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ABSTRACT

While Video Large Language Models (Video-LLMs) have shown significant po-
tential in multimodal understanding and reasoning tasks, how to efficiently select
the most informative frames from videos remains a critical challenge. Existing
methods attempt to optimize frame sampling by reducing inter-frame redundancy
or employing unsupervised event localization. However, these approaches of-
ten fall short in handling complex instruction-following tasks and scenarios that
demand precise temporal modeling, resulting in limited performance in both se-
mantic alignment and temporal reasoning. To address the above challenges, we
introduce Instructed Temporal Grounding for Videos (VideoITG), a framework
aiming to adaptively customize frame sampling strategies based on user instruc-
tions. Specifically, we design the VidThinker pipeline, which automates annotation
by generating instruction-conditioned captions, retrieving relevant video segments,
and selecting key frames to enable efficient supervision. Using VidThinker, we
build the VideoITG-40K dataset with 40K videos and 500K temporal grounding
annotations. Our plug-and-play VideoITG model leverages Video-LLMs’ visual-
language alignment and reasoning for discriminative frame selection. VideoITG
consistently boosts the performance on multiple multimodal video understanding
benchmarks, demonstrating its effectiveness and potential.

1 INTRODUCTION

The rapid advancement of Video Large Language Models (Video-LLMs) has opened new frontiers in
video understanding, advancing complex tasks such as captioning (Chen et al., 2024c; Chai et al.,
2025; Zhou et al., 2024b; Islam et al., 2024; Chen et al., 2024d; Wang et al., 2024b), visual question
answering (Fu et al., 2024a; Zhou et al., 2024a; Mangalam et al., 2024; Li et al., 2024b; Chen et al.,
2024a; Xiao et al., 2021; Pătrăucean et al., 2023), and embodied-agent applications (Brohan et al.,
2023; Kim et al., 2024; Fu et al., 2024b; Liu et al., 2024a; Chen et al., 2024b; 2025b). However,
these models face challenges when handling long videos due to high memory and computational
demands. To mitigate this, existing approaches often adopt uniform frame sampling, a simple
but naive strategy that frequently misses key frames for accurate video understanding, resulting in
suboptimal performance.

To address these limitations, researchers have explored various strategies. One family of approaches
focuses on reducing redundant spatiotemporal information by fusing or pruning overlapped content
across frames, as can be seen in works employing pooling rules, similarity thresholds, or clustering to
retain only essential frames (Xu et al., 2024a; Shen et al., 2024; Zhang et al., 2024a; Li et al., 2024a;
Zhang et al., 2024c). Another stream of strategies extends the length of model sequence to incorporate
more tokens (Wang et al., 2024c; Team et al., 2023), enabling longer temporal dependencies, despite
the high computational cost, and risking information dilution. Alternative methods utilize question-
guided feature extraction or language queries to identify relevant segments (Li et al., 2024c; Yu et al.,
2023). SeViLA (Yu et al., 2023) processes frames independently using BLIP-2 (Li et al., 2023) before
selecting keyframes, which serve as the input for subsequent video understanding tasks. However, the
lack of temporal modeling capability limits its performance in tasks requiring multi-temporal cues.

Despite advances in compressing or extending the context for Video-LLMs, a performance gap
persists between long and short videos due to limited training data for long-video content. When
humans analyze long videos, they naturally employ a step-by-step approach: skimming the overall
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Figure 1: Overview of the VidThinker annotation pipeline for VideoITG. The pipeline consists
of three stages that fully leverage the provided instructions: (1) segment-level clip captioning; (2)
instruction-guided relevant clip retrieval; (3) fine-grained frame-level localization.

context, locating question-relevant clues, and then focusing on specific segments. Drawing inspiration
from such a process, we propose Instructed Temporal Grounding for Videos (VideoITG), which
integrates user instructions into frame selection. While general temporal video grounding (Wang
et al., 2024a; Qian et al., 2024; Lei et al., 2021) emphasizes event localization within videos based
on single temporal clue and descriptive language queries, VideoITG introduces a user-instruction-
driven approach, customizing frame selection strategies to align with specific task requirements.
Compared to existing frame selection frameworks (Yu et al., 2023; 2025; Han et al., 2025; Meng
et al., 2022; Wang et al., 2022), VideoITG can effectively handle multiple temporal clues for various
tasks: localizing temporal cues from multiple clips to understand temporal relationships, employing
event localization and uniform frame sampling to detect speed variations, and conducting diverse
types of samplings to cover all videos for content captioning or existence judgment, etc.

To support VideoITG, we construct a comprehensive dataset via the automated annotation pipeline
VidThinker, which includes instruction-guided clip captioning, retrieval, and frame localization to
ensure high-quality, task-aligned annotations (see Fig. 1). Inspired by human reasoning, our pipeline
uses GPT-4o (OpenAI, 2024) for detailed descriptions and a “Needle-In-A-Haystack” approach for
instruction-guided retrieval. To achieve precise temporal grounding, instructions are categorized into
four types: semantic-only for appearance-based questions, motion-only for dynamic cues, semantic
& motion for joint reasoning, and non-clues for maximizing visual diversity.

The resulting VideoITG-40K dataset contains 40K videos with varying durations (30s - 3mins) and
500K instruction-guided annotations, significantly surpassing previous temporal grounding datasets
in both scale and quality of instruction-guided frame selection. Building on this foundation, we
present a family of VideoITG models that leverage text generation, anchor-based classification with
causal attention, and pooling-based classification with full attention to enhance instructed temporal
grounding and advance Video-LLM capabilities. In summary, our contributions are threefold:

• VideoITG-40K dataset. We define the tasks of VideoITG and develop an automated data
annotation pipeline, namely VidThinker, to generate a large-scale dataset, namely VideoITG-
40K, with 40K videos and 500K instruction-dependent annotations, allowing precise frame
identification and effective video understanding.

