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Abstract

Modeling and understanding spatiotemporal graphs have been a long-standing
research topic in network science and typically replies on network processing
hypothesized by human knowledge. In this paper, we aim at pushing forward the
modeling and understanding of spatiotemporal graphs via new disentangled deep
generative models. Specifically, a new Bayesian model is proposed that factorizes
spatiotemporal graphs into spatial, temporal, and graph factors as well as the
factors that explain the interplay among them. A variational objective function and
new mutual information thresholding algorithms driven by information bottleneck
theory have been proposed to maximize the disentanglement among the factors with
theoretical guarantees. Qualitative and quantitative experiments on both synthetic
and real-world datasets demonstrate the superiority of the proposed model over the
state-of-the-art by up to 69.2% for graph generation and 41.5% for interpretability.

1 Introduction

Spatiotemporal graph represents a vital data structure where the nodes and edges are embedded and
evolve in a geometric space. Nowadays, spatiotemporal graph data is becoming increasingly popular
and important, ranging from epidemic, transportation to biological network modeling [8, 16, 25, 26].
For example, the epidemic spreading network and the protein folding process can both be represented
as spatiotemporal graphs, respectively. Spatiotemporal graphs cannot be modeled using either the
spatial, graph, or temporal information individually, but require the simultaneous characterization
of both the data and their interactions, which results in various patterns [1]. Spatial and graph
aspects of information are usually correlated. For example, geographically nearby people tend to
befriend in a social network. Moreover, the above interplay between spatial and graph aspects is a
dynamic process, thus, the consideration in time aspect is inevitable for a comprehensive modeling.
Recently, although spatiotemporal graph deep learning has stimulated a surge of research for graph
representation learning [5, 28, 31], however, deep generative models for spatiotemporal graphs have
not been well explored.

Modeling and understanding the generative process of spatiotemporal graphs are a long-lasting
research topic in domains such as graph theory and network science. Traditional methods usually
extend and integrate network models in spatial networks (e.g., protein and molecule structures)

NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications



Figure 1: Graphical illustration of the proposed models.

and temporal graphs (e.g., traffic networks and epidemic spreading networks) into spatiotemporal
graphs which captures some predefined properties of a graph, e.g., degree distribution, structure of
community, clustering patterns. However, these models heavily rely on the predefined network process
and rich knowledge of the graph properties, while the network properties and generation principles
always remain unknown in the real-world applications, such as models that explain the mechanisms
of mental diseases in brain networks during an activity of human beings and protein structure
folding. Another line of research works is computational simulation models of spatiotemporal graphs
customized for specific applications such as epidemics, brain simulator, and transportation simulation
[8, 25, 26, 11, 6, 9, 23]. However, they are domain-specific with enormously detailed prior knowledge
involved. This motivates us to propose the spatiotemporal graph models which can automatically
learning the underlying spatial, temporal, and graph processes as well as their interplay.

In this paper, we propose, to the best of our knowledge, the first general deep generative model
framework that models and disentangles spatiotemporal graph data. Specifically, we first propose
a novel deep Bayesian network that factorizes spatiotemporal graphs into the time-variant, time-
invariant, spatial-graph joint, and independent factors. A new objective driven by information-
bottleneck theory has been proposed that can maximize the disentanglement of different factors as
well as latent variables inside each factor, with theoretical guarantees. To optimize this objective
function, a novel information-iterative-thresholding algorithm has been proposed to jointly optimize
the objective and optimize its hyperparameters on information bottlenecks with theoretical analysis
on optimal conditions. Extensive quantitative and qualitative experiments on two synthetic and
two real-world datasets show the superiority of our proposed model over the state-of-the-art graph
generative models by up to 69.2% for spatiotemporal graph generation and 41.5% for interpretability.

2 Methodology

2.1 Problem Formulation

A spatiotemporal graph is defined as (S1∶T , G1∶T ), where T represents number of time frames of the
spatiotemporal graphs, and S1∶T = {S1, S2, ...ST }, G1∶T = {G1, ...GT }. St = (Vt, Ct) represents
the geometric information of t-th snapshot of a spatiotemporal graph, where Vt denotes a set of N
nodes and Ct ∈ RN×3 denotes 3D geometric information. Gt = (Vt, Et, Xt, Et) represents the graph
information of t-th snapshot, where Et ⊆ Vt × Vt is the set of edges. Et ∈ RN×N×K refers to the
edge weights or adjacent matrix, and K refers to the edge feature dimension. Xt ∈ RN×M denotes
the node feature and M is the length of the node feature vector.

This paper aims at proposing a general data-driven framework for modeling spatiotemporal graphs,
under fundamental, necessary factors. First, for any spatiotemporal graphs, there could be patterns
that are time-variant and time-invariant. While time-invariant, spatial and graph information could
either be correlated or independent, hence it is important to distinguish and capture these different
semantic factors via different latent variables. More concretely, the goal is to learn a posterior
p(S1∶T , G1∶T ∣Z,F ) of the spatiotemporal graphs given four groups of generative latent variables
Z = z1∶T ∈ RL1 for time-variant features and F = (fs ∈ RL2 , fg ∈ RL3 , fsg ∈ RL4) for time-
invariant features, where we need to capture and disentangle time-variant factors z1∶T , time-invariant
geometric factors fs, graph factors fg and spatial-graph joint factors fsg . L1, L2, L3, and L4 are the
number of variables in each group of factors, respectively. The encoding and generative process of
our proposed SpatioTemporal Graph Disentangled Variational Auto-Encoder (STGD-VAE) model is
illustrated in Fig. 1(a) and Fig. 1(b). Another implementation of the proposed model following the
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common time-dependency assumption, namely, STGD-VAE-Dep is illustrated in Fig. 1(c) and Fig.
1(d), and detailed in the appendix.

2.2 The Objective on Spatiotemporal Graph Generative Modeling

To learn the conditional probability p(S1∶T , G1∶T ∣z1∶T , F ), it is equal to maximizing the marginal
likelihood of the observed spatiotemporal graph sequence (S1∶T , G1∶T ) in expectation over the dis-
tribution of the latent representation as Epθ(z1∶T ,F )pθ(S1∶T , G1∶T ∣z1∶T , F ). The prior distribution
of the latent spaces is described as p(z1∶T , F ) with the observation of a spatiotemporal graph se-
quence (S1∶T , G1∶T ), which, however, is intractable. Therefore, a variational objective is proposed
to tackle this problem, where the posterior distribution is approximated by another distribution
qφ(z1∶T , F ∣S1∶T , G1∶T ). The objective can be written as minimizing the Kullback-Leibler Diver-
gence (KLD) between the true prior distribution and the approximate posterior distribution. In order to
encourage this disentanglement property of qφ(z1∶T , F ∣S1∶T , G1∶T ), we introduce a constraint by try-
ing to match the inferred posterior configurations of the latent factors to the prior p(z1∶T , fs, fg, fsg).
This can be achieved if we set each prior to be an isotropic unit Gaussian, i.e., N (0, 1), leading to a
constrained optimization problem as:

max
θ,φ

ES1∶T ,G1∶T∼DEqφ(z1∶T ,F ∣S1∶T ,G1∶T )

∑T

t=1
[log pθ(Gt∣zt, fg, fsg) + log pθ(St∣zt, fs, fsg)]

s.t. ∑T

t=1
DKL(qφ(zt∣St, Gt)∣∣p(zt)) < It

DKL(qφ(fg∣G1∶T )∣∣p(fg)) < Ig
DKL(qφ(fs∣S1∶T )∣∣p(fs)) < Is
DKL(qφ(fsg∣S1∶T , G1∶T )∣∣p(fsg)) < Isg
Isg ≤ Csg, It ≤ Ct. (1)

The detailed objective and proposed mutual information thresholding algorithm can be found in the
appendix.

