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Abstract

While Multimodal Large Language Models (MLLMs) offer strong perception and
reasoning capabilities for image-text input, Visual Question Answering (VQA)
focusing on small image details still remains a challenge. Although visual cropping
techniques seem promising, recent approaches have several limitations: the need
for task-specific fine-tuning, low efficiency due to uninformed exhaustive search,
or incompatibility with efficient attention implementations. We address these
shortcomings by proposing a training-free visual cropping method, dubbed FOCUS,
that leverages MLLM-internal representations to guide the search for the most
relevant image region. This is accomplished in four steps: first, we identify the
target object(s) in the VQA prompt; second, we compute an object relevance map
using the key-value (KV) cache; third, we propose and rank relevant image regions
based on the map; and finally, we perform the fine-grained VQA task using the top-
ranked region. As a result of this informed search strategy, FOCUS achieves strong
performance across four fine-grained VQA datasets and three types of MLLMs. It
outperforms three popular visual cropping methods in both accuracy and efficiency,
and matches the best-performing baseline, ZoomEye, while requiring 3 – 6.5×
less compute.

1 Introduction
Multimodal Large Language Models (MLLMs) exhibit compelling cross-modal perception and
reasoning capabilities, particularly on image-text data [8, 9, 22]. However, standard MLLM architec-
tures are not well suited to perceive and reason about small visual details in high-resolution images
[37, 42] as they typically downscale their inputs, leading to a loss of information. Examples of these
so-called global-view MLLMs include Instruct-BLIP [9] and LLaVA-1.5 [24], which only support
low-resolution inputs of 224 × 224 px and 336 × 336 px, respectively. As a consequence, global-
view MLLMs perform poorly on Visual Question Answering (VQA) tasks involving small-scale
visual details [38].

Recent MLLM architectures such as LLaVA-OneVision [22] and Gemma-3 [19] address this limita-
tion by processing both a downsampled global view and local crops extracted from the original image.
This dual-view strategy enables them to handle high-resolution inputs with reduced information loss
compared to global-view MLLMs. However, despite having access to fine-grained visual details from
all local crops, these so-called global-local-view MLLMs struggle to identify the few visual tokens
that are relevant for fine-grained VQA amid the large number of local crop tokens. While these
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global-local-view architectures outperform global-view MLLMs, their effectiveness on fine-grained
VQA tasks still remains limited [37].

An orthogonal research direction to address the limitations of MLLMs in capturing fine details in
high-resolution images are visual cropping approaches [31, 37, 38, 42], which seek to pass only
relevant image regions to the MLLM. However, popular visual cropping techniques like SEAL [38],
DC2 [37], ZoomEye [31], and ViCrop [42] suffer from one or more of the following limitations:
(1) reliance on task-specific fine-tuning of MLLMs for fine-grained VQA, (2) use of inefficient,
exhaustive search algorithms, and (3) incompatibility with efficient attention implementations such
as FlashAttention [10] (see Tab. 1 and Fig. 6 for a visual comparison of the methods). We propose a
visual cropping method, termed Fine-grained visual Object Cropping Using cached token Similarity
(FOCUS), that addresses these issues as is outlined in the following.

Table 1: Comparison of visual cropping methods
w.r.t. desirable properties. Unlike previously suggested
methods, FOCUS is training-free, algorithmically effi-
cient in search, and compatible with efficient attention
implementations.

Method Training-
free

Efficient
search algo.

Compatible w/
efficient attention

SEAL [38] ✗ ✗ ✓

DC2 [37] ✓ ✗ ✓

ZoomEye [31] ✓ ✗ ✓

ViCrop [42] ✓ ✓ ✗

FOCUS (Ours) ✓ ✓ ✓

To tackle limitation (1), FOCUS leverages the in-
ternal representations of MLLMs, specifically
their key-value (KV) caches [27], to localize
question-relevant image regions in a training-
free manner—unlike the SEAL [38] technique.
Moreover, to mitigate limitation (2), our method
includes textual clues to enable object-aware
localization without exhaustive cropping of the
image, thereby improving the algorithmic ef-
ficiency—different from DC2 [37] and Zoom-
Eye [31]. To overcome limitation (3), FOCUS
utilizes the cached value features readily avail-
able during inference, making it natively com-
patible with efficient attention implementations
[10]—unlike ViCrop [42] that depends on full attention weights. Specifically, FOCUS combines these
components as follows: for each VQA question, we first identify the target object(s) in the question
prompt. Second, we construct an object relevance map using cosine similarity between the cached
text tokens of the target object(s) and the cached image tokens, and then propose relevant regions
based on this map. Third, we rank the proposed image regions based on the existence confidence of
the target object in each region. Finally, we perform VQA solely based on the image region with the
highest confidence. Note that FOCUS is compatible with both global- and global-local-view MLLMs.

We evaluate FOCUS on the fine-grained VQA datasets V*Bench [38], HRBench-4K [37], HRBench-
8K [37] and MME-RealWorld-Lite [43]. Across the first three datasets, our method achieves on
average 42% higher accuracy over the vanilla MLLMs when using LLaVA-1.5 and 17% when
using LLaVA-OneVision, while improving LLaVA-OneVision by 6% on the multi-domain MME-
RealWorld-Lite dataset. Moreover, FOCUS achieves comparable or superior performance w.r.t. the
state-of-the-art baseline ZoomEye [31] while being 3.5 – 4.5× more efficient with LLaVA-1.5 and
3 – 6.5× more efficient with LLaVA-OneVision.

Our key contributions are as follows: First, we propose FOCUS, a training-free visual cropping
method for MLLM-based fine-grained VQA that identifies relevant image regions using internal
representations of the MLLM. Second, we provide extensive empirical evidence for FOCUS’s favorable
accuracy-efficiency trade-offs compared to previous visual cropping methods for fine-grained VQA.
Third, we conduct an ablation study that provides insights on how FOCUS leverages MLLM-internal
knowledge for efficient visual cropping.

2 Related work

VQA involves answering a question based on the visual content of an image. While various types of
machine learning models can be applied to this task, MLLMs have become the de facto standard due
to their strong cross-modal reasoning capabilities [15, 24]. Here, we focus on the multiple-choice
variant of VQA, where the MLLM is expected to select the correct answer from a fixed set of options.
In the following paragraphs, we describe the datasets commonly used to evaluate MLLM performance
on fine-grained VQA tasks, i.e., tasks that require focus on visual details. Further, we provide a
technical overview of recent visual cropping methods.
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Fine-grained VQA datasets In common VQA datasets such as Text-VQA [33] and
Ref-COCO [20], the relevant objects are typically prominent within the image. In con-
trast, fine-grained VQA tasks focus on much smaller visual targets. The V*Bench
dataset exemplifies this, containing significantly smaller question-relevant objects compared
to the aforementioned datasets (see Fig. 1). Additional fine-grained VQA datasets include
HRBench-4K [37], HRBench-8K [37], and MME-RealWorld-Lite [43]. Among these, V*Bench
is the only dataset that provides Ground Truth (GT) annotations for question-relevant objects.
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Figure 1: Many VQA datasets focus on large instead
of tiny objects. This figure shows the relative area
of question-relevant objects w.r.t. the image. V*Bench
contains various tiny VQA-relevant objects.

Visual cropping for fine-grained VQA In this
emerging area of research, different visual crop-
ping methods [31, 37, 38, 42] have been pro-
posed to improve MLLM performance on fine-
grained VQA tasks (see Tab. 1). SEAL [38]
employs a dual-MLLM setup: one MLLM for
visual search and another one for the actual
VQA task. The visual search model with ad-
ditional decoders is fine-tuned to predict object
heatmaps and coordinates. It performs a top-
down hierarchical search, generating contextual
cues to iteratively locate the target object based
on confidence scores. This approach requires
task-specific fine-tuning and is rather inefficient
due to its complex, multi-module design and
recursive search process. In contrast, DC2 [37]
constructs a hierarchical image region tree from
the global view down to regions, matching the
base resolution of the vision encoder. Each re-

gion is captioned using the MLLM and those containing the target object are merged for actual
VQA. While training-free, DC2 is inefficient due to the extensive tree traversal and costly captioning
process. Similar to DC2, ZoomEye [31] employs a hierarchical tree search, but instead of captioning,
it predicts a confidence score for each image region. This score is computed through a complex
mechanism involving three sequential MLLM forward passes, each using a different question prompt.
As a result, the process cannot be simplified or shared across regions, making the method inefficient
due to both the hierarchical search and the high cost of confidence estimation. ViCrop [42] is an
efficient, training-free visual cropping method that avoids hierarchical search by directly computing a
question-guided heatmap to localize the target object. However, its best-performing variants depend
on Q-K attention weights and answer gradients, making the method incompatible with efficient atten-
tion implementations such as FlashAttention [10]. Unlike these methods, our method is a training-free
visual cropping approach without additional modules besides the MLLM. Rather than relying on
recursive search, captioning, or Q-K attention weights, we employ an informed search guided by
internal representations of the MLLM that is compatible with efficient attention implementations.
This design enables our method to achieve significantly higher efficiency without sacrificing accuracy.

3 FOCUS: Fine-grained visual object cropping using cached token similarity
We first provide relevant background information for our method in Sec. 3.1. Next, we describe in
detail how our method proposes relevant image regions based on the KV-cache in Sec. 3.2. Finally,
we explain how these image regions are used for fine-grained VQA tasks in Sec. 3.3. We provide a
visualization of FOCUS in Fig. 2.

3.1 Background

MLLMs typically comprise three core components: a vision encoder, a modality projector, and a
Large Language Model (LLM). The LLM receives an input sequence of tokens X = (x1, . . . , xn) and
predicts the next token xn+1 auto-regressively [28]. This sequence can be viewed as a concatenation
of visual tokens Xvis = (x1, . . . , xa2) and instruction textual tokens Xtext = (xa2+1, . . . , xn), where
a is the grid size of the vision encoder (for simplicity, we ignore system prompt tokens here). In
many models, the visual tokens from the vision encoder are extracted from a downscaled global view
of the image and projected into the LLM’s feature space via the modality projector. The resizing
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Figure 2: Overview of FOCUS. The method identifies the target objects mentioned in the question (I) and
constructs their object relevance maps using cosine similarity between cached tokens (II + III). Then, it proposes
regions of interest and ranks those by the existence confidence of the target object in each region (IV + V).
Finally, the selected region is used to perform VQA (VI).

aligns the input image with the base resolution expected by the vision encoder, e.g., 336 × 336
for CLIP [29] and 384× 384 for SigLIP [41]. While this regime is effective in many scenarios, it
tends to fail on fine-grained VQA tasks [37, 42]. To address this limitation, many global-local-view
MLLMs [16, 22, 23, 40] partition the original (unresized) image into b local crops in addition to
the resized global view. These crops are encoded into additional visual tokens, extending the visual
input to Xvis = (x1, . . . , xa2·(b+1)). This results in a rapid growth of computational cost due to the
quadratic complexity of self-attention in transformer layers [36]. We aim to improve the performance
of both global-view and global-local-view MLLMs on fine-grained VQA tasks by constructing a map
that efficiently localizes the image regions most relevant to a target object mentioned in a question.
This map is referred to as the object relevance map. Once the relevant regions are identified,
we restrict processing to these areas for the final VQA prediction, thereby improving accuracy and
computational efficiency.

