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ABSTRACT

This paper proposes a new parameter-efficient method for fine-tuning, AoT P-
Tuning. This method adds input-dependent biases before evaluating the Trans-
former layer, reducing the required evaluation time while allowing multi-task
inference with a single backbone model for evaluating different tasks in a single
batch. We experimented with the proposed method on the GLUE and SuperGLUE
benchmarking datasets using RoBERTa-Base, RoBERTa-Large, and DeBERTa-XL
backbone models. Our findings show that AoT P-tuning performed on par with or
better than P-Tuning v2 and comparable to other baselines for efficient fine-tuning
while being faster during inference.

Figure 1: GLUE and SuperGLUE Macro scores for different backbone model scales. See Section 4.2
for more details.

1 INTRODUCTION

P-Tuning (Liu et al., 2021b;a; Lester et al., 2021) is a promising way to fine-tune large Language
Models (LMs) (Devlin et al., 2019; Lan et al., 2020; Liu et al., 2019; Radford et al., 2019). While it
currently underperforms compared to other methods for parameter-efficient fine-tuning (Hu et al.,
2022; Houlsby et al., 2019) on a wide range of tasks (Ding et al., 2022), it has a practical, valuable
property that allows it to evaluate different trained prompts parallel in a multi-task manner (i.e., a
single backbone LM could be used for different tasks during inference, which can simplify model
serving in real-world applications) (Lester et al., 2021). This property is why researchers aim to
further develop P-Tuning methods.

Although it is possible to perform multi-task evaluation with P-Tuning, it introduces significant
computational overhead due to the concatenation of prefixes to sequences and the evaluation of the
attention mechanism (Vaswani et al., 2017) on longer sequences.

We propose a simple mechanism for parameter-efficient fine-tuning of Language Models, namely
Ahead-of-Time (AoT) P-Tuning, for which we add input-dependent bias before each Transformer
layer. Same as P-Tuning, it is possible to use AoT P-Tuning in multi-task inference setups when a
single backbone LM is used for several downstream tasks.

The contributions of this paper can be summarized as follows:

1. We described the intuition behind AoT P-Tuning, which illustrates the connection of the
proposed method with P-Tuning.
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Figure 2: Schematic comparison of P-Tuning v2 (left), and AoT P-Tuning (right). Since the sequence
length is not increased, AoT P-Tuning takes significantly less time to evaluate, only requiring the
overhead of adding biases to the input sequence (See Section 4.3 for experiments with inference
speed).

2. We proposed two reparameterizations of AoT P-Tuning weights: first based on a factorized
matrix trained from scratch, and second based on a LM’s embeddings matrix passed through
a trainable Fully Connected network.

3. We experimented with the proposed method on GLUE, and SuperGLUE Benchmarking
Datasets (Wang et al., 2018; 2019) with the RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020) models and observed that AoT P-Tuning performed on par with or better than
P-Tuning v2, comparable to other baselines for efficient fine-tuning while being faster than
them.

2 RECENT WORKS

Currently, a wide range of different methods could be referenced with P-Tuning. Liu et al. (2021b)
proposed to add soft prompts to the embeddings of GPT-2’s input sequence (Radford et al., 2019)
to train it on classification tasks. Lester et al. (2021) proposed a scheme similar to the one used
in Liu et al. (2021b), but trained a T5 model (Raffel et al., 2020) with P-Tuning to show how the
performance of the method changes with the increased scale of the backbone model.

Recently, Qin & Eisner (2021); Li & Liang (2021); Liu et al. (2021a) proposed to add prefixes not
only to input embeddings but also at each layer of the Transformer model. In addition, Liu et al.
(2021a) suggested training a linear classification head on top of the backbone model instead of
utilizing a LM head to obtain classification results.

Due to this range of similar methods, we will follow the naming used by Liu et al. (2021a) and refer
to Prompt-Tuning (adding soft prompts to the input embeddings) as P-Tuning v1 and to Prefix-Tuning
(adding soft prefixes at each layer of Transformer backbone) as P-Tuning v2.

Hu et al. (2022) proposed to train low-rank changes of attention weights, while Houlsby et al. (2019)
fine-tuned additional model layers, which can also be considered parameter-efficient. Ben Zaken et al.
(2022) proposed to fine-tune only bias terms of the model.

3 AHEAD-OF-TIME P-TUNING

For readers’ convenience, we provided background to Transformer evaluation and P-Tuning v1/v2
methods, which are relatable to the proposed method in Appendix Section A.

3.1 ON THE OVERHEAD OF RECENT METHODS

While the Transformer model has O(n2) time complexity and GPU memory consumption for
sequence length n. For P-Tuning v1, this complexity transforms into O((n+ p)2) since the length of
input sequence is increased by the length of the prompt p, while for P-Tuning v2 the complexity is
equal to O(n(n+ p)).
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Method Parameter Efficient Zero-Cost Multi-Task Inference
Fine-Tuning

LoRA
LoRA Fused

Adapters
BitFit

P-Tuning v1/v2
AoT P-Tuning (ours)

Table 1: Schematic comparison of recent fine-tuning methods with AoT P-Tuning. Recent fine-tuning
approaches either allow inference with no computational overhead or multi-task inference. See
Section 3.1 for details.

Liu et al. (2021a) showed that for some tasks, the prompt length p could reach values of 100,
increasing time and memory footprint during evaluation.

For the Adapters approach (Houlsby et al., 2019), the overhead appears since additional layers are
injected into the computation of a model. However, it is possible to perform multi-task inference with
it by passing the weights of these layers with the batch.

We could consider two usage scenarios for LoRA (Hu et al., 2022). For the first one, we fuse original
weights with a trained low-rank addition. In such a case, we will see no inference speed overhead
since the obtained model will have the same structure as the original pre-trained model. While it is
theoretically possible to perform multi-task inference with a fused model similar to Adapters, doing
so will require allocating a massive amount of GPU memory. E.g., for the DeBERTa-XL model with
layers of hidden size d = 1024 and l = 48, passing a batch with b sequences will require one to store
1024 ∗ 1024 ∗ 48 ∗ 4 ∗ b parameters to be given to the model, where 4 is number of parameter matrices
of Attention module. It is easy to note that with b = 4, we will already exceed the number of original
parameters in the model, which is impractical. To overcome this, it is possible to fuse LoRA weights
to perform multi-task inference. However, doing so can introduce computational overhead.

