
Beyond Node-Centric Modeling: Sketching Signed
Networks with Simplicial Complexes

Wei Wu1 Xuan Tan1 Yan Peng1 Ling Chen2 Fangfang Li1,3∗ Chuan Luo4

1School of Computer Science and Engineering, Central South University
2Australian Artificial Intelligence Institute, University of Technology Sydney

3Xiangjiang Laboratory
4School of Software, Beihang University

william.third.wu@gmail.com {tanxuan, pengyan, lifangfang}@csu.edu.cn
ling.chen@uts.edu.au chuanluo@buaa.edu.cn

Abstract

Signed networks can reflect more complex connections through positive and nega-
tive edges, and cost-effective signed network sketching can significantly benefit
an important link sign prediction task in the era of big data. Existing signed net-
work embedding algorithms mainly learn node representation in the Graph Neural
Network (GNN) framework with the balance theory. However, the node-wise
representation learning methods either limit the representational power because
they primarily rely on node pairwise relationship in the network, or suffer from
severe efficiency issues. Recent research has explored simplicial complexes to
capture higher-order interactions and integrated them into GNN frameworks. Moti-
vated by that, we propose EdgeSketch+, a simple and effective edge embedding
algorithm beyond traditional node-centric modeling that directly represents edges
as low-dimensional vectors without transitioning from node embeddings. The
proposed approach maintains a good balance between accuracy and efficiency
by exploiting the Locality Sensitive Hashing (LSH) technique to swiftly capture
the higher-order information derived from the simplicial complex in a manner of
no learning processes. Experiments show that EdgeSketch+ matches state-of-the-
art accuracy while significantly reducing runtime, achieving speedups of up to
546.07× compared to GNN-based methods2.

1 Introduction

Signed networks provide a richer and more nuanced description of the connections than unsigned
networks by differentiating positive and negative relationships. This enables critical applications
like analyzing social cohesion through friend/enemy ties and improving recommender systems via
positive/negative feedback. Consequently, a significant task is link sign prediction, which aims to
predict the sign of the edge in a signed network.

Current signed network embedding methods primarily use node-wise representation learning in
Graph Neural Networks (GNNs) [1–9], incorporating the balance theory (i.e., a friend of my friends
is my friend; a enemy of my enemies is my friend) [10, 11]. Although the node-wise signed network
embedding approaches have achieved great success thanks to the balance theory, they either are
trapped into the special circumstances of the edges such as isomorphic proximity or incur severe

∗Corresponding author.
2We have released the source code and the datasets in https://github.com/AIandBD/EdgeSketchplus.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/AIandBD/EdgeSketchplus

path

?
?

Figure 1: In a signed network, orange and purple edges represent positive and negative signs,
respectively. Balance theory suggests 𝑣1 and 𝑣6 are enemies, while 𝑣11 and 𝑣66 are indistinct.
Edges (𝑣1, 𝑣6) and (𝑣11, 𝑣66) have isomorphic proximity in node-to-node interactions but differ in a
simplicial complex context.

efficiency issues from neural network training. For example, in Figure 1, the balance theory cannot
identify the edge (𝑣11, 𝑣66) but (𝑣1, 𝑣6) (i.e., enemies). Meanwhile, unsigned network embedding
methods, including both node embedding [12–18] and edge embedding [19–23], lack mechanisms
to capture signed network properties, resulting in performance degradation in dealing with signed
networks.

Furthermore, a great many graph embedding methods concentrate on the node-wise interaction rela-
tionship, but real-world networks are increasingly complicated, rendering node-to-node relationships
incompetent to delineate higher-order interaction relationships in the networks. For example, social
network analysis emphasizes friend circles rather than individual pairs [24]. As shown in Figure 1,
edges (𝑣1, 𝑣6) and (𝑣11, 𝑣66), which are isomorphic at the node level, differ in higher-order structures
— (𝑣11, 𝑣66) lies in two triangles while (𝑣1, 𝑣6) is in only one. Recent advancements in GNNs have
incorporated simplicial complexes [25–35], which exhibit the powerful representation capability by
capturing the complicated, higher-order substructures in the network, yet these approaches demand
huge computational cost due to massive parameter training.

By contrast, randomization offers high efficiency in algorithm design by avoiding laborious learning
processes. A well-established framework, Locality-Sensitive Hashing (LSH) [36], supported by a
solid theoretical foundation, embeds similar data objects into the same location in a low-dimensional
space with higher probability than dissimilar ones by randomized hash functions, preserving their
relative distances. To our knowledge, most graph hashing methods [37–51] efficiently represent
graphs or nodes in reduced dimensions in a non-learning fashion, though [47, 51] enhance graph
classification by converting node-based graphs into simplicial complex-based ones. As this integration
remains underexplored, we focus on advancing signed network sketching using LSH and simplicial
complexes, aiming for robust theoretical guarantees and strong experimental results.

In this paper, we seek to strike a good balance between accuracy and efficiency of sketching the
signed network by leveraging the LSH technique to capture higher-order interaction relationship
from the simplicial complex. We first propose a novel edge structure distance measure tailored
for the edge surrounding, which is represented via the convolution operation on the edge itself
(i.e., 1-simplex) and all its direct neighborhoods containing the adjacent edges (i.e., 1-simplexes),
nodes (i.e., 0-simplexes) and triangles (i.e., 2-simplexes) under the simplicial complex, preserving
intricate structural information beyond traditional node-wise neighborhoods (See Appendix C).
Subsequently, our cost-effective algorithm beyond node-centric modeling, EdgeSketch+, iteratively
sketches edge surroundings into low-dimensional binary vectors without learning, while maintaining
low computational overhead. Additionally, by doubling the binary representation length, EdgeSketch+
enables integration with linear models, effectively addressing SVM kernel storage issues in large-scale
scenarios. In summary, the main contributions of our work are as follows:

• To our knowledge, this is the first work introducing simplicial complexes to signed networks,
significantly improving embedding efficiency and link sign prediction.

• We present a novel signed network sketching model called EdgeSketch+, which effectively
and efficiently represents each signed edge by adopting the LSH technique to capture the
higher-order interaction relationship from the simplicial complex.

• The experimental results show that our proposed EdgeSketch+ algorithm enjoys good
performance comparable to the state-of-the-art competitors, while remarkably reducing
computational expenses, for example, running up to 546.07× faster than the GNN-based
signed network embedding methods.

2

2 Related Works

Graph Embedding with Simplicial Complex. In order to cope with the complicated interaction in
the graph, the researchers have explored the use of simplicial complex in the GNN framework for
applications such as trajectory prediction [34, 29], visual inspection [31] and missing data imputation
[33]. MPSN [35] and SaNN [25] perform graph classification in the message passing mechanism
with the simplicial complex, while N𝑘F [32] outperforms the existing message passing neural
networks [52–54] by adopting differential 𝑘-forms on simplicial complexes to augment geometric
interpretability. SGAT [26] implements node embedding by injecting simplicial complexes into
heterogeneous message passing networks, and SCRaW1 [27] learns node representation by random
walks on higher-order simplicies. Furthermore, SCN [30] and EdgeRWSE [28] extend node (i.e.,
0-simplex) embedding to edge (i.e., 1-simplex) embedding on message passing and random walks,
respectively; the latter additionally preserves information from local/global positions of the nodes
and local/global structures in the network based on edge-level random walks.

Signed Network Embedding. The signed networks assign the edges with a richer and more
nuanced description such that the positive and negative edges are distinguished. In particular, link
sign prediction is an important task unique to the signed networks and thus has attracted much
attention from researchers. To our knowledge, most of the existing signed network embedding
algorithms [1–4, 7, 5, 6, 55, 8] are node-wise representation under the balance theory [10, 11]. They
usually apply a certain GNN method (e.g., GCN [53], GAT [52], GCL [56], etc.) to the signed
networks based on the balance theory. RSGNN [1] aims to improve the robustness of the signed
GNN methods by reducing the affect of noisy edges. Furthermore, GS-GNN [2], generalizing the
balance theory to the 𝑘-group theory [57, 58], describes the node relationship with all the groups as
the global information and models the positive and negative edges as the local information. SGA [59]
addresses graph sparsity and unbalanced triangle issues through structure-aware edge manipulation
and curriculum learning. In addition, many node embedding algorithms [12–17] are initially used for
the classic downstream tasks in the traditional networks, e.g., node classification and link prediction.
By contrast, only a few works [19–23] focus on the edge embedding. These methods commonly lack
the mechanism of capturing the unique properties of signed networks. Whether for signed networks
or traditional networks, the above network embedding algorithms mainly rely on random walks,
matrix factorization and graph neural networks, which pose challenges in terms of efficiency.