3.2 Constructing object relevance maps from cached token similarity

Localizing objects in images remains a challenge for MLLMs [6]. While many models are fine-tuned
on predicting bounding boxes [20], they often fail when prompted directly for the location of small
objects, frequently producing hallucinated or imprecise coordinates [6]. Instead of relying on explicit
prompting, we propose to localize target objects by leveraging value features of cached tokens
of MLLMs. Recent work [25] shows that visual tokens in the sequence largely preserve spatial
correspondence to their originating image regions across transformer layers [36]. In fine-grained
VQA datasets [37, 38, 43], questions typically involve one or more specific objects in the image,
which we refer to as the target object(s). Since the text tokens corresponding to these targets co-exist
alongside visual tokens in the token sequence, we estimate an object relevance map by computing the
cosine similarity between the text and visual tokens.

To construct this object relevance map, we first identify the text tokens corresponding to the target
object(s) as shown in Fig. 2 (I). Inspired by ZoomEye [31], we use the in-context learning (ICL)
capability of MLLMs [12] to extract the target object(s) by providing a few examples in the prompt.
This might extract one or multiple target object(s) from the question. For each target object, we apply a
generic prompt template "Is there a {target object} in the image?" to query the MLLM
alongside the image. Due to the tokenization [36] of the MLLM, the target object can result in a
sequence of target text tokens X̂tgt = (x̂0, . . . , x̂i, . . . , x̂s). We calculate the cosine similarity between
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the target tokens and the visual tokens in the sequence to construct the object relevance map. While
one might consider using standard query-key (Q-K) attention weights [36] for this purpose, many
recent MLLMs employ efficient attention implementations such as FlashAttention [10], which do not
generate Q-K attention weights explicitly. We address this issue by using value features preserved in
the KV-cache mechanism [27], which is commonly used to accelerate autoregressive inference by
storing intermediate representations. Leveraging this, we propose an alternative value-value (V-V)
pseudo-attention approach as shown in Fig. 2 (II). For each target token x̂l

i, i ∈ {0, . . . , s} in the l-th
layer, we compute a pseudo-attention map Al

i ∈ Ra×a by measuring its cosine similarity (cos) with
the visual tokens (xl

1, . . . , x
l
a), where value features are available via the KV-cache:

Al
i = cos(x̂l

i, x
l
j), for j = 1, . . . , a2 (1)

and reshape Al
i into an a× a matrix. Alternatively, one can also compute Al

i using key features, see
Sec. 4.3 for details. In preliminary experiments, we empirically find that the pseudo-attention map
Al

i from a single layer might be noisy. Therefore, we aggregate maps from l-th layer to L-th layer
using attention rollout [1], incorporating residual connections to better preserve information flow
as follows:

Ai =

L∑
k=l

(Al
i + I)/2 , (2)

where I denotes the identity matrix. We aggregate the pseudo-attention maps Ai for each individual
target token x̂i by element-wise multiplication to capture consensus as shown in Fig. 2 (III):

A = A0 ⊙A1 ⊙ · · · ⊙As . (3)

This operation allows only regions that are consistently highlighted across all target tokens to remain
prominent. For example, the token red may highlight many red objects, but when combined with
car, only regions corresponding to red cars will be emphasized. We refer to A as the object relevance
map corresponding to the target object. A normalization of A is performed after every matrix addition
and multiplication to ensure numerical stability.

For global-local-view MLLMs, instead of calculating cosine similarity between the target tokens
and the visual tokens from the global view, we use visual tokens extracted from the local crops.
We empirically find that these local tokens can better capture fine-grained details. We compute the
pseudo-attention map Al

i using local visual tokens:

Al
i = cos(x̂l

i, x
l
j), for j = a2 + 1, . . . , a2 · (b+ 1) (4)

and reshape Al
i into a h× w matrix, where h and w denote the spatial dimensions of the local visual

tokens arranged to closely preserve the original image’s aspect ratio, so that h · w = a2 · b. To
reduce noise and enhance spatial coherence, we empirically apply a Gaussian filter to A, followed by
downsampling, yielding a cleaner object relevance map.

3.3 Ranking of proposed regions of interest (ROIs) for fine-grained VQA

Given an object relevance map, we define in the following a relevance score for each of its elements.
As shown in Fig. 2 (IV), once the object relevance map is obtained, we extract the locations of the
top-k highest scores as anchor points on A, which represent regions likely containing the target object.
To ensure sufficient spatial coverage, we select a relatively large k and enforce a minimum distance
sdist between anchor points. Anchor points that are too close are discarded. Then, we generate an
initial symmetric ROI of minimal size smin per anchor point.

Each initial ROI is then expanded up to the maximal size smax, stopping when the average relevance
score within the ROI falls below a predefined threshold. We rank the resulting ROIs based on the
relevance score at their respective anchor points. To eliminate redundancy, we apply non-maximum-
suppression [14, 17], using a low threshold to promote diversity among selected regions. This
encourages broader spatial coverage.

The resulting object relevance map can be noisy due to spurious high-activation tokens [11] that do
not correspond to the target object. As a result, a ROI with a high relevance score may not actually
contain the target object. Therefore, we verify whether the ROI contains the target (see App. A.5
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for details). Similar to ZoomEye [31], the ROI is provided to the MLLM together with an existence
prompt, and an existence confidence is computed from the model’s response, as shown in Fig. 2 (V).
Then, we rerank the top nsteps ROIs according to their existence confidence, with the number of steps
nsteps controlling the Forward Pass (FP) budget.

Final VQA inference In the previous paragraphs, we demonstrated how to obtain the most relevant
ROIs for each target object. These ROIs are now passed to the MLLM for the final VQA prediction.
We follow the inference strategy from ZoomEye [31], which categorizes questions in fine-grained
VQA datasets into two types. Type-1 questions involve single-object instances and type-2 questions
concern multiple instances of an object type. These categories can be automatically inferred using
ICL or keyword-based heuristics, without requiring prior knowledge of the question. For type-1
questions, we select the ROI with the highest confidence score for each target object. If the question
involves multiple target objects, we combine the regions covering all relevant objects for the final
VQA. For type-2 questions, we iterate over all proposed ROIs and select those with confidence scores
higher than a threshold. This step is not constrained by the nsteps. In the case of global-local-view
MLLMs, this process slightly differs. Instead of combining the visual crops into a single area, we
utilize the model’s text-image-interleaved capabilities [2, 22, 23]. Specifically, we provide one global
image view—where all target objects are visually highlighted—alongside the top-confidence ROIs
for each target object. Please check App. A.5 for details.

4 Experiments
We first describe the implementation details of our experiments in Sec. 4.1 and provide the results on
fine-grained VQA datasets in Sec. 4.2. Further, we conduct an ablation study and a hyperparameter
sensitivity analysis in Sec. 4.3 and provide additional results (i) on VQA datasets with larger objects
and (ii) with Qwen-2.5-VL [4] in Sec. 4.4. Finally, we show some qualitative examples and discuss
the limitations of FOCUS in Sec. 4.5 and Sec. 4.6, respectively.
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Figure 3: FOCUS is at the Pareto front on fine-grained VQA benchmarks. Given the same computation budget,
FOCUS (purple crosses) significantly outperforms other visual cropping methods, on three different datasets and
for two model architectures. It achieves 3 – 6.5× higher efficiency than the best-performing baseline ZoomEye.
Note that we show only a limited set of data points for each method to ensure a clear visualization. The full
results are available in App. C.1.

4.1 Implementation details

Following prior work [31, 37, 38], we evaluate FOCUS on several fine-grained VQA benchmarks:
V*Bench [38], HRBench [37], and MME-RealWorld-Lite [43]. We report accuracy on multiple-
choice questions as the primary performance metric. Another critical consideration is the trade-off
between performance and efficiency, as inference with MLLMs can be computationally expensive. In
the case of multiple-choice VQA, inference speed is largely determined by the sequence length during
the prefill phase [32, 36]. Since the sequence length remains relatively consistent across different
searches, we quantify efficiency using the number of Forward Passes (FPs) required for the visual
search. We provide details of used hardware and on the calculation of all metrics in App. A.1 and
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App. A.2. We evaluate our method using two types of MLLMs: LLaVA-1.5-7B [24], a global-view
MLLM, and LLaVA-OneVision-7B [22], a global-local-view MLLM. As described in Sec. 3.2, we
utilize representations from multiple layers to compute the object relevance map. For LLaVA-1.5, we
use representations from the 14th to the 32nd layer (l = 14, L = 32), and for LLaVA-OneVision from
the 14th to the 28th layer (l = 14, L = 28). To evaluate performance under varying computational
budgets, we adjust only the number of steps, setting nsteps ∈ {1, 2, 3, 4, 6, 8}. We describe the
configuration of the remaining hyperparameters of FOCUS in App. A.3; for an analysis of FOCUS’s
hyperparameter sensitivity, see Sec. 4.3.

For ZoomEye, we vary the number of crops per layer and the cropping depth. For ViCrop, we report
results from its best-performing variants, i.e., rel-attn and attn-grad. For DC2, we determine
the FPs via the base resolution of the vision encoder. For SEAL, we evaluate the publicly available
pre-trained model without modifications. Additional implementation details are provided in App. A.4.
Note that SEAL and ZoomEye use a different inference scheme on V*Bench compared to the
open-ended generation approach of FOCUS. With this alternative scheme, we observe significantly
improved performance with ZoomEye on V*Bench. Further, we observe a notable gap between our
ZoomEye results and those reported in the original paper. Detailed results are provided in App. C.5.