See Table 1 for the schematic comparison of recent methods in terms of inference speed overhead
and ability to perform multi-task inference.

3.2 PROPOSED MECHANISM

With AoT P-Tuning, we propose to augment each Transformer layer with a simple procedure. We
define trainable matrices P i ∈ R|V |×d for each layer. Then, before the evaluation of the i-th layer,
we modify the hidden states as follows:

H ′i = Hi + {P i
x1
, . . . ,P i

xn
} ∈ Rn×d, (1)

where P i
xj

∈ Rd is a lookup of xj-th prompt embedding from P i. Such a scheme allows us to save
a significant amount of time during evaluation since AoT P-Tuning does not imply an increase in
sequence length. While P i in naive implementation will require lot of memory to store parameters,
in the following Section 3.3, we describe reparametrizations which make training more tractable.

Note that AoT P-Tuning, same as plain P-Tuning, could be evaluated in parallel with several tasks
in a batch due to the fact that performing look-up from P can be easily parallelized. See Appendix
Section B for explained intuition behind the proposed method.

As for P-Tuning v1 and P-Tuning v2, we only optimize parameters of P and Classification Head
during fine-tuning.

3.3 ON THE PARAMETER EFFICIENCY OF AOT P-TUNING

It is notable that, in most cases, it is not feasible to optimize the weight P ∈ R|V |×d for each layer.
If we consider training RoBERTa-Large with such a scheme (which has |V | = 50265, d = 1024 and
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RoBERTa-Base
Model STS-B SST-2 RTE QQP

Fine-Tuning 90.6 ± 0.3 95.0 ± 0.2 81.2 ± 0.7 89.6 ± 0.2

Adapters 90.7 ± 0.2 94.4 ± 0.3 80.5 ± 2.0 89.2 ± 0.1
LoRA 90.1 ± 0.3 94.3 ± 0.5 80.5 ± 1.8 86.3 ± 0.3
BitFit 90.3 ± 0.1 94.5 ± 0.5 80.9 ± 1.4 85.5 ± 0.6

P-Tuning v1 86.9 ± 0.9 94.0 ± 0.3 60.3 ± 2.4 82.2 ± 1.5
P-Tuning v2 89.2 ± 0.3 94.6 ± 0.2 80.5 ± 3.4 86.4 ± 3.3

Kron. AoT P-Tuning (ours) 89.7 ± 0.2 94.0 ± 0.2 77.6 ± 1.4 88.2 ± 0.1
FC AoT P-Tuning (ours) 90.0 ± 0.2 94.4 ± 0.3 78.0 ± 1.3 87.9 ± 0.2

QNLI MRPC MNLI CoLA Macro
Fine-Tuning 92.4 ± 0.1 90.8 ± 0.5 87.0 ± 0.3 63.8 ± 1.4 86.3

Adapters 92.4 ± 0.2 91.1 ± 1.1 86.8 ± 0.1 63.0 ± 1.3 86.0
LoRA 91.6 ± 0.3 90.6 ± 0.7 84.7 ± 0.3 60.3 ± 1.0 84.8
BirFit 90.9 ± 0.5 90.5 ± 1.7 85.0 ± 0.1 60.4 ± 1.2 84.7

P-Tuning v1 88.3 ± 0.5 82.0 ± 1.7 80.8 ± 0.6 45.8 ± 27.1 77.5
P-Tuning v2 91.9 ± 1.6 89.1 ± 1.1 85.3 ± 0.2 60.7 ± 2.6 84.7

Kron. AoT P-Tuning (ours) 90.7 ± 0.4 89.5 ± 1.1 84.6 ± 0.1 59.3 ± 1.2 84.2
FC AoT P-Tuning (ours) 91.3 ± 0.4 90.3 ± 0.3 85.4 ± 0.1 60.3 ± 2.2 84.7

RoBERTa-Large
Model STS-B SST-2 RTE QQP

Fine-Tuning 91.9 ± 0.2 96.1 ± 0.4 88.1 ± 1.5 90.3 ± 0.2

Adapters 92.1 ± 0.2 96.3 ± 0.4 90.0 ± 0.1 94.2 ± 0.1
LoRA 91.4 ± 0.3 95.9 ± 0.2 87.2 ± 18.7 93.7 ± 23.7
BitFit 91.8 ± 0.2 96.2 ± 0.4 87.7 ± 0.8 87.2 ± 0.6

P-Tuning v1 75.5 ± 6.3 94.4 ± 0.4 62.8 ± 2.3 76.9 ± 2.5
P-Tuning v2 91.0 ± 0.4 96.1 ± 0.3 87.4 ± 1.5 86.6 ± 0.6

Kron. AoT P-Tuning (ours) 91.1 ± 0.8 96.2 ± 0.2 84.8 ± 1.3 89.4 ± 0.1
FC AoT P-Tuning (ours) 91.7 ± 0.4 96.7 ± 0.1 88.4 ± 0.9 88.7 ± 0.2

QNLI MRPC MNLI CoLA Macro
Fine-Tuning 94.3 ± 0.2 91.6 ± 0.6 89.9 ± 0.2 68.1 ± 1.9 88.8

Adapters 91.3 ± 0.4 90.1 ± 0.2 67.2 ± 1.3 87.7 ± 18.5 88.6
LoRA 91.0 ± 7.2 88.9 ± 24.0 66.3 ± 1.9 87.4 ± 1.6 87.7
BitFit 94.1 ± 0.4 91.0 ± 1.0 89.4 ± 0.1 69.8 ± 3.1 88.4

P-Tuning v1 79.1 ± 2.4 79.0 ± 1.1 75.9 ± 18.3 24.7 ± 17.6 71.0
P-Tuning v2 94.0 ± 1.1 91.2 ± 0.9 89.4 ± 0.7 66.9 ± 1.5 87.8

Kron. AoT P-Tuning (ours) 94.2 ± 0.1 89.7 ± 0.9 89.3 ± 0.1 65.5 ± 1.9 87.5
FC AoT P-Tuning (ours) 94.1 ± 0.2 91.6 ± 0.8 89.6 ± 0.1 69.2 ± 0.9 88.8

Table 2: Results on the GLUE Dev set. Each result is median and std across several seeds, and the
Macro column is a mean score across all tasks. We bolded the best results and underlined the second
best results. Fine-tuning is omitted from comparison with other methods and was not bolded for
visibility. See Section 4.2 for details.

l = 24), then storing all biases P will exceed 1.2B parameters, while the model itself has roughly
350M parameters.