• VideoITG models. We introduce a family of VideoITG models with varying attention and
decoding strategies, designed to improve instruction-guided temporal grounding based on insights
from the VideoITG-40K dataset.

• Consistent improvement. Our approach achieves consistent performance improvements on
various multimodal video understanding benchmarks. By integrating VideoITG, we achieve
improvements of 9.0% on CG-Bench, 8.6% on MLVU, 4.0% on Video-MME, and 3.6% on
LongVideoBench for the InternVL2.5-8B model, showing the effectiveness of our framework.
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2 RELATED WORK

Video large language models. Recent advances in Video-LLMs address the temporal and spatial
complexity of long videos through several strategies. Visual feature compression (Liu et al., 2025b;
Zohar et al., 2024; Ye et al., 2024; Wang et al., 2024e; Liu et al., 2025a) is achieved by modules
like Q-Former (Song et al., 2024) and Perceiver Resampler (Zohar et al., 2024), which merge frame
features into fixed queries. Spatial pooling (Maaz et al., 2024; Xu et al., 2024b;a) helps preserve long-
range temporal information efficiently. Some models extend sequence length for longer inputs (Zhang
et al., 2024d; Wang et al., 2024c; Team et al., 2023; Chen et al., 2025a), but this often increases
computational cost (Wei & Chen, 2024; Shu et al., 2025). To reduce redundancy, similarity-based
frame filtering is used (Jin et al., 2024; Shen et al., 2024), though fixed thresholds may miss real-
world diversity. Some methods also incorporate additional components for frame-by-frame selection;
however, they do not sufficiently model temporal relationships (Huang et al., 2025; Wang et al., 2024d;
Buch et al., 2022). In contrast, our VideoITG leverages instructed temporal grounding, automated
annotation, and a plug-and-play design to align sampling with user instructions, achieving superior
performance and scalability on multimodal video understanding benchmarks.

Video temporal grounding. Video Temporal Grounding (Ren et al., 2024; Wang et al., 2024a; Qian
et al., 2024; Di & Xie, 2024) is a common task in video understanding that associates specific video
moments with their corresponding timestamps, while Temporal Localization focuses on accurately
identifying these moments within untrimmed videos (Liu et al., 2024b; Anne Hendricks et al., 2017;
Li et al., 2024d). Current Video-LLMs(Shen et al., 2024; Wang et al., 2024a; Huang et al., 2024) have
begun to leverage temporal grounding for frame selection by linking video content with temporal cues;
however, existing methods (Huang et al., 2025; Yu et al., 2023; 2025) mostly focus on single-time
retrieval, which take descriptive annotations as input, limiting their generality and robustness in
handling diverse real-world scenarios. Recognizing these limitations, we propose the VideoITG
task, which introduces a customized sampling approach aligned with user instructions to improve the
effectiveness of frame selection for a broad range of video understanding tasks.

3 VIDEOITG-40K: DATASET CONSTRUCTION

We introduce VidThinker (Sec. 3.1), an automated annotation pipeline with three stages—clip
captioning, retrieval, and frame localization for instruction-based video annotation. We further
describe our fine-grained instruction taxonomy and frame selection strategies (Sec. 3.2) to align
annotations with QA tasks. Finally, we apply VidThinker to construct the VideoITG-40K dataset and
report its statistics (Sec. 3.3).

3.1 VIDTHINKER: AUTOMATED ANNOTATION PIPELINE

Instruction-driven temporal localization in long videos typically involves three steps: parsing the
instruction to extract key information, narrowing down the video to a coarse temporal window, and
fine-grained reasoning to locate the target event. Inspired by this process, we propose VidThinker,
an automated annotation pipeline that mimics human reasoning for instruction-guided temporal
localization. VidThinker enables fully automated, high-quality, and interpretable video annotations
without manual labeling.

VidThinker decomposes the annotation process into three interdependent reasoning steps: i) Instructed
Clip Captioning, ii) Instructed Clip Retrieval, and iii) Instructed Frame Localization. It progressively
narrows the search space and enriches semantic alignment with the instruction.

i) Instructed Clip Captioning: The video v is uniformly divided into short clips (5 seconds each),
denoted as {vi}ni=0. For each segment, we employ LLM to extract salient phrases that capture the
core information needed to fulfill the instruction. For example, given the question (q =‘What does the
man playing the drums do with his feet as he plays the drum?’) and the answer (a =‘moves his feet’),
the system distills the essential action phrase: k =‘The man playing the drums moves his feet and
hits the drums with his hands.’ We then input the extracted phrases alongside raw video clips into the
MLLM to generate clip-level descriptions {ci}ni=0 in a recurrent manner. The extracted phrases serve
as reference cues to guide the model’s attention towards salient elements within each clip. However,
the MLLM strictly adheres to visual evidence and it only incorporates information from the extracted

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

20s 30s21s 27s 28s 29s

✂✂

Frame Selection Strategy Instruction Type

0s 5s 10s 15s 20s 25s 30sUser: Could you describe the
camera movement in the video? 

Type #2: Motion Only

User: What did the man do 
before getting into the car?

Type #1: Semantic Only

User: What caused the car 
to slow down?

Type #3: Semantic & Motion

User: Please describe the 
video in detail.

