method explores a67

better trade-off from a fresh viewpoint: hyperspherical space.68

2.2 Large-scale Model Fine-tuning69

Along with the improvement of large-scale foundation models [26, 34, 28, 23, 53, 42, 41, 40, 60],70

e.g., segment anything model [23], numerous fine-tuning works [37, 36, 4, 57, 58, 14, 54, 47, 31, 61]71

are proposed to adapt these models to various downstream scenarios. The core of these approaches72

lies in updating only limited parameters to capture the specific characteristics of different scenarios,73

while keeping most parameters fixed to maintain generalization. In contrast, fine-tuning CLIP74

for open-vocabulary semantic segmentation often meets a dilemma. On the one hand, limited75

parameters typically fall short in facilitating the transition from a classification model, i.e., CLIP, to a76

segmentation task. On the other hand, directly increasing the number of trainable parameters risks77

undermining CLIP’s ability to generalize to unseen classes, as experimented in CAT-Seg [7]. Most78

methods [52, 48] solve this issue by simply freezing CLIP’s text encoder and fine-tuning its image79

encoder, inevitably causing misalignment between the two modalities of CLIP. In this paper, we shed80

light on how to preserve generalization in a symmetric parameter-efficient fine-tuning manner and81

strive to explore an appropriate fine-tuning method for open-vocabulary semantic segmentation.82

3 Preliminaries83

3.1 Hyperspherical Energy84

Existing fine-tuning methods implicitly assume that a smaller Euclidean distance between the fine-85

tuned model and the pre-trained model indicates better preservation of the pre-trained ability. However,86
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the Euclidean difference is unable to fully capture the degree of semantic preservation. According to87

the inspiration from Thomson problem[44] which is to determine the minimum electrostatic potential88

energy configuration of N mutually-repelling electrons on the surface of a unit sphere, we adopt the89

Hyperspherical Energy to characterize the diversity of the model. The hyperspherical energy function90

of a fully connected layer W is defined as HE(W ) :=
∑

i ̸=j ∥ŵi−ŵj∥−1, where ŵi :=wi/∥wi∥91

denotes the i-th normalized neuron. The power of the model representation can be characterized by the92

hyperspherical energy of its neurons. Higher energy implies higher redundancy, while lower energy93

indicates that these neurons of the model are more diverse. For the original semantic information not94

to be destroyed in the case of fine-tuning, we hypothesize that a good fine-tuning model should have95

a minimal difference in hyperspherical energy compared to the pre-trained model:96

min
W

∥∥HE(W )− HE(W 0)
∥∥ ⇔ min

W

∥∥∥∥∑
i̸=j

∥ŵi − ŵj∥−1 −
∑
i̸=j

∥ŵ0
i − ŵ0

j∥−1

∥∥∥∥. (1)

One can easily observe that the attainable minimum is zero for Eq. (1). In this case, the hyperspherical97

energy should satisfy an invariance property (the application of the same orthogonal transformation98

for all neurons demonstrates the pairwise hyperspherical similarity). Based on the hyperspherical99

energy invariance property, the minimum of zero can be achieved as long as W and W 0 differ100

only up to a rotation or reflection, i.e., W =RW 0 in which R∈Rd×d is an orthogonal matrix (The101

determinant 1 or −1 means rotation or reflection, respectively).102

3.2 Notation of Tensor Product103

In this section, we introduce the fundamental concept underlying our DCRC (Sec. 4.3): tensor product.104

A p-order tensor is indexed by p indices and can be represented as a multidimensional array of data.105

Formally, a p-order tensor A can be written as A = (ai1,i2,··· ,ip) ∈ Rn1×n2×···np . Slices of a tensor106

are matrices defined from the tensor by holding all but two indices constant. For a 3-order tensor,107

A(:, :, k) corresponds the kth frontal slice. For p-order tensors, matrix slices of p-order tensors can be108

referenced using linear indexing by reshaping the tensor into an n1×n2×n3n4 · · ·np 3-order tensor109

and referring to the kth frontal slice as A(:, :, k). Ai ∈ Rn1×n2×···np−1 for i = 1, · · · , np denotes the110

(p− 1)-order tensor created by holding the pth index of A fixed at i. It is possible to create a tensor111

in a block circulant pattern, where each block is a tensor of (p− 1)-order:112

circ(A) =


A1 Anp

Anp−1 · · · A2

A2 A1 Anp · · · A3

...
...

...
. . .

...
Anp

Anp−1 Anp−2 · · · A1

 ,

where circ(·) creates a block circulant tensor and the size of circ(A) is (n1np×n2np×· · ·×np−2np×113

np−1). define unfold(·) to take an n1 × · · · × np tensor A and return an n1np × n2 × · · ·np−1 block114

tensor in the following way:115

unfold(A) =
[
A1 A2 · · · Anp

]T
.

The operation that takes unfold back to tensor form is the “fold” command. Specially, fold(·, np)116

takes an n1np × n2 × · · · × np−1 block tensor and returns an n1 × · · · × np tensor, defined as:117

fold(unfold(A), np) = A.

4 Methodology118

4.1 Overview of H-CLIP119

Fig. 2 illustrates the proposed H-CLIP framework, which is based on two core components: (1) POF120

updates the pre-trained parameter space of CLIP using a series of block-diagonal transformation121

matrices. According to analysis in Sec. 1, each parameter matrix in CLIP’s text encoder is orthogonal122

to preserve generalization. (2) DCRC incorporates cross-modal and cross-layer communication123

within all tunable matrices, facilitating alignment between different modalities.124
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Figure 1: A schematic representation of H-CLIP. In the H-CLIP framework, we propose a partial
orthogonal fine-tuning strategy, where each pre-trained weight matrix is paired with a tuned block-
diagonal transformation matrix, some of which are orthogonal to preserve generalization. Then, we
introduce a dual cross-relation communication mechanism to facilitate communication among all
matrices, enabling alignment between different modalities.