To overcome this limitation, we propose two reparametrizations of P so that it can use fewer
parameters during training.
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The first is based on the Kronecker product (namely, Kronecker AoT P-Tuning). More specifically,
we reparametrize P as

P = (WL ⊗WM )WR, (2)

where WL ∈ Ra×r, WM ∈ Rb×r, WR ∈ Rr2×d, a and b are selected in such a way so a ∗ b = |V |,
r is the factorization rank which is a hyperparameter to tune, and ⊗ denotes the Kronecker product.

With this reparametrization, training AoT P-Tuning becomes tractable. E.g., for RoBERTa-Large,
with a = 256, b = 200, and r = 20, P will contain roughly 10M parameters, which is less than 3%
of the total number of parameters in the model1.

The second approach to work with P , which we used in our experiments, is based on passing the
embeddings matrix E through a learnable Fully Connected network (namely, FC AoT P-Tuning).
Thus, we reparametrize P as

P = f(EW1 + b1)W2 + b2, (3)

where W1 ∈ Rd×r, b1 ∈ Rr, W2 ∈ Rr×d, b2 ∈ Rd, f is a non-linearity, and r is the mapping rank,
which is also a hyperparameter to tune, same as for Kronecker AoT P-Tuning.

With FC AoT P-Tuning, we utilize knowledge stored in the pre-trained embeddings matrix E, which
should hypothetically perform better than training P from scratch as Kronecker AoT P-Tuning.

Note that for both Kronecker and FC AoT P-Tuning, we can evaluate only specific rows
{Pxi , . . . ,Pxn} for input sequence {x1, . . . , xn}, making training more efficient.

For both reparametrizations, P could be fused once training is complete, and thus the rank of
factorization r does not affect inference speed. During the evaluation, there is no need to store the
full P in GPU memory. Instead, it could be stored in RAM, and only rows of these matrices should
be placed in GPU memory to be added to the hidden states before each layer.

From a certain perspective, choosing between AoT P-Tuning and P-Tuning is a trade-off between
evaluation speed and RAM consumption during inference. If RAM is limited, then usual P-Tuning
could be used at the cost of slower inference. In other cases, AoT P-Tuning is viable if there is
enough RAM and inference speed is crucial. Although, in most cases, P matrices for different tasks
could be easily stored in the RAM. For RoBERTa-Large, a single task parameter will require roughly
2.4Gb if stored in half-precision.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

We compared AoT P-Tuning (Kronecker and FC reparametrizations of P ) with other fine-tuning
methods capable of performing multi-task inference: P-Tuning v1, P-Tuning v2 on GLUE and
SuperGLUE (Wang et al., 2018; 2019) Benchmarking Datasets. We also evaluated plain fine-tuning,
LoRA, Adapters, and BitFit for reference. For each fine-tuning approach, we experimented with the
RoBERTa-Base, RoBERTa-Large, and DeBERTa-XL backbone models.

For each task, we performed a grid hyperparameter search (see Appendix Table 5 for hyperparameter
ranges). For RoBERTa models, we evaluated each hyperparameter set with 5 different seed values
and reported median and std score values for each task. For DeBERTa-XL, we used to assess each
hyperparameter assignment with a single seed due to longer training time. See Appendix Table 4 for
a list of metrics used for each task.

1One may note that 256 ∗ 200 = 51200 ̸= 50265. However, 50265 is difficult to factorize efficiently
since 50265 = 1117 ∗ 32 ∗ 5. Because of this, we chose to mostly factorize P in such a way as to make it
slightly larger than the original vocabulary size. Doing so allows us to select more appropriate a and b from the
perspective of parameter and computational efficiency.
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RoBERTa-Large
Model RTE COPA WSC WiC

Fine-Tuning 88.1 ± 1.5 87.0 ± 10.2 80.8 ± 6.3 73.8 ± 1.6

Adapters 87.7 ± 18.5 89.0 ± 10.1 77.9 ± 9.8 73.5 ± 1.0
LoRA 87.4 ± 1.6 91.0 ± 8.5 79.8 ± 10.6 71.9 ± 1.2
BitFit 87.7 ± 0.8 91.0 ± 2.3 71.2 ± 6.7 71.3 ± 9.5

P-Tuning v1 62.8 ± 2.3 75.0 ± 4.3 66.3 ± 1.3 64.1 ± 0.9
P-Tuning v2 87.4 ± 1.5 87.0 ± 6.3 75.0 ± 7.7 70.8 ± 1.5

Kron. AoT P-Tuning (ours) 84.8 ± 1.3 72.0 ± 9.1 67.3 ± 3.0 71.0 ± 1.0
FC AoT P-Tuning (ours) 88.4 ± 0.9 85.0 ± 10.1 79.8 ± 4.1 72.1 ± 1.5

MultiRC CB BoolQ Macro
Fine-Tuning 83.3 ± 1.1 97.3 ± 2.8 85.6 ± 0.3 85.1

Adapters 83.7 ± 20.3 100.0 ± 0.0 85.7 ± 10.6 85.4
LoRA 75.7 ± 17.4 100.0 ± 2.6 84.6 ± 0.6 84.3
BitFit 82.5 ± 0.6 100.0 ± 0.7 85.4 ± 1.0 84.2

P-Tuning v1 54.3 ± 2.9 81.4 ± 3.0 64.3 ± 1.2 66.9
P-Tuning v2 82.4 ± 0.6 100.0 ± 0.8 85.0 ± 0.6 83.9

Kron. AoT P-Tuning (ours) 82.8 ± 0.8 97.3 ± 2.3 84.8 ± 0.5 80.0
FC AoT P-Tuning (ours) 82.7 ± 19.3 100.0 ± 0.0 85.5 ± 10.3 84.8