3 Experiments

3.1 Experiment Set-up

We validate the effectiveness of our proposed models on two synthetic datasets and two real-world
datasets [7], (1) Dynamic Waxman Random Graphs, (2) Dynamic Random Geometry Graphs, (3)
Protein Folding Dataset, and (4) Traffic Dataset MERT-LA. Despite no previous deep generative
models specifically designed for spatiotemporal graph generation, we compare with some general
graph generation models, including GraphRNN [30], GraphVAE [20], and a traditional algorithm
DSBM [29]. In terms of disentanglement evaluation, we also apply and compare with beta-VAE [15],
beta-TC-VAE [4], and NED-IPVAE [13] to our proposed method.

3.2 Results

Quantitative Evaluation. We quantitatively evaluate the performance of our proposed model in two
synthetic datasets and two real-world datasets by three types of evaluations, as shown in Table 1. We
first evaluate the reconstruction via calculating the difference (e.g. mean sqaured errors) between the
real graphs and the reconstructed graphs. Then, we evaluate the learnt graph property (i.e. (1) graph
density, (2) average clustering coefficient, (3) betweenness centrality, and (4) temporal correlation)
distribution comparing to the training one via Kullback-Leibler Divergence (KLD). Finally, we
calculate the avgMI score [21] which evaluates the disentanglement of the learnt latent space. We
make several observations from the table. Firstly, STGD-VAE achieves the best overall results
in the two synthetic datasets, both in reconstruction, distribution and disentanglement evaluation.
Secondly, both STGD-VAE and STGD-VAE-Dep perform well in the two real-world datasets. Lastly,
the proposed disentanglement of spatiotemporal graph factors greatly improve the disentanglement
quality of the latent space.
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Table 1: The evaluation results for the generated spatiotemporal graphs for different datasets (KLD_cls
refers to KLD of graph clustering coefficient. KLD_ds refers to KLD of graph density, KLD_bet
refers to KLD of betweenness centrality, and KLD_tcorr refers to KLD of temporal correlation.

Dataset Method Node Spatial Edge KLD_cls KLD_ds KLD_bet KLD_tcorr AvgMI

DWR Graph

DSBM N/A N/A 54.95% 0.90 1.10 0.63 0.73 N/A
GraphVAE 0.57 0.57 57.14% 1.63 1.82 0.91 0.85 N/A
GraphRNN N/A N/A 55.24% 1.97 2.50 1.00 1.35 N/A
beta-VAE 0.0012 0.0011 69.05% 0.43 1.61 1.82 0.36 2.25

beta-TCVAE 0.0013 0.0012 69.04% 0.47 1.37 1.56 0.08 2.33
NEND-IPVAE 0.016 0.0008 65.80% 1.39 1.82 2.78 0.11 2.52

STGD-VAE 0.0003 0.0001 69.99% 0.14 0.74 0.40 0.03 2.03
STGD-VAE-Dep 0.0191 0.0005 66.28% 0.45 0.55 0.54 0.38 2.04

DRG Graph

DSBM N/A N/A 81.88% 1.77 2.87 3.38 0.64 N/A
GraphVAE 0.56 0.74 85.75% 4.46 2.65 1.60 3.08 N/A
GraphRNN N/A N/A 85.32% 0.57 1.24 2.40 0.85 N/A
beta-VAE 0.0013 0.0017 91.75% 0.34 1.24 1.47 2.15 2.29

beta-TCVAE 0.0018 0.0019 91.62% 0.52 1.58 1.46 2.38 2.24
NED-IPVAE 0.0175 0.0018 89.84% 0.37 1.05 1.72 0.23 2.42
STGD-VAE 0.0004 0.0015 91.88% 0.14 0.72 0.28 0.11 2.07

STGD-VAE-Dep 0.0008 0.0017 91.28% 0.14 0.71 0.26 1.67 2.08

Protein

DSBM N/A N/A 70.78% 1.00 0.93 1.15 1.53 N/A
GraphVAE N/A 553.82 62.54% 1.26 1.44 1.48 1.90 N/A
GraphRNN N/A N/A 71.17% 1.05 1.15 1.43 0.83 N/A
beta-VAE N/A 52.74 85.58% 0.16 0.14 0.46 0.61 1.04

beta-TCVAE N/A 35.05 95.80% 0.27 0.58 0.34 0.71 1.09
NED-IPVAE N/A 36.12 92.48% 1.08 0.79 0.44 2.64 1.15
STGD-VAE N/A 28.77 99.79% 0.33 0.21 0.53 0.23 0.70

STGD-VAE-Dep N/A 28.42 96.79% 0.13 0.54 1.55 0.24 0.76

Traffic

DSBM N/A N/A N/A N/A N/A N/A N/A N/A
GraphVAE N/A N/A N/A N/A N/A N/A N/A N/A
GraphRNN N/A N/A N/A N/A N/A N/A N/A N/A
beta-VAE 7.15 N/A N/A N/A N/A N/A N/A 1.37

beta-TCVAE 8.50 N/A N/A N/A N/A N/A N/A 1.18
NED-IPVAE 31.95 N/A N/A N/A N/A N/A N/A 1.18
STGD-VAE 6.78 N/A N/A N/A N/A N/A N/A 0.69

STGD-VAE-Dep 5.13 N/A N/A N/A N/A N/A N/A 1.06

time

0

20

folding

zs zs

(a) Protein folding (b) Traffic Modeling

(c) DWR Graph (d) DRG Graph

Figure 2: Qualitative evaluation on two synthetic datasets and two real-world datasets.