4.2 Results on fine-grained VQA datasets

We conduct experiments with LLaVA-1.5 on V*Bench, HRBench-4K, and HRBench-8K (see Fig. 3).
Overall, FOCUS outperforms the four other visual cropping methods on a relatively small computa-
tional budget of fewer than 17 FPs. FOCUS achieves an accuracy of 72.77% on V*Bench, 51.75% on
HRBench-4K, and 45.00% on HRBench-8K. SEAL achieves a slightly higher accuracy than FOCUS
on V*Bench, but at the cost of significantly lower efficiency due to its multi-module design and
recursive visual search. On high-resolution datasets like HRBench, its performance is only on par with
the vanilla MLLM. We suspect this decline stems from SEAL’s training data, which is specifically
optimized for resolutions below 2K. ZoomEye achieves the highest accuracy on V*Bench (77.48%),
but only with an extremely deep tree search, resulting in substantial computational overhead. At
our top accuracy of 72.77%, FOCUS is 3.43× more efficient than ZoomEye. On HRBench-4K, our
method not only surpasses ZoomEye with a better top accuracy but also uses 4.39× fewer FPs. On
HRBench-8K, while ZoomEye attains a higher top accuracy of 49.00%, FOCUS achieves 44.88%
with 4.72× greater efficiency. This performance gap on HRBench-8K is likely due to the limitations
of the 24× 24 object relevance map produced by LLaVA-1.5. Smaller objects often remain unde-
tected, limiting our model’s ability to improve accuracy—even when increasing nsteps to allocate
more computation.

With LLaVA-OneVision, we conduct experiments on the previously introduced datasets (see Fig. 3)
and additionally evaluate on MME-RealWorld-Lite (see Tab. 2). We compare FOCUS only to Zoom-
Eye, as SEAL does not provide any models based on LLaVA-OneVision. Moreover, neither Vi-
Crop nor DC2 supports evaluation with LLaVA-OneVision. FOCUS significantly benefits from the
higher-resolution object relevance map generated based on the local crops. As a result, our method
outperforms ZoomEye both in terms of accuracy and efficiency on the three datasets. Although
LLaVA-OneVision natively supports resolutions up to 2K, FOCUS can still boost the accuracy on
V*Bench (2K) from 74.46% to 92.15%. This can be attributed to our method isolating target objects
and reducing irrelevant background regions. Furthermore, we perform additional evaluation on MME-
RealWorld-Lite, see Tab. 2. FOCUS outperforms the vanilla baseline on most sub-tasks. ZoomEye and
our method have strengths in different domains. FOCUS is better for reasoning, while ZoomEye is

Table 2: Results on MME-RealWorld-Lite. We provide the accuracy for each task. Further, we report
the average accuracy and FPs per subset for efficiency comparison. The dataset includes the domains OCR
(Optical Character Recognition), RS (Remote Sensing), DT (Diagram and Table), MO (Monitoring), and
AD (Autonomous Driving).

Perception Reasoning
Sub-task accuracy [%] Average Sub-task accuracy [%] Average

Model OCR RS DT MO AD Acc. [%] ↑ FP [#] ↓ OCR DT MO AD Acc. [%] ↑ FP [#] ↓
LLaVA-OV-7B 81.60 52.00 65.00 34.48 43.14 52.01 - 72.00 40.00 44.00 32.35 40.93 -
w/ ZoomEye 81.20 51.33 74.00 38.87 51.43 56.29 41.60 64.00 49.00 46.00 35.50 43.20 45.95
w/ FOCUS (Ours) 83.60 46.67 58.00 41.07 47.14 54.15 7.71 71.00 52.00 51.33 33.50 44.53 8.21
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better at perception tasks. Still, our method is on average 5.47× more efficient than ZoomEye. We
provide the full numerical results in App. C.1.

Comparison with ZoomEye ZoomEye’s strong performance on fine-grained VQA is largely driven
by its exhaustive tree search, which includes a high number of image regions. This leads to a
substantial number of FPs, as each region requires three FPs with different prompts for confidence
prediction—making the overall process computationally expensive. In contrast, FOCUS leverages an
object relevance map derived from internal representations to identify target object locations with just
a single FP—explaining its superior efficiency compared to ZoomEye. We report additional efficiency
metrics, including execution time, FLOPs and memory usage, in App. C.4. Crucially, our analysis
shows that reducing FPs not only lowers theoretical computation but also leads to significantly shorter
execution times, confirming the practical efficiency of FOCUS compared to ZoomEye.

4.3 Ablation studies and hyperparameter sensitivity analysis

In this subsection, we validate the design choices of FOCUS on V*Bench and HRBench-4K, using
LLaVA-1.5 (see Tab. 3 and Fig. 4). V*Bench is the only dataset that provides GT region annotations,
allowing us to report both accuracy and recall. We calculate recall by checking whether one of the
proposed ROIs overlaps with the GT region by at least 50%. We use the same hyperparameters across
all ablation studies, with the number of steps set to nsteps = 8 unless stated otherwise. Furthermore,
we analyze the hyperparameter sensitivity of FOCUS on V*Bench.

Component analysis We first verify the contributions of the object relevance map (see Sec. 3.2)
and the ROI ranking (see Sec. 3.3). To assess the impact of the object relevance map, we replace it
with a randomly generated map. This substitution leads to a substantial decrease in accuracy on both
datasets—interestingly, however, FOCUS still performs well above random guessing (35.99%). This
indicates that even without an accurate global understanding of the object’s location, our method
can identify likely regions through confidence-based ROI selection, demonstrating our ranking
mechanism’s robustness. Next, we assess the effect of discarding ROI ranking by directly selecting
the ROI with the highest object relevance score for the final VQA. This yields a recall of 38.48%
on V*Bench, with accuracy improvements of 3 percentage points (pp.) on V*Bench and 5 pp. on
HRBench-4K compared to the vanilla baseline. These results suggest that object relevance maps,
even without post-processing, serve as a strong prior for identifying meaningful visual regions.

Table 3: Ablation studies of FOCUS. We evaluate the influences
of design choices of our method based on accuracy and recall.
"rel." is short for "relevance".

Ablation V*Bench HRBench-4K

Component

Object
rel. map

Proposal
ranking

Acc.
[%] ↑

Recall
[%] ↑

Acc.
[%] ↑

✗ ✓ 48.68 18.37 36.13
✓ ✗ 51.30 38.48 41.13

Pseudo-attn. K-K (w/o RoPE) 69.10 63.47 45.63

Layers 0− 14 66.49 76.17 47.38
0− 32 71.20 75.56 49.38

Original design choice 72.77 77.49 51.75
Vanilla baseline 47.64 - 36.13
Random guess 35.99 - 25.00

Figure 4: Ablation studies on the search steps.
We analyze how the number of search steps
influences the recall and accuracy on V*Bench.
A positive correlation between accuracy and
recall can be observed.

Value features vs. key features in pseudo-attention One might argue that key features—central to
standard attention—encode richer semantic information [21] compared to value features and therefore
could be used to generate more precise object relevance maps. However, directly substituting key
features for value features in FOCUS results in degraded performance. This is mainly due to the
use of Rotary Positional Embedding (RoPE) [34] in recent MLLMs [4, 9, 22, 24], which injects
position-dependent rotations into the key features. As a result, RoPE causes nearby tokens to exhibit
artificially high cosine similarity due to positional proximity, rather than semantic alignment [13, 34].
In this ablation, we remove RoPE from the key features to isolate semantic content before computing
object relevance maps. Despite this, both accuracy and recall remain lower than those achieved
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using value features (see Tab. 3). We hypothesize that removing RoPE disrupts the semantic integrity
of the key features, as they are trained to operate with positional encoding, resulting in noisier
relevance maps.

Later layers vs. earlier layers Apart from using the default later layers (14− 32) for LLaVA-1.5,
we also experiment with representations from earlier layers (0−14) or all layers (0−32). We observe
that the representations from later layers yield the best performance across both datasets. This is
consistent with findings from the Logit Lens technique [26], which suggests that later layers encode
more predictive and semantically coherent representations.

Number of steps In FOCUS, we vary only the number of steps of the ROI ranking in our method
(see Sec. 4.1). For this ablation, we report accuracy and recall on V*Bench using LLaVA-1.5 and
LLaVA-OneVision. Across both models, recall increases with more steps, as additional lower-priority
ROIs are explored and more of the image is covered (see Fig. 4). Similarly, accuracy also improves
with more steps but begins to plateau beyond a certain point. This saturation might occur because
the model fails to identify the correct region among a considerable number of proposed ROIs during
ranking. Another reason could be that even when the correct region is provided, the MLLM is unable
to give the correct answer, due to object size, ambiguity, or other limitations.

Hyperparameter analysis We investigate FOCUS’s sensitivity on key hyperparameters and find it to
be robust across a wide range of parameter choices. In particular, we do not observe any accuracy
degradation larger than 4.71 pp. for LLaVA-1.5 and 2.62 pp. for LLaVA-OV. The complete results of
this hyperparameter analysis are provided in App. C.3. Please note that this study was conducted
post-hoc and not used to optimize the performance of FOCUS.

4.4 Additional results

In this subsection, we analyze how FOCUS performs on VQA questions involving large-size objects.
Moreover, we provide results for FOCUS when using the state-of-the-art model Qwen-2.5-VL as the
base MLLM.

Results on VQA datasets with large objects While the previously used datasets focus on fine-
grained VQA, we also evaluate the performance of FOCUS on datasets featuring large-scale objects to
assess its robustness across varying object sizes. We compare FOCUS on the datasets A-OKVQA [30]
and GQA [18] using LLaVA-1.5 and LLaVA-OV with the vanilla model and ViCrop as the latter one
is the only benchmark method providing respective results (see Tab. 4). Overall, FOCUS demonstrates
strong robustness on datasets with large objects, maintaining competitive performance compared to
the baseline models.

Results with Qwen-2.5-VL Qwen-2.5-VL [4] processes high-resolution images with native resolu-
tion, thereby preserving spatial details more effectively. We evaluate FOCUS with Qwen-2.5-VL-7B
(see Tab. 5) and find state-of-the-art accuracy on HRBench-4K and HRBench-8K. This confirms the
compatibility of FOCUS with different MLLM architectures.

Table 4: Results on VQA datasets with large objects.
We find only minor performance degradation of FOCUS
w.r.t. the base model.

A-OKVQA GQA
Model Acc. [%] ∆ Acc. [%] ∆

LLaVA-1.5 77.99 - 61.97 -
w/ ViCrop 60.66 -17.33 60.98 -0.99
w/ FOCUS 74.76 -3.23 60.34 -1.63

LLaVA-OV 91.44 - 62.01 -
w/ FOCUS 91.00 -0.44 51.02 -10.99

Table 5: Results of FOCUS with Qwen-2.5-VL.
FOCUS significantly boosts the performance of the
base model, consistent with previous results for
LLaVA-1.5 and LLaVA-OV.

Model V*Bench
[%]

HRBench-4K
[%]

HRBench-8K
[%]

Qwen-2.5-VL 79.06 71.62 68.62
w/ FOCUS 90.58 79.25 76.25

4.5 Qualitative examples

We provide two qualitative examples that show how FOCUS improves performance of LLaVA-1.5 for
single-target tasks and LLaVA-OneVision for multiple-target tasks (see Fig. 5). In both examples,
the accurate visual crops generated by FOCUS enable the respective MLLM to answer the question
correctly. The detected location of the target objects is highlighted in the object relevance map. One
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can see that LLaVA-OneVision provides a higher-resolution and cleaner object relevance map. We
provide more examples in App. D.

