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Abstract—The economic dispatch problem of power systems,
which is typically based on multi-agent networks, often necessi-
tates conditions like full graph connectivity. However, as the scale
of power systems expands, maintaining full graph connectivity
in communication systems could result in increased costs and
communication burdens. Consequently, this paper investigates
a distributed finite-step consensus method that incorporates
geographical region division, aiming to achieve economical power
allocation without the need for full graph connectivity.

In this method, we initially derive a Laplace matrix from
the distributed topology of generators in multi-agent power
systems. Subsequently, we construct another Laplace matrix by
geographically dividing regions, thereby illustrating the commu-
nication relationships between these regions. Subsequently, we
calculate the incremental cost of each region, taking into account
the power constraints of the generators. Moreover, to expedite
convergence, we employ a distributed finite-step consensus al-
gorithm to address the economic dispatch problem, leveraging
the divided regional incremental costs. Finally, we validate the
effectiveness and accuracy of the proposed method through
results on various multi-agent topologies and comparisons with
other iterative algorithms.

Index Terms—Hybrid centralized-decentralized economic dis-
patch, distributed algorithm, multi-agent network system, finite-
step consensus algorithm.

I. INTRODUCTION

In recent times, economic dispatch (ED) has assumed signif-
icant importance in maintaining power balance and optimizing
operations in modern power systems. A well-implemented ED
can not only address issues of power shortage or surplus but
also enhance economic profitability[1], [2], [3]. Most existing
studies primarily focus on generator costs, with an aim to
minimize these costs while maximizing profits. To date, nu-
merous methods have been developed to tackle ED problems,

including heuristic methods[4], [5], [6] and reinforcement
learning-based methods[7], [8], [9].

The aforementioned scheduling policies are implemented in
a centralized fashion, where the control center plays a crucial
role[10]. A genetic algorithm was proposed by [11], which
adopted new crossover and mutation operations for economic
scheduling based on valve point loads. [12] proposed a math-
ematical model-based analysis strategy that solved economic,
emission, and joint economic and emission scheduling prob-
lems through a single equivalent objective function. In [13], a
small unit with only three generators and one energy storage
battery was designed, using a centralized control method for
smart grid ED that does not consider network equality and
security constraints. If the system’s generator units cannot
meet the power demand, storage units will be dispatched.
[14] utilized a differential evolution algorithm to address the
centralized control ED problem associated with non-smooth
cost functions. However, due to advancements in science and
technology, the traditional centralized control strategy has
grown increasingly inadequate for modern power systems,
given its heavy reliance on the control center. The proliferation
of distributed generators in modern power systems results
in escalated communication system costs when centralized
control schemes are implemented. Worse still, the efficiency
will diminish in the event of a central controller failure.

Presently, the control strategies of multi-agent systems
are progressively evolving towards diversification. Distributed
control strategies, particularly those based on multi-agent
distributed algorithm optimization, have garnered increasing
attention due to their flexibility and efficiency. In [15], a
new consensus based economic scheduling algorithm was



proposed and the impact of time delay on distributed economic
scheduling was rigorously analyzed. Being fully distributed,
this algorithm can facilitate optimal scheduling of energy re-
sources in micro-grids in a decentralized fashion. Furthermore,
distributed control is currently primarily employed to ad-
dress economic scheduling issues[16]. [17] utilized frequency
analysis methods to establish a critical upper bound for the
delay of the ED algorithm and introduced a collaborative
distributed control scheme for optimal active power control
of multiple generators in micro-grids. [18] proposed a micro-
grid distributed economic dispatching strategy that leverages
multiple energy storage systems, thereby overcoming the
challenge of dynamic coupling between all decision variables
and random variables inherent in the centralized dispatching
formula. A distributed controller achieved global control solely
through information communication with directed intercon-
nected neighbors, obviating the need for a control center
[19]. By incorporating distributed methods into multi-agent
systems, the ED problem can be resolved across various
network topologies [20]. However, particularly in the con-
text of large-scale, multi-agent-based power systems, power
exchange typically occurs between geographically distinct re-
gions. Consequently, the fully distributed method could impose
a substantial communication burden, escalate computational
complexity, and diminish power exchange efficiency.