DeBERTa-XL
Model RTE COPA WSC WiC

Fine-Tuning 89.9 96.0 76.9 75.9

Adapters 90.3 96.0 89.4 77.3
LoRA 90.3 97.0 89.4 75.5
BitFit 89.2 97.0 86.5 73.7

P-Tuning v1 78.3 90.0 67.3 66.8
P-Tuning v2 90.6 97.0 89.4 76.5

Kron. AoT P-Tuning (ours) 88.8 96.0 87.5 71.8
FC AoT P-Tuning (ours) 91.0 98.0 94.2 74.1

MultiRC CB BoolQ Macro
Fine-Tuning 84.3 98.4 86.7 86.9

Adapters 86.7 97.3 88.9 89.4
LoRA 86.0 100.0 88.3 89.5
BitFit 85.2 100.0 86.5 88.3

P-Tuning v1 82.1 93.8 79.4 79.7
P-Tuning v2 87.1 97.3 87.0 89.3

Kron. AoT P-Tuning (ours) 86.3 83.1 87.3 85.8
FC AoT P-Tuning (ours) 86.5 92.3 88.1 89.2

Table 3: Results on the SuperGLUE Dev set. For RoBERTa-Large, each result is median and std
across several seeds, and the Macro column is a mean score across all tasks. For DeBERTa-XL,
we evaluated each hyperparameter assignment with a single seed and reported its metric score. We
bolded the best results and underlined the second best results. Fine-tuning is omitted from comparison
with other methods and was not bolded for visibility. See Section 4.2 for details.

We used the Adam (Kingma & Ba, 2015) optimizer with a constant learning rate for each task.
We stopped training once the validation metric stopped increasing (see the "patience" parameter in
Appendix Table 6).
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(a) (b)

(c) (d)

Figure 3: (a-b) GLUE macro scores for AoT P-Tuning, P-Tuning v1, and P-Tuning v2 with RoBERTa-
Base and RoBERTa-Large models. (c-d) SuperGLUE macro score for RoBERTa-Base and DeBERTa-
XL models. P-Tuning v2 performing on par with or worse than AoT P-Tuning across different prefix
sizes. See Section 4.2 for details.

For Kronecker AoT P-Tuning with RoBERTa models, we parametrized the matrix P = (WL ⊗
WM )WR with a = 256, and b = 200, while for DeBERTa, we used a = b = 360. WL and WM

were initialized randomly, while WR was initialized as a zero matrix. For FC AoT P-Tuning, we
initialized W1 randomly, while W2, b1, and b2 were initialized with zeros. For Kronecker AoT
P-Tuning, we applied dropout (Srivastava et al., 2014) to the Px with a fixed probability equal to 0.1.
In contrast, for FC AoT P-Tuning, we applied dropout to E before multiplying it with W1.

Each experiment was run on a single NVIDIA A100 GPU with a total computation time of roughly
1200 days.

4.2 RESULTS

See Tables 2, 3 for the results of trained models. We observed that FC AoT P-Tuning performed
better than Kronecker AoT P-Tuning, and hypothesize that this result is mostly caused by the fact
that FC reparametrization utilized a pre-trained embedding matrix rather than learning biases from
scratch.

For RoBERTa-Base, FC AoT P-Tuning performed on par with P-Tuning v2 and produced the same
Macro score. For RoBERTa-Large, FC AoT P-Tuning outperformed P-Tuning v2 on GLUE tasks
and showed a Macro score equal to plain Fine-Tuning. AoT P-Tuning with DeBERTa-XL performed
on par with P-Tuning v2 (89.2 vs 89.3 macro scores respectively).

We also observed that both AoT P-Tuning reparametrizations mainly showed a lower variance of
metrics across different seeds. Note that P-Tuning v1 showed unstable performance and improved
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Speed measurements for baseline methods with sequence length equal to 384 for different
back-bone models. See Appendix Figure 9 for results with other sequence lengths and Section 4.3 for
details.

results with RoBERTa-Base (although still underperforming by a large margin when compared to
other methods).

See Figure 3 for macro scores of P-Tuning v2 and AoT P-Tuning with different prefix lengths p and
prefix ranks r2. We observed that P-Tuning v2 performed worse for RoBERTa-Base with shorter
prompt lengths and was comparable to or better than AoT P-Tuning when p > 50. For GLUE
tasks with RoBERTa-Large, FC AoT P-Tuning performed better for all prefixes p, while dropping
performance for large rank r. For DeBERTa-XL, both P-Tuning v2 and FC AoT P-Tuning performed
on par. We also provide per-task results with different prefix scales (see Appendix Figures 5, 7). It is
notable that in most cases, P-Tuning v2 suffers from a small prefix size p for Base and Large models,
and achieves results comparable with AoT P-Tuning with a larger p (which corresponds with the
results in Figure 3). At the same time, FC AoT P-Tuning mostly showed stable performance across
different ranks r, only performing unstably on a MultiRC task with a large rank r.

Compared with LoRA and Adapters methods, RoBERTa-Large Adapters showed a higher Macro
score with SuperGLUE than all P-Tuning methods, including AoT P-Tuning, even while showing
larger variance across task scores. For DeBERTa-XL, LoRA and Adapters marginally outperformed
P-Tuning methods on the macro score. BitFit performed worse than FC AoT P-Tuning, except for
RoBERTa-Base back-bone where it performed the same. From such a perspective, if the ability to

2Note that the best macro result across different scales of prefixes in these Figures differs from the macro
result from Tables 2 and 3, since the macro score from Tables 2 and 3 aggregates scores with different prefix
scales.
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perform multi-task inference without computational overhead is crucial, then AoT P-Tuning will not
dramatically reduce performance compared to LoRA and Adapters and could be used. Note that the
gap in performance between AoT P-Tuning and Adapters and LoRA became marginal with model
growth.

With per-task Expected Validation Performance (EVP) (Dodge et al., 2019), we observed that AoT
P-Tuning highly depends on the number of hyperparameter assignments (see Appendix Figures 6,
8). Although, in most cases, using less than 100 hyperparameter assignments for AoT P-Tuning is
enough for it to outperform P-Tuning v2, which is not crucial in most cases.

We also analyzed trained P matrices for FC AoT P-Tuning with the DeBERTa-XL model. See
Appendix Section C for more details.