Question: Is the soccer ball on the left or right of the water dispenser? (A) left (B) right

Label: B | Answer (LLaVA-OneVision): A     | Answer (LLaVA-OneVision w/ FOCUS): B

Selected ROIGT regionOriginal image

Question: What is the color of the tissue box? (A) gray (B) white (C) black (D) blue 

Label: D | Answer (LLaVA-1.5): B      | Answer (LLaVA-1.5 w/ FOCUS): D

Original image Combined region Object relevance map water 

dispenser | Selected: R0

Object relevance map 

soccer ball | Selected: R1

Object relevance map 

tissue box | Selected: R0

(I)

(II)

Figure 5: Qualitative examples of FOCUS. We provide some exemplary inferences with our method for single-
target tasks with LLaVA-1.5 (I) and multiple-target tasks with LLaVA-OneVision (II). The Ground Truth (GT)
locations are highlighted in red in the original image. Further, we show the detected image regions and their
locations in the object relevance map. Note that the object relevance maps corresponds to the original images.

4.6 Limitations

One limitation of our method is its reliance on the resolution of the object relevance map. When
the input image is high-resolution (e.g., 8K), but the internal representations of the MLLM can
only produce a low-resolution relevance map, accurately localizing fine-grained objects becomes
difficult. This limitation partly explains the reduced effectiveness of our method with LLaVA-1.5
on HRBench-8K. A potential solution is to construct the object relevance map in a sliding-window
manner over the image, allowing finer spatial resolution. Moreover, FOCUS inherits the typically
limited understanding of spatial relationships [5, 35] from the base MLLM, as it is a training-free
method. Thus, FOCUS struggles with spatial concepts such as "on the left/right of the image". We
leave these shortcomings for future work.

5 Conclusion
In this work, we proposed FOCUS, an efficient, training-free visual cropping method for fine-grained
VQA tasks, where identifying small objects is essential. Our method constructs an object relevance
map from cached token representations to localize image regions relevant to the question, enabling
detail-focused VQA inference. FOCUS achieves performance on par with or better than existing meth-
ods across multiple fine-grained VQA benchmarks, while requiring significantly fewer computational
overhead. These results highlight the potential of training-free, high-resolution VQA systems that are
both effective and computationally efficient. Moreover, the central idea of FOCUS—harnessing the
hidden spatial capabilities of MLLMs via an inference-time method—holds significant promise for
spatial reasoning tasks well beyond VQA.
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A Implementation details

In this section, we provide additional technical details of our work. We begin by describing the
hardware setup and report the total GPU hours required to reproduce our main results in App. A.1.
Next, we explain in detail how the reported metrics are calculated, see App. A.2. We then provide the
hyperparameters used for FOCUS and the baseline visual cropping methods in App. A.3 and App. A.4,
respectively. Finally, we present further details on the processing scheme of FOCUS in App. A.5.

A.1 Hardware specifications

We run all experiments presented in Sec. 4 and App. C on identical hardware, namely compute
instances equipped with an NVIDIA A100 80GB GPU, an AMD EPYC 7V13 CPU, and 220 GB of
RAM. FOCUS’s software environment includes CUDA 12.2, PyTorch 2.6.0, and the HuggingFace
transformers library in version 4.46.0.

We also provide an estimation of the GPU hours needed to reproduce our results in the entire project.
In total, our reported results require approximately 132 GPU hours on the hardware configuration
described above (see Tab. 6). Additionally, we report the GPU hours required to run the experiments
that achieve the best-performing variants for each method on LLaVA-1.5 and LLaVA-OneVision.

Table 6: Estimated GPU hours.

Model Best-perf. variant
w/ LLaVA-1.5

Best-perf. variant
w/ LLaVA-OV All variants

SEAL 6 1 – 6

ViCrop 3 – 6

ZoomEye 5 30 80

FOCUS (Ours) 2 9 40

Sum 16 39 132

A.2 Metrics

In this subsection, we provide a detailed description of our performance and efficiency metrics.

Performance metrics The main performance metric is the accuracy of visual cropping methods,
which is typically reported as a percentage. We follow the standard evaluation protocol and do not
apply any post-processing to the answers generated by the visual cropping methods using the MLLM.
This means that if the ground-truth label is "A" and the model outputs "The answer is A" or
"(A)", we do not extract or normalize the answer to match the label. As a result, such responses are
counted as incorrect. However, this type of mismatch is of minor importance in our experiments:
across all models and three datasets (V*Bench, HRBench-4K, HRBench-8K), we did not observe
any irregular or non-standard response formats. We compute the average accuracy as the unweighted
mean over all N samples in a dataset, i.e., as

∑N
i=1(ŷi = yi)/N , where ŷi is the predicted answer

and yi is the ground-truth label for the i-th sample.

Efficiency metrics An important metric is the number of Forward Passes (FPs) required for the
visual search. Note that we exclude the FPs needed for the final VQAs prediction, as different
inference schemes can generate different forward passes, see App. C.5. We compute this by tracking
how often the generate, forward, or __call__ methods of the respective MLLM are invoked per
question. For methods that use multiple MLLMs (e.g., SEAL), we report the total number of FPs of
all MLLMs.

Another key metric we report is the efficiency improvement of FOCUS relative to the baseline methods.
Among all evaluated approaches, FOCUS demonstrates the highest efficiency. To ensure a fair
comparison, we consider the top accuracy achieved by FOCUS and the best-performing baseline, and
select the lower of the two as the reference accuracy. For both methods, we determine the number of
Forward Passes (FPs) required to reach this reference accuracy—either by taking the exact value or

1SEAL uses customized MLLMs based on LLaVA-7B.
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interpolating between data points to estimate the FPs. This yields FPours for FOCUS and FPref for the
best-performing baseline. The relative efficiency improvement is then computed as FPref/FPours.

Furthermore, we report two additional metrics to provide a practical comparison of efficiency, i.e.,
execution time and peak GPU memory usage (see Tab. 13). Execution time is recorded per sample,
and we report the average time per question across a dataset. Peak memory is measured using
torch.cuda.max_memory_allocated() and converted to GB by dividing the result by 10243.

A.3 Hyperparameters of FOCUS

This subsection outlines the hyperparameters used in our method, FOCUS. These parameters are
applied consistently across all experiments and correspond to the results reported in Sec. 4. As
noted in the main paper, the only parameter we vary is the number of steps, nsteps. Most other
hyperparameters remain fixed across experiments for both LLaVA-1.5 and LLaVA-OneVision. The
exceptions are three parameters: k and sdist (specific to LLaVA-1.5), and smax (specific to LLaVA-
OneVision), as detailed in Tab. 7.

For LLaVA-1.5, we use a smaller value of k when nsteps is low to reduce the number of proposed
ROIs. Additionally, we increase sdist on HRBench to ensure a broader spatial distribution of the ROIs
across the image. In contrast, for LLaVA-OneVision, we set a larger k due to its higher-resolution
object relevance map. Moreover, we set smax = 9 for V*Bench and smax = 5 for the other datasets,
as V*Bench contains lower-resolution (2K) images.

The hyperparameters used in FOCUS are generally robust and transferable across a wide range of
use cases. For users applying our method to new datasets, we recommend adjusting smax, which
determines the maximum size of each proposed ROIs, based on both the resolution of the input
images and the spatial resolution of the object relevance map. In particular, smax should be chosen so
that the corresponding region in the original image spans approximately 1–2× the base resolution
of the vision encoder. For example, if the object relevance map has a spatial resolution of 60× 30,
and the input image resolution is 7680 × 3840, then each grid element corresponds to an area of
128 × 128. Setting smax = 5 yields a maximum crop size of 640 × 640, which falls within the
recommended range of 384× 384− 768× 768 for the SigLIP encoder. Additionally, if one considers
migrating our method to another MLLM, we recommend selecting the last 25%− 60% of the layers.

Table 7: Hyperparameters of FOCUS.

Hyper-
parameter Description LLaVA-1.5 LLaVA-OneVision

k Number of anchor points k =

{
15 if nsteps < 4

30 otherwise
k = 30

smin Minimum size of each ROI smin = 3 smin = 3

smax Maximum size of each ROI smax = 5 smax =

{
9 for V*Bench
5 otherwise

sdist Minimum Euclidean distance be-
tween anchor points

sdist =

{
2 for V*Bench
3 otherwise

sdist = 2

l Start layer of the used MLLM-
internal representations

l = 14 l = 21

L End layer of the used MLLM-
internal representations

L = 32 L = 28

ttype2 Threshold for inclusion of ROIs
for type-2 questions

ttype2 = 0.6 ttype2 = 0.5

tobj_dist Threshold for merging ROIs of
nearby objects (see App. A.5)

tobj_dist = 1200 –

A.4 Hyperparameters of recent visual cropping methods

This subsection outlines the hyperparameters used for the baseline methods, i.e., for DC2, SEAL,
ViCrop, and ZoomEye. Further, we provide a visual comparison of these baseline methods in Fig. 6.
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Figure 6: Comparison of recent visual cropping methods. We categorize the baseline methods SEAL, DC2,
ZoomEye, and ViCrop based on whether they: (1) require task-specific fine-tuning, (2) employ exhaustive tree
search to identify relevant image regions, or (3) compute importance maps using attention matrices.

For DC2, the full evaluation code is not publicly available, and we were unable to reproduce their
results using the provided demo code. Therefore, we report the performance metrics as stated in their
paper and estimate the number of Forward Passes (FPs) based on the available demo. Specifically, we
follow the procedure described in the paper: splitting the image into patches using the base resolution
of the vision encoder (i.e., 336× 336 for LLaVA-1.5) and merging patches via hierarchical clustering
to improve efficiency. Although the FPs for DC2 are estimated and may carry a high margin of error,
the method remains less efficient than other baselines. This is further exacerbated by its region-wise
captioning step, which makes it more computationally intensive than other baselines, even when the
number of FPs is comparable. Furthermore, DC2 consistently underperforms compared to the other
methods across all three datasets—V*Bench, HRBench-4K, and HRBench-8K—a trend also noted
in ZoomEye’s evaluation.

For SEAL, we use the hyperparameters described in their paper and the default configuration provided
in their code. Specifically, we set the minimum search size to 224 and the minimum search scale to
4. For the visual search, we use a confidence lower bound of 0.3 and a confidence upper bound of
0.5. Regarding the target cue, we set the threshold to 6, the decay factor to 0.7, and the minimum
threshold to 4. Note that these parameters were originally configured for the V*Bench dataset, and
we did not adjust them for the other datasets.

For ViCrop, we select only the two best-performing variants from their work: att-grad-high and
rel-att-high. Notably, both methods employ the high-resolution processing scheme high, which
divides high-resolution images into a grid of 1K sub-images and computes importance maps for each
sub-image individually. As a result, the computational overhead increases significantly with higher
input resolutions.