Additionally, the convergence speed of the optimal algo-
rithm is of paramount importance in practical applications.
If the algorithm’s convergence time is excessively long, it
may hinder the practical application of the results before the
algorithm converges. Owing to the distributed finite-step con-
sensus algorithm, the optimal algorithm can converge within a
shorter iteration time, thereby saving computational time and
enhancing efficiency. [21] amalgamated the Newton-Raphson
method, graph discovery algorithm, and finite time consistency
algorithm to propose a novel distributed finite-step iterative
algorithm for solving the economic scheduling problem in
modern network physical power systems. This offered some
valuable insights for the field of distributed fast computing
and computation. In [22], a distributed algorithm based on
a finite step consistency algorithm was proposed, which set
the incremental cost of each distributed generation unit as a
consistency variable, and all units only obtained the optimal
value by exchanging information with neighbors. Furthermore,
this algorithm converged to the optimal solution in a finite
number of steps, thereby markedly enhancing efficiency.

Therefore, based on the above, a distributed finite-step con-
sensus algorithm with regional division is proposed to solve
the ED problem without a fully distributed communication
system and improve the convergence speed. The contributions
of this paper are summarized as follows:

1) In contrast to [23], the proposed method facilitates the
economic operation of large-scale power systems by
leveraging geographically divided regional incremental
costs, thereby reducing communication costs and burdens
without necessitating a fully distributed communication
system.

2) This suggested proposed method considers the power
constraint of each generator, which ensures that in prac-
tical application, the generators work within the rated
power and will not appear in the overload.

3) The proposed algorithm in this paper will converge within
a limited number of iteration steps and will achieve
incremental cost consistency, which is more beneficial for
practical applications with improving convergence speed.

II. PRELIMINARY KNOWLEDGE

A. Graph Theory

In this article, the multi-agent network, which is com-
posed of three elements, is described by the weighted undi-
rected graph G = (V, E ,A), to describe the multi-agent
network, which consists of three parts: 1) a vertex set V =
{v1, v2, . . . , vN} to represent N vertices in the graph; 2) an
undirected edge set E ⊆ V × V to describe all lines between
vertices; and 3) an adjacency matrix A = {aij}N×N with a
non-negative element aij > 0 if (vi, vj) ∈ E and aij = 0
otherwise.

The pair of nodes (vi, vj) indicates an edge eij , which
indicates that nodes vi and vj can communicate with one
another. We take it for granted in this article that aij = 0
denotes the absence of a self-loop in the graph. The degree
of node vi in the undirected graph is commonly defined as

di =

N∑
j=1,j ̸=i

aij .

The Laplacian matrix, which is described as follows, is
crucial to the study of the properties of a graph in graph theory.

L = D −A (1)

where D = diag{d1, d2, . . . , dN}. A path between
nodes vi and vj in the graph is a sequence of edges
(v1, vi1), (vi1, vi2), . . . , (vik, vj) with distinct nodes vil ∈ V .In
addition, an undirected graph G is connected if and only if L
is positive semi-definite and has a simple zero eigenvalue with
L1n = 0, where 1n = (1, 1, . . . , 1)⊤ ∈ Rn. For the Laplacian
matrix L, the upper bound of the maximum eigenvalue of L is
often estimated to analyze the graph’s properties, δ1, δ2, . . . , δn
are the characteristic value of L.

B. Problem Formulation

A multi-agent electric power system is used to collabo-
ratively determine the best solutions to the considered ED
problem. In a power grid, the cost function of power generation
is typically defined as

fi(Pi) = αiP
2
i + βiPi + γi (2)

where αi, βi, and γi are the parameters of the ith generating
power, and Pi is the ith generator power. We take the electric-
ity grid to have a total of N generators. The ED in the power
system is to minimize the overall cost of the power grid with
certain limits after accounting for the entire power demand and



the capacity of the power generation. This problem is related
to the following:

min
Pi

N∑
i=1

fi(Pi)

s.t.