Type #4: Non‐Clues

✂✂
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Non‐uniform Sampling for Selected Clips

15s

Uniform Samping across Video

Hybrid Sampling for Relevant Clips

26s

Non‐Uniform Sampling across Video

Figure 2: Illustration of four instruction types and their corresponding frame selection strategies in
VidThinker. For semantic-focused instructions, the system selects diverse frames capturing key visual
clues. For motion-focused instructions, frames are uniformly sampled to capture dynamic changes.
When both semantic and motion cues are required, a hybrid sampling strategy is applied. For vague
or open-ended instructions, the system samples a minimal yet diverse set of frames across the video
for holistic coverage.

phrases when it is explicitly observable in the current clip. This ensures that the system will not
hallucinate or infer content solely based on the extracted phrases, maintaining descriptions grounded
in visual content. The process can be formulated as follows:

k = LLM(q, a), ci = MLLM(k, vi). (1)
Conditioning on these instruction- and answer-derived cues, we ensure that the annotation of each
segment is relevant and informative, thus facilitating precise instructed temporal grounding.

ii) Instructed Clip Retrieval: The generated clip descriptions {ci}ni=0 are organized sequentially
and evaluated by an LLM for the relevance to the QA pairs. Instead of simply assigning binary
relevance scores, the LLM is instructed to perform chain-of-thought reasoning, explicitly considering
both keyword matches and temporal relationships to directly output the indexes of relevant clips:

Irel−clip = LLM({ci}ni=0, q, a). (2)
The chain-of-thought prompting requires the model to justify its selections based on both semantic and
temporal cues, rather than relying solely on trivial keyword matching. This automation significantly
improves the efficiency and the interpretability of relevant segment selection.

iii) Instructed Frame Localization: After coarse localization of video segment, VidThinker further
refines the annotation by selecting key frames according to the instruction type. For each frame within
the candidate segment, we prompt a large language model (LLM) to perform a binary classification
task: given the QA pair and a single frame, the LLM determines whether the frame is relevant (yes)
or not (no) to the instruction. Formally, for each frame fi in the candidate segment, the LLM is
prompted as follows:

yi = LLM(fi, q, a), where yi ∈ {yes,no}, (3)
where yi indicates whether frame fi is relevant to the QA. Only frames with positive responses
(yi = yes) are retained as the final temporal grounding results. This instruction-guided filtering
allows VidThinker to achieve high precision in identifying the most informative frames for instructions.

Leveraging the reasoning capabilities of MLLMs, VidThinker transforms video QA annotation into a
fully automated, scalable, and cognitively inspired process. This approach not only reduces manual
effort and variability, but also ensures high-quality, interpretable annotations suitable for training
next-generation video understanding models.

3.2 FINE-GRAINED GROUNDING INSTRUCTION

We adopt fine-grained frame selection strategies tailored to each instruction type, ensuring that the
visual evidence matches the reasoning needs of each QA task. Since different instructions demand
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Table 1: Comparison of dataset statistics for temporal grounding and highlight detection datasets.

Dataset # Videos # Queries Avg. Duration Instructed?
DiDeMo (Anne Hendricks et al., 2017) 10.6K 41.2K 29s No
QuerYD (Oncescu et al., 2021) 2.6K 32K 278s No
HiREST (Zala et al., 2023) 3.4K 8.6K 263s No
Charades-STA (Gao et al., 2017) 6.7K 16.1K 30s No
QVHighlights (Lei et al., 2021) 10.2K 10.3K 150s No
VideoITG-40K 40K 500K 120s Yes

varying visual understanding, such as static semantics, dynamic motion, or both, we categorize
instructions into four types and apply different sampling methods.

• Semantic only: These instructions focus on semantic content such as people, scenes, or objects.
Following relevant segment localization, the system selects diverse frames that capture repre-
sentative visual clues to ensure comprehensive semantic coverage. For example: “What did the
man do before getting into the car?” The VidThinker needs to select frames that clearly show the
man’s clothing and the guitar.

• Motion only: These instructions emphasize dynamic actions, such as movement type, speed,
or direction. The frames are sampled at a fixed rate within the localized segment to accurately
capture the progression of motion. For example: “How does the person jump off the diving
board?” The VidThinker needs to select frames covering the sequence from takeoff, mid-air, to
water entry.

• Semantic & Motion: These instructions require both semantic and motion understanding. The
system applies fixed-rate sampling within motion-relevant regions while ensuring the preservation
of semantically informative frames, balancing both needs. For example: “Could you describe the
camera movement in the video?” The VidThinker needs to select frames showing hand drumming
and foot movement simultaneously.

• Non Clues: These instructions are open-ended or vague without clear semantic or motion
focus, aiming to maximize visual diversity for holistic understanding. In these cases, the system
selects a small yet diverse set of frames across the entire video to maximize visual information
coverage while minimizing redundancy. For example: “Please describe the video in detail.” The
VidThinker selects representative frames from the beginning, middle, and end of the video.

3.3 DATASET STATISTICS

Leveraging our proposed VidThinker pipeline, we construct the VideoITG-40K dataset, which is
sourced from the LLaVA-Video dataset (Zhang et al., 2024e). VideoITG-40K achieves an unprece-
dented scale, comprising 40,000 videos and 500,000 annotations tailored specifically for instruction-
guided temporal grounding. The entire annotation process is automatically carried out by VidThinker,
ensuring high efficiency, consistency, and alignment with diverse instruction types.

VideoITG-40K contains videos of varying duration, averaging 120 seconds, and is uniformly sampled
across the timelength of 30-60s, 1-2mins, and 2-3mins. Each video is comprehensively annotated
with 10–15 QA pairs, including both multiple-choice and open-ended questions. As shown in Table 1,
VideoITG-40K significantly surpasses existing datasets in volume, with nearly four times the number
of videos compared to DiDeMo (Anne Hendricks et al., 2017) (10.6K) and QVHighlights (Lei et al.,
2021) (10.2K), and far exceeding others like QuerYD (Oncescu et al., 2021) (2.6K) and HiREST (Zala
et al., 2023) (3.4K). Unlike prior datasets that primarily focus on descriptive text queries for video
understanding, VideoITG-40K distinguishes itself through its instruction-guided approach, enabling
models to locate relevant video content based on specific user queries.