For ZoomEye, we report more results per dataset–model combination than those presented in the
original paper to offer a more comprehensive view of its efficiency–accuracy trade-offs. Specifically,
we vary two key parameters: the number of sub-regions into which each region is split (2 or the
default 4 crops), and the depth of the search tree (1, 2, and the default 5). All other hyperparameters
are as specified in the ZoomEye paper.

A.5 Additional implementation details of FOCUS

We provide additional implementation details of FOCUS to ensure reproducibility, including how to
construct the object relevance maps and how to perform the final VQA prediction.

Constructing object relevance maps We provide PyTorch-style pseudocode in Fig. 7. For a
detailed motivation and description of this method, see Sec. 3.

Verification of object existence in ROI Inspired by ZoomEye [31], we use a yes/no prompt
"Is there a {target object} in the image?" to verify whether the target object exists
within a ROI. We compute a confidence score cYes based on the softmax-normalized logits lYes, lNo
corresponding to the responses "Yes" and "No". Specifically, cYes is defined as:

cYes = 2 · (softmax([lYes, lNo])Yes − 0.5), cYes ∈ [−1, 1] . (5)
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# X: value features  

# O: total number of LLM layers 

# H: total number of attention heads/kv-cache heads 

# N: sequence length 

# D: hidden size of each token embedding 

# s: total number of target tokens 

# bmm: batch matrix multiplication 

# a: grid size of vision encoder 

# l: start of the selected layer 

# L: end of the selected layer 

# x_visual: indices of the visual tokens, [a**2,] 

# x_target: indices of the target tokens, [s,] 

# x_layer: indices of selected layers, [L-l,] 

 

X = l2_normalize(X, dim=-1) # O, H, N, D 

 

X = reshape(X) # O, N, H*D 

 

# calculate cosine similarity 

X = bmm(X, X.permute(0, 2, 1)) # O, N, N 

 

# initialize relevance map 

object_rel_map = ones_like(x_visual)  

 

for target in x_target: 

 

    # initialize pseudo-attn for each target token 

pseudo_attn = zeros_like(x_visual) # [a**2] 

 

    for layer in x_layer: 

        identity = eye(N) # [N, N] 

 

        # add residual connection 

        X_layer = (X[layer] + identity) / 2 # [N, N] 

 

        # row-wise normalization 

        X_layer /= X_layer.sum(dim=-1) # [N, N] 

 

        layer_pseudo_attn = X_layer[target, x_visual] # [a**2] 

 

        pseudo_attn += layer_pseudo_attn # [a**2] 

 

    # global normalization 

pseudo_attn /= pseudo_attn.sum() 

 

    # element-wise multiplication of pseudo-attentions 

object_rel_map *= pseudo_attn 

 

object_rel_map = reshape(object_rel_map) # [a, a] 

 

     

 

 

 

Figure 7: PyTorch-style pseudocode for constructing object relevance maps in FOCUS.

Final VQA prediction As explained in Sec. 3.3, we differentiate between type-1 and type-2
questions. Type-1 questions involve single-object instances, e.g., "What is the color of the
car?" or "What is the relative position of the ball to the bench?". Type-2 ques-
tions concern multiple instances of an object type, e.g., "How many bikes are in the image?".
We follow the inference strategy introduced in ZoomEye [31] when passing the selected ROIs to
the MLLMs. In this appendix, we elaborate on the strategy used for global-view MLLMs, which
typically accept only a single low-resolution image input.

For type-1 questions, we select the ROI with the highest confidence score for each target object. If
the question involves multiple target objects, we compute the combined image region covering all
targets and use this as the final VQA input. However, this approach may fail when the target objects
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are far apart, as the resulting combined region can become excessively large and include irrelevant
background. To address this, a fallback strategy is taken. If the Euclidean distance between any pair
of target objects exceeds a threshold tobj_dist (e.g., 1200 pixels), we instead resize each individual
ROI to a lower resolution and paste them onto an empty canvas based on their relative positions.
This avoids including unnecessary background while maintaining spatial relationships. The resulting
composite image is then used for the final VQA prediction. For type-2 questions, we first select all
ROIs whose confidence scores exceed a predefined threshold. Overlapping regions are then merged.
The merged ROIs are subsequently placed on a canvas using the pasting strategy described above.

In the case of global-local-view MLLMs, this workaround is unnecessary, as these models natively
support multi-image reasoning without requiring canvas composition. Fine-grained details in local
regions can be preserved by supplying them as separate image inputs. We leverage the model’s
text–image interleaved capabilities [2, 22, 23] by providing a global view - with all ROIs visually
highlighted, alongside the individual high-confidence local crops.

Proposal ranking of ROIs for fine-grained VQA Further, we present pseudocode in Algorithm
that outlines the creation and ranking of ROIs to identify the most relevant ROI for the final inference,
as described in Sec. 3.3.

Algorithm Pseudocode for proposal ranking of ROIs for fine-grained VQA

Input: Object relevance map A, number of anchor points k, number of steps nsteps, ROI parameters:
smin, smax, sdist; threshold for NMS: NMSthreshold; model MLLM

1: anchor_points← Extract-Top-K-Anchors(A, k)
2: initial_rois← Generate-Symmetric-ROIs(anchor_points, smin)
3: expanded_rois← Expand-ROIs(initial_rois, A, smax, sdist)
4: filtered_rois← Apply-NMS(expanded_rois, NMSthreshold)
5: ranked_rois← Rank-ROIs-By-Confidence(filtered_rois, nsteps)
6: answer← Final-Inference(MLLM, ranked_rois)

Output: MLLM answer based on top-ranked ROI

B Dataset statistics

This section provides a summary of the datasets used in our experiments. For each dataset, we
report the average image resolution, the number of images, and the number of question–answer pairs
in Tab. 8.

Table 8: Statistics of the employed VQA datasets

Attribute V*Bench HRBench-4K HRBench-8K MME-RealWorld-Lite
Avg. width 2,246 4,024 7,431 2,836
Avg. height 1,582 3,503 5,358 1,566
Images [#] 191 200 200 1,543
QA-pairs [#] 191 800 800 1,919

V*Bench [38] comprises images with an average resolution of 2K, specifically 2,256× 1,582 pixels.
The dataset includes two types of tasks: direct attribute and spatial relation. The direct attribute task
involves identifying visual properties of a single object (e.g., color), making them single-target tasks.
In contrast, the spatial relation task requires predicting the spatial relationship between two objects,
thus constituting multiple-target tasks. In total, the dataset contains 191 images, each paired with a
single question, resulting in 191 question-answer (QA) pairs.

HRBench [37] comprises two sub-datasets with average image resolutions of 4K and 8K, respectively.
Both sub-datasets include two task types: FSP (Fine-grained Single-instance Perception) and FCP
(Fine-grained Cross-instance Perception). FSP questions are single-target and focus on identifying
fine-grained attributes of individual objects, whereas FCP questions are multiple-target and involve
reasoning about spatial relationships between target objects. HRBench-8K contains full-resolution
images with an average size of 7,431× 5,358 pixels, while HRBench-4K provides cropped versions

20



of these images, on average with 4,024× 3,503 pixels. Each dataset contains one question per image.
To improve evaluation robustness, HRBench permutes the positions of the answer options, yielding a
total of 800 question–answer pairs across 200 images.

MME-RealWorld-Lite [43] is a real-world, fine-grained VQA dataset with an average image resolu-
tion of 2,836× 1,566 pixels. It includes a diverse set of subtasks designed to evaluate the perception
and reasoning capabilities of MLLMs across various domains, such as Autonomous Driving and OCR.
The dataset is divided into two subsets: Perception and Reasoning. Each subset contains questions
from multiple domains, including OCR (Optical Character Recognition), RS (Remote Sensing), DT
(Diagram and Table), MO (Monitoring), and AD (Autonomous Driving), resulting in a total of nine
tasks, as shown in Tab. 9. It comprises 1,543 images, with some images associated with multiple
questions, leading to a total of 1,919 questions. The number of QA pairs per task is detailed in Tab. 9.

Table 9: Number of question-answer (QA) pairs in MME-Realworld-Lite per domain

Perception Reasoning
OCR RS DT MO AD OCR DT MO AD

QA-pairs [#] 250 150 100 319 350 100 100 150 400

C Additional results

We include full numerical results in App. C.1, results on open-ended VQA in App. C.2, and an
analysis of the hyperparameter influence on FOCUS in App. C.3. Further, we provide additional
efficiency metrics in App. C.4 and a comparison of different inference schemes as well as performance
discrepancies between reported and reproduced results in App. C.5.

C.1 Full results

We present the full results of ZoomEye [31], ViCrop [42], DC2 [37], SEAL [38], and our method
FOCUS on V*Bench, HRBench-4K, and HRBench-8K in Tab. 10. For MME-RealWorld-Lite [43],
we compare ZoomEye, the vanilla baseline, and FOCUS, see Tab. 11.

As described in Sec. 4.1, we run experiments with nsteps ∈ {1, 2, 3, 4, 6, 8}. To better leverage the
reasoning capabilities of MLLMs under higher computational budgets, we allow an overrun mode:
if the logit lYes is lower than lNo—i.e., the MLLM responds "No" to the existence prompt for all
of the top-nsteps ROIs—the model continues evaluating additional ROIs until it receives a "Yes"
response. This mechanism improves the efficiency trade-off in many cases. For nsteps ∈ {1, 2}, we
report results both with and without the overrun mechanism to provide a complete comparison in
the low-computation setting.

In general, accuracy improves with increased computation budget for methods that support a config-
urable computation budget—such as ZoomEye and FOCUS. ZoomEye exhibits exponential scaling
in the number of evaluated regions due to its hierarchical tree structure, leading to a significantly
higher number of Forward Passes (FPs) when targeting high accuracy. In contrast, FOCUS constructs
an object-aware relevance map and directly retrieves the most relevant regions, resulting in linear
scaling with respect to the number of FPs.

C.2 Open-ended VQA

While the primary results in the main paper are concerned with multiple-choice VQA, here we focus
on the evaluation on open-ended VQA. As we are not aware of fine-grained datasets focusing on
open-ended VQA, we reuse V*Bench for this task. While it follows the multiple-choice format, it
also provides the ground-truth answer in a natural language format, e.g., "The color of the dog
is white.". To explore the open-ended VQA capabilities of FOCUS with LLaVA-1.5, we provide it
with VQA questions without answer options, e.g., "What is the color of the dog?". Then,
we compare the responses with the ground-truth sequence using an LLM-as-a-judge framework [44],
leveraging Qwen-2.5-7B [4]. Moreover, we manually review Qwen-2.5’s judgments and correct any
misclassifications. The results of this analysis for LLaVA-1.5 clearly show that FOCUS substantially
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Table 10: Full results of different models on fine-grained VQA benchmarks. V*Bench comprises two
tasks, namely direct attribute (Attr) and spatial relationship (Spatial). Similarly, HRBench consists of two
tasks, i.e., Fine-grained Single-instance Perception (FSP) and Fine-grained Cross-instance Perception (FCP).
The highest accuracy for each method-model combination is highlighted in bold. As DC2 does not provide
the complete evaluation code, we report the accuracy from the original paper and estimate the number of FPs
following the procedure described in App. A.4.