4.2 Partial Orthogonal Fine-tuning125

The core idea of partial orthogonal fine-tuning (POF) is to introduce the concept of hyperspherical126

space for fine-tuning CLIP. In this hyperspherical space, we fine-tune CLIP’s text encoder under an127

orthogonality design principle from OFT [38] to preserve the hyperspherical energy of the pre-trained128

parameter space. Similarly, we use Cayley parameterization [3] to ensure a tunable matrix R is129

strictly orthogonal, formally as:130

R = (I +Q)(I −Q)−1, (2)

where Q is skew-symmetric. Here, for R in CLIP’s image encoder, we remove the orthogonality131

constraint, defined as:132

R⊤R = RR⊤ = I, (3)
where I is an identity matrix. Considering the relatively large dimension d of the pre-trained matrix,133

for better efficiency, we introduce a block-diagonal structure by parameterizing R with b blocks,134

formally as:135

R = diag(R1,R2, · · ·Ri, · · · ,Rb) =

R1

. . .
Rb

 , (4)

where Ri ∈ Rd/b×d/b. Specifically, denote RV = {Rv1, · · · ,Rvℓ, · · · ,RvL} and RE =136

{Re1, · · · ,Reℓ, · · · ,ReL} as the sets of block-diagonal matrices in CLIP’s image encoder and137

text encoder, respectively, where L is its number of Transformer layers, Rvℓ ∈ Rdv×dv , and138

Reℓ ∈ Rde×de . For simplicity, we set dv = de = d. Overall, we develop a H-CLIP framework,139

and for an input feature map Mℓ in the ℓth Transformer layer of CLIP, the right branch produces the140

adjusted feature map via H-CLIP, M̃ℓ, formally via:141

M̃ℓ =

{
Fℓ(Mℓ;RℓWℓ), if Rℓ ∈ RV

Fℓ(Mℓ;RℓWℓ), s.t. R⊤
ℓ Rℓ = RℓR

⊤
ℓ = I otherwise,

(5)

where Wℓ is a pre-trained weight matrix in ℓth layer of CLIP’s encoder, and Fℓ represents ℓth layer of142

CLIP’s encoder. During the fine-tuning phase, H-CLIP is fine-tuned in conjunction with the original143

parameter space of CLIP, which is loaded from the pre-trained checkpoint and remains frozen.144

4.3 Dual Cross Relation Communication145

Although in POF, we relax the orthogonal constraint for CLIP’s image encoder to learn segmentation146

knowledge, each layer of the image encoder still incorporates a limited number of parameters, which147

largely restricts the flexibility of the projection adjustment due to the limitation of Hidden Markov148
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Chain along layers [24, 46, 36]. To address this limitation, one might consider fully fine-tuning149

instead of using a small number of parameters. However, this approach can cause a misalignment150

between image and text features in CLIP, resulting in sub-optimal performance [52]. Based on151

the above analysis, we introduce Dual Cross-Relation Communication (DCRC), which facilitates152

interaction among different layers and modalities (i.e., text and image). DCRC explicitly enhances153

the flexibility of fine-tuned projection adjustments and prevents misalignment issues.154

DCRC introduces cross-layer and cross-modality communication among different block-diagonal155

matrices, achieved through two relation projections. To do this, we first treat all blocks in ℓth layer as156

an individual slice in this 3-order tensor Tℓ, which is derived as follows:157

Tℓ = [Rvℓ1,Reℓ1, · · · ,Rvℓi,Reℓi, · · · ,Rvℓb,Reℓb] ∈ Rq×q×(b+b), (6)

Where q = d/b. Then, we treat the tensor Tℓ as an individual slice within a 4-order tensor T , defined158

as follows:159

T = [T1, T2, · · · , Tℓ, · · · , TL] ∈ Rq×q×(b+b)×L. (7)

Initially, according to the characteristics of gradient propagation in deep learning theory, i.e., chain160

rule, each frontal slice R·ℓi ∈ {Rq×q}(b+b)×L is updated sequentially in CLIP’s encoder. As a result,161

updating the T lacks cross-frontal-slice communication, limiting the flexibility of adjusting fine-tuned162

projection. To address this, we introduce two special tensor products, i.e., 3-order T-product and163

Higher-order T-product.164

Definition 4.1(3-order T-product) For A ∈ Rn1×n2×n3 and B ∈ Rn2×l×n3 , the 3-order T-product165

C ∈ Rn1×l××n3 = A ∗ B is defined as:166

C = A ∗ B = fold(circ(A) · unfold(B)), (8)

where “·” represents standard matrix product.167

Definition 4.2(Higher-order T-product) For A ∈ Rn1×n2×n3···×np and B ∈ Rn2×l×n3×···×np , the168

High-order T-product C ∈ Rn1×l×n3···×np = A ∗ B is defined as:169

C = A ∗ B = fold(circ(A) ∗ unfold(B)). (9)

If A ∈ Rn1×n2×n3 , according to the 3-order T-product, there is an invertible transform S3(·) :170

Rn1×n2×n3 → Rn1×n2×n3 in third dimension and it transform the Eq. (8) as:171

C = S−1
3 (S3(A)⊙ S3(B)) = S−1

3 (Ā ⊙ B̄) = S−1
3 (C̄), (10)

where C̄ = Ā ⊙ B̄ denotes the frontal-slice-wise product (Definition 2.1 refers to [19]) C̄(; , ; , i) =172