4 VIDEOITG: MODEL DESIGN

In this section, we explore how to utilize our VideoITG-40K dataset to train the model for the
Instructed Temporal Grounding task, aiming to optimize video frame selection and enhance the
performance of Video-LLMs. Our framework, as shown in Fig. 3, consists of three main components:
a vision encoder (i.e., VIT) for extracting text-aligned visual features F , a VideoITG model for
instruction-guided frame selection Irel, and a VideoLLM for generating answers a based on the
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Figure 3: VideoITG model design: (A) Text generation aligns video and language tokens for
sequential predictions. (B) Classification with causal attention utilizes anchor tokens for temporal
cue management. (C) Classification with full attention facilitates interaction across visual and text
tokens without anchors.

selected frames FIrel
and the question q. The process can be described as folllows:

F = VIT(v), Irel = VideoITG(F, q), a = VideoLLM(FIrel
, q). (4)

The VideoITG model is designed in a plug-and-play fashion, which is focused on the following
aspects: (1) to which extent the Video-LLMs capitalize on the alignment between video and language
tokens, as well as their ability to follow instructions; (2) whether the model has sufficient contextual
encoding capabilities to handle and analyze multiple temporal cues. With the above considerations,
we develop three model variants: text generation-based classification, anchor-based classification,
and pooling-based classification, as illustrated in Fig. 3 (b).

Variant A: text-generation-based classification. As shown on the left side of Fig. 3 (b), we
start by discussing the text generation design, where Instructed Temporal Grounding is framed
as a next-token prediction task, producing text tokens as output. This approach aligns with the
current training paradigm of Video-LLMs, optimizing the use of Video-LLM for vision-language
alignment and instruction following. Previous works, such as Timechat (Ren et al., 2024) and
Grounded-VideoLLM (Wang et al., 2024a), use this paradigm to tackle time-sensitive tasks.

Variant B: anchor-based classification. Another model design adopts a discriminative paradigm by
classifying the visual tokens corresponding to each video frame, as shown in the middle of Fig. 3 (b).
We initialize the model with a Video-LLM and retain the causal attention mask to remain consistent
with the original Video-LLM design, thereby preserving its pre-training capabilities. However, the
causal attention mask prevents visual tokens from accessing the instruction in advance, and earlier
frame features are unable to access subsequent frame features, limiting the model’s ability to handle
multiple temporal cues. To address this limitation, we introduce an anchor token after the instruction.
For a video frame at time index t, we compute an anchor token At via global average pooling over all
spatial positions, as formulated below:

At =
1

M

∑
i,j

F t
ij , ∀t ∈ [1, · · · , T ], (5)

where F t
ij represents the visual feature extracted at 2D grid position (i, j) of the t-th frame, and M is

the total number of patches within each frame. For a video with T frames, we compute T anchor
tokens in total: {At}Tt=1.

Variant C: pooling-based classification. As discussed above, the presence of a causal attention mask
makes it difficult to directly supervise the classification of visual tokens for each frame. Therefore,
we propose to remove the causal attention mask, allowing visual tokens and text instruction tokens to
interact through full attention across the sequence. Following this idea, we perform average pooling
and classification on the visual tokens of each frame without establishing separate anchor tokens. The
overall process is illustrated on the right of Fig. 3 (b).
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Table 2: Performance comparison of VideoITG integrated with different Video-LLMs, varying in
both the size of the answering LLM and the number of sampled frames.“UNI-k” denotes UNIform
sampling of k frames, while “ITG-k” refers to selecting the Top k frames based on relevance scores
generated by our proposed VideoITG.

LMM Selection LongVideoBench MLVU VideoMME CG-Bench Avg.
8min 12min S (2 min) M (10 min) L (40 min) 27min

LLaVA-Video-7B UNI-32 58.7 66.8 76.3 60.3 52.7 35.8 58.4
ITG-32 61.6 (+2.9) 74.6 (+7.8) 77.3 (+1.0) 65.9 (+5.6) 55.2 (+2.5) 42.8 (+7.0) 62.9 (+4.5)

LLaVA-Video-7B UNI-64 59.9 70.2 75.8 63.0 54.7 36.9 60.1
ITG-64 60.9 (+1.0) 76.3 (+6.1) 76.1 (+0.3) 66.0 (+3.0) 57.0 (+2.3) 42.9 (+6.0) 63.2 (+3.1)

InternVL2.5-8B UNI-32 58.3 66.4 75.1 61.7 53.1 37.7 58.7
ITG-32 61.9 (+3.6) 75.0 (+8.6) 78.0 (+2.9) 67.1 (+5.4) 56.9 (+3.8) 46.7 (+9.0) 64.3 (+5.6)

InternVL2.5-26B UNI-32 55.6 71.3 78.1 67.1 56.9 40.6 61.6
ITG-32 63.0 (+7.4) 78.9 (+7.6) 80.8 (+2.7) 69.0 (+1.9) 59.9 (+3.0) 48.7 (+8.1) 66.7 (+5.1)

Eagle2.5-8B UNI-32 63.0 67.8 78.8 64.1 55.9 41.2 61.8
ITG-32 66.8 (+3.8) 76.5 (+8.7) 80.0 (+1.2) 67.8 (+3.7) 60.3 (+4.4) 49.0 (+7.8) 66.7 (+4.9)

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We follow the training approach of LLaVA-Video (Zhang et al., 2024e), using the pretrained model
as the initialization for our VideoITG model’s pre-training. We employ SigLIP (Zhai et al., 2023)
as the vision encoder and Qwen2 (Wang et al., 2024c) as the language model. Initially, we train the
MLP projector on image caption datasets with a batch size of 256 and a learning rate of 1× 10−3.
Then, we fine-tune all model parameters on the LLaVA-OV-SI (Li et al., 2024a) and LLaVA-Video
datasets. During this stage, the video frame sampling rate is set to 64, and the LLM’s maximum
sequence length is set to 16K. We then train the VideoITG model on the proposed VideoITG-40K
dataset, adjusting the video sampling rate to 1 fps.

Throughout training and inference, we employ a dynamic token spatial size strategy (Liu et al.,
2025b). Across all stages, the LLM’s learning rate is 2× 10−5, and in the final stage, the learning
rate for the classification head is 2× 10−4. To fairly compare with other leading video LMMs, we
primarily use results from their original papers. When results are unavailable, we integrate the models
into LMMs-Eval (Zhang et al., 2024b) and assess them under consistent settings. Due to context
length constraints, we support up to 512 video frames as input (with 16 visual tokens per frame) for
the VideoITG model, from which we select the top 32 frames based on their scores by default.