Qualitative Evaluation. As in the conventional qualitative evaluation in disentanglement represen-
tation learning [4, 15], we change the value of one latent variable continuously while fixing the
remaining variables to see the variation of the semantic factor it controls. In Fig. 2(a) and 2(b),
we visualize the folding process of the protein structures and the traffic modeling process. We can
observe that the residues on the right side are slightly folding up and moving towards left. For the
traffic dataset, it is worth noting that the traffic speed is constantly changing in different time steps
which reflects the real-time traffic situations. In Fig. 2(c) and 2(d), we also visualize the changes
of the generated graphs when the latent factor zs of our STGD-VAE model change from −5 to 5 in
the dynamic Waxman random graph and the dynamic random geometry graph dataset, respectively.
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Clearly, the spatial location is changed accordingly, from the left-bottom corner to nearly the right-top
corner, which shows that the latent variables learn and expose the semantic factors well.

4 Conclusion

In this paper, we introduce STGD-VAE and STGD-VAE-Dep, to the best of our knowledge, the first
general deep generative model framework for spatiotemporal graphs. Specifically, we propose a new
Bayesian model that factorizes spatiotemporal graphs into spatial, temporal, and graph factors as well
as the factors that model the interactions among them. Moreover, a variational objective function and
a new mutual information thresholding algorithm based on information bottleneck are proposed to
maximize the disentanglement among the factors with theoretical guarantees. The comparison with
several deep generative models validates the superiority of our proposed models from multiple tasks,
including graph generation and disentangled representation learning. In the future, we plan to extend
this framework to more types of sptiotemporal graphs.

References
[1] M. Barthélemy. Spatial networks. Physics Reports, 499(1-3):1–101, 2011.
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A Spatiotemporal Graph Generative Modeling Objective

To learn the conditional probability p(S1∶T , G1∶T ∣z1∶T , F ), it is equal to maximizing the marginal
likelihood of the observed spatiotemporal graph sequence (S1∶T , G1∶T ) in expectation over the dis-
tribution of the latent representation as Epθ(z1∶T ,F )pθ(S1∶T , G1∶T ∣z1∶T , F ). The prior distribution
of the latent spaces is described as p(z1∶T , F ) with the observation of a spatiotemporal graph se-
quence (S1∶T , G1∶T ), which, however, is intractable. Therefore, a variational objective is proposed
to tackle this problem, where the posterior distribution is approximated by another distribution
qφ(z1∶T , F ∣S1∶T , G1∶T ). The objective can be written as minimizing the Kullback-Leibler Diver-
gence (KLD) between the true prior distribution and the approximate posterior distribution. In order to
encourage this disentanglement property of qφ(z1∶T , F ∣S1∶T , G1∶T ), we introduce a constraint by try-
ing to match the inferred posterior configurations of the latent factors to the prior p(z1∶T , fs, fg, fsg).
This can be achieved if we set each prior to be an isotropic unit Gaussian, i.e., N (0, 1), leading to a
constrained optimization problem as:

max
θ,φ

ES1∶T ,G1∶T∼D[Eqφ(z1∶T ,F ∣S1∶T ,G1∶T )

log pθ(S1∶T , G1∶T ∣z1∶T , F )]
s.t.DKL(qφ(z1∶T , F ∣S1∶T , G1∶T )∣∣p(z1∶T , F )) < I (2)

where D refers to the observed dataset of the spatiotemporal graphs and I specifies the information
that flows via the latent representation.

The above objective can be further decomposed for simple estimation and implementation of each
component based on different pre-defined dependence and independence assumptions in the problem
formulation, as stated in Lemma A.1.

Lemma A.1. Given the assumption that: (1) S1∶T ⊥ G1T ∣(z1∶t, F ); (2) S1∶T ⊥ fg and G1∶T ⊥ fs;
(3) Gi ⊥ Gj∣(zi, zj , fg, fsg) and Si ⊥ Sj∣(zt, zk, fs, fsg); (4) z1∶T ⊥ (fs, fg, fsg), and z1 ⊥
z2⋯ ⊥ zT , the objective of spatiotemoral graph generation can be expressed as

max
θ,φ

ES1∶T ,G1∶T∼DEqφ(z1∶t,F ∣G1∶T ,S1∶T )

∑T

t=1
[log pθ(Gt∣zt, fg, fsg) + log pθ(St∣zt, fs, fsg)]

s.t. ∑T

t=1
DKL(qφ(zt∣Gt, St)∣∣p(zt)) < It

DKL(qφ(fg∣G1∶T )∣∣p(fg)) < Ig
DKL(qφ(fs∣S1∶T )∣∣p(fs)) < Is
DKL(qφ(fsg∣S1∶T , G1∶T )∣∣p(fsg)) < Isg (3)

Proof. In Lemma A.1, I is decomposed into four mutual-exclusive information capacity, Is, Ig , Isg ,
and It in Eq. 3.

A.1 Maximizing the Disentanglement among Spatial, Temporal and Graph Factors

One of our goals is to maximize the disentanglement of spatial, temporal, and graph factors. So for
example if a factor is merely related to spatial information, we do not want it to be explained by the
spatial-graph joint factor fsg. Analogously, if a factor is invariant to time, we do not want it to be
explained by the time-variant factor zt. However, this cannot be guaranteed by Equation 3, whose
constraints can only enforce variable-level disentanglement within each type of factor instead of a
maximized disentanglement across spatial, temporal, and graph factors.

To address the above issue, we first re-interpret the constraints by information bottle-
neck theory [3]. The posterior distribution qφ(zt∣St, Gt), qφ(fg∣G1∶T ),qφ(fs∣S1∶T ), and
qφ(fsg∣G1∶T , S1∶T ) are interpreted as information bottleneck for the reconstruction task
Eqφ(Z∣G1∶T ,S1∶T )logpθ(S1∶T ∣z1∶T , fs, fsg) and Eqφ(Z∣G1∶T ,S1∶T ) log pθ(G1∶T ∣z1∶T , fg, fsg). We pro-
pose that, by constraining the information flowing through each time-variant variable zt to be less
than the information entropy of time-variant information Ct, namely It ≤ Ct, zt will capture and
only capture the time-variant information. We also propose that, by constraining the information
flowing through the spatial-graph joint variable fsg to be less than the information entropy of the
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time-invariant correlated spatial-graph factor Csg, namely Isg ≤ Csg, fsg will only capture the
time-invariant spatial-graph correlated factor. The new objective function is as follows:

max
θ,φ

ES1∶T ,G1∶T∼DEqφ(z1∶T ,F ∣S1∶T ,G1∶T )

∑T

t=1
[log pθ(Gt∣zt, fg, fsg) + log pθ(St∣zt, fs, fsg)]

s.t. ∑T

t=1
DKL(qφ(zt∣St, Gt)∣∣p(zt)) < It

DKL(qφ(fg∣G1∶T )∣∣p(fg)) < Ig
DKL(qφ(fs∣S1∶T )∣∣p(fs)) < Is
DKL(qφ(fsg∣S1∶T , G1∶T )∣∣p(fsg)) < Isg
Isg ≤ Csg, It ≤ Ct. (4)

This objective has the properties stated in Theorem A.2.
Theorem A.2. The objective in Equation 4 guarantees that zt captures and only captures the
time-variant information while fsg captures and only captures the spatial-graph joint information.

