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ABSTRACT

Existing contrastive methods of universal time series representation learning
mainly rely on distilling invariant patterns at varying scales and building con-
trastive loss with the help of negative sampling. However, the invariance assump-
tions may not hold in real-world time-series data, and the infamous negative sam-
pling could bring in new biases for representation learning. In this work, we
propose a novel contrastive learning approach toward time series representation
learning on top of trend-seasonality decomposition, namely TS-DC. TS-DC dif-
ferentiates itself from prior methods in three folds: 1) a time series decomposition
approach is devised to distill different aspects/components of a complex time se-
ries; 2) a novel component-wise contrastive loss is proposed in which negative
sampling is not necessary; 3) the informative signals of time series can be cap-
tured comprehensively by means of adaptive contrasting. Extensive experiments
on different public benchmark datasets validate the superior performance of our
proposed representation learning method.

1 INTRODUCTION

Representing informative signals from intricate and noisy time series (TS) data is challenging for
machine learning models (Gamboa, 2017). Time series representation learning (TSRL) has been
found beneficial for many downstream tasks, including classification, forecasting and anomaly de-
tection (Leng et al., 2009; Zerveas et al., 2021; Yue et al., 2022). Though there have been many
supervised TS feature extraction methods (Wu et al., 2018; Ruiz et al., 2021; Xiao et al., 2021), they
can hardly tackle the high-dimensional and sparsely labeled real-world TS data (Ching et al., 2018).
Unsupervised representation learning aims to extract low-dimensional and unified representation
without requiring labels, which sheds light on TS representation learning. In this work, we study the
problem of unsupervised time series representation learning (UTSRL).

Numerous recent works have come up with creative and interesting techniques toward unsupervised
representation learning in different domains (Pinheiro et al., 2020; Caron et al., 2018; Ren et al.,
2019b; Cheng et al., 2019). Inspired by this, a few contrastive learning approaches have been pro-
posed to address the UTSRL problem. The main idea goes like this: there exist key properties in a
time series that keep invariant across time and contexts, then one can encourage the model to learn
such underlying signals by means of data augmentation at certain or different semantic scales. For
example, rather than focusing on sub-sequence invariant signals (Franceschi et al., 2019), neighbor-
hood smoothness (Tonekaboni et al., 2020), or long-term dependency (Yang & Hong, 2022), Yue
et al. (2022) propose to leverage scale invariant information by means of hierarchical contrasting
and data augmentation methods (including series cropping and timestamp masking, etc.). Besides,
cross-view contrasting is another well applied method to enable the learnt representation to be aware
of transformation-/contextual-consistency (Eldele et al., 2021) in time series data.

However, due to the huge diversities among different time series data, it is challenging to construct
high-quality negative samples toward universal time series representation. Furthermore, since multi-
level noises exist in real-world time series data (Kostelich & Schreiber, 1993), it might be difficult to
tell generated representations from noises. Though it is useful to leverage large amount of negative
samples, increasing the number of negative samples does not necessarily help (Arora et al., 2019),
and extra biases could be raised by negative sampling (Chuang et al., 2020). In addition, distilling the
underlying and inherent features encoded in time series data, such as temporal dependencies (Xuan
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& Murphy, 2007), is challenging yet critical for unsupervised TS representation learning. While the
assumptions about TS-property-invariance may lead to spurious correlations, which could harm the
generalizability of UTSRL.

To this end, we propose a time series decomposition contrastive learning approach (named TS-DC)
for UTSRL. Specifically, we first propose a deep trend-seasonality decomposition method to ex-
amine underlying trend and seasonality in time series data with the help of variational auto-encoder
(VAE). To thoroughly exploit the signals in a time series, the remainder is further decomposed recur-
sively. Then, a component-wise contrastive loss is proposed to encourage the learnt representation
be closer to informative components. In this way, negative sampling can be avoided since the neg-
ative samples are deterministic and conditioned on the decomposition process only. Afterward, a
weight adjustment module is devised to balance the decaying weights of different components, such
that the adaptive contrasting can be achieved. We conduct extensive experiments on various bench-
mark datasets toward different downstream tasks (e.g., classification and forecasting), and the rich
results demonstrate that TS-DC outperforms existing SOTA unsupervised time series representation
learning methods with satisfactory margins. Main contributions of this work are summarized below:

• We propose a deep decomposition method to yield disentangled yet informative inherent
features for time series data without seeking contextual-invariance signals.

• We propose a novel component-wise contrastive learning method devoted to time series
data, such that the notorious negative sampling can be avoided.

• To fully capture the multi-faceted features in time series data, an adaptive contrasting mech-
anism is proposed.

