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Abstract

Subgame solving is an essential technique in addressing large imperfect information
games, with various approaches developed to enhance the performance of refined
strategies in the abstraction of the target subgame. However, directly applying
existing subgame solving techniques may be difficult, due to the intricate nature
and substantial size of many real-world games. To overcome this issue, recent
subgame solving methods allow for subgame solving on limited knowledge order
subgames, increasing their applicability in large games; yet this may still face
obstacles due to extensive information set sizes. To address this challenge, we
propose a generative subgame solving (GS2) framework, which utilizes a generation
function to identify a subset of the earliest-reached nodes, reducing the size of
the subgame. Our method is supported by a theoretical analysis and employs a
diversity-based generation function to enhance safety. Experiments conducted on
research games as well as the challenging large game of GuanDan demonstrate a
significant improvement over the blueprint.

1 Introduction

Subgame solving is a standard technique commonly adopted by superhuman Als to play in
games [[Campbell et al.l [2002| [Silver et al., 2016]. This approach takes advantage of the fact
that for perfect information games (where both players have complete knowledge about the state
of the game), finding optimal strategies at any given decision node only requires knowledge of the
subgames rooted at that node [Brown and Sandholm, 2017]]. Therefore, Al agents can make use
of this fact to improve their own strategies while playing with others, which proves significantly
beneficial for large games, e.g., Chess [Campbell et al.,2002] and Go [Silver et al., 2017].

Recent advancements in subgame-solving techniques have proven to be highly successful in imperfect
information games, such as no-limit Texas hold’em poker [Moravcik et al.l 2017, Brown and
Sandholm), 2018 [2019], Mahjoog [Li et al.,l [2020], and dark chess [Zhang and Sandholm, |2021]].
However, state-of-the-art subgame solving algorithms suffer from the efficiency of constructing
and solving large games. This limitation hinders their practicality for performing subgame-solving
on large subgame trees, thus restricting their application in games such as DouDiZhu [Zha et al.,
2021, Jiang et al.l 2019] and GuanDan [Lu et al.,[2022]], which have average information set sizes
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up to 1022 and 103, respectively. The substantial size of these games dramatically increases the
magnitude of players’ |Z;| in subgame, rendering it impractical to find desirable strategies in real time,
as convergence within the limited time frame cannot be guaranteed. To address this computational
challenge, techniques such as Abstraction [Sandholmy, 2015} |Brown et al.,2015]] are commonly used
in Texas Hold ’em. However, it has been observed that these techniques are inadequate for games
like GuanDan [Zha et al.|[2021]]. A recent work [Zhang and Sandholm, |2021] has partially alleviated
this problem by partitioning the subgame tree according to players’ knowledge order and discarding
nodes that are “far away” from the current infoset. This approach can enable safe strategy refinement
under specific conditions of usage in a much smaller subgame, effectively reducing the number of
subgame-solving player’s information sets |Z;|. Nonetheless, the large number of states within other
players’ infosets |Z_;| remains unmanageably large and cannot be further reduced, making it difficult
to apply these approaches to large games. Moreover, the players’ infoset might be complex, and
enumerating all states within these sets during subgame construction can be a non-trivial task, adding
to the complexity of subgame development.

To address the intricate nature of large games, we present a novel approach called generative subgame
solving (GS2). Real-time refinement of these games requires the utilization of a reduced subgame
that encompasses fewer players’ infosets, which can be efficiently constructed and solved in an
online manner while maintaining certain safety guarantees. Our proposed GS2 framework employs
a generation function that generates a subset of the other player’s infoset, effectively reducing the
number of information states |Z_;|. Subsequently, a subgame is constructed using nodes rooted
in these states. The proposed GS2 framework enables players to construct a more manageable
subgame, even in the context of large games. However, the exploitability of the refined strategy
may potentially increase compared to the previous knowledge-limited subgame solving, as there is
information loss during the construction of the subgame tree. To mitigate this, we begin by providing
a theoretical analysis of GS2. We then propose a diversity-based generation function that produces
“diverse” subsets, as determined by the analysis, to reduce the exploitability of the refined strategy.
Experiments show that GS2, when combined with a diversity-based generation function, significantly
enhances performance, making it comparable to the knowledge-limited subgame solving method,
while requiring much less computation time.