Proof. The above theorem is proved based on the condition that (1) the sum of Is, Ig, and Isg are
large enough to contain the time-variant information, and Is, Ig are large enough to contain the
time-invariant spatial-exclusive and graph-exclusive information, (2) It ≤ Ct, and Isg ≤ Csg .

A.2 Spatiotemporal Graph Mutual Information Thresholding Algorithm

Eq. 4 is a challenging constrained nonconvex problem that also requires learning its hyperparameters
of information bottleneck threshold Isg and It. This section proposes a novel algorithm along with
its optimal condition analysis with respect to the information bottleneck threshold.

Given Is and Ig are constants, the second and third constrain can be rewritten based on the Lagrangian
algorithm under KKT condition [22] as:

R1 = β2(DKL(qφ(fs∣S1∶T )∣∣p(fs)))
+ β3(DKL(qφ(fg∣G1∶T )∣∣p(fg))) (5)

where the Lagrangian multipliers β2 and β3 are the regularization coefficients that control the capacity
of the latent space information fs and fg , respectively.

Next, since It and Isg in the first constraint is a trainable parameter which ensures It ≤ Ct and
Isg ≤ Csg , it can be written as a Lagrangian under the KKT condition as

R2 = β1(∏
T

t=1
DKL(qφ(zt∣Gt, St)∣∣p(zt)) − It) (6)

R3 = β4(DKL(qφ(fsg∣S1∶T , G1∶T )∣∣p(fsg)) − Isg) (7)
Finally, we can optimize the overall objective as:

max
θ,φ

ES1∶T ,G1∶T∼DEqφ(z1∶T ,F ∣S1∶T ,G1∶T )

∑T

t=1
[log pθ(Gt∣zt, fg, fsg) + log pθ(St∣zt, fst , fsg)]

−R1 −R2 −R3

s.t. Isg ≤ Csg, It ≤ Ct (8)

It is very hard to directly optimize the above objective since Ct and Csg are unknown. To circumvent
the challenge, we propose a novel thresholding strategy consisting of three stages: the first stage is
to optimize Isg, the second stage is to optimize It, and the final stage to optimize the whole model
parameters, as detailed in Algorithm 1. In short, we increase Isg by α in every K until a stopping
criteria is satisfied while keeping It at a very low value (Lines 1-6 in Algorithm 1). Then, we stop
increasing Isg and increase It by γ every J epoch until a stopping criterion is satisfied (Lines 8-14 in
Algorithm 1).

The proposed optimization strategy guarantees that zt captures and only captures the time-variant
information while fsg captures and only captures the spatial-graph joint information based on the
following theorem.
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Algorithm 1 Information-iterative-thresholding algorithm
Input: The initialized parameter set W; the initialized It = ε and Isg = ε (It ∉ W Isg ∉ W and

ε is a very small number, e.g. 1 × 10
−5); the increase step γ, α for optimizing It and Isg; the

number of epochs J,K of optimization for each updated It and Isg .
Output: The optimized parameter set W .
1: while R3 < 0 do {stopping criterion for Isg}
2: Isg ∶= Isg + α
3: for epoch = 1 ∶ K do {increase Isg every K epoch}
4: Compute the gradient of W via backpropagation.
5: Update W based on gradient with Isg and It fixed.
6: end for
7: end while
8: while R2 < 0 do {stopping criterion for It}
9: It ∶= It + γ

10: for epoch = 1 ∶ J do {increase It every J epoch}
11: Compute the gradient of W via backpropagation.
12: Update W based on gradient with It, Is, Ig and Isg fixed.
13: end for
14: end while

Theorem A.3. The latent variable zt captures and only captures the time-variant information if
R2 < 0 is satisfied. The latent variable fsg captures and only captures the time-invariant spatial-
graph correlated information if R3 < 0 is satisfied.

Proof. Notably, at initial stage, R3 = 0 and R2 = 0, we then gradually increase It and Isg , and at each
step while well-trained, ∏T

t=1DKL(qφ(zt∣Gt, St)∣∣p(zt)) and DKL(qφ(fsg∣G1∶T , S1∶T )∣∣p(fsg))
will keep increasing to catch It and Isg . When R3 < 0 and R2 < 0, it indicates that the information
that captured by It and Isg do not increase anymore, namely It = Ct and Isg = Csg. Thus, the
whole optimization process can be stopped. During the whole process, the two constraint It ≤ Ct
and Isg ≤ Csg are always satisfied, namely, zt always captures and only captures the time-variant
information and fsg always captures and only captures the time-invariant spatial-graph correlated
information. In practice, we set β1, β2, β3, and β4 as 1 and the model is not sensitive to these
parameters.

Our model consists of four encoders which model qφ(fs∣S1∶T , G1∶T ), qφ(fg∣S1∶T , G1∶T ),
qφ(fsg∣S1∶T , G1∶T ), and qφ(zt∣S1∶T , G1∶T ) respectively. There are also two decoders to model
pθ(Gt∣zt, fg, fsg) and pθ(St∣zt, fg, fsg), respectively. Specifically, we utilize a typical graph con-
volution neural network to encode the graph factors and a typical convolution neural network for
the spatial factors. For the spatial-graph correlated factors, we utilize a Spatial-Network Message
Passing Neural Network (S-MPNN) [10], which considers both the spatial and graph information
while passing messages. In terms of the temporal factors, we consider that could involve both spatial
and graph variance, thus, we take another S-MPNN for the temporal factors. For decoders, we utilize
a typical convolution neural network for the spatial factors, and a similar graph decoder proposed in
NED-VAE [12] for the graph factors.

B Proof of Theorem 1

Proof. To assist the proof, we introduce four groups of semantic factors. We assume the time-
variant information is simulated via one type of semantic factor as l1∶T , time-invariant spatial-related
information is simulated via two types of semantic factors as s+, s−, and time-invariant graph-
related information is simulated via two parts of semantic factors as g+, g− , which follows the
convention in the disentangled representation learning domain [4, 15, 18]. The simulation becomes
S = Sim(s+, s−, l1∶T ) and G = Sim(g+, g−, l1∶T ). Here s+ ⊥ s

−, g+ ⊥ g
−, s+ ⊥ g

+, s− é g
−,

l1∶T ⊥ g
+, l1∶T ⊥ g

−, l1∶T ⊥ s
+, and l1∶T ⊥ s

−. That is, s+ and g+ refers to the time-invariant
semantic factors of spatial and graph information, respectively. s− and g− refers to the time-invariant
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correlated semantic factors of spatial and graph information. l1∶T refers to the time-variant factors of
all time-variant information.