2 RELATED WORK

Unsupervised Time Series Representation Learning. 1) Generative. Time series representations
can be obtained through generative models, like auto-encoders (Yingzhen & Mandt, 2018; Srivas-
tava et al., 2015; Malhotra et al., 2017; Chung et al., 2016). These methods generally embed the
input into a latent space via the encoder and decode the representation back to recover the input
signals. Whereas, the representation distribution of the generative method is modeled at point-
wise level, which may result in limited generalizability. 2) Contrastive. Contrastive learning has
achieved remarkable improvements toward unsupervised representation learning and has been ap-
plied to many different fields successfully, such as computer vision (Oord et al., 2018; Logeswaran
& Lee, 2018; Tian et al., 2020; Chen et al., 2020; Gao et al., 2021; Kuang et al., 2021) and speech
recognition (Schneider et al., 2019; Kharitonov et al., 2021; Cuervo et al., 2022; Wang et al., 2021).
There have been works that successfully apply contrastive learning techniques to time series data
(Franceschi et al., 2019; Tonekaboni et al., 2020; Yue et al., 2022; Eldele et al., 2021; Zerveas et al.,
2021). Franceschi et al. (2019) proposed an encoder formed by dilated convolutions that admits
variable-length inputs, and trained with a triplet loss using time-based negative sampling. Tonek-
aboni et al. (2020) studied the stationary properties of time series and incorporate sample weight
adjustment to produce generalizable time series representation. Eldele et al. (2021) proposed to en-
courage the invariance of different data augmentations and put efforts to learn robust representation
by means of cross-view prediction and contextual contrasting. However, the defects of these con-
trastive methods, such as sampling bias and invariance assumption, could lower the generalizabil-
ity of learnt time series representation. To relieve the sampling bias, Yang & Hong (2022) exploit
the instance-level augmentation with standard dropout on time-series data and devise a temporal-
spectral method to enrich the representations. Instead of negative sampling, we build the contrasting
pairs for UTSRL from a decomposition perspective, which is different from existing works.

Time Series Decomposition. STL (Seasonal-Trend decomposition using Loess) is one of the most
classic and widely-used decomposition method (Cleveland et al., 1990; Dokumentov et al., 2015;
Wen et al., 2019). However, the limited flexibility of these STL-based methods might not be able
to handle the time series data with large diversities. Recently, the effectiveness of applying deep
learning algorithms to the time series decomposition has been proved (Asadi & Regan, 2020; Wu
et al., 2021; Taylor & Letham, 2018; Oreshkin et al., 2019). Our decomposition method is similar to
N-Beats (Oreshkin et al., 2019), while we aim to maximize the gap between the decomposed trend
and seasonality, and re-generate the trend and seasonality, separately. In addition, we implement a
reverting process to assembly all the decomposed artifacts such that the input series can be recovered.
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Figure 1: The framework overview of TS-DC. A time series X ∈ RL×M is decomposed into
{X1,X2, · · · ,XN}, and the outcome representation Z is encouraged to imitate the representations
of decomposed components, i.e., {Z1,Z2, · · · ,Zn}, separately. Ln

C(·) denotes the component-wise
contrastive loss, then an adaptive contrasting mechanism is employed to harness the signals in dif-
ferent components comprehensively.

3 METHODOLOGY

Problem Statement. Given an M -dimension multivariate time series X = [x1,x2, · · · ,xM ],
∀m ∈ {1, 2, · · · ,M}, xm ∈ RLm where Lm denotes the length of m-th series in X . ∃ 1 ≤ m1 <
m2 ≤ M such that Lm1 ̸= Lm2 . Then, unsupervised time series representation learning (UTSRL)
aims to learn a function fθ : RL×M → RL×D (L = max(L1, · · · , LM ) and D > 0) that maps X
into a representation Z, where Z can describe X as much as possible.

As shown in Figure 1, TS-DC consists of multiple encoders. The first encoder absorbs the input
X ∈ RL×M and generates the initial representation Z ∈ RL×D. Meanwhile, we decompose X
into additive trend, seasonality, and remainder. Then the remainder is decomposed into pairs of trend
and seasonality recursively. Each pair of trend and seasonality are added back to form a component
Xn (n = 1, 2, · · · , N ). After further embedding Xn into Zn, a component-wise contrastive loss
is applied, separately. At last, the representations of different components are taken into account
comprehensively by means of adaptive contrasting. We introduce the details of our approach in
following subsections separately.

3.1 TIME SERIES DECOMPOSITION

The trend-seasonality decomposition can reveal underlying insights of a complex time series (Laptev
et al., 2015; Wen et al., 2019). Trend usually reflects long-term increase and decrease, seasonality
depicts periodic patterns, and spike & dip can be encoded in the remainder. The detailed operations
in a single decomposition can be seen in Figure 2.