V*Bench HRBench-4K HRBench-8K

Model Overall Acc. ↑
(Attr | Spatial) [%] FP [#] ↓ Overall Acc. ↑

(FSP | FCP) [%] FP [#] ↓ Overall Acc. ↑
(FSP | FCP) [%] FP [#] ↓

ZoomEye
LLaVA-1.5-7B

Depth-1 (2 crops) 50.26
(41.74 | 63.16) 12.50 36.25

(39.25 | 33.25) 11.54 33.88
(32.25 | 35.5) 11.55

Depth-1 (4 crops) 50.78
(41.74 | 64.47) 20.37 39.13

(44.75 | 33.5) 17.46 32.88
(32.75 | 33.00) 18.18

Depth-2 (4 crops) 71.20
(67.83 | 76.32) 44.54 47.75

(57.25 | 38.25) 35.60 42.13
(49.00 | 36.25) 39.15

Depth-5 (4 crops) 77.48
(80.87 | 72.37) 48.63 50.00

(63.25 | 36.75) 49.38 49.00
(61.75 | 36.25) 59.64

LLaVA-OV-7B

Depth-1 (2 crops) 75.92
(77.39 | 73.68) 10.52 61.38

(70.00 | 52.75) 9.46 59.00
(66.50 | 51.50) 9.02

Depth-1 (4 crops) 81.15
(81.74 | 80.26) 13.34 65.75

(80.75 | 50.75) 11.43 59.63
(69.00 | 50.25) 12.59

Depth-2 (4 crops) 90.05
(93.04 | 85.53) 21.08 66.13

(80.25 | 52.00) 20.42 65.63
(81.75 | 49.5) 22.31

Depth-5 (4 crops) 91.10
(93.91 | 86.84) 23.98 69.38

(84.5 | 54.25) 29.19 69.00
(86.75 | 51.25) 36.75

ViCrop
LLaVA-1.5-7B

rel-att-high 59.16
(58.26 | 60.53) 12.26 42.50

(51.50 | 33.50) 30.59 39.38
(48.00 | 30.75) 78.60

grad-att-high 54.97
(53.04 | 57.90) 6.63 44.25

(53.75 | 34.75) 15.80 38.38
(44.25 | 32.50) 39.80

DC2

LLaVA-v.1.5-7B 57.00
(—– | —–) 18.18 42.30

(—– | —–) 48.55 39.50
(—– | —–) 77.02

SEAL 73.68
(—– | —–) 25.53 34.50

(—– | —–) 18.05 33.50
(—– | —–) 16.96

FOCUS (Ours)
LLaVA-1.5-7B

Steps-1 (no-overrun) 51.30
(46.95 | 57.89) 1.47 41.13

(49.75 | 32.5) 3.14 40.63
(46.00 | 35.25) 3.14

Steps-2 (no-overrun) 57.07
(53.91 | 61.84) 4.25 46.5

(56.00 | 37.00) 5.41 40.63
(44.75 | 36.50) 5.41

Steps-1 (overrun) 64.40
(63.48 | 65.79) 4.86 42.25

(51.50 | 33.00) 4.99 42.38
(48.50 | 36.25) 5.08

Steps-2 (overrun) 66.49
(66.09 | 67.11) 5.70 45.88

(55.75 | 36.00) 5.95 42.15
(46.75 | 37.50) 6.04

Steps-3 (overrun) 67.01
(66.09 | 68.42) 6.79 47.13

(56.50 | 37.75) 9.09 44.13
(48.00 | 40.25) 9.07

Steps-4 (overrun) 68.06
(66.96 | 69.74) 8.27 49.25

(59.75 | 38.75) 10.14 45.00
(50.25 | 39.75) 10.10

Steps-6 (overrun) 70.68
(70.43 | 71.05) 10.71 50.63

(62.25 | 39.00) 12.31 45.00
(52.00 | 38.00) 12.23

Steps-8 (overrun) 72.77
(72.17 | 73.68) 13.28 51.75

(64.00 | 39.50) 14.49 44.13
(52.25 | 36.00) 14.41

LLaVA-OV-7B

Steps-1 (no-overrun) 83.24
(87.82 | 76.31) 1.47 69.00

(82.25 | 55.75) 3.84 65.75
(77.00 | 54.50) 3.86

Steps-2 (no-overrun) 89.01
(92.17 | 84.21) 4.23 70.38

(84.00 | 56.75) 6.07 66.88
(78.00 | 55.75) 6.09

Steps-1 (overrun) 90.57
(93.04 | 86.84) 4.05 69.88

(85.75 | 54.00) 6.55 68.75
(81.00 | 56.50) 7.35

Steps-2 (overrun) 91.62
(93.93 | 88.15) 5.16 70.25

(86.50 | 54.00) 7.41 67.63
(79.00 | 56.25) 8.06

Steps-3 (overrun) 91.62
(93.91 | 88.15) 6.37 70.00

(85.75 | 54.25) 8.34 66.88
(78.00 | 55.75) 8.93

Steps-4 (overrun) 92.15
(93.91 | 89.47) 7.63 70.75

(85.75 | 55.75) 9.32 68.38
(80.75 | 56.00) 9.86

Steps-6 (overrun) 92.15
(93.91 | 89.47) 10.22 70.63

(85.75 | 55.50) 11.33 68.88
(82.50 | 55.25) 11.81

Steps-8 (overrun) 91.62
(93.04 | 89.47) 12.84 71.13

(86.75 | 55.50) 13.41 69.63
(83.50 | 55.75) 13.83
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Table 11: Detailed results on the MME-RealWorld-Lite dataset. Accuracy is reported both per subtask and
on average per subset. The highest accuracy for each subtask is highlighted in bold.

Task LLaVA-OV-7B
Vanilla

Acc. [%]
ZoomEye
Acc. [%]

FOCUS (Ours)
Acc. [%]

Pe
rc

ep
tio

n

AD

Motionmulti-pedestrians 22.00 28.00 34.00
Motionmulti-vehicles 46.00 38.00 40.00
Motionpedestrian 24.00 46.00 44.00
Motionvehicle 24.00 54.00 34.00
Objectcount 36.00 42.00 40.00
Objectidentify 78.00 74.00 70.00
Visualtraffic-signal 62.00 78.00 68.00

DT Diagram 70.00 80.00 60.00
Table 60.00 68.00 56.00

MO

Personcolor 32.00 40.00 56.00
Personcounting 32.00 38.00 38.00
Personorientation 10.53 15.79 10.53
Vehiclecolor 46.00 60.00 52.00
Vehiclecounting 56.00 56.00 58.00
Vehiclelocation 38.00 28.00 28.00
Vehicleorientation 12.00 20.00 26.00

OCR

Advert & product 82.00 82.00 88.00
Book map poster 78.00 70.00 74.00
License 88.00 86.00 88.00
Phone & address 82.00 96.00 90.00
Text recognition 78.00 72.00 80.00

RS
Color 60.00 64.00 64.00
Count 34.00 40.00 20.00
Position 62.00 50.00 56.00

Average 52.01 56.29 54.15

R
ea

so
ni

ng

AD

Attentiontraffic-signal 74.00 72.00 74.00
Intentionego 26.00 24.00 22.00
Intentionpedestrian 48.00 50.00 54.00
Intentionvehicle 26.00 42.00 40.00
Interactionego-2-pedestrian 20.00 28.00 22.00
Interactionego-2-traffic-signal 28.00 30.00 22.00
Interactionego-2-vehicle 26.00 22.00 26.00
Interactionother-2-other 10.00 12.00 8.00

DT Diagram 40.00 54.00 58.00
Table 40.00 44.00 46.00

MO
Calculate 42.00 46.00 50.00
Intention 26.00 26.00 42.00
Property 64.00 66.00 62.00

OCR Character identification 72.00 64.00 74.00
Scene understanding 72.00 64.00 68.00

Average 40.93 43.20 44.53

23



improves the fine-grained open-ended VQA performance, increasing accuracy from 44.50% for the
vanilla LLaVA-1.5 model to 65.97%.

C.3 Analysis of hyperparameter influence

We further investigate how variations in the hyperparameters of FOCUS affect its performance. This
analysis is conducted using FOCUS with LLaVA-1.5 and LLaVA-OV on V*Bench, focusing on five
key hyperparameters, namely the number of anchor points (k), the ROI expansion threshold, the
maximum ROI size (smax), the minimal Euclidean distance between anchor points (sdist) and the
NMS threshold. As shown in Tab. 12, using alternative hyperparameter settings reduces accuracy by
at most 4.7 pp. compared to the original configuration, demonstrating our method’s low sensitivity
to hyperparameters. During the sensitivity analysis, we discover some alternative hyperparameter
configurations that achieve even higher accuracy than our default settings.

Table 12: Hyperparameter analysis of FOCUS. We assess the impact of five hyperparameters on the performance
of FOCUS. † indicates the original hyperparameter.

(a) Variation of numbers of anchor points k.

Model k Accuracy [%]

LLaVA-1.5 30† 72.77
∼ U(10, 50) 72.77± 1.55

LLaVA-OV 30† 92.15
∼ U(10, 50) 92.03± 1.37

(b) Variation of ROI expansion threshold.

Model ROI expans.
threshold Accuracy [%]

LLaVA-1.5 0.5† 72.77
∼ U(0.3, 0.7) 72.77± 0.00

LLaVA-OV 0.5† 92.15
∼ U(0.3, 0.7) 92.70± 0.25

(c) Variation of maximum ROI size smax.

Model smax Accuracy [%]

LLaVA-1.5
5† 72.77
7 69.63
9 68.06

LLaVA-OV

9† 92.15
5 94.24
7 91.01
11 89.53

(d) Variation of minimum distance between ROI
anchor points sdist.

Model sdist Accuracy [%]

LLaVA-1.5
2† 72.77
3 72.25
4 69.11

LLaVA-OV

2† 92.15
3 91.62
4 92.15
5 91.62

(e) Variation of NMS threshold.