In this paper, we make the following specific contributions:

* We propose a novel subgame solving method—generative subgame solving (GS2). Unlike
traditional techniques that require the full information set, GS2 innovatively generates a
subset of the opponent’s infoset, thereby reducing the number of information states. This
allows for substantial subgame size reduction, making GS2 particularly beneficial for large
games, which have historically been challenging due to their vast information set sizes.

* We provide the theoretical analysis of GS2 with arbitrary generation functions, a feature
that has been largely overlooked in the past. We leverage the theoretical understanding to
introduce a diversity-based generation function for GS2, leading to a significant reduction in
the potential exploitability of the refined strategy, a common issue encountered in previous
knowledge-limited subgame-solving techniques.

* We conduct extensive experiments for evaluating GS2 on both research games and the
notoriously complex large poker game, GuanDan. The experiments underscore the practical
value of our method, as GS2 successfully reduces exploitability and increases the expected
payoff with appropriate generation functions. In comparison to the knowledge-limited
subgame-solving method, GS2 delivers comparable performance while significantly reduc-
ing computation time. Moreover, in relatively large games with time limits, GS2 outperforms
the knowledge-limited subgame solving, thus showcasing its effectiveness and efficiency.

2 Related Work

The concept of refining a coarse strategy (also known as a blueprint) in imperfect information games
has been studied for a long time [Gilpin and Sandholm, [2006]. A crucial component of modern
refinement techniques is determining the new strategy, which can be adapted from the blueprint or
computed from scratch.

The adaptation-based method samples the outcomes of the current games and adapts the current
strategy. Online outcome sampling (OOS) method [Lisy et al.l 2015] is a simulation-based algorithm
that relies on Monte Carlo Counterfactual Regret Minimization [Lanctot et al., 2009]], which conducts



targeted outcome sampling and updates the regret of each action, resulting in an adapted strategy.
Monte Carlo Continual Resolving method [gustr et al., 2019]] combines OOS with the Continual
Resolving method [Moravcik et al.l 2017] to enhance sampling efficiency while minimizing memory
costs associated with OOS. Parametric Monte-Carlo Policy Adaptation method [Li et al., 2020]
improves this by performing Monte Carlo tree search for sampling, as well as gradient updates using
the sampled trajectories to adjust the blueprint. Despite being theoretically sound, most Adaptation-
based Methods are limited in application due to requiring online adaptation to be performed using the
same or similar method that computes the blueprint.

On the other hand, methods that compute the new strategy from scratch have no such requirement.
Endgame subgame solving methods [Ganzfried and Sandholm, 2015}, |Gilpin and Sandholm), [2006]
first construct the subgame and assume that all the players conform to the pre-defined blueprint
before reaching the subgame. The new strategy is then computed in the subgame and the player
that performs endgame solving proceeds to implement the new strategy instead of the blueprint in
the subgame. Conversely, safe subgame solving methods [Burch et al.}2014] Moravcik et al., 2016,
Brown and Sandholm), 2017, Brown et al. |2018| Zhang and Sandholm| 2021]] use an evaluation
function to construct an augmented subgame, ensuring that the new strategy devised in the augmented
subgame is less exploitable than the blueprint.

Search algorithms are also applied for obtaining better joint policy within teammates in collaborative
games such as Hanabi [Lerer et al., 2020, [Hu et al., 2021]] and the bidding phases of contract
Bridge [Tian et al.||2020]. For example, SPARTA [Lerer et al.,2020] utilizes exact belief updates for
single-agent search and multi-agent search and retrospective belief updates for multi-agent search to
handle the large belief range. Subsequently, the strategy is improved through Monte Carlo rollouts.
On the other hand, instead of maintaining an explicit belief distribution in single-agent search,
Learned Belief Search [Hu et al.|[2021] method uses a learned belief model to sample states from the
belief distribution, allowing for the application in games with large belief space. Rather than simply
improve the strategy via rollouts, Joint Policy Search [Tian et al., 2020 method first decomposes the
global changes of the game value into local changes at each infoset, and then iteratively improves
the strategy based on the decomposition. Although these approaches primarily focus on improving
strategy in collaborative settings and could not be directly used in games with adversaries, the
underlying idea could be helpful when developing a new technique that searches within teammates in
games like GuanDan.