Graph Hashing. Although the GNN framework has achieved great progress, it suffers from huge
computational resource and memory storage due to dramatic parameter training. To this end, the
researchers have resorted to the Locality Sensitive Hashing (LSH) technique, which can efficiently
conduct the high-dimensional data similarity estimation by exploiting a family of random hash
functions to map the similar data objects to the close and even the same data points represented as
vectors, e.g., MinHash [60], SimHash [61], etc. Some graph hashing algorithms [37–42, 62, 48–50]
aim to represent each node in the network as a compact hashcode. The core idea of the methods
is to extract and sketch the subtrees rooted at each node as the corresponding node representation.
Although the methods can further derive the edge representation, they cannot preserve the complete
characteristics of the edges. By contrast, others [43–47, 51] represent the whole graph as a low-
dimensional feature vector for graph classification. Particularly, the works [47, 51] improve the
performance of the above LSH-based graph classification by extracting the simplicial complex
and then converting the original node-based graphs into multi-dimensional simplex-based graphs.
Unfortunately, the whole graph hashing methods are not applicable in our problem setting.

3 Preliminaries

3.1 Edge-based Signed Network Embedding

Given a signed network 𝑔 = (V, E+ ∪ E−), whereV is a node set, E+ ⊆ V ×V is a positive edge
set and E− ⊆ V ×V is a negative edge set. Note that E+ ∩ E− = ∅ means that an edge 𝑒 is either
positive or negative. Edge-based signed network embedding seeks to sketch each edge 𝑒 ∈ E+ ∪ E−
as a low-dimensional vector x𝑒 ∈ R𝐷 , which facilitates the link sign prediction task.

3

3.2 Simplicial Complex

Given a network 𝑔 = (V, E), where V is a node set and E is an edge set, we call it 𝑘-simplex
S𝑘 = [𝑣0, 𝑣1, . . . , 𝑣𝑘] if a node subset {𝑣0, 𝑣1, . . . , 𝑣𝑘} ⊆ V forms a clique in 𝑔, for example,
a 0-simplex is a node, a 1-simplex is an edge, a 2-simplex is a triangle, etc. Also, given a 𝑘-
simplex S𝑘 = [𝑣0, . . . , 𝑣𝑘] and a (𝑘 − 1)-simplex S𝑘−1 = [𝑣0, . . . , 𝑣𝑘′−1, 𝑣𝑘′+1, . . . , 𝑣𝑘], S𝑘 is a
co-boundary adjacency and S𝑘−1 is a boundary adjacency. Formally, the boundary operator is
𝜕S𝑘 =

∑𝑘
𝑘′=0 (−1)𝑘′S𝑘−1 =

∑𝑘
𝑘′=0 (−1)𝑘′ [𝑣0, . . . , 𝑣𝑘′−1, 𝑣𝑘′+1, . . . , 𝑣𝑘]. Furthermore, a simplicial

complex C is a collection of different dimensional simplexes in the network. We let 𝐾 be the largest
dimension of any simplex in C, and C𝑘 be the subset composed of all the 𝑘-simplexes. We encode
the adjacency relationship between (𝑘 − 1)-simplexes and 𝑘-simplexes as +-, where the columns
represent the corresponding coefficients of the (𝑘 − 1)-simplexes in the above-mentioned boundary
operator of all the 𝑘-simplexes. Consequently, the Hodge Laplacian of a 𝐾-dimensional simplicial
complex is defined as

L0 = B1B⊤1
L𝑘 = B⊤𝑘B𝑘 + B𝑘+1B⊤𝑘+1, 𝑘 ∈ {1, 2, . . . , 𝐾 − 1}
L𝐾 = B⊤𝐾B𝐾

(1)

where each row and each column of L𝑘 denotes a 𝑘-simplex, 𝑘 ∈ {0, 1, . . . , 𝐾}. Similarly, L𝑘
describes the adjacency relationship between any two 𝑘-simplexes. Note that an entry of B𝑘/L𝑘 is 0
if the two corresponding simplexes are not adjacent; otherwise, it is non-zero. The simplicial complex
bridges geometric topology with algebraic topology, which further establishes a connection between
graph analysis and topology. In a word, the simplicial complex assists in preserving higher-order
interaction relationship in the network.

3.3 Locality Sensitive Hashing

An efficient framework for data sketching and similarity preserving backed by solid theoretical
foundation is Locality-Sensitive Hashing (LSH) [36], which sketches the similar data objects as the
same hashcode with a higher probability than the dissimilar ones by a family of randomized hash
functions.

Definition 1 (Locality Sensitive Hashing). A family H of randomized functions is called
(𝑑1, 𝑑2, 𝑝1, 𝑝2)-sensitive if for two data objects p and q, and ∀ℎ ∈ H :

• If 𝑑𝑖𝑠𝑡 (p, q) ≤ 𝑑1, then Pr(ℎ(p) = ℎ(q)) ≥ 𝑝1;
• If 𝑑𝑖𝑠𝑡 (p, q) ≥ 𝑑2, then Pr(ℎ(p) = ℎ(q)) ≤ 𝑝2,

where 𝑑1 < 𝑑2 under a certain distance measure 𝑑𝑖𝑠𝑡 and 0 ≤ 𝑝2 < 𝑝1 ≤ 1.

4 Signed Network Sketching

In this section, we propose a novel signed network sketching model called EdgeSketch+ beyond
node-centric modeling, which employs the simplicial complex to capture the higher-order interaction
relationship in the signed network and then efficiently implements edge embedding in the LSH
framework. The relevant definitions are provided in Appendix C.

4.1 The EdgeSketch+ Algorithm

We outline the proposed EdgeSketch+ method in Algorithm 1. The input consists of a signed network
𝑔 = (V, E+ ∪ E−), the number of dimensions for edge embedding 𝐷, the number of iterations 𝑅,
and 𝑅 sets of 3 × 𝐷 random vectors {h(𝑑,𝑟)

𝑘
}2,𝐷,𝑅
𝑘=0,𝑑=1,𝑟=1 corresponding to 0-, 1- and 2-simplexes,

respectively. The output returns each edge embedding at the 𝑅th iteration as the final edge embedding.

First, Algorithm 1 extracts all the simplexes (Line 1), and establishes the simplex-based adjacency
matrices and the 1-dimensional Hodge Laplacian (Lines 2-3). Subsequently, Algorithm 1 proceeds
in an iterative way: we represent all the extracted simplexes by the convolution operation on the
simplex-based adjacency matrices and the 1-dimensional Hodge Laplacian (Lines 5-7); further, we

4

Algorithm 1 The EdgeSketch+ Algorithm
Input: 𝑔 = (V , E+ ∪ E−) , 𝐷, 𝑅, {h(𝑑,𝑟)

𝑘
}2,𝐷,𝑅

𝑘=0,𝑑=1,𝑟=1

Output: {x(𝑅)𝑒𝑖
} |E
+∪E− |

𝑖=1
1: Extract all 0-, 1- and 2-simplexes in 𝑔
2: Build the simplex-based adjacency matrices B1 and B2
3: Build the 1-dimensional Hodge Laplacian L1
4: for 𝑟 = 1, . . . , 𝑅 do
5: [x(𝑟−1)

𝑛1 ; ...; x(𝑟−1)
𝑛𝑁0

] ← ConvB1 ([x
(𝑟−1)
𝑛1 ; ...; x(𝑟−1)

𝑛𝑁0
])

6: [x(𝑟−1)
𝑡1

; ...; x(𝑟−1)
𝑡𝑁2

] ← ConvB2 ([x
(𝑟−1)
𝑡1

; ...; x(𝑟−1)
𝑡𝑁2

])

7: [x(𝑟−1)
𝑒1 ; ...; x(𝑟−1)

𝑒𝑁1
] ← ConvL1 ([x

(𝑟−1)
𝑒1 ; ...; x(𝑟−1)

𝑒𝑁1
])

8: for 𝑖 = 1, . . . , 𝑁1 do
9: x(𝑟)𝑒𝑖

← AGG({h(𝑑,𝑟)1 x(𝑟−1)
𝑒𝑖

}𝐷
𝑑=1, {h

(𝑑,𝑟)
0 x(𝑟−1)

𝑛 |x(𝑟−1)
𝑛 is boundary adjacent on B1}𝐷𝑑=1,

{h(𝑑,𝑟)2 x(𝑟−1)
𝑡 |x(𝑟−1)

𝑡 is co-boundary adjacent on B2}𝐷𝑑=1, {h
(𝑑,𝑟)
1 x(𝑟−1)

𝑒 |x(𝑟−1)
𝑒 is adjacent on L1}𝐷𝑑=1)

10: x(𝑟)𝑒𝑖
← sgn(x(𝑟)𝑒𝑖

)
11: end for
12: end for

aggregate (e.g., sum) each edge surrounding in the LSH framework such that the direct neighborhood
information is effectively and efficiently perserved (Lines 8-11). Accordingly, the resulting edge em-
beddings are from the last iteration. We illustrate the overall procedure of the proposed EdgeSketch+
approach in Figure 4 of Appendix B.