Specifically, we construct a time vector T = [1, t, · · · , tc] where t = ([1, 2, · · · , L − 1]/L)T

and c > 0 is a constant that controls the range of trend. Then we can obtain the trend for the
first decomposition as X̃t

1 = T × FC(X), where FC(·) denotes a fully connected network. Sim-
ilarly, the seasonality can be extracted with Fourier Transform: X̃s

1 = S × FC(X), where

Figure 2: An illustration of a single decomposition in the TS-DC framework.
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S = [1, cos(2πt), · · · , cos(2π(L2−1)t), sin(2πt), · · · , sin(2π(
L
2−1)t)] is the matrix of sinusoidal

waveforms for extracting seasonal and periodic patterns. To ensure the validity of decomposed trend
and seasonality, w.l.o.g., we assume that trend Xt

1 and seasonality Xs
1 are Gaussian variables, and

the distributions of Xt
1 and Xs

1 can be obtained by a mapping function g(·),
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As shown in Figure 1, the decomposition operations can be carried out recursively. The n-th decom-
position takes the residual of previous decomposition as input, i.e., Xr

n = Xr
n−1 − (Xs

n + Xt
n).

Then, we aim to maximize the sum of all KL-divergences in different decomposition operations,

L̃KL =

N∑
n=1

DKL(p(X
t
n)∥p(Xs

n)). (3)

To simplify the training procedure, we instead minimize LKL = 1/(1 + eα·L̃KL), where α is a
hyper-parameter. In addition, in order to reduce the variance of decomposition operations, the sum
of all the decomposed components should be close to the original time series X ,

Ldecomp = ∥X −
n∑

i=1

(Xs
i +Xt

i )∥2. (4)

By minimizingLdecomp, we can ensure the quality of decomposition operations w.r.t. approximating
original time series.

3.2 COMPONENT-WISE CONTRASTING

The above decomposition can be denoted as X ≈
∑N

n=1 Xn where Xn = Xs
n + Xt

n. Basically,
component Xn implies the trend and seasonality of input X regarding a specific aspect. To enforce
the outcome representation to learn the complex signals encoded in X from different perspectives,
for the n-th decomposition, we treat embeddings Zn and Zm (n ̸= m) as positive and negative,
respectively. As a result, the trend and seasonality of Xn (n = 1, 2, · · · , N ) can be highlighted by
contrasting positives with negatives,

Ln
c (X,Xn) = − log

eE(X)T E(Xn)∑N
n=1 e

E(X)T E(Xn)
= − log

eZ
TZn∑N

n=1 e
ZTZn

, (5)

where E(·): RL×M → RL×D denotes an arbitrary encoder. Essentially, in Equation (5), negative
sampling is not required since all the negative samples are deterministic, i.e., the remaining de-
composed components {Xm|m ̸= n}. Negative sampling is required for most contrastive learning
methods, which is yet often tricky, biased and time consuming (Liu et al., 2021). There exist pio-
neering works to get contrastive learning rid of negative samples in the computer vision field (Grill
et al., 2020; Chen & He, 2021). TS-DC gets the contrastive learning rid of additional biases brought
by negative sampling and avoids data augmentation in time series representation learning.

3.3 ADAPTIVE CONTRASTING

Both informative signals and noises exist in decomposed components of the original time series.
However, as the decomposition proceeds recursively, it is reasonable to assume that the capability
of accounting for the raw time series is decaying to some extent because of the additivity of trend-
seasonality decomposition, i.e., Xr

n = Xr
n−1−(Xt

n+Xs
n). Therefore, we combine the component-

wise contrastive losses to form a new loss:

Lc =

N∑
n=1

1

nβ
Ln
c (X,Xn), Ln

c ∈ RL×D, (6)
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where β > 1 is a constant that controls the decaying speed. Through minimizing the objective in
Equation (6), different component-wise contrastive losses can be jointly optimized. Besides, with
the monotonically decreasing weights, prior decomposed components will be paid more attention
when learning the outcome representation. However, the above configuration of decaying weights
is not flexible enough to handle complex and highly diverse time series data.

Weight Adjustment. To implement a data-driven weight adjustment, we can inspect the decompo-
sition at a different angle. The decomposition process can be written as: X1:N = DN

θ (X), where
DN

θ (·) denotes the decomposition module consisting of N decomposition operations with param-
eters θ, which means that the decomposition is determined by X and θ: (X, θ) → X1:N . On
the other hand, according to the Bayes’ theorem (Ghosh et al., 2006), the parameters θ satisfy:
p(θ|X) = p(X|θ)p(θ)/p(X). In other words, θ can be derived from X: X ⇒ θ. Consequently,
the decomposition X1:N is actually determined by the original time series X only. Therefore, we
adopt a non-linear function hϕ(·) to learn correlations between decomposed components and the
time series X directly.