Our method follows the scheme of subgame solving. Different from the existing methods, our
method focuses on expanding the applicability of subgame solving to large games that are intractable
for existing techniques. This is achieved by generating a smaller subgame, thereby enabling the
integration of techniques that enhance the safety and performance of the refined subgame strategy,
such as those presented in [Burch et al., 2014} Brown and Sandholm, 2017].

It is worth noting that previous techniques, such as [Brown and Sandholmy, 2015} Brown et al.| [2015]],
also explored the real-time reduction of the entire subgame. These techniques specifically consider
the subgame tree that follows a rational opponent’s action and disregards the remaining parts. While
these techniques appear promising, they lack a solid theoretical guarantee. Furthermore, they are only
applicable to action abstraction, as the chance player’s actions are determined by a fixed probability
distribution, and one cannot assume the rationality of the chance player. Thus, these techniques are
not suitable for real-world games that involve enormous chance outcomes, such as GuanDan.

3 Preliminaries

3.1 Extensive-form Games

An extensive-form game with imperfect information can be formulated as G = {N, H, P, T, {u;}},
where N = {1,2,3,...} U{c} is the set of players, ¢ denotes the chance player who chooses actions
with a fixed probability, H is the set of all possible history sequences a'a? - - - a* and each o’ is an
action. For each history h € H, player function P : H — N gives the acting player. Additionally,
the action set A(h) contains legal actions that player P(h) can choose, which is formally expressed
as A(h) = {alh - a € H}. The set of leaf nodes, or terminal nodes, is denoted by Z. For each
player i € N, the payoff function u; : Z — R is the payoff that player ¢ will receive upon reaching
a terminal history z € Z. Imperfect information is represented by information sets (infosets).



Infoset Z is the set of information partitions of H. For any infoset I; € Z;, histories h, h’ € I; are
indistinguishable to player 7. As such, the acting player and the corresponding legal action set must
be the same for all nodes in the same information set. Hence, by denoting the acting player and action
set at infoset I; as P(I;) and A(I;), we have P(I;) = P(h), A(I;) = A(h),Vh € I;,. We also use
Z;(h) to denote the infoset that contains h for player i.

A strategy o;(I;) is a probability distribution over the actions A(I;) for each infoset I;, and its
probability of a specific action a is denoted by ¢;(I;, a). Note that P(I;) = i. Let —i denote all the
players in the game except player ¢, 0; € X; and 0_; € X_; denote player 7 and —i’s strategies,
respectively. Player i’s expect payoff when all the players adhere to the profile (o;,0_;) is denoted by
u;(0;,0—;). A Nash Equilibrium is a self-enforcing strategy profile o* that no one has an incentive
to unilaterally change its strategy. Therefore, Vi € N, u;(07,0";) > maxy/cx, u(oj, 0 ;). Abest
response strategy BR(0—;) = max, u;(0;,0;) is a strategy that maximizes player i’s own payoff
against o_;. The exploitability of strategy o; in a two-player zero-sum game is denoted by exp(o;),
representing how much payoff player ¢ can lose by changing their strategy from o} to o; against their
opponent’s best response strategy. Formally, exp(o;) = u; (0}, 0% ;) — u;(0;, BR(0;)), where o* is
the Nash Equilibrium strategy.

For two history h,h/, we write h C h’ if there is an action sequence leading from h to h'.
The probability of reaching history h when all players act according to o is represented by
77 (h) = Ip.achoppy (b’ a), and 77 (h) = Iy, p(r)=i0i(h', a) is player i’s contribution
to the probability. The expect value of player ¢ at history h when players play according to o is
denoted by vf (h) = >~ ., ©7(h, 2)ui(2), where 77 (h, z) is the probability of reaching terminal
node z from h, or 0 if A C z does not hold. The value of an infoset v (I) is the sum of the expected
values of all nodes in the infoset, and each one is weighted by the player’s counterfactual probability.