The random vectors are produced off-line only once and shared globally. Therefore, there is no
demand for high-performance hardware such as GPUs. As a consequence, the proposed EdgeSketch+
algorithm remarkably saves computation cost.

4.2 Theoretical Analysis

In this section, we theoretically analyze the proposed EdgeSketch+ algorithm.

4.2.1 EdgeSketch+ belongs to an LSH family

Proposition 1. Let 𝑒𝑖 and 𝑒 𝑗 be two edges, respectively, and 𝐷 be the size of their sketchings.
Algorithm 1 is (𝑑1, 𝑑2, 1 − 𝑑1

𝐷
, 1 − 𝑑2

𝐷
)-sensitive for some large 𝐷:

• if 𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗) ≤ 𝑑1, then Pr(ℎ(𝑒𝑖) = ℎ(𝑒 𝑗)) ≥ 1 − 𝑑1
𝐷

,

• if 𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗) ≥ 𝑑2, then Pr(ℎ(𝑒𝑖) = ℎ(𝑒 𝑗)) ≤ 1 − 𝑑2
𝐷

,

where 0 ≤ 𝑑1 < 𝑑2 ≤ 1.

Proof. The Hamming distance between two edge sketchings varies from 0 to some large 𝐷 in the
case of 𝐷-dimensional sketches, i.e., 𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗) ∈ [0, 𝐷]. Furthermore, we can convert the distance
into the probability that they share the same hashcode, i.e.,

Pr(ℎ(𝑒𝑖) = ℎ(𝑒 𝑗)) = 1 −
𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗)

𝐷
∈ [0, 1] . (2)

4.2.2 EdgeSketch+ produces a Hash Kernel

Definition 2 (Hash Kernel). Given any two edges, 𝑒𝑖 and 𝑒 𝑗 , Algorithm 1 generates the 𝐷-
dimensional edge sketching under 𝑅 iterations, x(𝑅)𝑒𝑖 and x(𝑅)𝑒 𝑗 , respectively. We define the hash
kernel, 𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+, between 𝑒𝑖 and 𝑒 𝑗 as

𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+ (𝑒𝑖 , 𝑒 𝑗) = 𝜅(x(𝑅)𝑒𝑖 , x(𝑅)𝑒 𝑗) =
1
𝐷

𝐷∑︁
𝑑=1

1(𝑥 (𝑅)
𝑒𝑖 ,𝑑

= 𝑥
(𝑅)
𝑒 𝑗 ,𝑑
). (3)

Theorem 1. The hash kernel matrix K ∈ R𝑁×𝑁 , as defined in Eq. (3), is positive definite.

5

Proof. We rewrite Eq. (3) as

𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+ (𝑒𝑖 , 𝑒 𝑗)=
1
𝐷

𝐷∑︁
𝑑=1

(
1(𝑥𝑖,𝑑 = 1) × 1(𝑥 𝑗 ,𝑑 = 1) + 1(𝑥𝑖,𝑑 = 0) × 1(𝑥 𝑗 ,𝑑 = 0)

)
=

1
√
𝐷
×
(
1(𝑥𝑖,1 = 1), · · · ,1(𝑥𝑖,𝐷 = 1),1(𝑥𝑖,1 = 0), · · · ,1(𝑥𝑖,𝐷 = 0)

)
·

1
√
𝐷
×
(
1(𝑥 𝑗 ,1 = 1), · · · ,1(𝑥 𝑗 ,𝐷 = 1),1(𝑥 𝑗 ,1 = 0), · · · ,1(𝑥 𝑗 ,𝐷 = 0)

)⊤
.

(4)

The value 𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+ (𝑒𝑖 , 𝑒 𝑗) can be interpreted as the inner product of two vectors, each having a
dimensionality of 2𝐷. As a result, K can be expressed as K = MM⊤, where M ∈ R𝑁×2𝐷 .

4.2.3 Concentration

We define the theoretical similarity between two edges, 𝑒𝑖 and 𝑒 𝑗 , as

𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗) = Pr(ℎ(𝑒𝑖) = ℎ(𝑒 𝑗)) = lim
𝐷→+∞

1
𝐷

𝐷∑︁
𝑑=1

1(𝑥 (𝑅)
𝑒𝑖 ,𝑑

= 𝑥
(𝑅)
𝑒 𝑗 ,𝑑
). (5)

Then, we can show the highly-concentrated estimator of 𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗).
Theorem 2. Given two edges 𝑒𝑖 and 𝑒 𝑗 , Algorithm 1 generates the corresponding 𝐷-dimensional
edge sketching x(𝑅)𝑒𝑖 and x(𝑅)𝑒 𝑗 under 𝑅 iterations. ∀𝜖 > 0, the probability of deviation between
the kernel 𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+ (𝑒𝑖 , 𝑒 𝑗) and their real similarity 𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗) is bounded by the following
inequality

Pr[|𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+ (𝑒𝑖 , 𝑒 𝑗) − 𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗) | ≥ 𝜖] ≤ 2 exp(−2𝐷𝜖2). (6)

Proof. Let 𝑋 (𝑅)
𝑑

be a Bernoulli random variable, which takes 𝑋 (𝑅)
𝑑

= 1 with the probability of
𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗). Furthermore, considering 𝐷 i.i.d Bernoulli random variables, 𝑋 (𝑅)1 , 𝑋

(𝑅)
2 , · · · , 𝑋 (𝑅)

𝐷
,

we have 𝑋
(𝑅)

= 1
𝐷

∑𝐷
𝑑=1 𝑋

(𝑅)
𝑑

and E[𝑋 (𝑅)] = 𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗). Consequently, we can directly use the
Hoeffding bound [63] on the mean of the variables,

Pr[|𝜅𝐸𝑑𝑔𝑒𝑆𝑘𝑒𝑡𝑐ℎ+ (𝑒𝑖 , 𝑒 𝑗) − 𝑆𝑖𝑚(𝑒𝑖 , 𝑒 𝑗) | ≥ 𝜖] = Pr[|𝑋 (𝑟) − E[𝑋 (𝑟)] | ≥ 𝜖]
≤ 2 exp(−2𝐷𝜖2).

(7)

4.2.4 Time Complexity

Let 𝜈 be the average degree of the network, 𝑅 be the number of iterations, and 𝐷 be the number of
dimensions for edge embedding. We denote the number of 0-simplexes, 1-simplexes and 2-simplexes
as 𝑁0, 𝑁1 and 𝑁2, respectively. In the real scenarios, the networks are commonly sparse, which
means that O(𝑁0) = O(𝑁1) = O(𝑁2) [64, 65]. Consequently, it takes O(𝑁0),O(𝑁1) and O(𝜈𝑁1) to
extract 0-simplexes, 1-simplexes and 2-simplexes, respectively. Next, Algorithm 1 spends O(2𝑁1),
O(3𝑁2) and O(𝑁2

1) in generating the sparse matrices, B1, B2 and L1, respectively. In the outer for
loop, it requires O(𝑁1𝐷) (Line 5), O(𝑁1𝐷) (Line 6), O(𝑁1𝐷) (Line 7) and O(𝜈𝑁1𝐷

2) (Lines 8-11).
Consequently, the total time complexity is O(𝑁2

1 + 𝜈𝑁1𝐷
2𝑅).

Additionally, we analyze the algorithm’s representational power and space complexity in Appendix
D.1 and Appendix D.2, respectively.