N∑
i=1

Pi = PD

Pmin ≤ Pi ≤ Pmax

(3)

where Pmin and Pmax denote the lowest and maximum
capabilities of the ith power generation, and PD represents
the total power demand of the load in the power grid.

For every generator λi, the incremental cost is defined as

λi =
∂fi(Pi)

∂Pi
= 2αiPi + βi (4)

III. PROPOSED ALGORITHM

We present a finite-step consensus Algorithm in this section
to solve distributed multi-region partitioning using prior eco-
nomic dispatch. First, the topic of various regions’ economic
dispatch problem was covered, and it was then integrated with
the real-world scenario of generators experiencing power limi-
tations. Ultimately, the algorithm is suggested and a flowchart
is supplied.

A. Multi-Region Division

Firstly, we need to express the power as incremental costs.
Based on (4), denoting P with λ to obtain

Pi =
λi − βi

2αi
(5)

then substituting (5) into (3), we have

N∑
i=1

λi − βi

2αi
= PD (6)

and the optimal power output of node i is

P ∗
i =

λ∗ − βi

2αi
(7)

To solve the ED problem in (3), the power generations are
divided into different locations and the distributed method is
applied. Administrative, physical, or data distribution mean-
ings might serve as the basis for partitioning recommendations.
The index set 1, 2, . . . , N represents the N power generators.
Without sacrificing generality, the electricity generation is
divided into M zones,

M∑
j=1

e⊤j P = PD (8)

where the generator that is a component of the jth partition
region is either set to zero or to one at the appropriate location
of the index vector ej . The ED problem in (3) can thus be
expressed in the similar form shown below:

min
Pi

N∑
i=1

fi(Pi)

s.t.

M∑
j=1

(e⊤j P− PDj
) = 0

Pmin ≤ Pi ≤ Pmax

(9)

where
M∑
j=1

PDj = PD and P = (P1, P2, . . . , PN )⊤.

The ED problem (3) can be solved by the Lagrange multi-
plier method, which is written as

e⊤j h
⊤ = PDj

(10)

where

h⊤ = (
λ1 − β1

2α1
,
λ2 − β2

2α2
, . . . ,

λN − βN

2αN
) (11)

then, we can get the optimal incremental cost of the power
generations

λ∗ =

PD +

M∑
j=1

e⊤j B

M∑
j=1

e⊤j D

(12)

where B = ( β1

2α1
, β2

2α2
, . . . , βN

2αN
)⊤ and D =

( 1
2α1

, 1
2α2

, . . . , 1
2αN

)⊤.

B. Finite-Step Consensus Algorithm Implementation

A distributed finite step consensus technique is presented in
this section and applied to the distributed ED issue in various
regions[24]. We have improved the formula in Lemma 1, even
though the algorithm in this study is substantially similar to the
approach in [24]. The yi updating procedure can be completed
by

y
(k+1)
i = riiy

(k)
i +

∑
j∈Ni

rijx
(k)
j (13)

where the note xi denotes the graph’s topology’s ith node’s
state. Furthermore, yi implies that the parameters must be
iterated in accordance with the corresponding rij , where rij
is the row i, column j, of the created Laplacian matrix in
question.

Lemma 1: [25] Suppose there is a topology graph that has
D + 1 different eigenvalues (δ1 ̸= δ2 ̸= . . . ̸= δD + 1) in the
matrix L1 of its iteration matrix set, where L1 is a Laplace
matrix based on the communication topology diagram. And L2

is the constructed Laplace matrix between the divided regions
matrix set. Then there are formulas.

R(k) = (a(k)+Nmaxb)I−bL2, (k = 1, 2, . . . , D, b ̸= 0) (14)

with
b =

1
D+1∏
i=2

D
√

δi

(15)



a(k) =
δk+1 −Nmax

D+1∏
i=2

D
√
δi

(16)

where Nmax = max{N1, N2, . . . , Nn}, I is an identity matrix,
then we can obtain the consensus in D steps based on (14).