Model NMS
threshold Accuracy [%]

LLaVA-1.5

0.3† 72.77
0.1 70.16
0.5 72.25
0.7 72.25

LLaVA-OV

0.3† 92.15
0.1 92.15
0.5 92.15
0.7 92.15

For k and the ROI expansion threshold, we randomly sample 50 values from U(10, 50) and
U(0.3, 0.7), respectively, where U indicates a uniform distribution. Across both LLaVA-1.5 and
LLaVA-OV, we observe only minor performance variations when adjusting k: an accuracy of
72.77± 1.55 for LLaVA-1.5 and 92.03± 1.37 for LLaVA-OV, as shown in Tab. 12a. For the ROI
expansion threshold, we observe an even smaller impact on the performance of FOCUS, with an
accuracy of 72.77± 0.00 for LLaVA-1.5 and 92.70± 0.25 for LLaVA-OV, as shown in Tab. 12b. For
sdist, smax, and the NMS threshold, we vary the values in discrete steps and analyze their influence on
performance. Across both LLaVA-1.5 and LLaVA-OV, we find that smax has the largest impact on
FOCUS among all analyzed hyperparameters, resulting in an accuracy drop of 4.71 pp. for LLaVA-1.5
and 2.62 pp. for LLaVA-OV, as shown in Tab. 12c. Interestingly, for FOCUS with LLaVA-OV, we
observe an accuracy improvement of 2.09 pp. over the baseline when setting smax = 5. For sdist, we
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observe a maximum accuracy degradation of 3.66 pp. for LLaVA-1.5 and 0.53 pp. for LLaVA-OV, as
shown in Tab. 12d. For the NMS threshold, we find only a minor impact, with a maximum accuracy
degradation of 2.61 pp. for LLaVA-1.5 and no observable influence for LLaVA-OV, as shown in
Tab. 12e. This is likely because FOCUS with LLaVA-OV generates higher-resolution object relevance
maps, reducing its reliance on NMS.

C.4 Additional efficiency metrics

We report additional efficiency metrics—including average execution time and peak GPU memory
usage per sample—on V*Bench. We compare SEAL with a customized LLaVA-7B, vanilla LLaVA-
1.5-7B, vanilla LLaVA-OneVision-7B, and three training-free methods (ViCrop, ZoomEye, and
FOCUS) using LLaVA-1.5 models.

As shown in Tab. 13, among the training-free methods, ZoomEye achieves the highest accuracy but
suffers from poor efficiency due to its complex confidence prediction mechanism, which involves
multiple question prompts and a hierarchical tree structure. This is reflected by its high number of
Forward Passes (FPs) and long execution times. FOCUS, by contrast, leverages an object relevance
map built from cached token similarities to directly identify relevant image regions. As a result, it
requires only 25% of ZoomEye’s FPs and execution time to reach comparable accuracy. ViCrop
is slightly more efficient than FOCUS in terms of execution time and FPs, but it achieves lower
accuracy and incurs the highest peak memory usage due to its incompatibility with efficient attention
mechanisms. SEAL differs architecturally from LLaVA-1.5 and LLaVA-OneVision. Its dual-MLLM
design makes it significantly slower and more memory-intensive than most methods in the comparison.
In general, a lower number of FPs is associated with reduced execution time.

Table 13: Additional performance and efficiency metrics on V*Bench. In the last three rows, the best-
performing method is highlighted in bold and the runner-up is underlined.

Model Acc. [%]↑ FP [#]↓ Avg. execution time [s]↓ Avg. peak memory [GB]↓

SEAL 73.68 25.53 9.16 27.34
LLaVA-OV-7B 74.46 - 1.30 19.64
LLaVA-1.5-7B 47.64 - 0.25 13.57
+ w/ ViCrop 59.16 12.26 1.36 19.93
+ w/ ZoomEye 77.49 48.63 11.26 14.24
+ w/ Ours 72.77 13.28 2.19 14.91

Additionally, we compare the efficiency of FOCUS and ZoomEye with LLaVA-1.5 across multiple
configurations (see Tab. 14). We evaluate them on V*Bench in terms of accuracy, average inference
time, average FPs and average FLOPs. The latter ones are estimated based on a calculation scheme
applied in prior MLLM work [7, 39]. We ran the evaluations on the same hardware to ensure
result comparability.

Notably, the lowest-complexity configuration of ZoomEye exhibits a higher inference time and nearly
identical FPs and FLOPs compared to the highest-complexity configuration of FOCUS. Despite this,
FOCUS outperforms ZoomEye by 22.51 pp. in accuracy under this configuration. Moreover, ZoomEye
shows a steep increase in complexity—measured by inference time, FPs, and FLOPs—as the search
depth in its tree structure increases. Its maximum configuration achieves an accuracy of 77.48%,
with an inference time of 11.96 seconds, 48.63 FPs, and a computational cost of 217 TFLOPs.

In summary, the efficiency gains reported in terms of FPs are consistently reflected in inference time
and FLOPs. FOCUS achieves competitive or superior accuracy with significantly lower inference time
and fewer FLOPs compared to ZoomEye. For instance, at Steps-6 (overrun), FOCUS reaches
70.68% accuracy in just 2.00 seconds and 51.26 TFLOPs, whereas ZoomEye (Depth-2) requires
nearly 4× more FLOPs and 5× longer inference time to reach a comparable accuracy. These results
underscore the efficiency of FOCUS for fine-grained visual reasoning tasks in practice.

C.5 Inference scheme and performance discrepancy

We describe in the following the comparison between different inference schemes and the discrepancy
between reported and reproduced performance.
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Table 14: In-depth efficiency comparison of FOCUS and ZoomEye. Across different configurations, we
compare efficiency in terms of accuracy, average inference time, average FPs and average FLOPs on V*Bench.

Model Accuracy [%] ↑ Inference time [s] ↓ FP [#] ↓ TFLOPs [#] ↓
ZoomEye

LLaVA-1.5-7B
Depth-1 (2 crops) 50.26 3.78 12.50 55.95
Depth-1 (4 crops) 50.78 4.76 20.37 91.03
Depth-2 (4 crops) 71.20 9.73 44.54 199.21
Depth-5 (4 crops) 77.48 11.96 48.63 217.00

FOCUS

LLaVA-1.5-7B
Steps-1 (no overrun) 51.30 0.99 1.47 10.98
Steps-2 (no overrun) 57.07 1.28 4.25 23.11
Steps-1 (overrun) 64.40 1.36 4.86 25.73
Steps-2 (overrun) 66.49 1.44 5.70 29.43
Steps-3 (overrun) 67.01 1.55 6.79 34.15
Steps-4 (overrun) 68.06 1.73 8.27 40.61
Steps-6 (overrun) 70.68 2.00 10.71 51.26
Steps-8 (overrun) 72.77 2.27 13.28 62.46

Table 15: Comparison of different inference schemes across models. Each result includes accuracy, execution
time, and number of forward passes for the visual search (FP). The highest accuracy in a column is highlighted
in bold.

Vanilla ZoomEye FOCUS (Ours)

Inference Scheme Acc. [%]↑ Acc. [%]↑ Exec.
time[s]↓ FP [#] ↓ Acc. [%]↑ Exec.

time[s]↓ FP [#] ↓

Logits matching 48.16 77.49 11.26 48.63 74.35 2.76 13.28
Open-ended generation 47.64 72.25 9.26 36.94 72.77 2.19 13.28

Inference scheme: logits matching vs. open-ended generation Multiple-choice VQA requires
selecting one of several fixed answer options. A common approach is open-ended generation [3, 15],
where the prompt includes the question and options (e.g., "(A) Red"), and the MLLM generates the
corresponding option letter. In contrast, SEAL [38] and ZoomEye [31] adopt an alternative scheme
called logits matching on V*Bench [38]. In this method, the model is prompted multiple times, once
for each answer option. Specifically, each answer option is reformulated as a sentence (e.g., "(A)
Red" → "The color of the car is red.") which is then appended to the original question.
The model is prompted with these reformulated question–option pairs and the image, and the answer
option yielding the highest logit score for its target tokens is selected as the final prediction.

We noticed that ZoomEye utilizes logits matching on V*Bench but uses open-ended generation on
the other three datasets, prompting us to investigate the impact of different inference schemes. We
evaluate LLaVA-1.5 on V*Bench using both open-ended generation and logits matching across three
methods: the vanilla baseline, ZoomEye, and FOCUS (ours). SEAL is excluded from this comparison,
as it is not a training-free method. All other hyperparameters are kept constant.

As shown in Tab. 15, both the vanilla model and FOCUS achieve 0.5 pp. and 1.6 pp. higher accuracy,
respectively, when using logits matching. This improvement likely stems from the fact that logits
matching eliminates the need for strong instruction-following: models no longer need to explicitly
generate the option letter, but instead compare the semantic content of full answer statements. This
makes the inference process more robust, particularly for models with weaker generative alignment.

In contrast, ZoomEye’s accuracy drops by over 5 pp. and its execution time decreases by approx-
imately 2 seconds when switching to open-ended generation. Given that FOCUS shows a 1.6 pp.
accuracy difference and a 0.57-second reduction in execution time under the same scheme change,
we attribute that portion of ZoomEye’s decline to the scheme itself. The remaining gap—both in
accuracy and runtime—can likely be attributed to suboptimal tuning in the open-ended setting, as all
hyperparameters were held constant. The changed inference mode likely alters the model confidence,
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Table 16: Reported vs. reproduced accuracy across fine-grained VQA datasets. A dash indicates that no
evaluation on that benchmark was performed in the original work.

V*Bench HRBench-4K HRBench-8K

Model Reported
Acc. [%]

Reprod.
Acc. [%]

Reported
Acc. [%]

Reprod.
Acc. [%]

Reported
Acc. [%]

Reprod.
Acc. [%]

ZoomEye
LLaVA-1.5-7B 83.25 77.48 53.25 50.00 50.75 49.00
LLaVA-OV-7B 90.58 91.10 69.63 69.38 69.25 69.00

ViCrop
LLaVA-1.5-7B
rel-att-high 62.30 59.16 – 42.50 – 39.38
grad-att-high 57.07 54.97 – 44.25 – 38.38

SEAL 75.39 73.68 – 34.50 – 33.50

which may lead to premature termination of tree search (indicated by the lower number of FPs) and
increased prediction instability.

Despite the potential accuracy gains of logits matching, we adopt open-ended generation for FOCUS
across all datasets. This is done for two reasons. First, the effectiveness of logits matching depends
heavily on the quality of option reformulations, which are not always available or consistent across
datasets. This limits its generalizability and makes cross-dataset comparisons less reliable. Second,
logits matching requires one Forward Pass (FP) per answer option, compared to only a single FP in
open-ended generation. Although some acceleration of the logits matching scheme is implemented
by caching question tokens, it still increases inference time (see Tab. 15). Therefore, we report
FOCUS results using open-ended generation in the main paper. For SEAL and ZoomEye, we preserve
their original inference schemes. Their respectively reported V*Bench performance is based on
logits matching.