W = hϕ(X), ∥wn∥1 = 1, n = 1, 2, · · · , N, (7)

where W ∈ RN×D and W = [w1,w2, · · · ,wN ]T . We then rewrite the loss in Equation (6) below:

Lac =

N∑
n=1

wn

nβ
Ln
c (X,Xn). (8)

In this way, through contrasting the outcome representation with the signals in different components
jointly and adaptively, the outcome encoder will be encouraged to be aware of multi-faceted patterns
in the time series data.

Optimization. Finally, we construct a composite loss and optimize it jointly. To be specific, by
combining the alternative of Equation (3), plus Equations (4) and (8), we have

L = γ · LKL + λ · Ldecomp + ζ · AGG(Lac) , (9)

where γ, λ, and ζ are trade-off parameters, and AGG(·) is a aggregator yielding real-value.

4 EXPERIMENT

We evaluate the representations learnt by TS-DC on univariate as well as multivariate time series
datasets, respectively. Besides, we use the downstream tasks including classification, forecasting and
anomaly detection to report the performance comparisons. The results of forecasting and anomaly
detection are available in Appendices D and E.

4.1 EXPERIMENT SETTINGS

Classification Datasets. The UCR archive (Dau et al., 2019) consisting of 128 datasets is adopted
for univariate time series classification, and the UEA archive (Bagnall et al., 2018) (including 30
datasets) is employed for multivariate time series classification. We employ zero-padding for miss-
ing values to ensure the time series data are with the same length in a dataset. All the datasets in
UCR and UEA archives are split into train and test data already, and the time series in 85 UCR
datasets are already z-normalized. We split the train data as 4:1 for training and validation for both
UCR and UEA archives. For UCR archive, we apply z-normalization of train data to validation and
test data accordingly. While for UEA archive, we adopt an instance-wise z-normalization suggested
by (Rakthanmanon et al., 2013) for the training, validation, and testing data, separately.

Baselines. We select six time series representation learning methods as competitors: 1) T-
Loss (Franceschi et al., 2019) uses time-based negative sampling and a triplet loss to obtain general-
purpose representations; 2) CPC (Oord et al., 2018) learns the representations by predicting the
future in latent space with autoregressive model; 3) TNC (Tonekaboni et al., 2020) learns the time
series representations by ensuring the distribution of signals within a neighborhood is distinguish-
able from the distribution of non-neighboring signals; 4) TS2Vec (Yue et al., 2022) performs con-
trastive learning over augmented context views to learn the robust contextual representation for each
timestamp; 5) TST (Zerveas et al., 2021) presents a Transformer-based framework for time series
representation learning; and 6) TS-TCC (Eldele et al., 2021) uses a temporal and contextual con-
trastive method to learn the time series representations. 7) Supervised. We additionally compare a
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Table 1: The averaged scores on 128 UCR datasets and 30 UEA datasets, the best are in boldface
and the underline means the second best.

Dataset TS-DC TST TS-TCC TS2Vec TNC CPC T-Loss Supervised

UCR ACC 0.454 0.424 0.416 0.382 0.358 0.424 0.416 0.449
AUPRC 0.686 0.649 0.639 0.618 0.510 0.623 0.623 0.666

UEA ACC 0.399 0.375 0.347 0.348 0.311 0.343 0.369 0.385
AUPRC 0.569 0.564 0.546 0.541 0.514 0.551 0.503 0.569

Table 2: Performance comparisons on univariate time series datasets w.r.t. classification task.

Method
Coffee ECG5000 FordB Ham Strawberry

ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

TST 0.357 0.395 0.881 0.688 0.550 0.522 0.510 0.517 0.723 0.791
TS-TCC 0.607 0.628 0.846 0.735 0.529 0.528 0.563 0.581 0.668 0.687
TS2Vec 0.464 0.469 0.599 0.626 0.544 0.557 0.521 0.482 0.625 0.634

TNC 0.535 0.582 0.583 0.512 0.553 0.499 0.542 0.475 0.565 0.577
CPC 0.429 0.446 0.811 0.737 0.511 0.540 0.573 0.506 0.710 0.738

T-Loss 0.571 0.671 0.651 0.512 0.539 0.509 0.521 0.536 0.720 0.800

Supervised 0.500 0.531 0.896 0.698 0.549 0.547 0.542 0.552 0.801 0.838

TS-DC 0.785 0.710 0.868 0.841 0.565 0.573 0.531 0.566 0.864 0.919

supervised method which is implemented with the same encoder adopted by the unsupervised mod-
els, but the encoder as well as the downstream model (e.g., classifier or forecaster) are learned syn-
chronously with the supervision signals (see Appendix A.1). Note that, to fairly compare the effec-
tiveness of different TS representation learners, we employ a Transformer-based encoder (Vaswani
et al., 2017) as the backbone encoder for both TS-DC and baselines in the experiments, and more
implementation details are available in Appendix A.2.