Ā(; , ; , i) · B̄(; , ; , i), i = 1, 2, · · · , n3 and S−1
3 (·) is the inverse transform of S3(·). According to the173

definition of the frontal-slice-wise product, the invertible transform S3(·) is formulated as:174

Ā = S3(A) = A×3 S3, (11)

where “×3” denotes the mode-3 product and S3 ∈ Rn3×n3 is an arbitrary invertible matrix. Similarly,175

the inverse transform of Eq. (11) is derived as:176

A = S−1
3 (Ā) = Ā ×3 S

−1
3 . (12)

Similarly, if A ∈ Rn1×n2×···×np , according to the Higer-order T-product, there are invertible177

transform Si(·) : Rn1×n2×···×np → Rn1×n2×···×np , i = 3, 4, · · · , p in ith dimension and they178

transform the Eq. (9) as:179

C = S̃−1(S̃(A)⊙ S̃(B)) = S̃−1(Ā ⊙ B̄) = S̃−1(C̄), (13)

where S̃(A) = Sp(Sp−1(· · ·S3(A) · · · )), C̄ = Ā ⊙ B̄ denotes the frontal-slice-wise product180

C̄(; , ; , i) = Ā(; , ; , i) · B̄(; , ; , i), i = 1, 2, · · · , n3n4 · · ·np and S̃−1(·) is the inverse transform181

of S̃(·). Similarly, the inverse transform S̃(·) is formulated as:182

Ā = S̃(A) = A×3 S3 ×4 S4 · · · ×p Sp, (14)

and its inverse transform is derived as:183

A = S̃−1(Ā) = Ā ×3 S
−1
3 ×4 S

−1
4 · · · ×p S

−1
p . (15)
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Model VLM Additional Backbone A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

Traditional Fine-Tuning
ZS3Net [1] - ResNet-101 - - - 19.4 38.3 -
LSeg [25] CLIP ViT-B/32 ResNet-101 - - - - 47.4 -
ZegFormer [8] CLIP ViT-B/16 ResNet-101 4.9 9.1 16.9 42.8 86.2 62.7
ZSseg [51] CLIP ViT-B/16 ResNet-101 7.0 - 20.5 47.7 88.4 -
OpenSeg [15] ALIGN ResNet-101 4.4 7.9 17.5 40.1 - 63.8
OVSeg [30] CLIP ViT-B/16 ResNet-101c 7.1 11.0 24.8 53.3 92.6 -
ZegCLIP [59] CLIP ViT-B/16 - - - - 41.2 93.6 -
CAT-Seg [7] CLIP ViT-B/16 - 12.0 19.0 31.8 57.5 94.6 77.3

Parameter-efficient Fine-Tuning
SAN [50] CLIP ViT-B/16 - 10.1 12.6 27.5 53.8 94.0 -
Ours CLIP ViT-B/16 - 12.4 19.3 32.4 57.9 95.2 78.2

Traditional Fine-Tuning
LSeg [25] CLIP ViT-B/32 ViT-L/16 - - - - 52.3 -
OpenSeg [15] ALIGN Eff-B7 8.1 11.5 26.4 44.8 - 70.2
OVSeg [30] CLIP ViT-L/14 Swin-B 9.0 12.4 29.6 55.7 94.5 -
SAN [50] CLIP ViT-L/14 - 12.4 15.7 32.1 57.7 94.6 -
ODISE [49] CLIP ViT-L/14 Stable Diffusion 11.1 14.5 29.9 57.3 - -
CAT-Seg [7] CLIP ViT-L/14 - 16.0 23.8 37.9 63.3 97.0 82.5

Parameter-efficient Fine-Tuning
SAN [50] CLIP ViT-L/14 - 12.4 15.7 32.1 57.7 94.6 -
Ours CLIP ViT-L/14 - 16.5 24.2 38.4 64.1 97.7 83.2

Table 1: Comparison with state-of-the-art methods on standard benchmarks. The best-
performing results are presented in bold, while the second-best results are underlined. “VLM”:
visual language model.

Derivation. please refer to supplementary material. ■184

According to Eqs. (29), (30) and (31), we adopt its idea and design arbitrary invertible relation matrix185

S3 ∈ R(b+b)×(b+b) and S4 ∈ RL×L to capture the cross-modality and cross-layer information in T .186

Then the updated tensor Tw is formulated as:187

Tw = T ×3 S3 ×4 S4 ∈ Rq×q×(b+b)×L, (16)

where the relation matrix S3 and S4 are learnable. To better capture the nonlinear interactions inside188

the whole parameter space, we further adopt k layers deep neural network (DNN) f3(·) and f4(·) to189

replace the transform ×3S3 and ×4S4, respectively, and the DNN f3(·) is formulated as:190

f3(T ) = σ(σ(· · ·σ(σ(A×3 W1)×3 W2) · · · )×Wk−1)×Wk, (17)

where σ(·) is a nonlinear scalar function and matrices {Wj ∈ R(b+b)}kj=1. The DNN f4(·) is similar.191

Finally, the T is updated by T = T +αTw, where α ∈ R(b+b)×L is a learnable parameter.192

5 Experiments193

5.1 Experimental Setup194

Datasets. Following previous studies [7, 48], we utilizes the COCO-Stuff dataset [2] as our training195

set. This dataset comprises approximately 118,000 densely annotated images across 171 distinct196

semantic categories. During inference, we carry out comparisons with state-of-the-art methods across197

several semantic segmentation datasets, including ADE20K [55], PASCAL VOC [12], and PASCAL-198

Context [35]. ADE20K [55] is a classical semantic segmentation dataset comprising around 20,000199

training images and 2,000 validation images. Besides, it includes two different test sets: A-150 and200

A-847. The test set A-150 has 150 common categories, while the test set A-847 has 847 categories.201

PASCAL VOC [12] is a small dataset for semantic segmentation, which includes 1464 training202

images and 1449 validation images. The dataset contains 20 different foreground categories. We203

name it as PAS-20. In line with [7], we also report a score on PAS-20b, which involves “background”204

as the 21st category. PASCAL-Context [35] is upgraded from the original PASCAL VOC dataset.205

It includes two different test sets: PC-59 and PC-459 for evaluation. The test set PC-59 has 59206

categories, while the test set PC-459 has 459 categories.207
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Image Ground truth CAT-Seg [7] Ours

Figure 2: Comparison of qualitative reults on ADE20K [55] with 150 categories. we compare Our
method with CAT-Seg [7].