4.3 INFERENCE SPEED OVERHEAD

In Figure 4 and Appendix Figure 9, we investigated the computational overhead of AoT P-Tuning
compared to other baselines.

We estimated inference time for RoBERTa-Base, RoBERTa-Large, and DeBERTa-XL models with
batch sizes ∈ [1, 16, 64] and sequence lengths ∈ [64, 128, 384]. For batch size equal to 1, we
evaluated the model 300 times, and 100 times for other values. We report mean values of inference
time normalized by the inference time of the vanilla model (i.e., plain fine-tuning).

We evaluated AoT P-Tuning on two setups. For the first setup, we fused P so that the model can
perform on its top speed. We did not perform fusing for the second setup. While a lack of fusing is
not required to use AoT P-Tuning, we report these results for reference. We also report LoRA results
for the experiments in which we did not fuse weights. This setup makes it possible to use LoRA in a
multi-task setup (see Section 3.1 for details).

We observed that the proposed method performed differently depending on the experiment’s parame-
ters. AoT performed with computational overhead for a small model (i.e., RoBERTa-Base), small
sequence length, and small batch size. We observed 12% overhead on inference speed compared
to plain fine-tuning for RoBERTa-Base with batch size 1 and sequence length 64. However, AoT
P-Tuning still performed faster than other baselines by a large margin (i.e., LoRA for RoBERTa-Base
with batch size 1 and sequence length 384 added 50 − 70% computational overhead compared to
fine-tuning).

Once model size or input size is increased, we observed that the overhead of adding biases for AoT
P-Tuning becomes negligible. The proposed method performed the same as plain fine-tuning (for
some experiments, we observed 1− 2% overhead, while for others, AoT P-Tuning performed even
faster than fine-tuning, which is a variation in inference time measurements). For the most practical
setup with large models (DeBERTa-XL), small batch size (= 1) and long sequence length (= 384),
AoT P-Tuning performed slightly faster than fine-tuning, while other methods performed 12− 25%
slower.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed AoT P-Tuning, which is a new method for parameter-efficient fine-tuning
of pre-trained models, and two reparametrizations of learnable weights for this method.

We observed that AoT P-Tuning performed on par or better than P-Tuning v2 based on the macro
scores of GLUE and SuperGLUE Benchmarking Datasets. In addition, compared to the LoRA and
Adapters methods with a large backbone model (i.e., DeBERTa-XL), we observed a speed increase at
the cost of only a marginal performance drop.

We experimented with two reparametrizations based on the Kronecker product and FC network. It
is possible to explore other possible reparametrizations for weight P , which could further increase
the performance of the proposed method. In addition, while we proposed a simple method, there are
many possible architectural changes which could also boost the performance of AoT P-Tuning and
reduce the number of necessary hyperparameter assignments.
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6 REPRODUCIBILITY

We organized our experiments in such a way that makes it possible to quickly reproduce all the results
reported in our paper.

tools/run_sweeps.py runs wandb sweeps used in our hyperparameter search and outputs
wandb agent commands to run these sweeps. Once the hyperparameter search is finished, tools/
glue_results.py and tools/superglue_results.py scripts are used to parse results
from these sweeps and output plots reported by us.

The data processing pipeline for all datasets used in this paper can be found in the zarya/data_
processing.py script. It could be helpful for tasks such as WSC, where several ways to tokenize
input sequences could affect the resulting performance.

We also provided requirements.txt (with fixed dependencies versions) and a Dockerfile with
our source files to make it possible to quickly reproduce our training setup without issues with
versions of libraries used for our experiments.
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A BACKGROUND

A.1 EVALUATION OF TRANSFORMER

Having an input sequence x = {x1, . . . , xn}, where xi is token index, the embeddings of input texts
are evaluated as H0 = {Ex1

, . . . ,Exn
}, where E ∈ R|V |×d is the embeddings matrix, |V | is the

vocabulary size, d is the size of the hidden state of the model, and Exi
is an embedding of the token

xi. Hidden states Hi are then passed to the (i + 1)-th layer of the Transformer to evaluate Hi+1

with a total l number of layers. To do so, Hi are first mapped through three matrices WQ, WK ,
WV ∈ Rd×d to get Q, K and V , which are then used to evaluate the attention layer’s results as:

A = attention(Q,K,V ) = softmax(
QKT

√
d

)V ∈ Rn×d. (4)

After A is evaluated, it is passed through the remaining layers3, including residual connections and
FC layers to get Hi+1. Here and later, we omit the layer index i for attention result A for visibility.

A.2 P-TUNING V1

Having a pre-trained Transformer LM with parameters Θ, instead of fine-tuning all parameters of
this model on a downstream task, it is possible to define soft prompts P ∈ Rp×d(Liu et al., 2021b),
where p is the length of prompt. P is then concatenated to input sequence embeddings as:

H ′0 = concat(P ,H0) ∈ R(p+n)×d. (5)

Then, only P and Classification Head are fine-tuned on a downstream task, while Θ remains frozen4.
Such parametrization of fine-tuning makes it possible to perform multi-task inference.

A.3 P-TUNING V2

Instead of concatenation of a single prompt P to the H0, Liu et al. (2021a) proposed to concatenate
soft prefixes at each layer of the Transformer model. To apply P-Tuning v2, soft prefixes PK ,PV ∈
Rp×d are defined for each layer and concatenated to the K and V matrices before evaluating the
attention K ′ = concat(PK ,K), V ′ = concat(PV ,V ). Then, Attention is evaluated as follows:

A′ = attention(Q,K ′,V ′), (6)

where i-th component of A′ could be then written as:

A′
i =

p∑
j=1

aj(Qi,K
′)PVj

+

n∑
k=1

ak+p(Qi,K
′)Vk. (7)

3In fact, Transformer architecture implies evaluation of multi-head Attention. We omit this in this paper for
simplicity since all derivations could be easily extended on the multi-head case.

4Original implementation of P-Tuning v1 (Liu et al., 2021b) implied utilizing the LM Head of a pre-trained
model instead of training a Classification Head. However, Liu et al. (2021a) later showed that using a separate
Classification Head performs marginally better.
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Note that a ∈ Rp+n are attention weights for the i-th token (we omit the i-th index for simplicity)
and thus

∑p+n
j=1 aj = 1.