Implementation Details. The dimensionality of representation Z is set to 128. In time series de-
composition, a fully connected network (i.e., FC(·)) consisting of 2 nonlinear layers with the hidden
size 256 is adopted. The trend-seasonality decomposition operation is carried out 3 times in the
experiments (i.e., N = 3). The hyperparameter α used in LKL is 0.5. The constant control-
ling the decaying weights, i.e., β, is 2. The trade-off parameters in Equation (9) is configured as
γ = λ = ζ = 1. Besides, we construct an RNN-based deep model with the hidden size 128 as the
downstream classifier. The non-linear function hϕ(·) in Equation (7) is a 2-layer fully connected
network with the hidden size being 256.

Evaluation Settings. All the models are trained on an Nvidia P40 GPU with CUDA 10.2. More
parameter settings employed in the evaluation can be found in Appendix A.3. In addition, we use
metrics Accuracy and AUPRC (i.e., area under precision-recall curve) for evaluating classification
performance. For both Accuracy and AUPRC, the larger the better.

4.2 TIME SERIES CLASSIFICATION
The averaged Accuracy and AUPRC scores of six unsupervised methods and the supervised method
on the UCR and UEA archives can be seen in Table 1. On average, we have achieved 7% accuracy
and 6% AUPRC improvements on 128 UCR datasets, and 6% accuracy and 0.9% AUPRC improve-
ments on 30 UEA datasets, respectively. Furthermore, with comparison to the supervised method,
TS-DC also achieves comparable performance.

4.2.1 UNIVARIATE TIME SERIES RESULTS

The full ACC. results of 128 UCR datasets can be found in Appendix F.1. Here we report the perfor-
mance of five selected datasets in Table 2 to elaborate the effectiveness of different representation
learning methods. The descriptions about these five datasets can be found in Appendix A.4.

TS-DC outperforms most of the UTSRL methods and performs comparably with the supervised
method. Besides, we have following observations in Table 2. 1) TST achieves better performance
when the training data is of large amount, which is also the requisite of Transformer-based model. 2)
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Table 3: Performance comparisons on multivariate time series data w.r.t. classification task.

Method
Epilepsy FaceDetection Heartbeat PenDigits RacketSports

ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

TST 0.367 0.528 0.578 0.617 0.667 0.495 0.903 0.985 0.361 0.549
TS-TCC 0.281 0.524 0.517 0.534 0.615 0.467 0.963 0.997 0.333 0.501
TS2Vec 0.313 0.496 0.521 0.516 0.630 0.503 0.946 0.991 0.375 0.532

TNC 0.383 0.564 0.520 0.518 0.672 0.482 0.647 0.930 0.285 0.509
CPC 0.281 0.535 0.502 0.499 0.641 0.487 0.828 0.962 0.292 0.561

T-Loss 0.344 0.592 0.585 0.605 0.646 0.484 0.889 0.984 0.292 0.557

Supervised 0.328 0.555 0.577 0.602 0.583 0.476 0.981 0.998 0.333 0.554

TS-DC 0.320 0.642 0.602 0.653 0.703 0.503 0.978 0.997 0.458 0.728

Both TS-TCC and TS2Vec use the temporal and contextual information to construct the contrastive
loss. TS2Vec utilizes sampled subseries at different scales, while TS-TCC explores the full time
series, this difference may account for that TS-TCC performs better than TS2Vec. 3) TNC highlights
the local smoothness in time series data, which might be helpful in handling limited data (e.g., Coffee
dataset) or noisy data (e.g., FordB dataset). 4) CPC and T-Loss are two distinct contrastive methods,
the former adopts a probabilistic contrastive loss and the latter applies instance-wise contrastive
loss. On ECG5000 dataset, CPC achieves better performance than T-Loss, which demonstrates the
strength of probabilistic contrastive loss in modeling instant data.

4.2.2 MULTIVARIATE TIME SERIES RESULTS

The classification performance on 5 UEA datasets are reported in Table 3 (see Appendix F.2 for full
ACC. results). The brief descriptions about these five datasets are available in Appendix A.5.

In general, as depicted in Table 3, TS-DC still performs the best most of the time. Besides, it can
be seen that, TST achieves very competitive performance toward multivariate time series classifi-
cation, which can validate the superiority of Transformer-based model on high-dimensional data.
T-Loss outperforms CPC w.r.t. multivariate time series classification, which demonstrates the limi-
tation of the probabilistic contrastive loss for high dimensional data.

(a) TS-DC. (b) Supervised. (c) TST. (d) TS-TCC.

(e) TS2Vec. (f) TNC. (g) CPC. (h) T-Loss.