This can be formally expressed as v7 (I) = Zh'ez’:(ﬂ‘;(f )z),i)(h)). The counterfactual best response
hel " —i

value u} (o0_;|I) to strategy o_, upon reaching infoset I is the best value for player i against o_;.
This can be defined as u} (o_;|I) = v!Z7=97= (1) and u? (o_;|Ia) = v/ P74 (1 q).

An imperfect information subgame (hereafter subgame) is a set of nodes in a game tree, in which
information is not divided over infosets. Formally, a subgame S is a set of nodes h € H, such that
Vh' € H,if 3h € S and b’ 3 h, then b’ € S. Moreover, S is closed under infoset: Vh € S, if h € I;
and b’ € I; for some player 4, then i’ € S. We define S,,,, as the set of earliest-reachable nodes in S,
then h € Syop if and only if h € Sand b/ ¢ S forall A’ T h.

3.2 Prior Subgame Solving Methods

In this section, we review the existing methods of subgame solving in imperfect information games.
Without loss of generality, we assume that Player 1 (P1) is the responsible party for subgame solving.
Within this context, P1 is provided with an initial blueprint strategy and aims to optimize it. During a
playthrough, P1 reaches an infoset I and carries out subgame solving to refine the blueprint for the
remainder of the game.

As an initial step, standard subgame-solving methods enumerate the top node of the subgame
whenever a player reaches a particular information set, allowing them to have direct access to the
entire subgame tree. Once the subgame S is constructed, the augmented subgame or gadget game is
formed and solved by an appropriate equilibrium finding algorithm. Most subgame solving methods
differ mainly in the methodology of constructing the augmented subgame.

The augmented subgame G’ in Endgame solving [Ganzfried and Sandholm, 2015]] begins with a
chance node that leads to all nodes in S,,,. The probability of reaching node h € S, is proportional
to the reach probability of node h in the original game G, provided that the players are playing

according to the blueprint o, that is, reaching h with probability S ”U(h)w(,( - The augmented

E€Stop
subgame (' is then solved, producing a new strategy o for P1. For the remainder of the game, P1 is

expected to replace the blueprint with .

Subgame resolving [Burch et al.,[2014] differs from endgame solving in the structure of augmented
subgames. The initial node of the augmented subgame is a chance node, with Player 2 (P2)’s
alternative node, denoted by h,, added between each node h € Sy, and the initial node. Each
h, is reached with a probability that is in proportion to P2’s probability of reaching h, if it tries



to do so-that is 77, (h). The set of h,. is denoted by .S,., with the infoset in .S, being determined
according to P2’s infoset in S;,,,. P2 is presented with two choices for each alternative node: entering
htop, Or terminating the game and receiving an alternative payoff at Z5(hy,p ), which is equal to the
counterfactual best response of the blueprint, or u3(o|Z2(hiop))-

Subgame resolving develops a strategy that will not be worse than the blueprint. Conversely,
Maxmargin subgame solving [Moravcik et al.,|2016]] seeks to optimize the strategy to ensure that
P2 will receive a lower payoff if it chooses to enter the subgame. Formally, the margin of a strategy
o7 in subgame S is defined as M (0% |I3) = u}(01|I2) — uj (o |I2). Maxmargin subgame solving
hence attempts to find a strategy o7 that maximizes miny,es,,, M(c”|12).

On the other hand, knowledge-limited subgame solving (KLSS) [Zhang and Sandholm) 202 1]] aims to
construct a small augmented subgame while providing safety guarantees. KLSS partitions Sy, into
different knowledge orders based on the distance from I in the infoset hypergraph of the subgame.
The k-th order knowledge limited subgame solving constructs the subgame using nodes at most £ — 1
units away from the current history A in the original S,,. KLSS takes advantage of the fact that
nodes outside the k-th order and their descendants can be discarded if P1’s strategy at these nodes
is fixed after the payoff is correctly scaled by nodes inside the (k + 1)-th order. Hence, the Sy, of
the subgame in the 1st order KLSS (1-KLSS) can be as small as the player’s current infoset and its
descendants, which significantly reduces the subgame size.