Evaluation metric. Following prior works [7, 48], we adopt mean Intersection over Union (mIoU)208

to evaluate the semantic segmentation performance on the three benchmarks.209

Implementation Details. We implement our method using the Transformer-based CLIP model.210

Following the protocol established in [7], we evaluate our results on two versions of the CLIP model:211

ViT-B/16 and ViT-L/14. For training, we use the Adam optimizer [22] with an initial learning rate212

of 5 × 10−6 for CLIP, and a weight decay of 10−4. Training is conducted with one image per213

mini-batch. We set q = 128 for balancing efficiency and performance. The function f3(·) and f4(·)214

are implemented using two 2-layer MLPs. We act the cost-based approach provided in [7] as our215

decoder. All models are trained over 80,000 iterations on 4 NVIDIA RTX 3090 GPUs.216

5.2 Main Results217

Methods OVSeg [30] CAT-Seg [7] SAN [50] Ours

Param. (M) 147.2 25.6 8.4 5.6

Table 2: Efficiency comparison in terms of learnable pa-
rameters.

Comparing to SOTAs. Here, we compare218

our proposed H-CLIP with several state-of-219

the-art methods, as shown in Table 1, using220

six test sets across three benchmarks. Over-221

all, we achieve the best results. Most exist-222

ing open-vocabulary semantic segmentation223

methods employ traditional fine-tuning approaches, i.e., full or partial fine-tuning (tuning certain lay-224

ers of CLIP). While these methods offer sufficient flexibility for learning new knowledge, they often225

result in a significant performance drop on unseen classes, as observed with OVSeg [30]. Among226

these methods, CAT-Seg [7] achieves performance comparable to ours. However, its fine-tuning227

scheme is manually controlled through different layer combinations, necessitating a careful design to228

balance generalization and flexibility, while ours does not suffer from such an issue. Then, compared229

to SAN [50], another parameter-efficient fine-tuning method that introduces only a limited number of230

tunable parameters, our approach significantly outperforms it, achieving improvements of 6.6% on231

the PC-459 dataset and 3.9% on the PC-59 dataset with ViT-B/16 as the base model. These results232

demonstrate the effectiveness of our method in preserving generalization while learning segmentation233

knowledge.234

Qualitative results. Here, we visualize our method’s representative example segmentation results235

against prevailing methods, e.g., CAT-Seg [7] in the PC-459 dataset. As shown in Figs. 2 - 4, we236

observe that our approach is able to generalize on diverse scenarios and produce more accurate237

results.238

7



Image Ground truth CAT-Seg [7] Ours

Figure 3: Comparison of qualitative reults on VOC2010 [12] with 59 categories.

Image Ground truth CAT-Seg [7] Ours

Figure 4: Comparison of qualitative reults on ADE20K [55] with 847 categories.

Method POF DCRC Param. (M) A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

Freeze ✗ ✗ 0 4.4 6.6 24.8 49.4 92.5 71.9
LoRA [16] ✗ ✗ 7.5 11.4 17.6 28.6 55.1 94.2 76.7

✓ ✗ 5.62 12.3 19.0 31.6 56.4 94.6 76.3
H-CLIP ✗ ✓ 0.01 7.6 10.9 26.8 53.6 92.7 74.5

✓ ✓ 5.63 12.4 19.3 32.4 57.9 95.2 78.2

Table 3: Ablation study on the components of H-CLIP. “LoRA”: a mainstream parameter-efficient
tuning method with a comparable number of parameters for comparison. “POF”: Partial Orthogonal
Fine-tuning. “DCRC”: Dual Cross Relation Communication. The base model is ViT-B/16.

Efficiency comparison. We compare the efficiency of our method with other approaches, including239

OVSeg [30], CAT-Seg [7], and SAN [50], all of which utilize CLIP ViT models. The comparison,240
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Block dimension q Param. (M) A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

256 × 256 22.52 12.4 19.2 32.7 57.6 95.4 77.9
(a) 128 × 128 5.63 12.4 19.3 32.4 57.9 95.2 78.2

64 × 64 1.41 11.7 18.4 31.7 56.9 95.0 76.4

Orthogonal Constraint Param. (M) A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

w/o 7.51 11.9 18.5 32.2 57.5 95.3 76.9
(b) with 3.76 12.2 19.1 31.4 57.1 94.3 76.8

POF 5.63 12.4 19.3 32.4 57.9 95.2 78.2

Table 4: Ablation study on different designs in POF. We show the impact of (a) different block
dimensions q and (b) orthogonal constraints. The base model is ViT-B/16.

summarized in Table 2, shows that our method employs the fewest trainable parameters while241

balancing the generalization of the pre-trained model and the flexibility for learning new knowledge.242

Additionally, since we introduce a lightweight architecture for calculating relations, specifically two243

relation matrices, the inference overhead is negligible during the inference phase.244