Figure 3: t-SNE plots of the representations learnt by different methods on the ECG5000 dataset.

4.2.3 VISUALIZING LEARNT REPRESENTATIONS

In addition, we employ t-SNE plots to visualize the representations generated by different TS repre-
sentation methods on ECG5000 dataset in Figure 3. There exist 5 types of time series in ECG5000
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Table 4: Ablation study of loss terms in the final objective of TS-DC.

Univariate Multivariate

Method Strawberry ECG5000 FordB Heartbeat FaceDetection RacketSports
ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

w/o LKL 0.842 0.907 0.822 0.731 0.548 0.550 0.703 0.467 0.605 0.653 0.458 0.775

w/o Ldecomp 0.842 0.909 0.812 0.734 0.493 0.527 0.703 0.540 0.630 0.675 0.451 0.745

w/o LKL,Ldecomp 0.840 0.914 0.819 0.707 0.523 0.529 0.703 0.542 0.593 0.635 0.465 0.761

w/o Lac 0.826 0.898 0.879 0.758 0.548 0.572 0.703 0.497 0.597 0.636 0.319 0.681

TS-DC 0.864 0.919 0.868 0.841 0.565 0.573 0.703 0.503 0.602 0.653 0.458 0.728

dataset. In Figure 3, it can be seen that TS-DC achieves competitive performance comparing to the
supervised method with respect to clustering samples in the same category. Besides, for clustering
samples of the rare class, i.e., class 3, 4 and 5, TS-DC outperforms most of the alternative unsuper-
vised TS representation learning methods. Another showcase can be found in Appendix C.1.2.

4.3 MODEL ANALYSIS

The superior performance achieved toward downstream tasks validates the effectiveness of TS-
DC in learning informative TS representations. Here, we explain underlying mechanisms contribut-
ing to the performance achieved by TS-DC (the additional parameter sensitivity analysis can be
found in Appendix B).

4.3.1 ABLATION STUDY OF LOSS TERMS IN FINAL OBJECTIVE

We implement tailored TS-DC by omitting LKL, Ldecomp, and Lac in Equation (9), respectively.
Table 4 reports the corresponding performance comparisons. As depicted, the proposed contrast-
ing mechanism benefits the downstream classifier consistently (refer to w/o Lac). Besides, the
performance of univariate TS classification might be lowered if the decomposed components lack
expected properties, such as trend-seasonality distinguishability (attributed to LKL) and TS recon-
structability (attributed to Ldecomp). However, for multivariate TS classification, the contributions
of decomposition are not good enough, which is probably accounted for the limitation of temporal
decomposition on high-dimensional data. Basically, the relative contributions of LKL, Ldecomp,
and Lac in Equation (9) are not impressive since the loss terms cannot fully reflect the contributions
of decomposition and contrasting mechanism of TS-DC. LKL and Ldecomp can enforce the de-
composed components behave as expected, and Lac possesses the contrasting power of TS-DC to a
certain extent. In addition, we showcase t-SNE plots of TS-DC and its variants in Appendix C.1.1.

4.3.2 INSPECTING TIME SERIES DECOMPOSITION

With the time series decomposition, we can dispatch trend and seasonality of a time series into
different components, which can describe original time series to varying degrees. We showcase the
univariate time series and the decomposed components on ECG5000, FordB, Ham, and Strawberry
datasets in Figure 4. We can see that more informative signals are captured by the earlier component,
and the first component usually acts as the most informative one that accounts for original time
series. As the decomposition proceeds, the latter components contain less informative signals and
the level of noise grows as well. Thus, the prior components should often be paid more attention. In

(a) ECG5000. (b) FordB. (c) Ham. (d) Strawberry.

Figure 4: Showcases of the decomposed series yielded by TS-DC on four datasets. Here, the input
time series is decomposed into 3 components, i.e., X = {X1,X2,X3}.
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Table 5: Ablation study of the adaptive contrasting mechanism in TS-DC.

Univariate Multivariate

Method
Coffee Ham FordB Heartbeat FaceDetection RacketSports

ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

TS-DC−W 0.714 0.718 0.531 0.541 0.508 0.511 0.495 0.602 0.500 0.501 0.188 0.513
TS-DCβ=0 0.679 0.703 0.427 0.470 0.494 0.495 0.297 0.478 0.497 0.510 0.208 0.544

TS-DCβ=0,−W 0.643 0.705 0.458 0.500 0.525 0.510 0.297 0.481 0.500 0.486 0.125 0.460

TS-DC 0.785 0.710 0.531 0.566 0.565 0.573 0.703 0.503 0.602 0.653 0.458 0.728

addition, it is noteworthy that for some cases, the decomposed components behave similarly (e.g.,
Figure 4c), which can validate the necessity of adaptive contrasting of TS-DC toward representing
complex time series data. More results can be found in Appendix C.2.2.