In real systems, load power is scattered throughout rather
than existing centrally. Thus, it is rearranged as follows in a
multi-agent network topology:

M∑
j=1

e⊤j h
⊤ = PD (17)

therefore, the optimal incremental cost is recalculated as

λ∗ =

M∑
j=1

(PDj + e⊤j B)

M∑
j=1

e⊤j D

(18)

Owing to the existence of nodes that surpass power limi-
tations, they are split into two sections: one section does not
surpass the limitations, while the other section does. If a set
of nodes whose power exceeds the power limits is represented
by Ω, then (10) may be rewritten as

λ
∗
= 2αiP i + βi, i /∈ Ω (19)

P i =
λ
∗ − βi

2αi
, i /∈ Ω (20)

The power supply-demand balance condition allows us to
obtain (21)-(24) by changing (19) to (20)

PD =
∑
i∈Ω

P i +
∑
i/∈Ω

P i (21)

Pj = e⊤(1,j)P+ e⊤(2,j)P (22)

PD =
∑
i∈Ω

e⊤(1,j)G+
∑
i/∈Ω

e⊤(2,j)G (23)

λ∗ =

(PD −
M∑

i∈Ω,j=1

e⊤(1,j)P) +

M∑
i/∈Ω,j=1

e⊤(2,j)B

M∑
i/∈Ω,j=1

e⊤(2,j)D

(24)

where G = (g1(P 1), g2(P 2), . . . , gN (PN ))⊤, the vector
e⊤(1,j) corresponding to nodes in region j that do not exceed
power constraints and e⊤(2,j) corresponds to nodes in region
j that do not surpass power constraints, whereas the vector
e⊤(2,j) corresponds to nodes in region j that do surpass power
constraints. In the distributed multi-region system considered
in this research, the optimal value is obtained when the
incremental costs within and between areas are consistent.
Therefore, the study’s algorithm merely needs to figure out
what this incremental cost’s optimum value is. This algorith-
mic incremental cost has a value that is applicable to all areas.

The distributed finite-step iteration algorithm presented in
this research can be represented by method 1 and Figure
1, taking into account the power output restrictions of all
generators.

Fig. 1: Flowchart of the distributed finite-step consensus
algorithm

IV. CASE STUDIES

This section includes three case studies that illustrate the
efficacy of the suggested distributed control approach. The
first case study demonstrates the iterative algorithm’s accuracy
in two scenarios: one without constraints and the other with
constraints. The second case study validates the iterative
approach’s accuracy under a range of region partitioning
modalities. A generator that is dependent on the second case
is dynamically replaced by the third case. The connection
topology of the micro-grid system, an IEEE 30-bus system
with six generators[26], is depicted in Figure 2[27]. Table I
lists each node’s pertinent parameter. The power curves of
these two generators will overlap in the case simulation that
follows since parameters 5 and 6 are designed identically to
simulate the real-world scenario of having the same motor.

TABLE I: Parameters for 6 nodes network topology[27]

Nodes αi βi γi (Pmin
i , Pmax

i )/kW
1 0.00164 7.75 420 (100,260)
2 0.00215 7.80 208 (150,400)
3 0.00395 7.62 172 (150,300)
4 0.00172 7.84 352 (100,400)
5 0.00368 7.73 178 (80,320)
6 0.00368 7.73 178 (80,320)



Algorithm 1 The finite-step iteration algorithm with con-
straints

1: From Lemma 1, b and a0 can be calculated. And set
the initial value W 0

j ,Y 0
j and Z0

j , where W 0
j ,Y 0

j and Z0
j

represents portions of the numerator and denominator in
(24):

W 0
j = Pj − P c, c ∈ Ω ∩ i ∈ Rj (25)

Y 0
j =

M∑
j=1

e⊤j B, i /∈ Ω (26)

Z0
j =

M∑
j=1

e⊤j D, i /∈ Ω (27)