4.3 Incorporation with Linear Learning Models

As in Eq. (3), the 𝐷-dimensional edge embedding derives nonlinear kernels. However, the explicit
kernel computation is definitely accompanied with a precomputed Gram matrix with the size being the
square of the number of training instances. Fortunately, the inner product in Eq. (4) indicates that the
vectorized representation can be mapped into an inner product space by negation and concatenation,
which remarkably speedups the training and testing processes without compromise to classification
accuracy by the linear learning models such as logistic regression. Consequently, this approach

6

effectively addresses the issue of SVM training for large-scale problems, particularly when the training
dataset exceeds available memory capacity. Taking the edge embedding vector [1, 0, 1, 0, 0] as an
example, Eq. (4) transforms it into a 10-dimensional feature vector, i.e., 1√

5
× [1, 0, 1, 0, 0, 0, 1, 0, 1, 1],

where the underlined entries negate the corresponding bits in the original vector. Consequently, the
concatenated vectors can be utilized by linear solvers, eliminating the need to store large-scale kernel
matrices.

5 Experimental Results

In this section, we conduct the extensive experiments to evaluate the performance of the proposed
EdgeSketch+ method. All dataset information is provided in Table 6 of Appendix E, where "BTC-𝛼"
stands for Bitcoin-alpha, "BTC-O" for Bitcoin-OTC, "Slash." for Slashdot, and "Epin." for Epinions.
For details on baselines and experimental settings, please refer to Appendix F.

5.1 Link Sign Prediction Results

Table 1: Link sign prediction performance results.

Datasets Metrics RSGNN SDGNN SNEA SGCL SiGAT
GSGNN

+SGA
EdgeRWSE TER edge2vec MPSketch EdgeSketch+

BTC-𝛼

Binary-F1 0.9475 0.9714 0.9272 0.9740 0.9706 0.9603 0.9659 0.9704 0.9686 0.9705 0.9780
Accuracy 0.9051 0.9458 0.8729 0.9508 0.9438 0.9266 0.9340 0.9435 0.9263 0.9433 0.9581
AUC 0.8467 0.8799 0.7863 0.9101 0.8874 0.8911 0.5314 0.8579 0.6246 0.8485 0.8829
Macro-F1 0.5874 0.7294 0.7119 0.7501 0.6758 0.7373 0.4836 0.6770 0.4892 0.5874 0.7687
Runtime (s) 332.81 779.81 315.71 2204.68 267.83 176.69 558.67 94.67 4081.36 121.23 4.03

BTC-O

Binary-F1 0.9533 0.9623 0.9138 0.9666 0.9600 0.9655 0.9467 0.9627 0.9617 0.9605 0.9681
Accuracy 0.9172 0.9315 0.8585 0.9384 0.9265 0.9209 0.8987 0.9327 0.9263 0.9315 0.9413
AUC 0.8127 0.9004 0.8032 0.9152 0.8953 0.8987 0.5314 0.8579 0.6132 0.8127 0.8695
Macro-F1 0.6096 0.7850 0.7652 0.7782 0.7473 0.7533 0.4836 0.6770 0.4892 0.6096 0.8137
Runtime (s) 441.78 1394.25 430.51 2930.11 716.56 173.65 1744.71 125.64 4560.63 460.23 7.81

Slash.

Binary-F1 - - 0.8737 - 0.9072 0.8672 - 0.8741 - - 0.9209
Accuracy - - 0.8162 - 0.8519 0.7982 - 0.7795 - - 0.8729
AUC - - 0.7942 - 0.8864 0.8222 - 0.7129 - - 0.8914
Macro-F1 - - 0.7665 - 0.7697 0.7232 - 0.4710 - - 0.7995
Runtime (s) OOT OOT 3119.04 OOT 11182.62 1326.12 OOM 652.34 OOT OOM 140.44

Epin.

Binary-F1 - - 0.9255 - 0.9579 0.9523 - 0.9206 - - 0.9659
Accuracy - - 0.8784 - 0.9269 0.9188 - 0.8530 - - 0.9405
AUC - - 0.8240 - 0.9248 0.8914 - 0.6340 - - 0.9217
Macro-F1 - - 0.7954 - 0.8354 0.8222 - 0.4601 - - 0.8658
Runtime (s) OOM OOT 4180.38 OOT 30651.82 1220.41 OOM 1069.47 OOT OOM 273.24

OOM/OOT mean that the methods run out of memory/time.

Table 1 shows the experimental results. Clearly, our proposed EdgeSketch+ algorithm competes very
well with all the competitors tailored for signed network embedding (i.e., RSGNN, SDGNN, SNEA,
SGCL, SiGAT and GSGNN+SGA) – it performs best in most cases, with an average AUC lag of only
0.0253, compared to the top-performing baselines, which reflects that the proposed EdgeSketch+
algorithm has achieved strong precision and recall for the minority class but struggles to maintain
balanced performance across all the thresholds due to the influence of the majority class; also, it runs
fastest on all the datasets, achieving up to 546.07× speedup3. Particularly, we would like to note
that some GNN-based algorithms suffer from huge time or memory consumption on the two largest
datasets, i.e., Slash. and Epin.4 This reveals that the idea of integrating the simplicial complex into
the LSH framework is very promising in efficiently recognizing the confusing patterns of signed
networks with no data distribution fitting and further benefiting the quality of edge-based signed
network embedding — our proposed EdgeSketch+ algorithm judges the edges more accurately with
the aid of simplicial complexes. In the Appendix G, we analyze the experimental results about the
edge embedding algorithms (i.e., EdgeRWSE, TER and edge2vec) and the LSH-based method (i.e.,
MPSketch) in more details.

3The ratios exclude the out-of-time and out-of-memory scenarios.
4In the original paper [1], RSGNN ran only on the sampled Slash. and Epin.

7

5.2 Ablation Study

The proposed EdgeSketch+ algorithm preserves higher-order interaction relationship from the sim-
plicial complex in the signed network by the LSH technique. Therefore, we conduct the ablation
analysis w.r.t. the simplicies (i.e., 0-simplex, 1-simplex and 2-simplex) involved in the proposed
EdgeSketch+ algorithm. To this end, we have the following variants,

• EdgeSketch+-L1 only utilizes the Hodge Laplacian L1 by removing the boundary adjacency
matrix involving 0-simplexes, B1, and the co-boundary adjacency matrix involving 2-
simplexes, B2, simultaneously;

• EdgeSketch+-I⊤I replaces L1 of EdgeSketch+-L1 with I⊤I, which operates the incidence
matrix I in Eq. (1). Any entry of I1 is 1 if the node is incident upon the edge; it is 0,
otherwise.

Table 2: Ablation study of EdgeSketch+ w.r.t. the
simplicial complex.

Datasets Metrics EdgeSketch+
-I⊤I

EdgeSketch+
-L1

EdgeSketch+
(orignal)

BTC-𝛼

Binary-F1 0.9690 0.9696 0.9780
Accuracy 0.9404 0.9415 0.9581
AUC 0.7624 0.7786 0.8829
Macro-F1 0.6120 0.6182 0.7687

BTC-O

Binary-F1 0.9556 0.9574 0.9681
Accuracy 0.9173 0.9205 0.9413
AUC 0.7594 0.7667 0.8695
Macro-F1 0.6789 0.6841 0.8137

Slash.

Binary-F1 0.8990 0.8996 0.9209
Accuracy 0.8343 0.8351 0.8729
AUC 0.8120 0.8133 0.8914
Macro-F1 0.7194 0.7216 0.7995

Epin.

Binary-F1 0.9456 0.9459 0.9659
Accuracy 0.9038 0.9044 0.9405
AUC 0.8441 0.8462 0.9217
Macro-F1 0.7664 0.7676 0.8658

We adopt the same parameters for the two vari-
ants for a fair comparison. Table 2 reports the
experimental results in terms of 𝐷 = 300 and
𝑅 = 1. EdgeSketch+-I⊤I, with no simplicies in-
volved, performs worst, which indicates that the
simplicial complex, as the higher-order abstrac-
tion, definitely facilitates signed network sketch-
ing by preserving the higher-order interaction
relationship. Furthermore, we observe the wider
gap between EdgeSketch+ and EdgeSketch+-
L1, which implies that the 0-simplexes and 2-
simplexes involved in the edge surrounding are
indispensable and the higher-order direct neigh-
borhood information remarkably benefits the
final edge embedding. Overall, the performance
shows an obvious increasing trend as more sim-
plicies are captured, i.e., from just incidence
information to the edge surrounding.

5.3 Scalability

1 2 3 4 5
Edges 1e7

0

100000

200000

300000

400000

500000

600000

700000

M
em

or
y

(M
B)

1 2 3 4 5
Edges 1e7

0

1000

2000

3000

4000

5000

6000

7000

Ru
nt

im
e

(s
)

Figure 2: Scalability of EdgeSketch+ w.r.t. the number
of edges.