4.3.3 ABLATION STUDY OF ADAPTIVE CONTRASTING

As discussed in Section 4.3.2, the amount of insightful signals contained in different components
differs. We combine the monotonically decreasing weights plus a data-driven weight adjustment to
realize the adaptive contrasting. Though we showcased the adaptive contrasting is necessary, we still
wonder how the monotonically decreasing weights and the data-driven weight adjustment contribute
to the overall performance of downstream tasks. We separately train the model without weight ad-
justment (i.e., TS-DC−W ), without predefined monotonically decreasing weight (i.e., TS-DCβ=0)
and without adaptive contrasting (TS-DCβ=0,−W ) to inspect the effects of the decaying weights
and the weight adjustment comprehensively. Here we report the classification performance on the
univariate time series and multivariate time series datasets in Table 5, the t-SNE plots of the obtained
representations can be found in Appendix C.3.1. In particular, the predefined decaying weights play
an important role in learning useful representations (see TS-DC−W ). While the weight-adjustment-
only mechanism performs much worse (see TS-DCβ=0), even harms the learnt representations with-
out any adaptive contrasting mechanisms (i.e., TS-DCβ=0,−W ), such as, the performance reported
on Ham, FordB, and FaceDetection datasets. But the weight adjustment mechanism can greatly im-
prove the effectiveness of the representation learning with the help of predefined decaying weights,
which further validates the effectiveness of the adaptive contrasting in TS-DC.

5 DISCUSSION

The challenges encountered in UTSRL are different from those in other domains because of the
intricate characteristics in time series data. Besides the common issues of contrastive learning, like
sampling bias and learning robustness, how to highlight informative time series patterns effectively
is of great importance as well. In this work, we found that through the time series decomposition,
the performance of representation learning can be improved with the help of contrastive learning.
Due to the nature of non-stationary, the decomposed components of a time series differ from each
other. To harness the decomposed components comprehensively, we propose an adaptive contrasting
mechanism consisting of weight decaying and weight adjustment. However, it is challenging to
learn the best weight configuration for highly diverse time series data. Therefore, a more robust and
automatic weighing mechanism need to be explored. In addition, we propose a component-wise
contrastive learning method toward UTSRL, while the components with high level noise should be
resisted, thus, how to pick the high-quality components is another open problem.

6 CONCLUSION

In this work, we studied the problem of unsupervised time series representation learning which is
beneficial for multiple downstream tasks. To tackle the time series representation learning problem,
we proposed a time series decomposition contrastive learning approach, namely TS-DC. Specifi-
cally, TS-DC employs trend-seasonality decomposition to construct a serial of components for a
time series. Then, a component-wise contrastive loss was proposed, such that the negative sampling
is avoided and the informative signals of time series data can be fully captured. Moreover, we de-
vised an adaptive contrasting mechanism to comprehensively leverage the decomposed components
in a time series for better representation learning. Extensive experiments on multiple benchmark
datasets toward different downstream tasks validate the effectiveness of TS-DC.
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7 REPRODUCIBILITY STATEMENT

The source urls to the baselines and the links to the benchmark datasets used in this work are summa-
rized in ‘src-urls.pdf’ (in the uploaded supplementary materials). In addition, detailed descriptions
about the implementations are listed below. 1) Dataset. The datasets used for the classification tasks
are introduced in Section 4.1, the first paragraph in Section 4.2.1 and Appendix A.5. The forecasting
datasets are introduced in Appendix D, and the datasets used for anomaly detection are introduced
in Appendix E. 2) Source Code of TS-DC. The source code of the proposed algorithm in this paper
is included in the supplementary materials, named ‘tsdc.src.zip’. 3) Implementation Details. The
parameter settings of our model can be found in Appendix A.3, and the implementation details of
the baseline methods are described in Appendix A.2.
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A EXTRA EXPERIMENT SETTINGS

In the empirical study, to fairly compare different time series representation learning methods, the
same encoder as well as the same downstream algorithm (for classification or forecasting or anomaly
detection) is employed to evaluate the effectiveness of learnt representations.

A.1 TRAIN THE ENCODER: SUPERVISED V.S. UNSUPERVISED

As introduced in the descriptions of baseline settings in Section 4.1, we implement a supervised
method as a competitor. In particular, the training procedure of supervised time series representation
learner is different from unsupervised time series representation learning, which is demonstrated in
Figure 5. For supervised method of TS representation learning, the representation learner (i.e., the
Encoder in Figure 5a) is trained together with the downstream model (e.g., a classification model),
guided by the supervision signals. Whereas, as depicted in Figure 5b, for UTSRL, the representation
learner is trained with the help of self-supervised loss, such as contrastive loss or reconstruction loss.
Then, the trained Encoder is adopted directly to generate embeddings, and the downstream model is
optimized with the supervision signals independently.