5.2 MAIN RESULTS

In Table 2, we integrate our VideoITG model with various Video-LLMs to examine how different
frame sampling strategies and the number of sampled frames influence answer quality. As can be
seen, VideoITG’s frame selection strategy significantly outperforms uniform sampling across both
32-frame and 64-frame settings. This demonstrates that uniform sampling indeed constrains the
extraction of informative content within the limited frame budget.

We evaluate Video-LLM models of different sizes and observe that integrating VideoITG yields
substantial improvements, even for larger models. For InternVL2.5-26B, our approach boosts
performance by 7.4% on LongVideoBench, 7.6% on MLVU, and 9.0% on CG-Bench. Notably,
InternVL2.5-8B with VideoITG achieves an average of 64.3%, surpassing the InternVL2.5-26B
baseline (61.6%). On longer video tasks, InternVL2.5-8B with VideoITG attains 46.7% on CG-Bench,
outperforming the 26B baseline (40.6%). These results demonstrate that effective frame selection can
yield greater gains than increasing model size, especially for long-video understanding.

5.3 ABLATION ON VIDEOITG DESIGN CHOICES

Table 3 presents a comprehensive analysis on the design of our VideoITG framework, directly
supporting our key contributions.
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Table 3: Empirical studies on the VideoITG-40k dataset and VideoITG model design. We adopt
Variant-C for subsequent experiments. “No Images” and “No Videos” indicate that image-text data
(LAION-CC-SBU-558K & LLaVA-OV-SI) or video data (LLaVA-Video-178K) are excluded from
pre-training, respectively.

Abaltion Experiment Videomme MLVU LongVideoBench
Short (%) ↑ Medium (%) ↑ Long (%) ↑ (%) ↑ (%) ↑

Architecture

Variant-A-7B 51.0 44.8 44.4 45.7 56.8
Variant-B-7B 77.9 66.0 56.2 74.6 61.3
Variant-C-7B 78.0 67.1 56.9 75.0 61.9
Variant-C-3B 77.1 64.8 56.0 74.5 61.5

Dataset No Clip Captioning 77.5 63.1 53.4 73.2 61.7
Construction No Frame Localization 77.6 65.8 56.8 74.1 61.5

Pre-training No Videos 77.2 64.9 57.4 74.5 61.6
Data No Images & Videos 76.6 63.0 54.4 69.1 58.6

Architecture. First, we compare the three variants of our model architecture. We observe that Variant
A, which is based on the text generation paradigm, performs the worst. One possible reason is that text
generation models trained with the next-token prediction paradigm suffer from sparse supervision due
to teacher forcing, where previous frame selections influence subsequent ones, making the training
process less efficient compared to discriminative classification models. We find that Variant C with
full-attention outperforms Variant B with causal attention. This improvement may be attributed to
full-attention’s larger receptive field, which enables global temporal relationship modeling and allows
all tokens to access the textual query simultaneously.

Dataset. We analyze our data annotation strategies to demonstrate the effectiveness of our Vid-Thinker
annotation pipeline. Ablation studies show that the performance degrades when Instructed Clip
Captioning are removed, with accuracy dropping from 56.9% to 53.4% on Videomme Long videos
and from 75.0% to 73.2% on MLVU. This demonstrates that ensuring information diversity is crucial
for maintaining comprehensive feature representation of videos. Similarly, removing Instructed
Frame Localization decreases performance, particularly on Videomme Medium videos (from 67.1%
to 65.8%). These results confirm that both stages are essential for optimal model performance and
validate our data construction approach of the VideoITG-40K dataset.

Pre-training. Finally, we investigate the impact of vision-language alignment pre-training on
model performance. Our experiments reveal that removing video pre-training causes only modest
performance changes across benchmarks, with slight increases on Videomme Long videos. This
suggests that the benefits of video data for instructed temporal grounding tasks primarily stem from
effective visual context length, yet this impact is relatively minor compared to vision-language
alignment. This observation is further validated if we eliminate both image and video pre-training
data, starting from a text-only large language model, where performance drops dramatically, with
accuracy decreasing from 75.0% to 69.1% on MLVU and from 61.9% to 58.6% on LongVideoBench.
This substantial degradation underscores that robust vision-language alignment is crucial to effective
VideoITG training.

5.4 ABLATION ON SELECTION METHODS

Table 4 presents a comprehensive comparison of various frame selection methods. Baseline ap-
proaches like SigLIP and InternVL2.5-8B achieve average scores of 64.0 and 65.2, respectively, but
are limited by weaker instruction-following and temporal modeling capabilities. Recent methods
such as AKS (Tang et al., 2025) and QuoTA (Luo et al., 2025) introduce more advanced selection
strategies, reaching average scores of 65.3 and 65.6; however, they still fail to fully leverage temporal
cues in videos. Q-Frame (Zhang et al., 2025) attempts multi-resolution scaling, but its overall per-
formance (61.7) remains inferior. Considering results across the three major VLMs, LLaVA-Video,
InternVL2.5, and Qwen2VL, VideoITG consistently achieves the best overall performance. On each
VLMs, VideoITG-8B attains the highest or near-highest scores, demonstrating its robust generaliza-
tion and superior capability in instruction following and temporal modeling. By jointly modeling
instruction-following and temporal relationships in both data annotation and model design, VideoITG
demonstrates superior video understanding, especially in complex and long-form scenarios.
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Table 4: Results with different scoring LMMs. In the second row, we follow Huang et al. (2025) and
use a standalone VLM to assess the relevance between the question and each frame, and select the
top 32 frames with the highest probability of “Yes” as the output.

Selection Methods Answering LMM Frames LongVideoBench MLVU VideoMME Avg.