4 Generative Subgame Solving (GS2)

4.1 General GS2 Framework

In Section[3.2} all methods except KLSS perform subgame solving on the entire subgame tree, which
is intractable for large-size games that are difficult to abstract. KLSS attempts to address the problem
by limiting the set S, to a lower knowledge order, which reduces the subgame size but is still
not feasible for games with a large infoset size. For example, in heads-up Texas Hold’em, where
one player only holds two cards, the infoset size is no more than (522) = 1326, making it easy to
construct for 1-KLSS. On the contrary, in games such as GuanDan, with four players each holding 27
cards at the start, the infoset size can be as large as 103°. Consequently, constructing and storing the
corresponding subgame on a computer becomes impractical.

Even if the subgame is somehow constructed, current equilibrium finding [Lanctot et al., 2009}, [Farina
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et al., |2021]] algorithm that bound player i’s regret by O(~-=—) is not guaranteed to converge in
real-time. This is due to the presence of up to 102" other players’ infosets in a single player 7’s
infoset in GuanDan. Furthermore, the subgame cannot be abstracted using the techniques in Texas
Hold’em [Zha et al.|[2021]]. Thus, simply applying 1-KLSS would exceed the time limit, necessitating
a further reduction in subgames.

Motivated by this, we propose a Generative Subgame Solving (GS2) method to reduce the memory and
time cost by solving only subgames within a subset of the entire 1-KLSS subgame tree. Specifically,
let Q@ = {Q1,Q2,...,Qr} be the set of all subsets of Sy, such thatif h € Q,, Vi’ € Zy(h),h' €
Q. Here, Q, is referred to as a block of S;,,. GS2 then introduces a generation function with
probability distribution f : Z; — Al9l, where A9l is the | Q|-simplex. Upon reaching infoset I, GS2
first generates @, ~ f(I) and then constructs the generative subgame S such that, Vh € Q,,h € S
and Vh' O h,h' € S.

Let f(I, Q) be the probability of @, and w(h) =3 o, f(Z1(h), Q:) be the probability that i
is considered.

Proposition 4.1. Given a strategy o1 in a two-player zero-sum game G, reached infoset I, and
a generation function f, the refined subgame strategy o5 is computed by GS2 with safe subgame
solving techniques. Let o be the strategy that plays according to o7 in subgame S and o, elsewhere.
Let (01, h) = maxys us(0q|Z2(h)) —u3(01|Z2(h)). Then the exploitability of the expected strategy
exp(E[o1]) is bounded by

exp(E[o7]) < exp(a1) + max (1 — w(h)) 77 (Ta(h)) (o1, h). )



Proposition 4.1| gives the upper bound for GS2 with arbitrary generation functions. § can be regarded
as a metric for evaluating the effectiveness of the blueprint strategy, measuring its improvement
compared to the worst strategy. While GS2 may increase exploitability, it can efficiently reduce the

size of the subgame. In balanced games where each unobserved move of other players and chance

events have roughly the same size of potential outcomes, only |grll of the other player’s infoset is
op

considered, thus, the approximate equilibrium can be efficiently computed. Decreasing |@..| reduces
the computational requirement, but it also leads to lower w(h) and a potential increase in exploitability.
The choice of the generation function f can be a trade-off between potential improvement and safety.

Intuitively, Proposition 4. T|implies that the new strategies solved by GS2 will be less exploitable if
histories h € S, are more frequently considered in the sampled @, (resulting in lower 1 — w(h))
or the blueprint does not perform well (leading to lower (o1, h)). As such, it is suitable to apply
GS2 in games with a coarse blueprint, unlike previous unsafe subgame solving methods [Ganzfried
and Sandholml 2015! |Gilpin and Sandholm| [2006] that necessitate the blueprint to be close to a Nash
equilibrium to construct accurate belief distributions. To further enhance safety, one can apply GS2
in large subgames and switch to other safe subgame-solving methods as the subgame size decreases,
since GS2 is intentionally designed to be effective in handling large subgames.

For large-scale games, sampling a block from a non-trivial generation function f is challenging due
to the numerous blocks involved. However, randomly generating a single state h in current infoset 1
is feasible (e.g., randomly choosing a valid opponent hand in poker), and the block can be obtained
by repeating the random generation process and adding all &’ that is in the same player 2’s infoset of
h. This approach is referred to as the random generation function. The generated size k is defined as
the size of a randomly generated set of h. When using this function, the upper bound of exploitability
increment for the expected strategy will decrease in proportion to the size of the generated block.
According to Proposition 4.1 we have

exp(Blz]) < exp(on) + (1 1) o (22030, ). @
|I1] ) her)

for the expected strategy E[o7].