As shown in Section 4.2.4, the time and
space complexities of the proposed EdgeS-
ketch+ algorithm are both polynomial w.r.t.
the number of edges, and thus we verify its
scalability w.r.t. the the network property
on a set of random, million-scale networks
(i.e., |V| = 106) generated by the Erdos-
Renyi model [66]. Figure 2 reports the
results in terms of memory consumption
and runtime in case of 𝑅 = 2 and 𝐷 = 300.
The embedding time of EdgeSketch+ dis-
plays the slow quadratic growth, owing to
𝜈, 𝐷, 𝐷2, 𝑅 ≪ 𝑁1, and the memory con-
sumption is empirically linear thanks to
𝐷𝑅 ≪ 𝑁1. Particularly, our proposed probabilistic model produces representation for tens of millions
of edges in less than 2 hours and 600GB on the million-scale networks. The empirical results match
the theoretical complexities. Therefore, our proposed EdgeSketch+ model shows good potential in
efficiently sketching large-scale signed networks.

5.4 Hyper-parameter Sensitivity

The proposed EdgeSketch+ algorithm has two parameters, i.e., the embedding dimension 𝐷 and the
number of iterations 𝑅. We explore how these two parameters affect link sign prediction performance

8

Dim
en

sio
n

50
100

150
200

250
300

Iterations 1
2

3
4

5

Binary-F1

0.968
0.970
0.972
0.974
0.976

BTC-

Dim
en

sio
n

50
100

150
200

250
300

Iterations 1
2

3
4

5

Tim
e(s)

4.0
4.5
5.0
5.5

6.0

BTC-

Dim
en

sio
n

50
100

150
200

250
300

Iterations 1
2

3
4

5

Binary-F1

0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920

Slash.

Dim
en

sio
n

50
100

150
200

250
300

Iterations 1
2

3
4

5

Tim
e(s)

100
120
140
160
180
200
220

Slash.

Figure 3: Hyper-parameter sensitivity in EdgeSketch+ in link sign prediction w.r.t. the embedding
dimension 𝐷 and the number of iterations 𝑅.

in effectiveness and runtime. We exhibit the results in terms of binary-f1 and end-to-end runtime on
BTC-𝛼 and Slash. in Figure 3.

It is evident that the accuracy performance is closely influenced by the embedding dimension 𝐷 and
the number of iterations 𝑅. Generally speaking, accuracy exhibits fluctuations as 𝐷 and 𝑅 increase
on BTC-𝛼; whereas we observe a clear convex surface on Slash. Particularly, EdgeSketch+ performs
best in the case of the largest 𝐷 = 300 and the smallest 𝑅 = 1. This result highlights two key insights:
a larger 𝐷 captures more meaningful information and the simplicial complex, as a higher-order
abstraction, retains sufficient information with a small 𝑅. Conversely, increasing 𝑅 excessively would
cause feature diffusion across simplexes, leading to the loss of local features. The end-to-end runtime
demonstrates an empirical linear relationship with 𝑅, even though the classification time is considered.
This implies that the embedding process theoretically linear to 𝑅 dominates the whole link sign
prediction task, and further EdgeSketch+ generates high-quality embedding vectors that are easy to
classify.

5.5 Effectiveness of Edge Structure Distance

Table 3: Hamming distance vs. Cosine distance.
Datasets Metrics EdgeSketch+

-Cosine
EdgeSketch+

(orignal)

BTC-𝛼

Binary-F1 0.9742 0.9780
Accuracy 0.9505 0.9581
AUC 0.7329 0.8829
Macro-F1 0.6509 0.7687

BTC-O

Binary-F1 0.9616 0.9681
Accuracy 0.9285 0.9413
AUC 0.7158 0.8695
Macro-F1 0.5481 0.8137

We define the edge structure distance based on
the Hamming distance to describe the similarity
between the edges of the signed networks in
Appendix C. In order to verify its effectiveness,
we compare with the common Cosine distance.
Specifically, we precompute the Cosine kernel
based on cosine distance and then feed it into
SVM.

Table 3 shows the comparison results on BTC-𝛼
and BTC-O. Clearly, our proposed edge similar-
ity based on the Hamming distance is superior
to the Cosine similarity in the LSH family.

5.6 Necessity of Edge Embedding

Table 4: Importance of the Edge Embedding.
Datasets Metrics Naive EdgeSketch+

BTC-𝛼

Binary-F1 0.9698 0.9780
Accuracy 0.9415 0.9581
AUC 0.5000 0.8829
Macro-F1 0.4830 0.7687

BTC-O

Binary-F1 0.9436 0.9681
Accuracy 0.8933 0.9413
AUC 0.5000 0.8695
Macro-F1 0.4786 0.8137

In order to demonstrate that the edge embedding
as feature design definitely fosters the good per-
formance, we directly feed the initialized edge
vectors into the logistic regression classifier.

Table 4 shows the comparison results on BTC-
𝛼 and BTC-O. In the scenario where the same
classifier model is adopted, our proposed edge
embedding model performs much better than the
naive method based on the only initialized edge
vectors, which shows that the edge embedding
effectively captures the higher-order structure
information. By contrast, the naive method cap-
tures only the information of the edges themselves. Particularly, the AUC values of 0.5000 from the

9

naive method imply that good feature design is very necessary; otherwise, the classifier performs no
better than random guessing.

6 Conclusion

In this paper, we propose a simple and very speedy signed network sketching model dubbed EdgeS-
ketch+ beyond node-centric modeling, which can capture the higher-order information derived from
the simplicial complex with more representational capability than the traditional node-to-node inter-
active relationship. The approach adopts the LSH technique to avoid substantial parameter training,
while preserving as much structural information as possible. Furthermore, we provide the theoretical
guarantees for the accuracy and the complexity of the edge representation. We conduct the extensive
experiments of EdgeSketch+ and a collection of state-of-the-art methods. We evaluate its performance
in terms of accuracy and runtime on a number of signed network datasets. The experimental results
show that our proposed EdgeSketch+ method achieves the competitive accuracy performance with
dramatically reduced runtime, which makes it more practical in the era of big data.

Acknowledgments

This work was supported by Open Project of Xiangjiang Laboratory (No.25XJ03020), National
Natural Science Foundation of China (No. 62302528, 62522201, 62172449, 62202025, 72374070),
Hunan Provincial Natural Science Foundation of China (2022JJ3021,2025JJ20071), Beijing Natural
Science Foundation (No. L241050), Young Elite Scientist Sponsorship Program by CAST (No.
YESS20230566), CCF-Huawei Populus Grove Fund CCF-Huawei (No. CCF-HuaweiFM2024005),
High Performance Computing Center of Central South University, and Fundamental Research Fund
Project of Beihang University.

References
[1] Z. Zhang, J. Liu, X. Zheng, Y. Wang, P. Han, Y. Wang, K. Zhao, and Z. Zhang, “RSGNN: A

Model-agnostic Approach for Enhancing the Robustness of Signed Graph Neural Networks,” in
WWW, 2023, pp. 60–70.

[2] H. Liu, Z. Zhang, P. Cui, Y. Zhang, Q. Cui, J. Liu, and W. Zhu, “Signed Graph Neural Network
with Latent Groups,” in KDD, 2021, pp. 1066–1075.

[3] J. Huang, H. Shen, L. Hou, and X. Cheng, “SDGNN: Learning Node Representation for Signed
Directed Networks,” in AAAI, no. 1, 2021, pp. 196–203.

[4] Y. Li, Y. Tian, J. Zhang, and Y. Chang, “Learning Signed Network Embedding via Graph
Attention,” in AAAI, no. 04, 2020, pp. 4772–4779.

[5] T. Derr, Y. Ma, and J. Tang, “Signed Graph Convolutional Networks,” in ICDM, 2018, pp.
929–934.

[6] L. Shu, E. Du, Y. Chang, C. Chen, Z. Zheng, X. Xing, and S. Shen, “SGCL: Contrastive
Representation Learning for Signed Graphs,” in CIKM, 2021, pp. 1671–1680.

[7] J. Huang, H. Shen, L. Hou, and X. Cheng, “Signed Graph Attention Networks,” in ICANN,
2019, pp. 566–577.

[8] H. Sun, P. Tian, Y. Xiong, Y. Zhang, Y. Xiang, X. Jia, and H. Wang, “DynamiSE: Dynamic
Signed Network Embedding for Link Prediction,” Machine Learning, pp. 1–17, 2024.