2: Using (1), determine the Laplacian matrix and the associ-
ated D+1 unique eigenvalues. Moreover, compute b and
α(k) via (15) and (16), obtaining R(k) via (14);

3: The following iterations, where rjj and rjq denote the
corresponding member in the Rk matrix, update the sub-
sequent values:

W
(k+1)
j = rjjW

(k)
j +

∑
q∈Ni

rjqW
(k)
q (28)

Y
(k+1)
j = rjjY

(k)
j +

∑
q∈Ni

rjqY
(k)
q (29)

Z
(k+1)
j = rjjZ

(k)
j +

∑
q∈Ni

rjqZ
(k)
q (30)

4: Calculate the incremental costs of region j at each itera-
tion:

λ
k

j =
W

(k)
j + Y

(k)
j

Z
(k)
j

(31)

5: Following D iterations, the ideal incremental cost can be
determined as follows:

λ
∗
=

1

M

M∑
j=1

λ
(k)

j (32)

6: Next, determine node i’s power output for each iteration.
The power P ∗

i is equal to the corresponding upper and
lower boundaries if P ∗

i exceeds the upper and lower
bounds of the power constraint:

P ∗
i =

{
λ
∗−βi

2αi
, i /∈ Ω

Pmin
i orPmax

i , i ∈ Ω
(33)

Fig. 2: Topology diagram of distributed connection for six
generators[28]

Fig. 3: The diagram of six generators divided into three
areas[28]

A. Case1: comparison between algorithms with and without
power constrained

To validate the algorithm described in this research, Case
1 primarily splits the IEEE 30-bus system with 6 generators
into 3 zones with PD = 1200kW, as illustrated in Figure 3.
The example confirms that the finite-step iterative approach
suggested in this work is accurate for both constrained and
unconstrained power scenarios.

We start by ignoring each node’s power limitation. Without
limitations, we are able to determine e⊤1 = (1, 1, 0, 0, 0, 0)⊤,
e⊤2 = (0, 0, 1, 1, 0, 0)⊤ and e⊤3 = (0, 0, 0, 0, 1, 1)⊤. Based on
the network topology, the Laplacian matrix L1 and L2 are
expressed as

L1 =


2 −1 0 0 0 −1
−1 3 −1 0 −1 −1
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 −1 0 −1 3 −1
−1 −1 −1 0 −1 4


and

L2 =

 1 −1 0
−1 2 −1
0 −1 1


Since L1 has six distinct eigenvalues, D = 5 may be

computed, indicating that consistent results can be obtained
by repeating five stages.

The recommended method can be applied without limita-
tions to obtain the results shown in Figures 4(a) and 5(a). All



(a) Without constraints

(b) With constraints

Fig. 4: The iterative results of generator power with both
constrained and unconstrained power

nodes’ power updates are displayed in Figure 4(a), totaling
1200kW. Moreover, the incremental cost iteration update is
shown in Figure 5(a). We can thus acquire each power in
Figure 4(a) for the following values: P1 = 302.3780kW,
P2 = 219.0232kW, P3 = 142.0000kW, P4 = 262.1512kW,
P5 = 137.4728kW, and P6 = 137.4728kW. The total incre-
mental cost in Figure 5(a) is 8.7418. In the example case, the
generator is running freely. It makes it clear that generators 2
and 3 have exceeded their permitted boundaries.

Thus, under constraints, e(1,1) = (1, 0, 0, 0, 0, 0)⊤,
e(1,2) = (0, 0, 1, 0, 0, 0)⊤, e(1,3) = (0, 0, 0, 0, 0, 0)⊤,
e(2,1) = (0, 1, 0, 0, 0, 0)⊤, e(2,2) = (0, 0, 0, 1, 0, 0)⊤, e(2,3) =
(0, 0, 0, 0, 1, 1)⊤ can be obtained. The simulation results can
be achieved by applying the suggested algorithm, which is pro-
vided in Figures 4(b) and 5(b), while taking each node’s power
constraint into consideration. 8.7843 is the total incremental
cost shown in Figure 5(b). Additionally, P1 = 260.0000kW,
P2 = 228.7828kW, P3 = 150.0000kW, P4 = 274.4887kW,