To enhance the safety of GS2, it is suggested by Equation to generate as many states as time
permits. While increasing the number of states would improve the guarantee, it would also increase
the time and resource requirements for solving the subgame. However, the generated size can be
controlled and kept relatively small compared to the original subgame. Moreover, techniques such as
Abstraction, which traverse the entire infoset, can be combined to further reduce the subgame size
while maintaining the theoretical guarantee. It is preferable to have larger generated blocks, which
require simpler techniques to operate on them. Previous techniques [[Ganzfried and Sandholm) 2014]]
that involve comparing all potential outcomes would be time-consuming in large games. In contrast,
GS2 reduces the subgame size by considering the counterfactual value of the states according to a
diversity-based generation function. In general, a diversity-based generation function generates a
block Q' such that the maximum earth mover’s distance between any player 2’s infoset and Q’ is
minimized:

"=argmin max dist(Ils,Q), 3
Q gmin max (I2,Q) 3)

where dist(Iz,Q) = va ming eq [uj (01]13) — uj(o1|l2)]. Let H(I3) be the set of in-
foset that is not vastly dissimilar from I}, specifically defined as {I, € @Q,\Q'|I; =
argming,co,\ o’ va |uf(o1]14) — uf(o1|l2)|}. The counterfactual reach probability of infoset
I} is scaled up by > Len(1y) m7%(I2). In two-player zero-sum games, it is equal to finding a
subset such that the alternative values of infosets are likely to be uniformly distributed in range
[ming, g, u5(o1]l2), maxy,cq, u3(o1|l2)], which can be efficiently obtained through techniques
such as dynamic programming.

Intuitively, the diversity-based generation function generates a block that is the most “diverse” and
is able to encompass a wide range of situations (including unobserved others’ or chance behaviors)
with a small number of infosets. The pseudo-code for GS2 utilizing the diversity-based generation
function is presented in Appendix[C.§



Continue as in the original game

(a) Part of the Liar’s Dice game tree.

Continue as in the original game Continue as in the original game

(b) 1-KLSS subgame tree of infoset /5. (c) GS2 subgame tree of infoset I;.

Figure 1: Example of GS2 in Liar’s Dice. The white node is a chance node, representing exogenous
events. Nodes are colored in blue if the acting player is player 1 and red for player 2. (a) Part of the
Liar’s Dice game tree. h; ; is the history that the two players’ dice landed on ¢ and j, respectively. For
simplicity, descendants of h;; that would not be changed in the standard implementation of 1-KLSS
and GS2 are omitted. (b) The 1-KLSS subgame tree of infoset I1. (c) The GS2 subgame tree of
infoset ;. GS2 only constructs the subgame with a subset of ;. The subset shown is for illustration
purposes and would be generated by a generation function in practice.

4.2 Example of How GS2 Works

To further clarify the concept of GS2, we present a simple example. Figure|[T]illustrates an example
of GS2 applied in Liar’s Dice with 8-sided dice. In this example, c (the white node) is the chance
node, representing exogenous events. Nodes are colored in blue if the acting player is player 1 and
red for player 2. Figure[I(a)|shows a portion of the Liar’s Dice game tree. Each player dice at the
beginning. For simplicity, the remainder of the game is omitted and replaced by the gray area, as the
nodes rooted at each history i will not be altered in the subgame-solving process.

If player 1 wishes to refine its strategy after determining that infoset I; has been reached, the subgame
constructed by 1-KLSS is shown in Figure [I(b)] The chance nodes are redundant since they only
have one chance outcome but are retained for consistency. a3 ; is the scaled alternative value of
@3 (01| T2(h1m)) Cnsezy(ny ) T2 (h)

77(112 (hin) ’
The payoff for player 2 is then subtracted by @5 ; upon reaching the corresponding node. Additional
payoffs should also be taken into consideration, accounting for the omitted subtree.