[9] L. Li, J. Liu, X. Ji, M. Wang, and Z. Zhang, “Self-Explainable Graph Transformer for Link
Sign Prediction,” in AAAI, 2025, pp. 12 084–12 092.

[10] D. Cartwright and F. Harary, “Structural Balance: A Generalization of Heider’s Theory.”
Psychological Review, vol. 63, no. 5, p. 277, 1956.

[11] F. Heider, “Attitudes and Cognitive Organization,” The Journal of Psychology, vol. 21, no. 1,
pp. 107–112, 1946.

10

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,”
in KDD, 2014, pp. 701–710.

[13] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” in KDD,
2016, pp. 855–864.

[14] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale Information
Network Embedding,” in WWW, 2015, pp. 1067–1077.

[15] C. Huang, M. Li, F. Cao, H. Fujita, Z. Li, and X. Wu, “Are Graph Convolutional Networks with
Random Weights Feasible?” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 3, pp. 2751–2768, 2022.

[16] Y. Yan, B. Jing, L. Liu, R. Wang, J. Li, T. Abdelzaher, and H. Tong, “Reconciling Competing
Sampling Strategies of Network Embedding,” in NeurIPS, 2023, pp. 6844–6861.

[17] Y. Yan, Y. Hu, Q. Zhou, L. Liu, Z. Zeng, Y. Chen, M. Pan, H. Chen, M. Das, and H. Tong,
“PACER: Network Embedding from Positional to Structural,” in WWW, 2024, pp. 2485–2496.

[18] G. Yang, M. Li, H. Feng, and X. Zhuang, “Deeper Insights into Ddeep Graph Convolutional
Networks: Stability and Generalization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2025.

[19] C. Wang, C. Wang, Z. Wang, X. Ye, and P. S. Yu, “Edge2vec: Edge-based Social Network
Embedding,” ACM Transactions on Knowledge Discovery from Data, vol. 14, no. 4, pp. 1–24,
2020.

[20] H. Wang, R. Yang, K. Huang, and X. Xiao, “Efficient and Effective Edge-wise Graph Represen-
tation Learning,” in KDD, 2023, pp. 2326–2336.

[21] P. Bielak, T. Kajdanowicz, and N. V. Chawla, “AttrE2vec: Unsupervised Attributed Edge
Representation Learning,” Information Sciences, vol. 592, pp. 82–96, 2022.

[22] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling Graph Neural Network for few-shot
Learning,” in CVPR, 2019, pp. 11–20.

[23] L. Gong and Q. Cheng, “Exploiting Edge Features for Graph Neural Networks,” in CVPR, 2019,
pp. 9211–9219.

[24] A. C. Wilkerson, T. J. Moore, A. Swami, and H. Krim, “Simplifying The Homology of Networks
via Strong Collapses,” in ICASSP, 2013, pp. 5258–5262.

[25] S. Gurugubelli and S. P. Chepuri, “SaNN: Simple Yet Powerful Simplicial-aware Neural
Networks,” in ICLR, 2024.

[26] S. H. Lee, F. Ji, and W. P. Tay, “SGAT: Simplicial Graph Attention Network,” in IJCAI, 2022,
pp. 3192–3200.

[27] F. Frantzen and M. T. Schaub, “Learning from Simplicial Data ased on Random Walks and 1d
Convolutions,” in ICLR, 2024.

[28] C. Zhou, X. Wang, and M. Zhang, “Facilitating Graph Neural Networks with Random Walk on
Simplicial Complexes,” in NeurIPS, 2023, pp. 16 172–16 206.

[29] C. Liu, D. Ruhe, F. Eijkelboom, and P. Forré, “Clifford Group Equivariant Simplicial Message
Passing Networks,” in ICLR, 2024.

[30] H. Wu, A. Yip, J. Long, J. Zhang, and M. K. Ng, “Simplicial Complex Neural Networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 1, pp. 561–575, 2024.

[31] M. Hajij, G. Zamzmi, T. Papamarkou, V. Maroulas, and X. Cai, “Simplicial Complex Represen-
tation Learning,” in ICLR, 2021.

[32] K. Maggs, C. Hacker, and B. Rieck, “Simplicial Representation Learning with Neural 𝑘-Forms,”
in ICLR, 2024.

11

[33] M. Yang, E. Isufi, and G. Leus, “Simplicial Convolutional Neural Networks,” in ICASSP, 2022,
pp. 8847–8851.

[34] T. M. Roddenberry, N. Glaze, and S. Segarra, “Principled Simplicial Neural Networks for
Trajectory Prediction,” in ICML, 2021, pp. 9020–9029.

[35] C. Bodnar, F. Frasca, Y. Wang, N. Otter, G. F. Montufar, P. Lio, and M. Bronstein, “Weisfeiler
and Lehman Go Topological: Message Passing Simplicial Networks,” in ICML, 2021, pp.
1026–1037.

[36] P. Indyk and R. Motwani, “Approximate Nearest Neighbors: towards Removing the Curse of
Dimensionality,” in STOC, 1998, pp. 604–613.

[37] W. Wu, B. Li, L. Chen, and C. Zhang, “Efficient Attributed Network Embedding via Recursive
Randomized Hashing,” in IJCAI-18, 2018, pp. 2861–2867.

[38] W. Wu, B. Li, C. Luo, and W. Nejdl, “Hashing-Accelerated Graph Neural Networks for Link
Prediction,” in WWW, 2021, pp. 2910–2920.

[39] W. Wu, B. Li, C. Luo, W. Nejdl, and X. Tan, “MPSketch: Message Passing Networks via
Randomized Hashing for Efficient Attributed Network Embedding,” IEEE Transactions on
Cybernetics, vol. 54, no. 5, pp. 2941–2954, 2024.

[40] D. Bera, R. Pratap, B. D. Verma, B. Sen, and T. Chakraborty, “QUINT: Node Embedding using
Network Hashing,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 3, pp.
2987–3000, 2023.

[41] D. Yang, B. Qu, J. Yang, L. Wang, and P. Cudre-Mauroux, “Streaming Graph Embeddings via
Incremental Neighborhood Sketching,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 5, pp. 5296–5310, 2023.

[42] A. Celikkanat, F. D. Malliaros, and A. N. Papadopoulos, “NODESIG: Binary Node Embeddings
via Random Walk Diffusion,” in ASONAM, 2022, pp. 68–75.

[43] B. Li, X. Zhu, L. Chi, and C. Zhang, “Nested Subtree Hash Kernels for Large-scale Graph
Classification over Streams,” in ICDM, 2012, pp. 399–408.

[44] W. Wu, B. Li, L. Chen, X. Zhu, and C. Zhang, “𝐾-Ary Tree Hashing for Fast Graph Classifica-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 5, pp. 936–949,
2018.

[45] C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel, “Faster Kernels for Graphs with Continuous
Attributes via Hashing,” in ICDM, 2016, pp. 1095–1100.

[46] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting, “Propagation Kernels: Efficient
Graph Kernels from Propagated Information,” Machine Learning, vol. 102, pp. 209–245, 2016.

[47] X. Tan, W. Wu, and C. Luo, “SCHash: Speedy Simplicial Complex Neural Networks via
Randomized Hashing,” in SIGIR, 2023, pp. 1609–1618.

[48] C. Aggarwal, G. He, and P. Zhao, “Edge Classification in Networks,” in ICDE, 2016, pp.
1038–1049.

[49] W. Wu, S. Li, C. Luo, and F. Li, “Time- and Space-Efficiently Sketching Billion-Scale Attributed
Networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 37, no. 2, pp. 966–978,
2025.

[50] W. Wu, S. Li, L. Chen, L. Fangfang, and C. Luo, “Skeching Very Large-scale Dynamic
Attributed Networks More Practically,” in WWW, 2025, pp. 5264–5274.

[51] F. Li, H. Zhang, W. Li, and W. Wu, “Heterogeneous Graph Embedding Made More Practical,”
in SIGIR, 2025, pp. 688–697.

[52] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention
Networks,” in ICLR, 2018.

12

[53] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Net-
works,” in ICLR, 2017.

[54] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?” in
ICLR, 2019.

[55] H. Liu, “LightSGCN: Powering Signed Graph Convolution Network for Link Sign Prediction
with Simplified Architecture Design,” in SIGIR, 2022, pp. 2680–2685.

[56] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph Contrastive Learning with
Augmentations,” NeurIPS, pp. 5812–5823, 2020.