(a) Without constraints

(b) With constraints

Fig. 5: The iterative results of incremental cost with both
constrained and unconstrained power

P5 = 143.2472kW, and P6 = 143.2472kW are the best values
for each node in Figure 4(b). Figure 4(b) illustrates how each
node’s power updates over time, eventually converges over five
steps, and totals 1200kW. Additionally, the generator power
output is constrained within the lower and upper limitations at
each iteration step. Furthermore, Case 1’s simulation results
demonstrated consistency in just four stages, confirming the
algorithm’s validity.

B. Case2: change of the total power generated

This case represents the scenario when the system’s overall
power requirement varies at a specific point in time and
is primarily based on Case 1 with limitations. This paper’s
algorithm’s fast finite step iteration speed allows it to respond
with accuracy and quickness.

Figure 6 illustrates how the total power demand shifts
from 1200kW to 1500kW at time t1. To attain consistency
in a brief amount of time, the algorithm iterates once more.
Using the finite step technique, we can determine that the
final incremental cost under a total power requirement of
1500kW is 9.11. Additionally, P1 = 260.0000kW, P2 =
305.2769kW, P3 = 188.9482kW, P4 = 369.9683kW, P5 =



Fig. 6: The results of changing the total power generated at
time t1 and t2

187.8656kW, and P6 = 187.8656kW are the best values
for each node.The total power returns to 1200kW at time
t2 from 1500kW. Additionally, the incremental cost rises to
8.7843. Furthermore, P1 = 260.0000kW, P2 = 228.7828kW,
P3 = 150.0000kW, P4 = 274.4887kW, P5 = 143.2472kW,
and P6 = 143.2472kW are the ideal values for each generator.

(a) Using the dichotomy algorithm

(b) Using the distributed finite-step consensus algorithm

Fig. 7: Comparison of power iteration results between two
algorithms

(a) Using the dichotomy algorithm

(b) Using the distributed finite-step consensus algorithm

Fig. 8: Comparison of consistent incremental cost iteration
results between two algorithms

C. Case3: comparison between the proposed algorithm and
the general dichotomy method

The classic generic dichotomy algorithm, whose parameters
are the same as those with limitations in Case 1 above, is
compared with the approach in this paper in this Case Study.
These are Figures 7(a) and 8(a), which we can acquire by
applying the dichotomy search approach. Additionally, Figures
7(b) and 8(b) exhibit the constrained outcomes from Case 1
above.

The suggested approach needs less iterations to reach the
same result, whereas the dichotomy method requires more
convergence time, as can be shown by comparing the iterative
results of the generating power of the two ways in Figure 7.
Subsequently, Figure 8’s comparison of the iterative outcomes
of the incremental costs of the two techniques demonstrates
that, in contrast to the suggested method, the dichotomous
finding method needs more than 20 iteration steps to attain
convergence. The finite step method outperforms this tech-
nique in terms of iteration times, as more time may be saved
with fewer iterations. This suggests that there are more benefits
and more.

V. CONCLUSION

This study proposes a hybrid centralized-decentralized ED
technique with divided regional incremental costs, based on



a distributed finite-step consensus process. This approach
genuinely considers the generator’s power limitations and
reaches regionally consistent convergence in a few number
of iterative steps. Initially, in a multi-agent power system, a
Laplacian matrix can be derived from the distributed topology
of the generator. Subsequently, a constructed Laplace matrix
that illustrates the communication link between geographically
split zones can be obtained. After the final additional cost
achieves the regional consistency, we compute the incremental
cost of each region while accounting for the generators’ power
limitations. In addition, during the iteration process, the output
power of the distributed generator can be limited to the
corresponding range, which can ensure the balance between
power supply and demand. Finally, the correctness, rationality
and speed of the finite-step iteration algorithm are verified
through three calculation examples.
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