15 (01|Z2(h1m)) for player 1°s blueprint ;. Formally, iy =

GS2 further reduces the subgame size, as shown in Figure[T(c)] It only constructs a subgame for a
subset of I, which is generated by a diversity-based generation function. This not only increases
the computational efficiency of the subgame solving in large games but also refines the blueprint by
selectively focusing on the most typical portions of the game tree.

S Experiments

5.1 Evaluation on Research Games

To evaluate the practical performance of GS2, experiments are conducted on a range of commonly
used research games with varying infoset sizes.



3-rank limit Leduc poker. Liar's Dice with 6-sided dice. Liar's Dice 7 with 7-sided dice.
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Figure 2: Exploitability of GS2 with random generation function (GS2-R) and diversity generation
function (GS2-D) in different games (Lower is better). GS2 and 1-KLSS-limited are required to
refine the strategy in 3 seconds, while 1-KLSS-unlimited and Unsafe subgame solving method are
not. (a) 3-rank limit Leduc poker. (b) Liar’s Dice with 6-sided dice. (c) Liar’s Dice 7 with 7-sided
dice. (d) 5-card Goofspiel, random order with 3 rounds. (e) 10-card Goofspiel, ascending order with
3 rounds. (f) 12-card Goofspiel, ascending order with 3 rounds.

Implementation details. All games are implemented using the open-source library Open-
Spiel [Lanctot et al.l [2019]. In each game, a blueprint is first computed via the CFR algorithm,
after which GS2 is applied at each infoset after both players have taken one action to refine the
blueprint. The subgame is solved in a nested fashion, utilizing Maxmargin solving with linear
programming whenever feasible, and otherwise employing MCCFR [Lanctot et al., 2009]. The
unsafe subgame solving method is implemented based on |Ganzfried and Sandholm!| [2015]], Brown
and Sandholm| [2017]]. The computation time is limited for 1-KLSS [Zhang and Sandholm), [2021]] and
GS2. In these methods, the player is allotted a maximum of 3 seconds to compute an approximate
Nash Equilibrium after constructing a subgame. In order to provide a comprehensive evaluation
of GS2’s performance, we also present the results of 1-KLSS and unsafe subgame solving, where
there are no time constraints imposed on the computation. It is important to note that GS2 is not
expected to surpass the performance of these two methods, as obtaining an exact Nash Equilibrium
may require significantly more time. For instance, when solving the subgame of Liar’s Dice with
7 dice sides, the computation time for the strategy in unsafe subgame solving can reach up to 122
seconds, and 41 seconds for 1-KLSS, rendering them impractical for real-time decision-making. In
contrast, GS2 with k£ = 3 only necessitates 10 seconds of computation time at the same infose
showcasing its efficiency.

Results. The effect of varying the value & (i.e., the number of other player’s infosets in the generated
block) in the diversity-based generation function is evaluated, and the exploitability of blueprints
and refined strategies is presented in Figure [2] Experimental results demonstrate that GS2 is capable
of effectively reducing exploitability in practice for a coarse blueprint in limited computation time,
despite the absence of safety guarantees. As the size of the game increases, GS2 with diversity
generation exhibits superior performance compared to 1-KLSS with limited computation time, as
evident from the results presented in Figure [2(¢)| and Figure 2(f)] However, in the case of 10-card
Goofspiel and 12-card Goofspiel, where the infoset size is extremely large, GS2 with random
generation is comparatively inferior to that of other methods. This discrepancy arises due to the
inherent limitation of randomly generating a block, as it fails to yield a desirable subgame within
the confines of an infoset size reaching up to 1110. Consequently, this inability to generate a good

’The experiment was conducted on an Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz



subgame leads to an increase in exploitability. For 5-card Goofspiel and Liar’s Dice, GS2 with
diversity generation performs closely to 1-KLSS-unlimited but with significantly less computation
time, showing the effectiveness of GS2. Additionally, the results suggest that as k increases, the
exploitability of the refined strategy decreases, which aligns with previous theoretical analysis.

For other baselines, the unsafe subgame solving demonstrates excellent performance in 3-rank limit
Leduc poker, but it performs inferior in Liar’s Dice due to the lack of a safety guarantee. While
1-KLSS without time limits exhibits the best performance in most games, it requires significantly
more computation time than GS2, as discussed previously.