SigLIP (Zhai et al., 2023) InternVL2.5-8B 32 60.4 69.3 62.4 64.0
InternVL2.5-8B (Huang et al., 2025) InternVL2.5-8B 32 60.7 70.3 64.7 65.2
VideoITG-8B InternVL2.5-8B 32 61.9 75.0 67.3 68.1
AKS (Tang et al., 2025) LLaVA-Video-7B 64 62.7 - 65.3 -
QuoTA (Luo et al., 2025) LLaVA-Video-7B 64 59.0 71.9 65.9 65.6
VideoITG-8B LLaVA-Video-7B 64 60.9 76.3 66.4 67.9
Q-Frame (Zhang et al., 2025) Qwen2VL 8+16+32 58.4 65.4 58.3 60.7
VideoITG-8B Qwen2VL 8+16+32 58.6 66.6 59.8 61.7

A: Charging the cell phone.Uni

Q：What does the person in 
the video do after brushing 
his teeth?

Input
video

Q：What are the moves in 
the last scene of this dance?

Input
video

A: Passe and Grand jete.Uni

A: Kneel down on one knee

and lean back. 
Ours

A: Spraying perfume.Ours

Figure 4: Two examples of how different sampling strategies impact video understanding. We mark
the identified key frames that directly answer the question with green check-marks.

5.5 VISUALIZATION

In Fig. 4, we compare uniform sampling and VideoITG sampling of 8 frames from the VideoMME (Fu
et al., 2024a) Benchmark. In the first case, VideoITG captures both brushing teeth and spraying
perfume actions, enabling correct temporal ordering, while uniform sampling misses key cues. In
the second case, VideoITG accurately captures rapid consecutive movements at the end, whereas
uniform sampling fails to do so, leading to incomplete video understanding.

6 CONCLUSION

In this paper, we presented VideoITG, a novel framework for instruction-aligned frame selection in
Video-LLMs. The key to our approach was the VidThinker pipeline, which mimics human annotation
by generating detailed, instruction-guided clip descriptions, retrieving relevant segments, and per-
forming fine-grained frame selection. Using this pipeline, we constructed the VideoITG-40K dataset
with 40K videos and 500K temporal grounding annotations. Based on this resource, we developed
plug-and-play VideoITG models that leverage visual-language alignment and reasoning to handle
diverse temporal grounding tasks. Experiments showed that VideoITG consistently improves Video-
LLMs’ performance across multiple video understanding benchmarks, highlighting its effectiveness
and potential for advancing instruction-driven video understanding.

Limitations. Our current framework consists of two separate modules during inference: VideoITG
for frame selection and a standalone Video-LLM for question answering. Although we have carefully
designed the frame labeling strategies, the lack of gradient optimization between these two modules
during training can lead to suboptimal results. Our VideoITG framework serves as a promising
starting point, while in future work we could explore reinforcement learning techniques to bridge
these two modules, enabling more efficient and accurate frame selection.
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7 ETHICS STATEMENT

Our methods are intended solely for academic and scientific purposes. We do not foresee direct
harmful applications, but acknowledge that misuse could occur if applied without proper safeguards.
We encourage responsible use of the research outcomes, with attention to fairness, transparency, and
legal compliance. The usage of all datasets strictly complies with their respective licenses.

8 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All details of the proposed
model, preprocessing steps of datasets and algorithms with full hyperparameter settings and training
procedures provided are described in the main text.
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Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei-Fei, and Juan Carlos
Niebles. Revisiting the” video” in video-language understanding. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2917–2927, 2022. 3

Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jeng-Neng
Hwang, Saining Xie, and Christopher D Manning. AuroraCap: Efficient, performant video detailed
captioning and a new benchmark. 2025. 1

Guo Chen, Yicheng Liu, Yifei Huang, Yuping He, Baoqi Pei, Jilan Xu, Yali Wang, Tong Lu, and Limin
Wang. CG-Bench: Clue-grounded question answering benchmark for long video understanding.
arXiv:2412.12075, 2024a. 1

Guo Chen, Zhiqi Li, Shihao Wang, Jindong Jiang, Yicheng Liu, Lidong Lu, De-An Huang, Wonmin
Byeon, Matthieu Le, Tuomas Rintamaki, et al. Eagle 2.5: Boosting long-context post-training for
frontier vision-language models. arXiv preprint arXiv:2504.15271, 2025a. 3

Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei
Liu, Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. VideoLLM-online: Online video large
language model for streaming video. In CVPR, 2024b. 1

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
Bin Lin, Zhenyu Tang, et al. ShareGPT4Video: Improving video understanding and generation
with better captions. arXiv:2406.04325, 2024c. 1

Qirui Chen, Shangzhe Di, and Weidi Xie. Grounded multi-hop videoqa in long-form egocentric
videos. In AAAI, 2025b. 1

Yang Chen, Sheng Guo, and Limin Wang. A large-scale study on video action dataset condensation.
arXiv:2412.21197, 2024d. 1

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, et al. VideoLLaMA 2: Advancing spatial-temporal modeling and
audio understanding in video-llms. arXiv:2406.07476, 2024. 16

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In ICLR,
2024. 15

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
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Algorithm 1 Keyframe Extraction via Bidirectional CLIP Similarity
Require: Video frame sequence frames, similarity thresholds t1 (scene change) and t2 (diversity)
Ensure: Selected keyframe indices sel

1: Initialize sel with the first frame index: sel← {0}
2: Extract CLIP feature for the first frame: prev← clip(frames[0])
3: for each frame c in frames[1:] with index i do
4: curr← clip(c)
5: s← sim(curr, prev)
6: if s < t1 then
7: for each future frame f in frames[i+ 1 : ] do
8: fut← clip(f )
9: if sim(curr, fut) < t2 then

10: Add index i to sel
11: prev← curr
12: break
13: end if
14: end for
15: end if
16: end for
17: if sim(clip(frames[-1]), prev) < t1 then
18: Add last frame index to sel
19: end if
20: return sel

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) were employed in four main ways: (i) to aid and polish
the writing for clarity and style; and (ii) to provide coding assistance, including code generation,
debugging, and optimization suggestions.