5.3 Ablative Studies245

Ablation of Main Components. Here, we conduct an ablation study to demonstrate the benefits246

of each component of our proposed H-CLIP: partial orthogonal fine-tuning (POF) and dual cross-247

relation communication (DCRC). We use the ViT-B/16 [9] version of CLIP as the baseline, shown in248

row 1 of Table 3. Additionally, we implement a mainstream parameter-efficient fine-tuning (PEFT)249

method, LoRA [16], for comparison with a similar number of learnable parameters, as shown in row250

2. Note that LoRA can improve performance compared to the baseline, demonstrating that PEFT is a251

viable approach for this task. Then, comparing row 5 to row 2, we observe significant performance252

gains, indicating that our results are driven by our targeted solution rather than merely the number of253

parameters. Moreover, row 3 shows that using only POF preserves generalization on unseen classes,254

particularly in the A-847 dataset. Meanwhile, solely adapting DCRC shows limited improvement, as255

it only enhances communication among frozen weight matrices. Finally, integrating DCRC with POF256

yields clear performance gains, e.g., a 12.6% improvement on the PC-459 dataset.257

Different Design of POF. Table 4 presents experiments introducing different designs into POF. The258

design of POF is related to (1) block dimension, i.e., q, and (2) how orthogonality constraints are259

applied. In (a), the results show that larger In (a), the results show that larger q generally performs260

better than smaller q. However, we find a good trade-off between performance and parameter261

efficiency, with q = 128 working well across datasets and tasks. Therefore, we maintain this setting262

in other experiments. In (b), we show that both blindly applying orthogonality constraints to the263

learnable matrices of all layers and not using any constraints at all can degrade performance on most264

test sets, demonstrating the value of our analysis with the hyperspherical energy principle.265

6 Conclusion266

In this paper, we propose a H-CLIP framework to address three issues: 1) high computational cost, 2)267

misalignment between the two inherent modalities of CLIP, and 3) degraded generalization ability268

on unseen categories when equipping CLIP with pixel-level prediction ability for open-vocabulary269

semantic segmentation. Specifically, we propose a symmetrical parameter-efficient fine-tuning (PEFT)270

strategy conducted in hyperspherical space for both of the two CLIP modalities. Specifically, the271

PEFT strategy is achieved by a series of efficient block-diagonal learnable transformation matrices and272

a dual cross-relation communication module among all learnable matrices to mitigate misalignment273

between different modalities. Furthermore, we apply an additional constraint to PEFT on the CLIP274

text encoder according to the hyperspherical energy principle, i.e., minimizing hyperspherical energy275

during fine-tuning preserves the intrinsic structure of the original parameter space, to prevent the276

destruction of the generalization ability offered by the CLIP text encoder. Extensive experiments277

demonstrate that the proposed H-CLIP framework generalized improves segmentation performance278

across several benchmarks while introducing approximately 4% of CLIP’s total parameters. We hope279

our approach will provide a new direction and inspire future research in this field.280
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465

Appendix of H-CLIP

A Derivation of the Definition466

In this section, we provide derivations of definitions in the main paper.467

Definition 4.1(3-order T-product) For A ∈ Rn1×n2×n3 and B ∈ Rn2×l×n3 , the 3-order T-product468

C ∈ Rn1×l××n3 = A ∗ B is defined as:469

C = A ∗ B = fold(circ(A) · unfold(B)), (18)

where “·” represents standard matrix product.470

Definition 4.2(Higher-order T-product) For A ∈ Rn1×n2×n3···×np and B ∈ Rn2×l×n3×···×np , the471

High-order T-product C ∈ Rn1×l×n3···×np = A ∗ B is defined as:472

C = A ∗ B = fold(circ(A) ∗ unfold(B)). (19)

Derivation. According to [20], if A is n1 × n2 × n3, A can be block diagonalized by using Discrete473

Fourier Transformer (DFT) matrix Fn3
∈ Rn3×n3 as:474

(Fn3
⊗ In1

) · circ(unfold(A)) · (F∗
n3

⊗ In2
) = D =

D1

. . .
Dn3

 ∈ Rn1n3×n2n3 , (20)

where “⊗” denotes the Kernecker product, “F∗
n3

” denotes the conjugate transpose of Fn3
, “·” means475

standard matrix product and D is a block diagonal matrix. In fact, the i-th block matrix Di of D can476

be computed by applying DFT of A along 3-rd dimension. The 3-order T-product in Eq. (18) can477

be computed as:478

(F∗
n3

⊗ In1
) · ((Fn3

⊗ In1
) · circ(unfold(A)) · (F∗

n3
⊗ In2

)) · (Fn3
⊗ In2

) · unfold(B). (21)

It is readily shown that (Fn3
⊗ In2

)unfold can be computed by applying DFT of B along 3-rd479

dimension: the result called B̄. Thus, Eq. (21) remains to multiply each block matrix Di of D with480

each block matrix Bi of B̄, then take an inverse DFT along the 3-rd dimension of the result. Hence,481

the 3-order T-product in Eq. (18) can be re-formulated as:482

C = DFT−1
3 (DFT3(A)⊙ DFT3(B)) = DFT−1

3 (Ā ⊙ B̄) = DFT−1
3 (C̄), (22)

where DFT3(·) is DFT along 3-rd dimension and DFT−1
3 (·) is the inverse DFT along 3-rd dimension.483

In mathematics, the DFT of A along 3-rd dimension is formulated as:484

Ā = DFT3(A) = A×3 Fn3 . (23)

Similarly, the inverse DFT of Ā along 3-rd dimension is derived as:485

A = DFT−1
3 (Ā) = Ā ×3 F

−1
n3

. (24)