5.2 [Evaluation on GuanDan

We use the techniques in Appendix [C.I]to create an agent for the game of GuanDan. The choice to
test GS2 on GuanDan is driven by the game’s complexity, which surpasses that of other games such
as DouDizhu, and the availability of several benchmark agents due to a GuanDan Al competition.
GS2 is tested against the two champions of the competition to evaluate its performance:

* The first champion is a rule-based agent and is tested against top human professionals.
Despite never having won in a GuanDan tournament, the agent has achieved victory for
certain decks in the tournament and has proven to be challenging for experts who are not
familiar with it.

* The second champion is a DMC [Zha et al.| [2021]] agent with warm-starting and post-
processing that has a 90% winning percentage against the first champion in the GuanDan
tournament. We believe it to be an expert-level agent, although it has not been tested against
human experts.

Implementation details. The state-action value function of GuanDan is created by DMC and the
subgame is further simplified as outlined in[C.2] The approximation is implemented based on the
concept of not just sampling from opponent infosets but also within the infoset itself to manage
complexity. This approach is like applying a specific generation function to the opponent’s infoset. It
leads to a conservative strategy refinement by assuming opponents are aware of the player’s exact
private information. Such an assumption prevents a drastic rise in exploitability at the present infoset.
This method is influenced by patterns observed in the game of GuanDan. In this game, as actions
unfold, uncertainty diminishes, thus human players are expected to guess the others’ cards, especially
near the end of the game, which is crucial for expert players. Therefore, considering the worst case
that the opponents know the player’s cards would be practical. Even though this idea seems somewhat
domain-specific, we believe it is also applicable to similar games.

During the entire game, only one player performs subgame solving, while the teammate continues to
play according to the state-action value function. In other words, the teammate will select the action
with the highest value among all legal actions. The opponent team consists of two identical agents
who do not communicate during the game. To better evaluate performance, we conduct tournaments
with a fixed game level. In each tournament, a deck is played four times to minimize variance. The
player who performs GS2 rotates their seat to the next player after each round of play. At the end of
each game, players will receive a score according to the order in which the player and its teammate
empty their hand, which is equal to the value of levels they would prompt in the original GuanDan
game for the winning team and the negative value for the losing team. A more detailed description of
GuanDan is given in Appendix [B| The tournament is then repeated 100 times and the average score
of GS2 in each position is calculated.

Results. We first present the results when playing against the second champion. Different settings
of k are applied in the tournament. Despite the remarkably small value of k relative to the size of the
infoset, the results shown in Figure [3(a)| indicate that the application of GS2 leads to a significant
performance gain. It also shows that as more states are generated by GS2, the better its performance
becomes. The results of GS2 against the first champion are given in Figure[3(b)] Compared to the
first champion, GS2 has less improvement in the average score. We believe that this is attributed to
the outstanding performance of the strategy constructed by the value function, which results in the
improvement not being fully reflected in the average score. Overall, the experiment results suggest
that GS2 is able to improve the performance of a given blueprint in large games with desirable
subgame sizes.
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(a) Performance against the second champion agent. (b) Performance against the first champion agent.

Figure 3: The avarage score of GS2 against two prior agents at each position in GuanDan (Higher is
better). The score of the blueprint (blue) gives the baseline value that agents could achieve without
subgame solving at each position.

6 Conclusion and Future Work

We propose a novel subgame-solving method, named GS2, which is designed to address the challenges
posed by games with imperfect information and large infoset sizes. GS2 only constructs a partial
subgame tree, thereby reducing the memory and time costs associated with conventional subgame
solving. Our method is able to construct robust strategies for large games with unmanageable infoset
sizes. We theoretically analyze the exploitability bound for GS2 and propose a diversity-based
generation function to mitigate the issue of unsafeness. Through experimental evaluations in research
games and a complex poker game—GuanDan, we demonstrate that GS2 indeed decreases exploitability
and improves the performance of the given blueprint in practice.

While GS2 shows promising performance with a simple diversity-based generation function, it is
important to note that further research is needed to address the limitations of the method, particularly
when alternative values are not adequate for describing the state. Additionally, it remains an open
question as to whether a safe generation function exists that can further expand the applicability of
GS2.
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