Discrepancy between reported and reproduced performance For the baseline methods, i.e.,
SEAL [38], ViCrop [42], and ZoomEye [31], we use the official implementations provided in
their respective repositories. We strictly follow the original configurations, including software
environments and data structures, as specified by each work. As shown in Tab. 16, we observe some
discrepancies between the reported and reproduced performance, most notably for LLaVA-1.5 with
ZoomEye. We hypothesized this may be linked to the use of different efficient attention backends
(e.g., FlashAttention-2 [10] vs. PyTorch’s SDPA2). However, the observed deviation with different
attention implementations is small, less than 1% on V*Bench—thus, further root causes of this
deviation seem to exist, that however remain unclear. To ensure fair and consistent comparisons under
a unified evaluation setup, we always report the reproduced results for these benchmark methods in
the main paper.

D Further qualitative examples

This section provides additional qualitative examples that highlight both the strengths and limitations
of FOCUS when applied to LLaVA-1.5 (see Fig. 9) and LLaVA-OneVision (see Fig. 10). For improved
clarity in visualization, we use a reduced k = 10, differing from the values specified in App. A.3.
Further, we provide qualitative examples for failure cases of FOCUS with LLaVA-1.5 on high-
resolution images in Fig. 8 to highlight the limitations of low-resolution object relevance maps (see
Sec. 4.6). In these examples, we use an increased k = 50, enabling FOCUS to cover a larger portion
of the image space; nevertheless, FOCUS still fails to identify the relevant image region.

Fig. 9 (I) showcases a type-1 single-target task with FOCUS and LLaVA-1.5. By leveraging the
MLLM’s internal representations, FOCUS identifies a relevant crop that highlights the color of small
candles, correcting the model’s initial VQA response. The ROI ranking mechanism demonstrates
robustness to noise in the object relevance map by assigning the highest confidence to the originally

2See https://docs.pytorch.org/tutorials/intermediate/scaled_dot_product_attention_
tutorial.html
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fourth-ranked region. Moving to a type-1 multiple-target task, Fig. 9 (II) illustrates how FOCUS
identifies both the person in the red jacket and the large tree using in-context learning.
The object relevance maps clearly localize both targets. Since LLaVA-1.5 accepts only single-image
inputs, the selected ROIs are stitched together—a strategy detailed in App. A.5—to avoid excessive
image size or irrelevant content. Despite this, the model fails to answer correctly, likely due to limited
spatial reasoning. A type-2 counting task is depicted in Fig. 9 (III). Here, FOCUS successfully locates
both chairs in the image. As in the previous example, the regions are combined to form a single input
for LLaVA-1.5. This enables the model to correctly answer the VQA query, which it could not do
using the global view. Fig. 9 (IV), finally, presents another failure case with LLaVA-1.5, underscoring
the limitation discussed in Sec. 4.6. The example, drawn from the HRBench-8K dataset (see Tab. 8),
involves a high-resolution image where the sign is too small to be detected via the low-resolution
object relevance map. Consequently, FOCUS selects an incorrect region and fails to improve the
VQA result.

Turning to LLaVA-OneVision, Fig. 10 (I) features a type-1 single-target task. While vanilla LLaVA-
OneVision fails to answer the question about the speed limit sign, FOCUS successfully identifies
the relevant region using internal representations. By isolating this region (see selected ROI), the
model is able to generate the correct VQA response. Fig. 10 (II) explores a type-1 multiple-target
task. Despite the relatively large size of the relevant regions, vanilla LLaVA-OneVision does not
answer correctly. FOCUS identifies the appropriate areas, generates a combined image region, and
creates one local crop per relevant object. The relevant regions are highlighted in the image of the
combined ROIs with rectangles, helping reduce background noise and enabling the model to answer
the VQA task correctly. Next, a type-2 counting task is shown in Fig. 9 (III) with LLaVA-OneVision.
Vanilla LLaVA-OneVision fails to count the number of computers accurately. FOCUS identifies five
computers in total, assisting the model in producing the correct answer. However, it only detects four
correctly—missing one and mistakenly counting another one twice. Finally, Fig. 9 (IV) illustrates
a failure case with LLaVA-OneVision. Despite access to a high-resolution object relevance map,
FOCUS fails to detect the region associated with the umbrella. As a result, it does not provide the
necessary input for the MLLM to answer the VQA example correctly.
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Selected ROI
Object relevance map 

car | Selected: R4
GT regionOriginal image

Question: What’s the color of the car? (A) White (B) Pink (C) Yellow (D) Blue

Label: A | Answer (LLaVA-1.5 w/ FOCUS): C

Selected ROI
Object relevance map 

flag | Selected: R4
GT regionOriginal image

Question: What’s the color of the flag? (A) White (B) Yellow (C) Black (D) Red

Label: A | Answer (LLaVA-1.5 w/ FOCUS): D

Figure 8: Further failure cases of FOCUS with LLaVA-1.5. We provide examples for failure cases of FOCUS
using LLaVA-1.5 corresponding to the resolution limitation mentioned in Sec. 4.6. Note that we manually
highlight the relevant regions in the original image to facilitate easier localization of the ground truth area for the
reader and these annotations are not included in the input for the MLLM.
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Selected ROIGT regionOriginal image

Question: What is the color of the candles? (A) red (B) yellow (C) gray (D) white 

Label: B | Answer (LLaVA-1.5): D      | Answer (LLaVA-1.5 w/ FOCUS): B

Object relevance map 

candles | Selected: R3

(I)

Object relevance map 

person in the red 

jacket | Selected: R0

Combined regionOriginal image

Question: What is the relative position of the person in the red jacket compared to the large tree? (A) 

Behind the large tree (B) Right of the large tree (C) In front of the large tree (D) Left of the large tree

Label: B | Answer (LLaVA-1.5): D      | Answer (LLaVA-1.5 w/ FOCUS): D

Object relevance map 

large tree | Selected: R3

(II)

Combined regionOriginal image

Question: How many chairs are there in the image? (A) One (B) Four (C) Two (D) Three

Label: C | Answer (LLaVA-1.5): A      | Answer (LLaVA-1.5 w/ FOCUS): C

Object relevance map chairs | Selected: R0 & R1 

(III)

Selected ROIGT regionOriginal image

Question: What is the color of the sign in the image? (A) Green and white (B) Yellow and white (C) 

Yellow and green (D) White and red

Label: B | Answer (LLaVA-1.5): A      | Answer (LLaVA-1.5 w/ FOCUS): C

Object relevance map 

sign | Selected: R2

(IV)

Figure 9: Further qualitative examples of FOCUS with LLaVA-1.5. We provide examples for single-object (I),
multi-object (II), a type-2 question (III), and a failure case (IV). Note that we do not adjust the aspect ratio of
the images for LLaVA-1.5. Therefore, there are some padding areas in the object relevance maps. Additionally,
we manually highlight the relevant regions in the original image to facilitate easier localization of the ground
truth area for the reader and these annotations are not included in the input for the MLLM.
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Selected ROIGT regionOriginal image

Question: What is the speed limit on the sign in the image? (A) 20 (B) 40 (C) 60 (D) 30

Label: D | Answer (LLaVA-OneVision): B       | Answer (LLaVA-OneVision w/ FOCUS): D

Object relevance map 

speed limit on the sign | 

Selected: R6

(I)

Object relevance map 

totem pole | Selected: 

R0

Combined regionOriginal image

Question: What is the position of the totem pole in relation to the bear statue? 

(A) To the left (B) To the right (C) Behind the bear statue (D) In front

Label: A | Answer (LLaVA-OneVision): D       | Answer (LLaVA-OneVision w/ FOCUS): A

Object relevance map 

bear statue | Selected: 

R0

(II)

Combined regionOriginal image

Question: How many computers are on the table? (A) Three (B) Five (C) Two (D) Four

Label: B | Answer (LLaVA-OneVision): C | Answer (LLaVA-OneVision w/ FOCUS): B

Object relevance map computers | Selected: R0 & 

R1 & R2 & R3 & R6 & R8 

(III)

Selected ROIGT regionOriginal image

Question: What is the color of the umbrella? (A) red (B) blue (C) black (D) purple 

Label: D | Answer (LLaVA-OneVision): A | Answer (LLaVA-OneVision w/ FOCUS): C

Object relevance map 

umbrella | Selected: R1

(IV)

Figure 10: Further qualitative examples of FOCUS with LLaVA-OneVision. We provide examples for single-
object (I), multi-object (II), a type-2 question (III), and a failure case (IV). Note that we manually highlight the
relevant regions in the original image to facilitate easier localization of the ground truth area for the reader and
these annotations are not included in the input for the MLLM.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper substantiates its main claims by demonstrating that internal repre-
sentations of MLLMs can be effectively leveraged to guide visual cropping, enabling both
efficient and high-performing inference on fine-grained VQA tasks. In Sec. 1 and Sec. 2, we
identify key limitations of existing visual cropping approaches. In Sec. 3, we introduce our
method, which uses cosine similarity between cached text and image token representations
to construct an object relevance map and propose relevant regions. Finally, in Sec. 4, we
present a large-scale empirical evaluation across four datasets and three types of MLLMs,
demonstrating substantial improvements in computational efficiency and competitive or
superior accuracy compared to prior methods.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of our work in a dedicated paragraph in Sec. 4.6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Sec. 3, we fully describe our efficient visual cropping method FOCUS. We
list experimental setups in Sec. 4.1 and in App. A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All datasets and MLLMs are publicly available. We are waiting for internal
clearance to release our code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We list all experimental setups in Sec. 4.1 and App. A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In the MLLM domain, many evaluation setups—especially those using deter-
ministic decoding—exhibit low variability. In our case, all experiments are conducted using
pre-trained MLLMs in evaluation mode without stochastic components such as sampling
or RAG. As such, our method produces consistent results across runs, and there is no
randomness that would necessitate reporting error bars or confidence intervals.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the utilized computation hardware, including GPU hours for the
experiments in App. A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not conduct any research involving human subjects or participants.
Further, we follow all aspects listed in the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: Our main contribution is improving the efficiency of MLLMs in perceiving
and reasoning over fine visual details. This directly reduces energy and resource utilization.
We hope that our efficient visual cropping method will contribute to a positive environmental
impact, as discussed in Sec. 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose significant risks of misuse. We rely exclusively on
publicly available pre-trained MLLMs and standard benchmark datasets, and we do not
perform any task-specific fine-tuning or release new models or data. Thus, there is no need
for additional safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: All external assets used in this work—including datasets, models, and
code—are properly cited with references to their original publications. We have ensured
that all assets are used in accordance with their respective licenses and terms of use. We
relied solely on publicly available resources that permit academic usage, and no proprietary
or restricted components were used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We are still waiting for clearance to publicly release our code (see above)
which we documented well. All of our code is written by the authors of this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

37

paperswithcode.com/datasets


15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our work uses the internal representations of freely available pre-trained
models and uses the MLLMs for VQA tasks.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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