By the detailed theoretical analysis in [33], the DFT has been extended to a general invertible486

transform S with an invertible transform matrix S. In mathematics, the invertible transform of A487

along 3-rd dimension is formulated as:488

Ā = S3(A) = A×3 Sn3
. (25)

Similarly, the inverse transform of Ā along 3-rd dimension is derived as:489

A = S−1
3 (Ā) = Ā ×3 S

−1
n3

. (26)

Similarly, if A ∈ Rn1×n2×···×np , A can be block diagonalized by using a sequence of DFT matrices490

Fni ∈ Rni×ni , i = 3, 4, ·, p as:491

(Fnp
⊗ Fnp−1

⊗ · · · ⊗ Fn3
⊗ In1

) · Ã · (F∗
np

⊗ F∗
np−1

⊗ · · · ⊗ F∗
n3

⊗ In2
) = D, (27)
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where Ã = circ(unfold(A)) ∈ Rn1n3n4···np×n2n3···np . Since the matrix D is block diagonal with492

n3n4 · · ·np blocks each of size n1 × n2, the Higher-order T-product in Eq. (19) can be computed493

as:494

(F̃∗ ⊗ In1
) · ((F̃⊗ In1

) · Ã · (F̃∗ ⊗ In2
)) · (F̃n3

⊗ In2
) · B̃, (28)

where F̃ = Fnp ⊗ Fnp−1 ⊗ · · · ⊗ Fn3 . Using the DEF, it is straightforward to show that the block495

diagonal matrix D in Eq. (27) can be obtained by repeated DFTs of A along each dimension expect496

for 1-st and 2-nd dimension. Similarly, by using a sequence invertible transform Sj(·), i = 3, 4, ·, p497

with invertible transform matrix Si, the Higher-order T-product in Eq. (19) can be re-formulated as:498

C = S̃−1(S̃(A)⊙ S̃(B)) = S̃−1(Ā ⊙ B̄) = S̃−1(C̄), (29)

where S̃(A) = Sp(Sp−1(· · ·S3(A) · · · )), C̄ = Ā ⊙ B̄ denotes the frontal-slice-wise product499

C̄(; , ; , i) = Ā(; , ; , i) · B̄(; , ; , i), i = 1, 2, · · · , n3n4 · · ·np and S̃−1(·) is the inverse transform500

of S̃(·). The inverse transform S̃(·) is formulated as:501

Ā = S̃(A) = A×3 S3 ×4 S4 · · · ×p Sp, (30)

and its inverse transform is derived as:502

A = S̃−1(Ā) = Ā ×3 S
−1
3 ×4 S

−1
4 · · · ×p S

−1
p . (31)

■503
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NeurIPS Paper Checklist504

1. Claims505

Question: Do the main claims made in the abstract and introduction accurately reflect the506

paper’s contributions and scope?507

Answer: [Yes]508

Justification: The abstract clearly states the following claims about the paper’s contribu-509

tions and scope. We aim to address a significant challenge in open-vocabulary semantic510

segmentation: fine-tuning CLIP to achieve per-pixel predictions without compromising511

its generalization capabilities. To this end, we propose a novel H-CLIP, which introduces512

a partial orthogonal fine-tuning strategy that prevents a drop in hyperspherical energy,513

thereby preserving generalization. Subsequently, H-CLIP employs dual cross-relation com-514

munication to increase projection flexibility, facilitating the acquisition of segmentation515

knowledge.516

2. Limitations517

Question: Does the paper discuss the limitations of the work performed by the authors?518

Answer: [NA]519

Justification: Those are not discussed in the paper.520

Guidelines:521

• The answer NA means that the paper has no limitation while the answer No means that522

the paper has limitations, but those are not discussed in the paper.523

• The authors are encouraged to create a separate "Limitations" section in their paper.524

• The paper should point out any strong assumptions and how robust the results are to525

violations of these assumptions (e.g., independence assumptions, noiseless settings,526

model well-specification, asymptotic approximations only holding locally). The authors527

should reflect on how these assumptions might be violated in practice and what the528

implications would be.529

• The authors should reflect on the scope of the claims made, e.g., if the approach was530

only tested on a few datasets or with a few runs. In general, empirical results often531

depend on implicit assumptions, which should be articulated.532

• The authors should reflect on the factors that influence the performance of the approach.533

For example, a facial recognition algorithm may perform poorly when image resolution534

is low or images are taken in low lighting. Or a speech-to-text system might not be535

used reliably to provide closed captions for online lectures because it fails to handle536

technical jargon.537

• The authors should discuss the computational efficiency of the proposed algorithms538

and how they scale with dataset size.539

• If applicable, the authors should discuss possible limitations of their approach to540

address problems of privacy and fairness.541

• While the authors might fear that complete honesty about limitations might be used by542

reviewers as grounds for rejection, a worse outcome might be that reviewers discover543

limitations that aren’t acknowledged in the paper. The authors should use their best544

judgment and recognize that individual actions in favor of transparency play an impor-545

tant role in developing norms that preserve the integrity of the community. Reviewers546

will be specifically instructed to not penalize honesty concerning limitations.547

3. Theory Assumptions and Proofs548

Question: For each theoretical result, does the paper provide the full set of assumptions and549

a complete (and correct) proof?550

Answer: [Yes]551

Justification: All assumptions are proved clearly in the main paper or the supplemental552

material.553

Guidelines:554

• The answer NA means that the paper does not include theoretical results.555
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-556

referenced.557

• All assumptions should be clearly stated or referenced in the statement of any theorems.558

• The proofs can either appear in the main paper or the supplemental material, but if559

they appear in the supplemental material, the authors are encouraged to provide a short560

proof sketch to provide intuition.561

• Inversely, any informal proof provided in the core of the paper should be complemented562

by formal proofs provided in appendix or supplemental material.563

• Theorems and Lemmas that the proof relies upon should be properly referenced.564