First, the objective can be rewritten based on the information bottleneck theory as:

max
θ,φ

I(z1∶T , fs, fsg;S1∶T ) + I(z1∶T , fg, fsg;G1∶T ) (9)

s.t. I(z1∶T ;S1∶T , G1∶T ) ≤ Ct, (10)
I(fs;S1∶T ) ≤ Is, (11)
I(fg;G1∶T ) ≤ Ig, (12)
I(fsg;S1∶T ) + I(fsg;G1∶T ) ≤ Csg (13)

Due to the independence among different latent variables, the objective can be further rewritten to
extend the time-invariant parts:

max
θ,φ

I(z1∶T ;S1∶T ) + I(z1∶T ;G1∶T ) + I(fs, fsg;S1∶T ) + I(fg, fsg;G1∶T ) (14)

It is further extended as:

max
θ,φ

I(z1∶T ; s+) + I(z1∶T ; s−) + 2 ∗ I(z1∶T ; l1∶T ) + I(z1∶T ; g+) + I(z1∶T ; g−) + I(fs, fsg; s+, s−)

+ I(fs, fsg; l1∶T ) + I(fg, fsg; g+, g−) + I(fg, fsg; l1∶T ) (15)

Since I(fs, fsg; l1∶T ) = 0, and I(fg, fsg; l1∶T ) = 0, the time-variant information can not be expressed
by the time-invariant latent variables, which are copied for all time frames. Thus, we rewrite the
objective and cancel the factor as:

max
θ,φ

(z1∶T ; s+) + I(z1∶T ; s−) + 2 ∗ I(z1∶T ; l1∶T ) + I(z1∶T ; g+) + I(z1∶T ; g−) + I(fs, fsg; s+, s−)

+ I(fg, fsg; g+, g−)
≤ I(z1∶T ; s+) + I(z1∶T ; s−) + I(z1∶T ; l1∶T ) + I(z1∶T ; g+) + I(z1∶T ; g−) + I(fs, fsg; s+, s−)

+ I(fg, fsg; g+, g−)
(16)

We rewrite constraints in Eq. 9 to 17, 18 and 19 as:

I(z1∶T ; s+) + I(z1∶T ; s−) + I(fs, fsg; s+, s−) ≤ H(s+, s−) (17)

I(z1∶T ; g+) + I(z1∶T ; g−) + I(fg, fsg; g+, g−) ≤ H(g+, g−) (18)

I(z1∶T , s+) + I(z1∶T , s−) + I(z1∶T , g+) + I(z1∶T , g−) + I(z1∶T , l1∶T ) ≤ Ct (19)

We add Eq. 17, 18 and 19 together and have:

max
θ,φ

2 ∗ I(z1∶T , s+) + 2 ∗ I(z1∶T , s−) + 2 ∗ I(z1∶T , g+) + 2 ∗ I(z1∶T , g−) + I(z1∶T , l1∶T )

+ I(fg, fsg; g+, g−) + I(fs, fsg; s+, s−) ≤ H(g+, g−) +H(s+, s−) + Ct (20)

Referring to Eq. 16, we have:

max
θ,φ

I(z1∶T , s+) + I(z1∶T , s−) + I(z1∶T , g+) + I(z1∶T , g−) + I(z1∶T , l1∶T ) + I(fg, fsg; g+, g−)

+ I(fs, fsg; s+, s−) ≤ H(g+, g−) +H(s+, s−) + Ct (21)
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Since H(g+, g−) + H(s+, s−) + Ct > 0, I(z1∶T , g+) ≥ 0, I(z1∶T , g+) ≥ 0, I(z1∶T , s+) ≥ 0,
I(z1∶T , s−) ≥ 0, and we ignore the time-invariant part, I(fg, fsg; g+, g−) + I(fs, fsg; s+, s−) for
now, only when I(z1∶T , g+)+ I(z1∶T , g+)+ I(z1∶T , s+)+ I(z1∶T , s−) = 0, the left-hand side of the
Inequality Eq. 21 reaches the maximum for time-variant variables. Thus, the maximum is achieved
only when the time-variant variables z1∶T have no correlation with any of the time-invariant variables.
Next, we deal with the time-invariant part, the objective function becomes:

max
θ,φ

I(fg, fsg; g+, g−) + I(fs, fsg; s+, s−) + I(z1∶T , l1∶T ) (22)

Now, we extend the time-invariant spatial, graph and joint variables as:

max
θ,φ

I(fg, fsg; g+, g−) = I(fg, g+) + I(fg, g−) + I(fsg, g+) + I(fsg, g−) (23)

I(fs, fsg; s+, s−) = I(fs, s+) + I(fs, s−) + I(fsg, s+) + I(fsg, s−)

Since fs ⊥ z1∶T and s− é g
−, we have I(fs, s−) = 0 and I(fg, g−) = 0, the object can be rewritten

as:

max
θ,φ

I(fg, g+) + I(fsg, g+) + I(fsg, g−) + I(fs, s+) + I(fsg, s+) + I(fsg, s−) + I(z1∶T , l1∶T )
(24)

Since fs ⊥ fsg and fg ⊥ fsg , there is no mutual information between information in s+ captured by
fs and information in s+ captured by fsg , the Eq. 9, 10 become:

I(fs; s+) + I(fsg, s+) ≤ I(s+; s+) = H(s+)
I(fg; g+) + I(fsg, g+) ≤ I(g+; g+) = H(g+) (25)

The constraint in Eq. 13 is equivalent to Eq. 26:

I(fsg; s+) + I(fsg, s−) + I(fsg; g+) + I(fsg, g−) ≤ Csg (26)

By adding Eq. 25 and Eq. 26, we have:

I(fs; s+) + 2 ∗ I(fsg, s+) + I(fsg; s−) + I(fg, g+)+2 ∗ I(fsg, g+) + I(fsg, g−)
≤ H(s+) +H(g+) + Csg (27)

To rewrite it by canceling the factors, we get:

I(fs; s+) + I(fsg; s+) + I(fg, g+) + I(fg, g−)+I(fsg, s+) + I(fsg, g+)
≤ H(s+) +H(g+) + Csg (28)

Since I(zsg; s+) ≥ 0 and I(zsgg ; g
+) ≥ 0, andH(s+),H(g+) are constants, only when I(zsg; s+) =

0 and I(zsg; g+) = 0, the Inequality Eq. 28 reaches the maximum. Therefore, only when zsg only
captures information from spatial-graph joint semantic factors s+ and g+, the optimum of the objective
is reached.

Overall, only when the time-variant variables z1∶T have no correlation with any of the time-invariant
variables and zsg only captures information from time-invariant spatial-graph joint semantic factors
s
+ and g+, the optimum of the objective is reached.
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C Proof of Theorem 2

Proof. First, at the initial stage, R3 = 0 and R2 = 0, we then gradually increase
It and Isg, and at each step while well-trained, ∏T

t=1DKL(qφ(zt∣Gt, St)∣∣p(zt)) and
DKL(qφ(fsg∣G1∶T , S1∶T )∣∣p(fsg)) will keep increasing to catch It and Isg .