[57] M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi, “SPONGE: A Generalized Eigenproblem
for Clustering Signed Networks,” in AISTATS, 2019, pp. 1088–1098.

[58] R.-C. Tzeng, B. Ordozgoiti, and A. Gionis, “Discovering Conflicting Groups in Signed Net-
works,” NeurIPS, pp. 10 974–10 985, 2020.

[59] Z. Zhang, L. Li, S. Wan, W. Wang, Z. Wang, Z. Lu, D. Hao, and W. Li, “DropEdge not
Foolproof: Effective Augmentation Method for Signed Graph Neural Networks,” in NeurIPS,
2024, pp. 117 041–117 069.

[60] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-wise Independent
Permutations,” in STOC, 1998, pp. 327–336.

[61] M. S. Charikar, “Similarity Estimation Techniques from Rounding Algorithms,” in STOC, 2002,
pp. 380–388.

[62] D. Yang, P. Rosso, B. Li, and P. Cudre-Mauroux, “NodeSketch: Highly-Efficient Graph
Embeddings via Recursive Sketching,” in KDD, 2019, pp. 1162–1172.

[63] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables,” in The
Collected Works of Wassily Hoeffding, 1994, pp. 409–426.

[64] J.-P. Eckmann and E. Moses, “Curvature of Co-links Uncovers Hidden Thematic Layers in
the World Wide Web,” Proceedings of the National Scademy of Dciences, vol. 99, no. 9, pp.
5825–5829, 2002.

[65] Z. Zhang, P. Cui, H. Li, X. Wang, and W. Zhu, “Billion-scale Network Embedding with Iterative
Random Projection,” in ICDM, 2018, pp. 787–796.

[66] P. ERDdS and A. R&wi, “On Random Graphs I,” Publicationes Mathematicae, vol. 6, no. 18,
pp. 290–297, 1959.

[67] B. Weisfeiler and A. A. Lehman, “A Reduction of a Graph to a Canonical Form and an Algebra
Arising during this Reduction,” Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16,
1968.

[68] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decompositions,” SIAM Review, vol. 53,
no. 2, pp. 217–288, 2011.

[69] T. Lei, W. Jin, R. Barzilay, and T. Jaakkola, “Deriving Neural Architectures from Sequence and
Graph Kernels,” in ICML, 2017, pp. 2024–2033.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contents of the paper match the claims made in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in a separate section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: We have provided the theories and the corresponding proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explicitly reveal all the hyperparameters and open source models necessary
to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We have provided the publicly available datasets and our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the details of all the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Since our comparative experiments strictly follow the baseline settings, includ-
ing train/test dataset splits and random seeds, the experimental results exhibit no variance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have described the system on which the experiments are conducted in the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We review and ensure that the present work respects the NeurIPS Code of
Ethics at each individual part.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The research does not have concerns about societal impacts because it is
designed for general-purpose graph embedding.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use publicly available datasets and models, widely used in the research
community.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have obeyed all license and terms involved in the datasets and the compared
methods.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve IRB approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We just adopt LLM to proofread the paper (e.g., grammar, spelling, word
choice).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Notation Table

The notations are summarized in Table 5.

Table 5: Notations

Notation Description

𝑔 Signed network where edges have positive or negative signs
V Set of nodes in the signed network
E Set of edges in the signed network
𝑣 A node in the signed network
𝑒 An edge in the signed network, typically a 1-simplex
S𝑘 A 𝑘-simplex
xS Embedding of simplex S
C A simplicial complex
B𝑖 Boundary adjacency matrix for 𝑖-simplices
L𝑖 𝑖-dimensional Hodge Laplacian
H A family of randomized functions
h Random vector
𝜅 Hash kernel

B The EdgeSketch+ Algorithm

A Signed Network

extract

simplexes

build

matrices

Conv

0-simplex sketching

1-simplex sketching

2-simplex sketching

0/1/2-simplexes

AGG

sgn(·)

Signed Network
Sketching

L1

B1

B2

R

0-

1-

2-

+

-

+

+

+

-

-
-

Figure 4: The overall procedure of the proposed EdgeSketch+ algorithm.

C Definitions

Definition 3 (Edge Surrounding). The edge surrounding centers around the edge itself (i.e., 1-
simplex), with its direct neighborhood from the viewpoint of the simplicial complex, including the
adjacent edges (i.e., 1-simplexes), nodes (i.e., 0-simplexes) and triangles (i.e., 2-simplexes). We
can represent the edge surrounding via the convolution operation on the simplex-based adjacency
matrices B1, B2 and the 1-dimensional Hodge Laplacian L1, which effectively preserves the direct
neighborhood information.

This definition extends the traditional neighborhood relationship in graph mining, which is limited to
the same-level, node-centric adjacency relationship.

Definition 4 (Edge Sketching). The edge 𝑒’s sketching under 𝑅 iterations is a 𝐷-dimensional binary
vector, x(𝑅)𝑒 = [𝑥 (𝑅)

𝑒,1 , 𝑥
(𝑅)
𝑒,2 , · · · , 𝑥

(𝑅)
𝑒,𝐷
], which is defined in terms of the edge surrounding projected

into 𝑅 sets of 3 × 𝐷 random vectors in an iterative manner. The vector element 𝑥 (𝑅)
𝑒,𝑑

= 1 if the 𝑑th
projection is non-negative, and 0 otherwise.

21

The projection operation is actually a linear combination of three kinds of simplexes from the edge
surrounding on three random vectors, which is mathematically equivalent to the edge surrounding
holistically projected into a target random vector.

Definition 5 (Edge Structure Distance). Given any two edges, 𝑒𝑖 and 𝑒 𝑗 , Algorithm 1 generates the
𝐷-dimensional edge sketching under 𝑅 iterations, x(𝑅)𝑒𝑖 and x(𝑅)𝑒 𝑗 , respectively. We define the edge
structure distance as the Hamming distance between their sketchings, i.e.,

𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗) = 𝑑𝑖𝑠𝑡 (x(𝑅)𝑒𝑖 , x(𝑅)𝑒 𝑗) =
𝐷∑︁
𝑑=1

1(𝑥 (𝑅)
𝑒𝑖 ,𝑑

≠ 𝑥
(𝑅)
𝑒 𝑗 ,𝑑
), (8)

where 𝑥 (𝑅)
𝑒𝑖 ,𝑑
∈ {0, 1}, and 1(𝑠𝑡𝑎𝑡𝑒) = 1, if 𝑠𝑡𝑎𝑡𝑒 is true, and 1(𝑠𝑡𝑎𝑡𝑒) = 0, otherwise.

The distance represents the number of the target random vectors that lie in the same direction with
exactly one of two edge surroundings.

D Theoretical Analysis

D.1 Representational Power

The work [54] has demonstrated that the WL isomorphism test [67] has the maximal representa-
tional power to discriminate the substructures in the graph because the test ensures that different
substructures is embedded into distinct locations in the feature space.

Motivated by the LSH framework, we can quantize the representational power of our proposed
EdgeSketch+ algorithm from a probabilistic perspective. Assuming that ℏ(𝑟) denotes the 𝑟-th
sketching process of the proposed probabilistic model, we have the probabilistic expression as follows

Pr(ℏ(𝑟) (x(𝑟−1)
𝑒𝑖) = ℏ(𝑟) (x(𝑟−1)

𝑒 𝑗)) = lim
𝐷→+∞

1
𝐷

𝐷∑︁
𝑑=1

1(𝑥 (𝑟)
𝑒𝑖 ,𝑑

= 𝑥
(𝑟)
𝑒 𝑗 ,𝑑
), (9)

where 𝑟 = 1, 2, · · · , 𝑅. Formally, Eq. (9) illustrates that the proposed EdgeSketch+ model could
represent two substructures in the graph as the same feature vector with the probability of their
theoretical similarity.

D.2 Space complexity

EdgeSketch+ requires storing the simplex-based adjacency matrices (i.e., O(2𝑁1) for B1 and O(3𝑁2)
for B2) and the Hodge Laplacian (i.e., O(𝜈𝑁1) for L1) as well as the embedding for 0-simplexes (i.e.,
O(𝑁0𝐷)), 1-simplexes (i.e., O(𝑁1𝐷)) and 2-simplexes (i.e., O(𝑁2𝐷)); also, the random vectors
need O(𝐷2𝑅). Therefore, the space complexity is practically O(𝑁1𝐷 + 𝐷2𝑅).

E Datasets

We implement the link sign prediction task on the following signed networks from the SNAP group5.