4. Experimental Result Reproducibility565

Question: Does the paper fully disclose all the information needed to reproduce the main ex-566

perimental results of the paper to the extent that it affects the main claims and/or conclusions567

of the paper (regardless of whether the code and data are provided or not)?568

Answer: [Yes]569

Justification: The detailed experimental settings and information are provided in Sec. 5, and570

this information is sufficient to reproduce the main experimental results.571

Guidelines:572

• The answer NA means that the paper does not include experiments.573

• If the paper includes experiments, a No answer to this question will not be perceived574

well by the reviewers: Making the paper reproducible is important, regardless of575

whether the code and data are provided or not.576

• If the contribution is a dataset and/or model, the authors should describe the steps taken577

to make their results reproducible or verifiable.578

• Depending on the contribution, reproducibility can be accomplished in various ways.579

For example, if the contribution is a novel architecture, describing the architecture fully580

might suffice, or if the contribution is a specific model and empirical evaluation, it may581

be necessary to either make it possible for others to replicate the model with the same582

dataset, or provide access to the model. In general. releasing code and data is often583

one good way to accomplish this, but reproducibility can also be provided via detailed584

instructions for how to replicate the results, access to a hosted model (e.g., in the case585

of a large language model), releasing of a model checkpoint, or other means that are586

appropriate to the research performed.587

• While NeurIPS does not require releasing code, the conference does require all submis-588

sions to provide some reasonable avenue for reproducibility, which may depend on the589

nature of the contribution. For example590

(a) If the contribution is primarily a new algorithm, the paper should make it clear how591

to reproduce that algorithm.592

(b) If the contribution is primarily a new model architecture, the paper should describe593

the architecture clearly and fully.594

(c) If the contribution is a new model (e.g., a large language model), then there should595

either be a way to access this model for reproducing the results or a way to reproduce596

the model (e.g., with an open-source dataset or instructions for how to construct597

the dataset).598

(d) We recognize that reproducibility may be tricky in some cases, in which case599

authors are welcome to describe the particular way they provide for reproducibility.600

In the case of closed-source models, it may be that access to the model is limited in601

some way (e.g., to registered users), but it should be possible for other researchers602

to have some path to reproducing or verifying the results.603

5. Open access to data and code604

Question: Does the paper provide open access to the data and code, with sufficient instruc-605

tions to faithfully reproduce the main experimental results, as described in supplemental606

material?607

Answer: [No]608

Justification: The code will be made public after acceptance.609
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Guidelines:610

• The answer NA means that paper does not include experiments requiring code.611

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/612

public/guides/CodeSubmissionPolicy) for more details.613

• While we encourage the release of code and data, we understand that this might not be614

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not615

including code, unless this is central to the contribution (e.g., for a new open-source616

benchmark).617

• The instructions should contain the exact command and environment needed to run to618

reproduce the results. See the NeurIPS code and data submission guidelines (https:619

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.620

• The authors should provide instructions on data access and preparation, including how621

to access the raw data, preprocessed data, intermediate data, and generated data, etc.622

• The authors should provide scripts to reproduce all experimental results for the new623

proposed method and baselines. If only a subset of experiments are reproducible, they624

should state which ones are omitted from the script and why.625

• At submission time, to preserve anonymity, the authors should release anonymized626

versions (if applicable).627

• Providing as much information as possible in supplemental material (appended to the628

paper) is recommended, but including URLs to data and code is permitted.629

6. Experimental Setting/Details630

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-631

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the632

results?633

Answer: [Yes]634

Justification: All the experimental settings are clarified in Sec. 5. (and Appendix).635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The experimental setting should be presented in the core of the paper to a level of detail638

that is necessary to appreciate the results and make sense of them.639

• The full details can be provided either with the code, in appendix, or as supplemental640

material.641

7. Experiment Statistical Significance642

Question: Does the paper report error bars suitably and correctly defined or other appropriate643

information about the statistical significance of the experiments?644

Answer: [No]645

Justification: error bars are not reported because it would be too computationally expensive.646

Guidelines:647

• The answer NA means that the paper does not include experiments.648

• The authors should answer "Yes" if the results are accompanied by error bars, confi-649

dence intervals, or statistical significance tests, at least for the experiments that support650

the main claims of the paper.651

• The factors of variability that the error bars are capturing should be clearly stated (for652

example, train/test split, initialization, random drawing of some parameter, or overall653

run with given experimental conditions).654

• The method for calculating the error bars should be explained (closed form formula,655

call to a library function, bootstrap, etc.)656

• The assumptions made should be given (e.g., Normally distributed errors).657

• It should be clear whether the error bar is the standard deviation or the standard error658

of the mean.659

• It is OK to report 1-sigma error bars, but one should state it. The authors should660

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis661

of Normality of errors is not verified.662
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• For asymmetric distributions, the authors should be careful not to show in tables or663

figures symmetric error bars that would yield results that are out of range (e.g. negative664

error rates).665

• If error bars are reported in tables or plots, The authors should explain in the text how666

they were calculated and reference the corresponding figures or tables in the text.667

8. Experiments Compute Resources668

Question: For each experiment, does the paper provide sufficient information on the com-669

puter resources (type of compute workers, memory, time of execution) needed to reproduce670

the experiments?671

Answer: [Yes]672

Justification: The computing requirements are provided in Sec. 5.673

• The answer NA means that the paper does not include experiments.674

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,675

or cloud provider, including relevant memory and storage.676

• The paper should provide the amount of compute required for each of the individual677

experimental runs as well as estimate the total compute.678

• The paper should disclose whether the full research project required more compute679

than the experiments reported in the paper (e.g., preliminary or failed experiments that680

didn’t make it into the paper).681

9. Code Of Ethics682

Question: Does the research conducted in the paper conform, in every respect, with the683