Next, when R3 < 0 and R2 < 0, namely the information that captured by It and Isg do not increase
anymore, we can conclude that It = Ct and Isg = Csg (proved as follows). Thus, the whole
optimization process can be stopped. During the whole process, the two constraint It ≤ Ct and Isg ≤
Csg are always satisfied, namely, the zt always captures and only captures time-variant information
and fsg always captures and only captures time-invariant spatial-graph correlated information.

Here we prove that when the information that captured by It and Isg do not increase anymore, it
indicates that It = Ct and Isg = Csg and we have achieved the optimal objective. To assist the proof,
we introduce four groups of semantic factors. We assume the time-variant information is simulated
via one type of semantic factor as l1∶T , time-invariant spatial-related information is simulated via
two types of semantic factors as s+, s−, and time-invariant graph-related information is simulated
via two parts of semantic factors as g+, g− , which follows the convention in the disentangled
representation learning domain [4, 15, 18]. The simulation becomes S = Sim(s+, s−, l1∶T ) and
G = Sim(g+, g−, l1∶T ). Here s+ ⊥ s

−, g+ ⊥ g
−, s+ ⊥ g

+, s− é g
−, l1∶T ⊥ g

+, l1∶T ⊥ g
−,

l1∶T ⊥ s
+, and l1∶T ⊥ s

−. That is, s+ and g+ refers to the time-invariant semantic factors of spatial
and graph information, respectively. s− and g− refers to the correlated semantic factors of spatial and
graph information.

(1) Given z1∶T captures all the time-variant semantic factors, namely
∏T

t=1DKL(qφ(zt∣Gt, St)∣∣p(zt)) = ct, the information captured by zt will not increase
anymore, we have I(z1∶T , l1∶T ) = I(l1∶T , l1∶T ); Given fs captures all the time-invariant spatial-
independent semantic factors s+, namely DKL(qφ(fsg∣G1∶T , S1∶T )∣∣p(fsg)), the information
captured by fsg will not increase anymore, and we have I(fs, s+) = I(s+, s+); Given fg captures
all the time-invariant graph-independent semantic factors g+, we have I(fg, g+) = I(g+, g+);
Given fsg captures all the time-invariant spatial-graph correlated semantic factors s−, g−, we have
I(fsg, s+) = 0, I(fsg, g+) = 0, and I(fsg, s−) = I(s−, s−), I(fsg, g−) = I(g−, g−). Thus, the
value of already achieved loss is equal to I(s+, s+)+I(s−, s−)+I(g+, g+)+I(g−, g−)+I(l1∶T , l1∶T ).
(2) Next, we rewrite the original objective function as follows:

max
θ,φ

I(z1∶T ; s+) + I(z1∶T ; s−) + 2 ∗ I(z1∶T ; l1∶T ) + I(z1∶T ; g+) + I(z1∶T ; g−) + I(fs, s+)

+ I(fsg, s+) + I(fsg, s−) + I(fg, g+) + I(fsg, g+) + I(fsg, g−) + I(fs, l1∶T )
+ I(fsg, l1∶T ) + I(fg, l1∶T ) (29)

Since fs ⊥ fsg , fg ⊥ fsg and z1∶T ⊥ fs, z1∶T ⊥ fg , z1∶T ⊥ fsg , we have:

I(fs, s+) + I(fsg, s+) + I(z1∶T , s+) ≤ I(s+, s+) (30)

I(fg, g+) + I(fsg, g+) + I(z1∶T , g+) ≤ I(g+, g+) (31)

I(fsg, s−) + I(z1∶T , s−) ≤ I(s−, s−) (32)

I(fsg, g−) + I(z1∶T , g−) ≤ I(g−, g−) (33)
I(z1∶T , l1∶T ) ≤ I(l1∶T , l1∶T ) (34)

Thus, the optimal loss is I(s+, s+) + I(s−, s−) + I(g+, g+) + I(g−, g−) + I(l1∶T , l1∶T ). In this
situation, the optimal loss is already achieved. If we continue increase It and Isg, the information
captured by zt and fsg will not increase anymore, thus we got R2 < 0 and R3 < 0. which is a signal
for stopping the optimization process.
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D Time-dependent Objective Function

As demonstrated in section 2, the objective leads to the maximization problem below:
max
θ,φ

ES1∶T ,G1∶T∼D[Eqφ(z1∶T ,F ∣S1∶T ,G1∶T )logpθ(S1∶T , G1∶T ∣z1∶T , fs, fg, fsg)] (35)

s.t. DKL(qφ(z1∶T , F ∣S1∶T , G1∶T )∣∣p(z1∶T , fs, fg, fsg) < ε
where D refers to the observed dataset of the spatial network dynamics.This is equal to maximize the
evidence lower-bound (ELBO), as follows:

max
θ,φ

ES1∶T ,G1∶T∼D[Eqφ(z1∶T ,F ∣S1∶T ,G1∶T )logpθ(S1∶T , G1∶T ∣z1∶T , fs, fg, fsg)] (36)

−λDKL(qφ(z1∶T , fs, fg, fsg∣S1∶T , G1∶T )∣∣p(z1∶T , fs, fg, fsg)

First, we decompose the main objective term based on the assumption that S1∶T ⊥
G1∶T ∣(z1∶T , fs, fg, fsg):

Eqφ(z1∶T ,F ∣S1∶T ,G1∶T )[log pθ(G1∶T ∣z1∶T , fs, fg, fsg) + log pθ(S1∶T ∣z1∶T , fs, fg, fsg)] (37)

According to the assumption S1∶T ⊥ fg and G1∶T ⊥ fs, we have:
Eqφ(z1∶T ,F ∣S1∶T ,G1∶T )[log pθ(G1∶T ∣z1∶T , fg, fsg) + log pθ(S1∶T ∣z1∶T , fs, fsg)] (38)

Then, we extend the objective through the time dimension as:
Eqφ(z1∶T ,F ∣S1∶T ,G1∶T )[log pθ(G1, G2,⋯, GT ∣z1, z2,⋯, zT , fg, fsg)

+ log pθ(S1, S2,⋯, ST ∣z1, z2,⋯, zT , fs, fsg)] (39)
Since the sequence is dependent through time, z1 é z2⋯ é zT , we simplify the objective as:
Eqφ(z1∶T ,F )∣S1∶T ,G1∶T )[log pθ(G1∣z1, fg, fsg)pθ(z2∣z1)⋯pθ(zT ∣zT−1)pθ(GT ∣zT , fg, fsg)

+ log pθ(S1∣z1, fs, fsg)pθ(z2∣z1)⋯pθ(zT ∣zT−1)pθ(ST ∣zT , fs, fsg)] (40)

We re-organize the objective by putting the product together as:

Eqφ(z1∶T ,F )∣S1∶T ,G1∶T )[log
T

∏
t=1

pθ(Gt∣zt, fg, fsg)
T

∏
t=2

pθ(zt∣zt−1)

+ log
T

∏
t=1

pθ(St∣zt, fs, fsg)
T

∏
t=2

pθ(zt∣zt−1)]

(41)

Finally, the objective is written as the following by taking the product out of log function as summa-
tion:

Eqφ(z1∶T ,F )∣S1∶T ,G1∶T )[
T

∑
t=1

log pθ(Gt∣zt, fg, fsg) +
T

∑
t=2

log pθ(zt∣zt−1) +
T

∑
t=1

log pθ(St∣zt, fs, fsg)

+ log
T

∑
t=2

pθ(zt∣zt−1)]

(42)

Next, we extend the encoder part qφ(z1∶T , F ∣S1∶T , G1∶T ) F to fs, fg, and fsg, and decompose it
based on the assumption that p(z1∶T ) and p(fs), p(fg), and p(fsg) are independent given S1∶T and
G1∶T as:
qφ(z1∶T , fs, fg, fsg∣S1∶T , G1∶T ) = qφ(z1∶T ∣S1∶T , G1∶T )qφ(fs∣S1∶T )pφ(fg∣G1∶T )qφ(fsg∣S1∶T , G1∶T )

(43)
= qφ(z1∣G1, S1)qφ(z2∣z1, G2, S2)qφ(z3∣z2, G3, S3)⋯qφ(zT ∣zT−1, ST , GT )qφ(fs∣S1∶T )qφ(fg∣G1∶T )qφ(fsg∣S1∶T , G1∶T )

=

T

∏
t=2

qφ(zt∣zt−1, St, Gt)qφ(z1∣S1, G1)
T

∏
t=1

qφ(fs∣St)pφ(fg∣Gt)qφ(fsg∣St, Gt)
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Then the objective is written as:

max
θ,φ

ES1∶T ,G1∶T∼DEqφ(z1∶T ,F ∣S1∶T ,G1∶T )[
T

∑
t=1

log pθ(Gt∣zt, fg, fsg) +
T

∑
t=2

log pθ(zt∣zt−1)

+
T

∑
t=1

log pθ(St∣zt, fs, fsg) + log
T

∑
t=2

pθ(zt∣zt−1)]

s.t. DKL(
T

∏
t=2

qφ(zt∣zt−1, St, Gt)qφ(z1∣S1, G1)∣∣p(z1∶T )) < It.

DKL(qφ(fg∣G1∶T )∣∣p(fg)) < Ig.
DKL(qφ(fs∣S1∶T )∣∣p(fs)) < Is
DKL(qφ(fsg∣S1∶T , G1∶T )∣∣p(fsg)) < Isg

(44)

Next, we focus on the first constrain on time. Since zt are dependent on each other, we as-
sume a conditional prior distribution of zt instead of Normal distribution. That is, p(zt∣zt−1) ∼
N (µ(zt−1);σ(zt−1)). Here µ(⋅) and σ(⋅) can be implemented by any functions like neural networks.
And p(z1) ∼ N (0; 1). Thus, we further decompose the first constrain as:

where DKL(∏T
t=2 qφ(zt∣zt−1, ST , GT )qφ(z1∣S1, G1)∣∣p(z1∶T )) is derived by:

DKL(
T

∏
t=2

qφ(zt∣zt−1, ST , GT )qφ(z1∣S1, G1)∣∣p(z1∶T )) (45)

= DKL(qφ(z1∣S1, G1), qφ(z2∣z1, S2, G2),⋯, qφ(zt∣zt−1, St, Gt)∣∣p(z1), p(z1∣z2),⋯, p(zt−1∣zt))

=∑
z

qφ(z1∣S1, G1)qφ(z2∣z1, S2, G2)⋯qφ(zt∣zt−1, St, Gt) log
qφ(z1∣S1, G1)qφ(z2∣z1, S2, G2)⋯qφ(zt∣zt−1, St, Gt)

p(z1)p(z1∣z2)⋯p(zt−1∣zt)

= E[log
qφ(z1∣S1, G1)qφ(z2∣z1, S2, G2)⋯qφ(zt∣zt−1, St, Gt)

p(z1)p(z1∣z2)⋯p(zt−1∣zt)
]

= E[log qφ(z1∣S1, G1)qφ(z2∣z1, S2, G2)⋯qφ(zt∣zt−1, St, Gt) − log p(z1)p(z1∣z2)⋯p(zt−1∣zt)]
= E[log qφ(z1∣S1, G1)qφ(z2∣z1, S2, G2)⋯qφ(zT ∣zT−1, ST , GT ) − log p(z1)p(z2∣z1)⋯p(zT ∣zT−1))]

= E[log
T

∏
t=2

qφ(zt∣zt−1, St, Gt)qφ(z1∣, S1, G1) − log
T

∏
t=2

p(zt∣zt−1)p(z1)]

= E[
T

∑
t=2

log qφ(zt∣zt−1, St, Gt) + log qφ(z1∣S1, G1) −
T

∑
t=2

log p(zt∣zt−1) + log p(z1)]

=

T

∑
t=2

E[log
qφ(zt∣zt−1, St, Gt)

p(zt∣zt−1)
+ log

qφ(z1∣, S1, G1)
p(z1)

]

=

T

∑
t=2

DKL(qφ(zt∣zt−1, St, Gt)∣∣p(zt∣zt−1)) +DKL(qφ(z1∣St, Gt)∣∣p(z1))

E Architectures & Hyperparameters

Our model consists of four components which takes care of four types of latent variables fs, fg , fsg ,
and zt. To accommodate the disentangled information in each latent space and variance through time,
we have four encoders, which models qφ(fs∣S1∶T , G1∶T ), qφ(fg∣S1∶T , G1∶T ), qφ(fsg∣S1∶T , G1∶T ),
and qφ(zt∣S1∶T , G1∶T ), respectively. Each encoder learns a unique mean and standard deviation and
each latent variable is randomly sampled from the Gaussian distribution, respectively. To encode the
time-invariant spatial information via modelling qφ(fs∣S1∶T , G1∶T ), we implement a 1D convolution
neural network. To encode the time-invariant graph information via modelling qφ(fg∣S1∶T , G1∶T ),
we implement a typical graph convolution neural network [19]. To encode the time-invariant
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Table 2: Encoders architectures (Each layers is expressed in the format of <filter_size><layer
type><Num_channel><Activation function><stride size>. FC refers to the fully connected layers).
c-deconv and c-conv refers to the cross edge deconvolution and convolution respectively. The
activation functions after each layer are all ReLU except the last layers.