Specifically, LLMs were utilized to improve the clarity, coherence, and readability of the manuscript,
with particular attention given to the Related Work, Method, and Experiments sections. In these
parts, the initial drafts were carefully reviewed and refined using LLM-powered suggestions for
sentence structure, terminology, and logical flow. This process ensured that the technical content was
presented in a precise and accessible manner, while maintaining consistency in academic tone and
style throughout the paper.

All outputs generated by LLMs were critically reviewed, verified, and further refined by the authors.
The core scientific ideas, methodology, and contributions remain entirely the authors’ own. The use
of LLMs was strictly limited to language enhancement and coding support, without influencing the
originality or integrity of the research.

B INFERENCE TIME

In Table 5, we evaluated the speed of our model on a single NVIDIA A100 GPU. We employed
LLaVA-Video-7B (Zhang et al., 2024e) as our answering LLM, implemented a 32-frame sampling
strategy from 512 input frames in total, and generated 27 text tokens. Additionally, we leveraged KV
Cache and Flash Attention (Dao et al., 2022; Dao, 2024) to enhance inference efficiency.

Our detailed analysis of computational costs reveals that processing each video sample requires a
total of 6.42 seconds, with the Vision Encoder (2.92 seconds) and LLM (2.89 seconds) dominating
the time consumption. These two components collectively consume 90% of the total processing
time, indicating the direction for future system optimization. In contrast, our VideoITG module
demonstrates remarkable efficiency, requiring only 0.61 seconds to scan 512 frames—a speed that
surpasses human visual recognition and thinking capabilities.
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Table 5: Computation cost of the model.

Vision Encoder VideoITG LLM Overall

2.92s 0.61s 2.89s 6.42s

Table 6: The performance (accuracy) of SOTA methods on video benchmarks. For InternVL2.5-8B
results, we report the higher results in the technical report and lmms-eval. We sample 32 frames
using VideoITG for our results.

Open-Ended Q&A Multi-Choice Q&A

Model ActN
et-

QA

Ego
Sch

em
a

M
LVU

NExT
-Q

A

Perc
ep

tio
nTest

Lon
gV

ideo
Ben

ch

Video
M

M
E

M
VBen

ch

test test m-avg mc val val wo/w-subs val

Open-source models
VILA-40B (Lin et al., 2024) 58.0 58.0 - 67.9 54.0 - 60.1/61.1 -
PLLaVA-34B (Xu et al., 2024a) 60.9 - - - - 53.2 - 58.1
VideoLLaMA2-7B (Cheng et al., 2024) 50.2 50.5 - - 49.6 - 45.1/46.6 53.4
LongVA-7B (Zhang et al., 2024d) 50.0 - 56.3 68.3 - - 52.6/54.3 -
LongVU-7B (Zhang et al., 2024d) - 67.6 65.4 - - - 60.6/- 66.9
LLaVA-OV-7B (Li et al., 2024a) 56.6 60.1 64.7 79.4 57.1 56.5 58.2/61.5 56.7
mPLUG-Owl3-8B (Ye et al., 2024) - - - 78.6 - 52.1 53.5/- 54.5
LLaVA-Video-7B (Zhang et al., 2024e) 56.5 57.3 70.8 83.2 67.9 58.2 63.3/69.7 58.6
Qwen2.5-VL-7B (Wang et al., 2024c) - - - 70.2 70.5 54.7 65.1/71.6 69.6
InternVL2.5-8B (Zhang et al., 2024c) - 51.5 68.9 - - 60.0 64.2/66.9 72.0

InternVL2.5-8B-ITG-32 57.4 51.6 75.0 79.5 64.9 61.9 67.3/69.6 72.2

C DATASET DETAILS

C.1 PROMPT TEMPLATE

Our Question-guided Clip Retrieval process utilizes a carefully designed prompt template (shown in
Table 8) that instructs the LLM to analyze chronologically ordered clip-level descriptions and identify
the minimal set of clips necessary to answer a given question. The prompt template consists of three
main components:

• Task Description: Defines the LLM’s role as an expert in analyzing video clip descriptions and
establishes the goal of selecting clips that cover both question and answer content.

• Guidelines: Provides detailed instructions for clip selection, including handling time-related
expressions, determining if a single or multiple clips are needed, addressing questions about
object existence or movement, and avoiding unnecessary clips.

• Output Format: Specifies the required JSON structure for responses, ensuring consistent
formatting with explanation and clip number fields.

This template enables the LLM to perform chain-of-thought reasoning when selecting relevant
clips. The model analyzes keywords from questions, identifies temporal relationships (e.g., “before,”
“after”), and provides explicit rationales for its selections. For cases where no relevant clips exist, the
model returns “None” to reduce annotation noise.

We implement this process using GPT-4o-mini (OpenAI, 2024), which is sufficient for accurate clip
selection while reducing annotation costs by over 10 times compared to larger models. The selected
clips are then converted to event boundaries defined by timestamps based on frame indices for the
final temporal grounding annotations.
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Table 7: Dataset quality (IoU). We evaluate the performance in both multiple-choice (MC) and
open-ended (OE) questions.

Method Semantic-MC Semantic & Motion-OE Semantic-MC Semantic & Motion-OE
Qwen2.5-VL-32B 0.31 0.36 0.27 0.37

GPT4o 0.24 0.30 0.26 0.27
Ours 0.79 0.74 0.72 0.69

Table 8: Prompt Template: An expert system for temporal localization in video segments. The
system analyzes video segment descriptions to determine the minimal and necessary combination of
segments required to answer questions.

Task:
You are an expert in analyzing video clip descriptions. Your task is to select which clip or
combination of clips is necessary to answer the given question, ensuring the selected clips
effectively cover the content of both the question and the answer.