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?684

Answer: [Yes]685

Justification: We ensure our research adheres to the guidelines.686

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.687

• If the authors answer No, they should explain the special circumstances that require a688

deviation from the Code of Ethics.689

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-690

eration due to laws or regulations in their jurisdiction).691

10. Broader Impacts692

Question: Does the paper discuss both potential positive societal impacts and negative693

societal impacts of the work performed?694

Answer: [NA]695

Justification: there is no societal impact of the work performed.696

Guidelines:697

• The answer NA means that there is no societal impact of the work performed.698

• If the authors answer NA or No, they should explain why their work has no societal699

impact or why the paper does not address societal impact.700

• Examples of negative societal impacts include potential malicious or unintended uses701

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations702

(e.g., deployment of technologies that could make decisions that unfairly impact specific703

groups), privacy considerations, and security considerations.704

• The conference expects that many papers will be foundational research and not tied705

to particular applications, let alone deployments. However, if there is a direct path to706

any negative applications, the authors should point it out. For example, it is legitimate707

to point out that an improvement in the quality of generative models could be used to708

generate deepfakes for disinformation. On the other hand, it is not needed to point out709

that a generic algorithm for optimizing neural networks could enable people to train710

models that generate Deepfakes faster.711

• The authors should consider possible harms that could arise when the technology is712

being used as intended and functioning correctly, harms that could arise when the713

technology is being used as intended but gives incorrect results, and harms following714

from (intentional or unintentional) misuse of the technology.715
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• If there are negative societal impacts, the authors could also discuss possible mitigation716

strategies (e.g., gated release of models, providing defenses in addition to attacks,717

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from718

feedback over time, improving the efficiency and accessibility of ML).719

11. Safeguards720

Question: Does the paper describe safeguards that have been put in place for responsible721

release of data or models that have a high risk for misuse (e.g., pretrained language models,722

image generators, or scraped datasets)?723

Answer: [NA]724

Justification: the paper poses no such risks.725

Guidelines:726

• The answer NA means that the paper poses no such risks.727

• Released models that have a high risk for misuse or dual-use should be released with728

necessary safeguards to allow for controlled use of the model, for example by requiring729

that users adhere to usage guidelines or restrictions to access the model or implementing730

safety filters.731

• Datasets that have been scraped from the Internet could pose safety risks. The authors732

should describe how they avoided releasing unsafe images.733

• We recognize that providing effective safeguards is challenging, and many papers do734

not require this, but we encourage authors to take this into account and make a best735

faith effort.736

12. Licenses for existing assets737

Question: Are the creators or original owners of assets (e.g., code, data, models), used in738

the paper, properly credited and are the license and terms of use explicitly mentioned and739

properly respected?740

Answer: [NA]741

Justification: All the assets used are properly credited and are the license and terms of use742

explicitly mentioned and properly respected.743

• The answer NA means that the paper does not use existing assets.744

• The authors should cite the original paper that produced the code package or dataset.745

• The authors should state which version of the asset is used and, if possible, include a746

URL.747

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.748

• For scraped data from a particular source (e.g., website), the copyright and terms of749

service of that source should be provided.750

• If assets are released, the license, copyright information, and terms of use in the751

package should be provided. For popular datasets, paperswithcode.com/datasets752

has curated licenses for some datasets. Their licensing guide can help determine the753

license of a dataset.754

• For existing datasets that are re-packaged, both the original license and the license of755

the derived asset (if it has changed) should be provided.756

• If this information is not available online, the authors are encouraged to reach out to757

the asset’s creators.758

13. New Assets759

Question: Are new assets introduced in the paper well documented and is the documentation760

provided alongside the assets?761

Answer: [NA]762

Justification: The paper does not release new assets.763

• The answer NA means that the paper does not release new assets.764

• Researchers should communicate the details of the dataset/code/model as part of their765

submissions via structured templates. This includes details about training, license,766

limitations, etc.767
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• The paper should discuss whether and how consent was obtained from people whose768

asset is used.769

• At submission time, remember to anonymize your assets (if applicable). You can either770

create an anonymized URL or include an anonymized zip file.771

14. Crowdsourcing and Research with Human Subjects772

Question: For crowdsourcing experiments and research with human subjects, does the paper773

include the full text of instructions given to participants and screenshots, if applicable, as774

well as details about compensation (if any)?775

Answer: [NA]776

Justification: This paper does not involve crowdsourcing nor research with human subjects.777

• The answer NA means that the paper does not involve crowdsourcing nor research with778

human subjects.779

• Including this information in the supplemental material is fine, but if the main contribu-780

tion of the paper involves human subjects, then as much detail as possible should be781

included in the main paper.782

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,783

or other labor should be paid at least the minimum wage in the country of the data784

collector.785

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human786

Subjects787

Question: Does the paper describe potential risks incurred by study participants, whether788

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)789

approvals (or an equivalent approval/review based on the requirements of your country or790

institution) were obtained?791

Answer: [NA]792

Justification: This paper does not involve crowdsourcing nor research with human subjects.793

Guidelines:794

• The answer NA means that the paper does not involve crowdsourcing nor research with795

human subjects.796

• Depending on the country in which research is conducted, IRB approval (or equivalent)797

may be required for any human subjects research. If you obtained IRB approval, you798

should clearly state this in the paper.799

• We recognize that the procedures for this may vary significantly between institutions800

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the801

guidelines for their institution.802

• For initial submissions, do not include any information that would break anonymity (if803

applicable), such as the institution conducting the review.804
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