• Bitcoin-alpha is a who-trust-whom Bitcoin-Alpha trading network, where the users give
trust or distrust tags to others for the sake of security.

• Bitcoin-OTC is a who-trust-whom Bitcoin-OTC trading network, where the users give trust
or distrust tags to others for the sake of security.

• Slashdot is a news website that covers technology, science and culture. The users are allowed
to tag each other as friends or foes.

• Epinions is a who-trust-whom online social network from the consumer review site. The
users decide whether to trust each other.

Particularly, for Bitcoin-alpha and Bitcoin-OTC, users rate others negatively (i.e.,
{−10,−9, · · · ,−2,−1}) or positively (i.e., {10, 9, · · · , 2, 1}); we consider the negative scores

5https://snap.stanford.edu/data/index.html

22

https://snap.stanford.edu/data/index.html

Table 6: Summary of the signed network datasets.

Datasets |V | | E+ | | E− | |triangles | |𝜈 |
Bitcoin-alpha 3,783 22,650 1,536 22,153 12.79

Bitcoin-OTC 5,881 32,029 3,563 33,493 12.10

Slashdot 82,144 425,072 124,130 579,565 13.37

Epinions 131,828 717,667 123,705 4,910,076 12.76

as the negative edges and the positive scores as the positive edges, as shown in [1, 3]. We initialize
the node features with the positive in-degree, the negative in-degree, the positive out-degree and the
negative out-degree; then, we initialize the features of high-dimensional simplexes (i.e., edges and
triangles) by taking the sum of the node features. The above datasets are summarized in Table 6.

F Baselines and Experiment Setting

We compare the proposed EdgeSketch+ method with the following state-of-the-art approaches in the
link sign prediction task6.

• RSGNN [1] aims to denoise the signed network in the node representation learning process
based on the balance theory.

• SDGNN [3] learns node representation by aggregating messages from different signed,
social relations in the signed network based on the balance theory.

• SNEA [4] estimates the importance coefficients of node pairs via the self-attention mecha-
nism when representing nodes in the signed network based on the balance theory.

• SGCL [6] learns node representation by applying the graph contrastive learning to signed
networks based on the balance theory.

• SiGAT [7] learns node representation by applying the graph attention network to signed
networks based on the balance theory.

• GSGNN+SGA [2, 59] combines GS-GNN’s [2] latent group modeling with SGA’s [59]
augmentation to address graph sparsity and unbalanced triangles.

• EdgeRWSE [28] learns edge representation based on edge-level (i.e., 1-simplex) random
walks with edge-level node position information supplemented.

• TER [20] exploits the randomized singular value decomposition [68] of edge transition
matrices to obtain edge representation.

• edge2vec [19] utilizes deep autoencoders to capture local and global structure information
of the embedded edges.

• MPSketch [39] generates the node embeddings by using the LSH technique to pass messages
in the MPNN framework [69].

All the compared methods have their codes provided by their respective authors, and we adopt
the recommended hyperparameters in their papers for the learning methods. Also, we conduct the
experiments with different values of 𝑅 ∈ {1, 2, 3, 4, 5} for MPSketch and EdgeSketch+. Finally, we
set 𝑅 = 1 on Bitcoin-alpha and 𝑅 = 4 on Bitcoin-OTC for MPSketch, which runs out of memory
on Slashdot and Epinions; we set 𝑅 = 1 on Bitcoin-alpha and 𝑅 = 1 on Bitcoin-OTC, 𝑅 = 1 on
Slashdot and 𝑅 = 1 on Epinions for EdgeSketch+. We set the embedding dimension 𝐷 as 300 and the
cutoff time of 24 hours. All the experiments are conducted on Linux with 2.90GHz 128 Intel Xeon
Platinum 8375C CPU, 1.5T RAM and NVIDIA A10 GPU (24GB RAM). When the experiments
encounter out-of-memory errors on the GPU, we would switch the computational device to the CPU.
Following the previous works [1, 2], we achieve the signed network embedding and then conduct the
link sign prediction task by the logistic regression classifier for the methods which are not trained
in an end-to-end manner. Particularly, for our proposed EdgeSketch+ algorithm, we expand the
embedding vectors and then feed them into the logistic regression classifier, as shown in Section

6We do not report the results from [48, 55, 30] since the codes are not publicly available.

23

4.3; for MPSketch, we use the Hamming distance and SVM classifier recommended in the original
paper7. Otherwise, we employ the end-to-end training. We report the mean of binary-f1, accuracy,
auc, macro-f1 and end-to-end runtime in the 5-fold cross validation in Table 1. We provide the code
in the attachment.

G Analysis of Experimental Results

The proposed EdgeSketch+ model outperforms all the edge embedding algorithms (i.e., EdgeRWSE,
TER and edge2vec). In spite of the simplicial complex involved, EdgeSketch+ is unsurprisingly
superior to EdgeRWSE, because EdgeRWSE focuses on random walks on simplicial complexes, with
the edge patterns among the signed triangles neglected, that is to say, the neighbors that share 0-
simplexes is only considered; by contrast, EdgeSketch+ preserves such important information related
to 2-simplexes to distinguish some difficult patterns under the balance theory. Besides, EdgeRWSE
exhausts memory on Slashdot and Epinions, mainly due to the memory consumption required for
walking between a large number of simplexes. TER, as an efficient and effective edge embedding
method recently claimed by its authors, definitely performs more efficiently than the learning-based
competitors by randomized singular value decomposition [68], but EdgeSketch+ goes towards more
efficient and effective by leveraging the advantages of the LSH technique and the simplicial complex.
Also, EdgeSketch+ clearly outperforms edge2vec in terms of effectiveness and efficiency, because
edge2vec essentially preserves local and global proximities from the node-level perspective by deep
autoencoders. This again illustrates that the simplicial complex is able to identify more patterns.

Also, we compare EdgeSketch+ against the most recent LSH-based node embedding algorithm,
MPSketch, which derives edge embedding by concatenating two corresponding node embeddings.
Evidently, MPSketch performs worst, and even runs out of memory on Slashdot and Epinions, because
it cannot effectively capture the substructure features in the signed networks and more importantly,
it embeds into the nonlinear Hamming space such that the precomputed kernel matrix is too big to
fit in memory, which makes it difficult to scale. Although the two methods do not need learning,
EdgeSketch+ still performs faster than MPSketch by two orders of magnitude. The main reasons
are as follows: 1) MPSketch sketches a large, aggregated information pool, and even iterates more
than EdgeSketch+ on Bitcoin-OTC capture sufficient information; 2) The SVM classifier training
based on the Hamming kernel is time-consuming. This again implies that MPSketch has the limited
capabilities of capturing the patterns in the signed networks.

In addition, we would like to note that all the competitors implicitly/explicitly represent the nodes or
edges as 32/64-bit embedding vectors, while our proposed EdgeSketch+ algorithm only generates the
binary vectors with nearly no sacrificing the result quality, which means that EdgeSketch+ is able to
enjoy lower memory footprints than the compared methods in signed network embedding. Overall,
our proposed EdgeSketch+ model achieves an excellent balance between accuracy and efficiency.

H Limitations

This work has two main limitations. First, although EdgeSketch+ operates in an unsupervised manner
without using edge signs during sketching, it relies on downstream classifiers that require labeled
data. This setup may limit its applicability in domains where labeled signed edges are scarce. Second,
the current approach leverages simplicial complexes constructed from triangle structures, which may
miss relevant higher-order interactions not captured by 2-simplices. Extending the framework to
incorporate higher-dimensional simplices could provide more comprehensive modeling, albeit at the
cost of increased computational complexity.

7We also assess MPSketch by logistic regression, but it underperforms.

24

	Introduction
	Related Works
	Preliminaries
	Edge-based Signed Network Embedding
	Simplicial Complex
	Locality Sensitive Hashing

	Signed Network Sketching
	The EdgeSketch+ Algorithm
	Theoretical Analysis
	EdgeSketch+ belongs to an LSH family
	EdgeSketch+ produces a Hash Kernel
	Concentration
	Time Complexity

	Incorporation with Linear Learning Models

	Experimental Results
	Link Sign Prediction Results
	Ablation Study
	Scalability
	Hyper-parameter Sensitivity
	Effectiveness of Edge Structure Distance
	Necessity of Edge Embedding

	Conclusion
	Notation Table
	The EdgeSketch+ Algorithm
	Definitions
	Theoretical Analysis
	Representational Power
	Space complexity

	Datasets
	Baselines and Experiment Setting
	Analysis of Experimental Results
	Limitations