Guidelines:

• Carefully read the descriptions to determine which clip(s) provide relevant content for
the question and the answer.

• Clip descriptions are in chronological order. Use clip number to locate clips based on
time-related expressions (e.g., ”at the beginning of the video” suggests a smaller clip
number, while ”at the end of the video” suggests a larger one).

• First, determine if one clip can answer the question or if multiple clips are needed. Then,
return a list containing the selected clip(s) and an explanation.

• If the question asks about the existence/movement of an object or event. The object/ac-
tion/movement may not exist, meaning you can’t find the answer in the description, but
the question might still provide some clues. You need to find the sentence closest to
those clues.

• If asked about the whole video description or overall atmosphere, you should return all
clip numbers.

• If multiple clips provide similar descriptions of the content and any of them can be used
to answer the question, return all corresponding clips.

• If there are no clues in all descriptions and cannot answer the question, return ”None.”.

• Important: Avoid including unnecessary clips.

Output Format:
1. Your output should be formed in a JSON file.
2. Only return the Python dictionary string.
For example:
{"explanation": "...", "clip num": "One clip: [Clip-2]"}
{"explanation": "...", "clip num": "Multiple clips:
[Clip-1, Clip-7, Clip-8]"}
{"explanation": "...", "clip num": "None."}

C.2 HUMAN-IN-THE-LOOP VERIFICATION

Ensuring the quality of automatically annotated datasets is critical for the reliability and effectiveness
of downstream video understanding models. In this work, we implement a comprehensive quality
control protocol for the VideoITG-40K dataset.

Our pipeline begins with diverse sampling: we select a representative subset of the dataset, covering
a wide range of instructions and video scenarios. For this subset, we conduct human verification,
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Table 9: Prompt template for identifying motion-related questions in video QA tasks. The template
instructs the system to analyze each question-answer pair and determine whether the question pertains
to absolute or relative speed, responding with “Yes” or “No” accordingly. Example cases are provided
for clarification.

Task:
Analyze the given QA pair to determine if the question is related to speed. Specifically, check
if it involves either absolute speed (the speed of a specific object) or relative speed (comparing
the speed of different objects). Provide an output of ”Yes” if the question pertains to speed,
and ”No” otherwise.
Important: Respond with ”Yes” or ”No” only.

Example:
Question 1: Which is faster, the white car or the bicycle? Options: A. The bicycle. B. The
white car. C. Both are at the same speed. D. None of the above.
Answer 1: B. The white car.
Output: Yes.
Question 2: What color is the cat ?Options: A. black B. white C. orange D. gray
Answer 2: C. orange
Output: No.

Table 10: Prompt template for identifying semantic-related questions in video QA tasks. The template
instructs the system to analyze each question-answer pair and determine whether the question pertains
to absolute or relative speed, responding with “Yes” or “No” accordingly. Example cases are provided
for clarification.

Task:
Analyze the given QA pair to determine if the question inquires about the existence of an
object or action. If it does, and the answer is ”No” (indicating non-existence), output ”Yes.”
If the question is not about existence, or the answer is ”Yes” (indicating existence), output
”No.”
Important: Respond with ”Yes” or ”No” only.

Example:
Question 1: After going through the bag, does the person meticulously clean the area around
the sink?
Answer 1: No, the person does not clean the area around the sink after going through the
bag. The video primarily focuses on the action of the person with the bag and items, not on
cleaning activities.
Output: Yes.
Question 2: Is there a cat sitting on the windowsill in the video?
Answer 2: Yes, there is a cat sitting on the windowsill throughout the video.
Output: No.

where expert annotators review the automatically generated annotations to assess their accuracy and
relevance. This process allows us to identify and correct potential errors, and to further calibrate our
annotation pipeline for improved consistency and quality.

As shown in Table 7, we compare our pipeline with baselines where advanced models such as
Qwen2.5VL and GPT-4o are directly prompted to answer the temporal boundaries of relevant events.
These direct approaches result in significantly lower performance, highlighting the advantage of our
multi-step, instruction-guided annotation strategy.
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C.3 FRAME SAMPLING ALGORITHM

The algorithm in 1 is designed for semantic-only keyframe selection, aiming to extract a diverse set
of frames that comprehensively capture the semantic content of a video—such as people, scenes,
or objects. By leveraging CLIP features, the algorithm compares each frame to previously selected
keyframes using a bidirectional similarity measure. Frames are selected when their semantic features
differ significantly from both the last keyframe (scene change threshold) and from future frames
(diversity threshold), ensuring that each chosen frame represents distinct semantic information. This
process produces a set of keyframes with maximal semantic coverage and minimal redundancy,
aligning with the goal of representing all major semantic aspects of the video.

D VISUALIZATION

In Fig. 5 and Fig. 6, we present two sets of results comparing sampling results of VideoITG with
uniform sampling. Fig. 5 demonstrates a temporal reasoning problem, where our model accurately
identifies the “workout” mentioned in the question and successfully locates the subsequent actions in
the video, leading to the correct answer selection. In contrast, the uniform sampling strategy failed to
capture these crucial frames. Fig. 6 illustrates a non-existence question scenario where our model
effectively identifies all IMAX movies present in the given options, enabling it to successfully filter
out and determine the correct answer.
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Input
video

O: Work out; Daily life; Science popularization; Game

A: Science popularization.

Uni

A : Game. 

Ours

Q: What is the theme of the video that the male protagonist made after finishing 
his workout?

Figure 5: Example-1 shows how different sampling strategies impact video understanding. We mark
the identified key frames that directly answer the question with green check-marks.

Input
video

O: The Hunger Games: Catching Fire; The Dark Knight; Oppenheimer; Dune

 A: The Dark Knight. 

Uni

A : Dune. 

Ours

Q: Which IMAX movie isn't in the video?

Figure 6: Example-2 shows how different sampling strategies impact video understanding. We mark
the identified key frames that directly answer the question with green check-marks.
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