As for P-Tuning v1, only parameters of soft prefixes PK ,PV and Classification Head are optimized
on a downstream task while freezing the parameters of a backbone model.

B INTUITION BEHIND AOT P-TUNING AND CONNECTION TO THE P-TUNING

Having H ′, after passing through WQ, WK , and WV we obtain Q′, K ′, and V ′. Note that

V ′ = HWV + {Px1
, . . . ,Pxn

}WV
def
= V + PxWV .

The result of evaluating Attention with AoT P-Tuning could be seen as:

A′
i =

n∑
j=1

aj(Q
′
i,K

′)Pxj
WV +

n∑
j=1

aj(Q
′
i,K

′)Vj . (8)

From such a perspective, there is a clear connection between AoT P-Tuning (Equation 8) and P-Tuning
v2 (Appendix Equation 7) with the following changes:

1. For AoT P-Tuning, attention weights aj , j ∈ 1, l are used for both terms in Equation 8.
2. For AoT P-Tuning, attention is evaluated on modified Q′. In addition, there is a difference

in the form of dependency of K ′ and V ′ on prefix weight. For AoT P-Tuning, we add
prefixes to K and V , while for P-Tuning v2, prefixes are concatenated to these matrices.

3. For AoT P-Tuning, the first term of Equation 8 implies evaluation of Attention with a prompt
which is dependent on the input text, while for P-Tuning v2, the prompt PV is constant.

Considering Equation 8, AoT can be seen as a form of the P-Tuning method, for which we embed
prefixes before evaluating the attention layer5.

C ANALYSIS OF TRAINED WEIGHTS

We investigated trained P matrices for WSC, COPA, CB, and RTE tasks with the DeBERTa-XL
model. Since FC AoT P-Tuning performed better than Kronecker factorization, we selected this
reparametrization method to report the results.

More specifically, we sorted rows of P matrices for each layer measured by the L2 norm and reported
the appropriate tokens for these rows. See Tables 7, 8, 10, 9 for results.

For the WSC task, there is a clear interpretation of trained rows for P , since rows with a large L2

norm represent tokens responsible for pronouns and names, which is crucial for solving WSC. For
the COPA task, we observed that the model tends to assign large norms for verb tokens. For the RTE
and CB tasks, P also assigns large norms for name tokens, which often occur in the training data,
while CB primarily modifies adverbs for later layers.

5It is possible to think of AoT P-Tuning as a method which adds bias after the evaluation of the Transformer
layer. In this case, it could be seen as a method that directly models the result of the evaluation of P-Tuning v2
with a slightly different computation order. However, we believe that this way is more difficult to consider.
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Task Metric Task Metric

CoLA Mattews Correlation BoolQ Accuracy

MRPC Accuracy+F1
2 CB Accuracy+F1

2

RTE Accuracy RTE Accuracy

SST-2 Accuracy COPA Accuracy

MNLI Accuracy MultiRC Accuracy+F1
2

QNLI Accuracy WSC Accuracy

QQP Accuracy+F1
2 WiC Accuracy

STSB Pearson+Spearman
2

Table 4: Metrics used in our experiments for each task. See Section 4.1 for more details.

Parameter Range
All Tasks, except RTE

P-Tuning v1/v2/AoT

batch size 16, 64

learning rate 1e−4, 5e−4, 5e−3, 1e−3

p 5, 10, 20, 50, 100

LoRA r 2, 4, 16, 32, 64

Adapters r 16, 32, 64, 128, 256

Kron. r 5, 10, 25, 30, 50

FC r 32, 64, 128, 256, 512

Fine-Tuning

learning rate 1e−5, 5e−5, 1e−4,
5e−4, 5e−3

RTE
batch size 16, 32, 64, 128

learning rate 1e−5, 5e−5, 1e−4, 5e−4,
5e−3, 1e−3, 2e−3, 1e−2

Parameter Range
P-Tuning v1/v2/AoT

batch size 16, 32, 64

learning rate 5e−5, 1e−4, 3e−4, 5e−4,
1e−3, 2e−3, 5e−3

p 5, 10, 20, 50, 100

LoRA r 2, 4, 16, 32, 64

Adapters r 16, 32, 64, 128, 256

Kron. r 5, 10, 25, 30, 50

FC r 32, 64, 128, 256, 512

Fine-Tuning

learning rate 1e−5, 5e−5, 1e−4,
5e−4, 5e−3

Table 5: Hyperparameter ranges used in experiments with GLUE and SuperGLUE benchmarking
datasets for RoBERTa (left) and DeBERTa (right) models. p is the prompt length used for P-Tuning
v1/v2, and r is the rank of weight factorization used for AoT P-Tuning (See Section 3.3). For GLUE
experiments, each hyperparameter set was evaluated with different seed values. See Section 4.1 for
more details.
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RTE
MNLI,
QQP QNLI

Other
Tasks WiC

CB,
COPA,
WSC MultiRC

Other
Tasks

Epochs 200 5 10 100 500 500 10 100
Patience 20 2 2 10 20 100 4 10

Table 6: The number of maximum epochs used for each GLUE and SuperGLUE Task. Once the Dev
score stopped increasing for "patience" steps, training was halted. See Section 4.1 for more details.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5: Per-task GLUE Benchmarking Dataset results for a different number of trained parameters
of P-Tuning v2 and AoT P-Tuning with RoBERTa-Base (a-h) and RoBERTa-Large (i-p). We also
provide results of plain fine-tuning for reference. See Section 4.2 for more details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6: Expected Validation Performance (Dodge et al., 2019) of trained models with GLUE
Benchmarking Datasets for RoBERTa-Base (a-h) and RoBERTa-Large (i-p). See Section 4.2 for
more details.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 7: Per-task SuperGLUE Benchmarking Dataset results for a different number of trained
parameters of P-Tuning v2 and AoT P-Tuning with RoBERTa-Large (a-g) and RoBERTa-Large (h-n).
We also provide results of plain fine-tuning for reference. See Section 4.2 for more details.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 8: Expected Validation Performance (Dodge et al., 2019) of trained models with SuperGLUE
Benchmarking Datasets for RoBERTa-Base (a-g) and RoBERTa-Large (h-n). See Section 4.2 for
more details.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 9: Speed measurement for baseline methods with sequence length ∈ [16, 64] for different
backbone models. See Section 4.3 for details.
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l# Tokens x with largest norm ||Px||2