Spatial Encoder Joint Encoder Graph Encoder Time Encoder
Input: L ∈ R25×2 Input: E, L Input: E ∈ R25×25,F ∈ R25 Input: E, L
5 conv1D.10. stride 1 S-MPNN.20 GCN.10 S-MPNN.20
5 conv1D.10. stride 1 S-MPNN.50 GCN.20 S-MPNN.50
5 conv1D.20. stride 1 FC.200. FC.100. FC.200.
FC.100. FC.200 FC.100 FC.200
FC.100

Table 3: Decoders architectures (Each layers is expressed in the format as <filter_size><layer
type><Num_channel><Activation function><stride size>. FC refers to the fully connected layers).
c-deconv and c-conv refers to the cross edge deconvolution and convolution respectively. The
activation functions after each layer are all ReLU except the last layers.
Graph Decoder(for edge) Graph Decoder(for node) Spatial Decoder
Input:fg ∈ R100,fsg ∈ R200,zt ∈ R200 Input:fg ∈ R100,fsg ∈ R200,zt ∈ R200 Input:fs ∈ R100,fsg ∈ R200,zt ∈ R200

FC.500 FC.500 FC.500
5 conv1D.50. stride 1 5 conv1D.50. stride 1 5 conv1D.50. stride 1
5 × 5 deconv.20. stride 1 5 conv1D.20. stride 1 5 conv1D.20. stride 1
FC.1 FC.1 5 conv1D.10. stride 1

FC.2

spatial-graph correlated information via modelling qφ(fsg∣S1∶T , G1∶T ), we implement a spatial-
graph convolution neural network [10]. To encode time-variant information, we implement another
spatial-graph convolution neural network to capture the variance among different timesteps. With
regard to decoders, we implement two decoders which one decodes the spatial information and the
other one decodes the graph topological information. The input to the decoders are the concatenation
of the latent presentation fs, fg , fsg and zt. For example, to decode the graph topological information
which includes nodes and edges, the input of the graph decoder is the concatenation of fg , fsg , and zt.
Similarly, to decode the spatial information, the input of the spatial decoder is the concatenation of fs,
fsg , and zt. To construct the edge feature or adjacency matrix, the input vector is mapped into a node-
level feature vector through a fully connected layer first. Then, a matrix is constructed by replicating
the vector. The edge’s hidden representation matrix is constructed from the latent representation by
a node-to-edge deconvolution layer [12] which decodes each node-level representation by making
sense of the contributions from each node to its related edge’s hidden representation. Finally, the
edge feature or adjacency matrix is constructed by an edge-edge deconvolution layer, which each
hideden edge feature contributes to the generation of its adjacent edges. The spatial decoder is typical
a set of 1D convolution layers. Similarly, the node features of the graphs are also generated by a set
of typical 1D convolution layers. The detailed hyperparameters for encoders and decoders of our
models are shown in Table 2 and Table 3, respectively.

F Model Complexity Analysis

The proposed STND-VAE requires O(N2) time complexity for spatial-graph convolution, O(N)
time complexity for spatial convolution and O(N) time complexity for typical graph convolution
with respect to number of N nodes in the graphs. In terms of encoders for time-variant features,
our model amounts to O(N2) time complexity. In total, our model takes O(N2) time complexity,
which is scalable compared to most of the existing graph generation models. For example, graphVAE
[24] amounts O(N4) time consumption in the worst case and graphRNN amounts O(N2) time
complexity.
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G Dataset

Dynamic Waxman Random Graphs. The dynamic Waxman random graphs are generated by
uniformly placing n nodes at random in a rectangular domain [27] through a time sequence t.
First, the graph edge connection is modeled by pairwise distance d between any two nodes with
an edge probability of βe−d/αL, where L is the maximum distance between any pair of nodes,
and α, β are predefined parameters1. Second, the spatial locations of the nodes are uniformly
generated within the rectangular domain, where the coordinates of the four vertexes of the rectangular
domain for generating the spatial locations of the nodes are (p, p), (p, p + n × s), (p + n × s, p),
(p + n × s, p + n × s), respectively. Here the absolute position of the graphs is ranged from 1 to
11, and the location density of the nodes is ranged from 4 to 11. The node attribute, i.e. node color,
is sampled from a random Gaussian distribution with mean b ranging from 1 to 11. Finally, the
temporal attributes are modeled by multiplying a time factor associated with a node attribute, i.e.
node size. In the end, we have four types of latent factors corresponding to semantic factors in the
dynamic Waxman random graphs dataset, which the graph-exclusive factor b controlling node color
semantic factor, the spatial-exclusive factor p controlling the node spatial location semantic factor,
the spatial-graph correlated factor s controlling graph and spatial density, and the time-variant factor
t controlling node size varying through the sequence. In total, we have 2500 sequences of length 8
for training and 500 sequences of length 8 for testing.

Dynamic Random Geometry Graphs. The dynamic random geometry graphs are generated by
uniformly placing n nodes at random in a rectangular domain [2] through a time sequence t. First, the
graph topology is modeled by pairwise distance d larger than a threshold θ between any two nodes
with an edge2. Similarly, the spatial locations and temporal attributes are generated in the same way
as in the dynamic Waxman random graphs. Finally, we have four types of latent factors corresponding
to semantic factors in the dynamic random geometry graphs dataset, which the graph-exclusive factor
b controlling node color semantic factor, the spatial-exclusive factor p controlling the node spatial
location semantic factor, the spatial-graph correlated factor s controlling graph and spatial density,
and the time-variant factor t controlling node size varying through the sequence. In total, we have
2500 sequences of length 8 for training and 1000 sequences of length 8 for testing.

Protein Folding Dataset. Protein structures are naturally spatial graphs, which each node represents
an amino acid with a spatial location and edge represents contacts between two amino acids (d < 8 Å).
The protein folding dataset includes a series of protein structures representing the folding process of
a protein sequence AGAAAAGA of length 8. In the protein folding dataset [13], the graph density
(reflected by the density of the inter-residue contacts) and the folding degrees (reflected by spatial
locations of amino acids) of protein are spatial-graph correlated factors. The folding phrase ranging
from 1 to 1000 represents temporal attributes during the folding process. In total, we have 4750 of
length 8 for training and 4750 sequences of length 8 for testing.

Traffic Dataset MERT-LA. Traffic data is one of the most common data type to study spatiotemporal
graphs. MERT-LA [17] is collected by Los Angeles Metropolitan Transportation Authority(LA-
Metro), and processed by University of Southern California’s Integrated Media Systems Center. This
dataset contains traffic information collected from loop detectors in the highway of Los Angeles
County by 207 sensors for four continuous months (from Mar 1-st 2012 to Jun 30-th 2012). We set
one time step as one hour and total number of time steps in one sequence as 4. For the total of 714
samples, 500 samples are used for training and 214 samples are used for testing.

1The default parameters in Networkx [14] package are β as 0.4 and α as 0.1.
2
θ parameter is set as 12 in our experiment
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