0

likes, a, is, loves, was, to, as, wants, s, ., pony,
eded, himself, Man, were, and, I, has, I, are, Frank, ., hates,
As, A, A, like, It, crop, Frank, After, „ joins, As, Eric,
Likes, It, just, would, onna, him, To, behaving, after, in, because, behaves,
Is, We, Like

5

„ ., narrower, doorway, backdoor, window, lousy, shortest, nicer, checkpoint, knob,
thinner, narrowing, oub, quieter, BAD, ;, VID, rectangle, tighter, crappy, intruder, tongues,
fing, rimination, blocker, and, raiding, detector, unmarked, sharper, knife, coolest, thicker, hoops,
DOWN, lightsaber, asshole, millisec, KEY, sharp, token, slashing, Defenders, jug, Donna, slider,
wedge, dding, kb

10

her, Her, herself, him, above, she, out, hers, him, HER, She,
she, care, HER, above, Her, bold, CARE, cared, over, harder, louder, Above,
smarter, sooner, her, cares, better, Out, vind, stronger, She, taller, tougher, Him,
ahead, so, HIM, Susan, happier, up, Harry, aloud, higher, Above, SHE, could,
apart, barking, inem

22

., there, dry, for, There, Her, her, sword, the, arse, wy,
dry, duc, The, it, took, cr, Rig, og, There, landing, the, wide,
centrally, red, grass, sw, oa, above, engine, FT, spir, cd, Coun, Ross,
there, ws, guy, starter, mans, aniel, green, freely, d, wide, stall, far,
artz, THERE, didn

32

it, me, olit, Polit, Pat, him, Private, Susan, pat, he, her,
Self, Ins, Doc, Coun, Ang, Aut, Sil, ochond, me, Nob, IT, Senator,
Professional, Dri, itized, Je, Capt, Hillary, Whe, He, Kid, Registered, itious, Michelle,
Political, It, Shut, Phot, BIT, Politics, Bit, Jacob, ruct, Young, HE, Tu,
them, Mot, itu

37

him, they, it, they, her, them, their, his, he, it, its,
hers, theirs, was, he, Susan, old, older, THEY, They, ITS, forth, Georg,
Thom, Tom, erved, Carl, Anna, nob, anos, itans, to, Eric, itcher, Harry,
Tim, Jen, them, Kid, Jeremy, JOHN, Jennifer, hands, Todd, put, Thomas, she,
Dan, Michelle, s

46

chased, erved, house, houses, life, chasing, market, self, chase, raised, chester,
hunt, castle, HOU, atics, Singer, western, ogenous, rounded, stretched, esian, essed, omorphic,
horse, SER, central, ledge, hole, asio, Self, Self, iverse, oker, Judd, DF,
aday, paced, ourced, erness, Barkley, scape, sey, ationally, owned, landers, ded, study,
directed, OWN, produced

Table 7: Tokens with the largest L2 norm of P entries for the WSC task. See Section C for more
details.
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l# Tokens x with largest norm ||Px||2

0

fit, Loud, as, Air, Upon, Sets, Bound, Apart, scratched, sets, fit,
Upon, hosted, Shot, Unt, Host, fitt, Sight, atri, Ocean, ceed, ashore, set,
enture, underwent, planes, boats, Waves, Ali, shi, Active, Set, Atmosp, Airways, Host,
chat, Endless, pelled, rew, ached, unct, fitted, Proud, flu, itable, anson, Bound,
Assets, host, sets

5

set, Set, sets, Set, SET, Setting, setting, SET, set, padd, Setting,
Sets, sets, bed, Cause, setting, the, cause, tread, itch, paddle, cause, thirsty,
Khe, he, anned, this, ?, of, Cause, What, bidding, This, This, what,
What, a, his, lic, The, wish, fugitive, they, Bed, Air, wake, conscience,
., crowd, Let

10

?, ?, ?!, ??, ., ?", "?, )?, ???, ’?, set,
.?, !?, ?), !, ????, ...?, set, ?’, „ Set, Set, ed,
to, ??, ????????, as, ?????, ?)., setting, ?„ ?’", ?], sets, ...,
-, lt, —, :, lic, ???, led, ur, . . . , punching, of, t,
?"., sets, um

22

What, set, What, out, Set, sets, on, to, ’?, what, Set,
in, WHAT, Sets, Setting, WHAT, from, Setting, dropped, of, Dig, Got, ?’,
set, Exper, Gets, Ground, ...?, happened, Whatever, Your, decom, Getting, Got, overlooked,
Crack, )?, He, police, !?, happens, Suc, sets, what, Detective, GOT, Whatever,
SET, Getting, Flying

32

glued, hid, melted, ., sent, breaths, etz, breath, Breath, baptized, watch,
putting, tongues, braces, put, hid, bleach, icating, burying, aver, lifting, Illuminati, orneys,
melting, withdrawing, numb, radios, inserts, amins, avert, breathing, puts, informants, lifting, hide,
conscience, recommending, withdrawn, ransom, catch, Gael, Vern, roth, ears, Put, gins, breathed,
attorneys, loss, biblical

37

hid, dropped, raided, fought, ungle, Hide, destruct, smuggled, abandoned, looted, attacked,
barric, slid, dodged, drop, shut, drowned, hide, destruct, buggy, battled, shutdown, Hide,
Attack, hid, rawl, inaccessible, avalanche, slipped, deleted, rawling, encrypted, withdrawn, Killed, dug,
dropping, hoard, weapon, swallowed, defensive, destroy, exited, destroy, fight, Fighting, lost, deny,
suppress, encrypt, aggressively

45

hopped, chats, pumped, paints, backed, spun, tread, coached, reefs, privately, noodles,
buddies, malls, whisper, endorsements, squeezed, pals, blush, comed, edits, rallies, gigs, recol,
mocked, curs, Bare, bubbles, warmed, chat, profiles, emails, Dreams, pads, chalk, interviewed,
sneakers, rocked, Gloves, hubs, docs, shaved, Rise, primaries, listened, shy, essays, whispers,
leeve, girlfriends, socks

Table 8: Tokens with the largest L2 norm of P entries for the COPA task. See Section C for more
details.
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l# Tokens x with largest norm ||Px||2

0

gression, rium, History, orer, aic, history, oration, ré, orative, amic, history,
version, ural, osa, avage, ory, lia, range, History, rica, nation, root, USE,
á, ination, ulation, mentation, issance, state, rum, adal, idden, jection, oly, ó,
esis, orean, discovery, ria, ada, uration, entry, ord, verse, inations, ugal, itus,
olics, ESSION, ativity

5

., to, in, for, and, of, „ s, the, be, ’s,
by, on, or, from, at, or, with, :, ly, a, an, ;,
on, -, ., in, under, an, as, I, and, !, about, er,
In, but, ?, A, is, ed, a, that, o, ers, S, ing,
now, ), -

10

., of, and, for, morph, votes, elector, with, uild, igraph, tatt,
Assignment, as, contribut, advant, are, hod, Voters, matically, Init, rede, olon, on,
rehabilit, neum, mog, looted, req, by, Claim, the, ynchron, dule, promot, socio,
portfolios, goto, vulner, vote, setup, nominate, anism, s, subscrib, iop, lihood, slot,
elist, ramid, ysc

22

in, In, in, be, In, .", being, Straw, -, its, a,
Majority, of, a, Latest, the, Jack, ine, latest, it, Lawyers, Watts, ".,
"-, Massachusetts, their, .’, been, ure, Till, ’.", Signs, .’", Seventh, ?",
Taxes, Atlanta, !", electric, at, IN, ide, Current, Ladies, KP, Jersey, Students,
Knights, it, Anders

32

Se, Hum, Brazil, Mur, Hur, aver, Hum, Yugoslavia, Mour, jud, a,
Hawai, Pag, Kant, ibal, Malaysia, EFF, Hur, .", adj, mur, Islam, and,
Guinea, Britain, Sadd, Def, Niger, „ Holland, amus, Hay, Ma, Appro, Mur,
Countries, Wid, Asians, Nor, else, Calendar, Hed, Ved, ldom, english, Hind, mur,
bury, Ded, hol

37

[SEP], +., Sk, Ble, Gre, cloud, Else, ., +„ ".,
uran, cs, Ever, 2048, Ble, Keefe, Hyp, athan, Lib, Fra, Exp,
bro, Edit, Ros, Bean, Bo, Beck, Shell, sit, !., Saud, Phys, -,
shell, Ol, BLIC, -, Over, ea, orthy, Shot, pn, pas, ester, Reviewed,
Spe, sell, 2024

45

Chance, Sw, chance, Nine, Shares, Chance, Scientists, Tw, Besides, Prof, chances,
Sn, sw, TW, EFF, J, IJ, Besides, chance, Between, icist, GU, SW,
pan, Ja, Psy, tw, Between, xon, Bj, Conj, Shares, Moh, UTH, Prediction,
science, intend, Science, iov, Nine, jp, dds, NJ, Jr, y, Nin, etsy,
Ibid, ymm, Reporting

Table 9: Tokens with the largest L2 norm of P entries for the RTE task. See Section C for more
details.
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l# Tokens x with largest norm ||Px||2

0

.”, didn, doesn, don, ”., ,”, Didn, Doesn, didn, doesn, Don,
wouldn, Wouldn, Does, ”, couldn, DON, Did, hadn, But, Don, Isn, ).",
DON, shouldn, “, Obviously, Obviously, Isn, don, hasn, ))., Does, "?, ].",
wasn, Did, ],", ,., Naturally, ...", ),", Would, “, But, ”;, Naturally,
]., ,), DOES

5

„ ’t, !„ .„ ?„ didn, , not, to, +„ *„
)„ the, ., ]„ considered, doesn, in, , ,), a, /„ ,[,
you, don, „, ,., shouldn, ()„ hasn, ;, for, thought, weren, hadn,
thought, wasn, NOT, hair, ’, .;, aren, ‘„ Said, „ couldn,
isn, .—, idered

10

Shant, Georg, Expect, Led, Assistant, Amph, Registered, Ear, McA, THEIR, Prev,
Emb, -„ Called, Gw, Alc, Until, Rhod, Introduced, that, Lat, Unt, Ul,
Sv, Gh, to, of, Fernand, „ elta, jac, unch, Ov, Sebast, apologised,
JOHN, !"., Ll, hid, Somewhere, Been, Recently, and, Somebody, Fram, Coh, ’).,
Sty, Elsewhere, Unt

22

’s, ’re, A, ’ve, the, a, her, ’, be, A, a,
have, DOES, LIKE, ?", "?, ’d, )?, ?, s, ABOUT, ", Like,
Pant, didnt, ’m, ’?, E, The, doesnt, Was, re, :, ie,
Surely, ’ll, Corinth, At, Across, your, their, ?„ THEY, ...?, or,
Fra, HOW, )/

32

I, ’?, he, "?, ?’, )?, ’t, ”., .?, ...?, .”,
?"., ’:, He, !?, ?„ He, I, and, ?’", ?!", ?", ?).,
!’, he, .:, ?!, she, +., )!, ’., .’, !?",
,”, ’)., ???, !., ).", we, CLOSE, ‘., "!, .], .–, ????,
’/, ’re, .’"

37

., ’s, ’t, ?, ’, :, I, -, ’, „ of,
he, B, B, in, I, and, ’m, -, s, ", ’d, by,
for, ;, b, on, you, !, ", He, to, /, ’ve, y,
’re, ed, with, ., ’ll, a, back, the, b, she,
He, E, C

45

’t, not, NOT, the, not, Not, never, Not, ’s, ’re, NOT,
’ve, you, of, [SEP], t, nt, Never, The, in, NEVER, he, to,
the, [CLS], hardly, never, neither, I, „ ’m, cannot, no, The, annot,
it, Their, me, didnt, He, and, doesnt, Ear, a, ., Never, none,
if, on, nobody

Table 10: Tokens with the largest L2 norm of P entries for the CB task. See Section C for more
details.
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