(a) Supervised fashion.

(b) Unsupervised fashion.

Figure 5: Two different ways of training the time series representation learner: supervised and
unsupervised.

A.2 IMPLEMENTATION DETAILS

Implementation Details of Unsupervised Baselines.
1) TNC (Tonekaboni et al., 2020) chooses the adjacent segments as the positive samples and non-
neighborhood segments as the negative samples. In particular, the size of sampling window is set
to be ⌊1/6 · L⌋ where L is the time series length, and the number of negative samples is set as
5. Then, we follow the other settings as recommended. 2) For CPC (Oord et al., 2018) and T-
Loss (Franceschi et al., 2019), we follow most of the implementation settings introduced in (Tonek-
aboni et al., 2020). Besides, the number of time steps for CPC is set as ⌊1/10 · L⌋ or 2 if L < 20
(L is the time series length). The number of negative samples is 3 for T-Loss and the window size
is also set as 1/10 · L. 3) For TS2Vec (Yue et al., 2022), the temporal unit is set to 0 and the
max train length is 3000. 4) For TS-TCC (Eldele et al., 2021) and TST (Zerveas et al., 2021), the
recommended parameter settings are employed for the evaluation.

Implementation Details of Backbone Encoder and Downstream Classifier.
The encoder used in this paper is implemented following the encoder in Transformer which is built
on top of multi-head attention (MHA). In particular, the number of heads is set to 8, and 3 encoder
layers are adopted. Besides, the embedding dimension in MHA is set to 128. The encoders in TS-
DC are with the same architecture and share the same parameters. For classification, the downstream
classifier consists of a 1-layer GRU with hidden size 256 and a 2-layer MLP network with hidden
size 256, and the ReLU activation function is adopted.
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A.3 MORE EVALUATION SETTINGS

The shared experimental settings in the evaluation are as follows. We utilize an Adam optimizer with
learning rate 1e− 3 in the experiments. The batch size is 16 for the datasets that contain more than
100 samples, otherwise, the batch size is set as 2. The training procedure is repeated in 20 epochs at
most, and early stopping is adopted where the patience is set to 5.

A.4 DESCRIPTIONS OF THE DATASETS FOR UNIVARIATE TIME SERIES CLASSIFICATION

We briefly introduce the selected datasets for elaborating univaraite time series classification results
in the main text (refer to Section 4.2.1) as follow. 1) Coffee (Briandet et al., 1996) consists of
food spectrographs and contains 28 train samples and 28 test samples with 286 time points; 2)
ECG5000 (Goldberger et al., 2000) is the ECG recordings with the series length 140, and there are
500 samples for training and 4500 for testing; 3) FordB has 3636 samples for training and 810 for
testing, each time series has 500 time points (the training data were collected in operating conditions,
while the test set were collected under noisy conditions); 4) Ham (Olias et al., 2006) composes of
the food spectrographs as well, the train/test size is 109/105; 5) Strawberry is obtained by Fourier-
transform infrared spectroscopy (FTIR) including 613 and 370 samples for training and testing,
respectively, with 235 time points being collected.

A.5 DESCRIPTION OF THE DATASETS FOR MULTIVARIATE TIME SERIES CLASSIFICATION

The descriptions of the selected datasets for multivariate time series classification (see Section 4.2.2)
are briefly introduced below. 1) Epilepsy (Villar et al., 2016) was collected from 6 participants
using a tri-axial accelerometer on the dominant wrist whilst conducting 4 different activities. This
dataset contains 137 training samples and 136 testing samples, and the dimension and length of each
sample is 3 and 207, respectively. 2) FaceDetection is an EEG dataset recorded from 16 different
subjects, the train/test size is 5890/3524, the length and dimension of each sample is 62 and 114,
respectively. 3) Heartbeat (Liu et al., 2016) is the heart sound recording dataset. It includes 204
training samples and 205 testing samples, and the length of each sample is 405 with dimension 61.
4) PenDigits (Alimoglu et al., 1996) includes 7494 training samples and 3498 testing samples, and
each sample contains 8 points where each one is with 2 dimensions. 5) RacketSports contains 151
training instances and 152 testing instances, for each instance, the time series length is 30 and the
dimensionality is 6.

(a) Ham. (b) FordB. (c) ECG5000. (d) Strawberry.

(e) FaceDetection. (f) PenDigits. (g) RacketSports. (h) Heartbeat.

Figure 6: Sensitivity analysis of α in terms of classification performance (Accuracy and AUPRC)
on univariate time series (Figures 6a to 6d) and multivariate time series (Figures 6e to 6h).
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Table 6: Comparisons of classification performance against different β values.

Univariate Multivariate

Method
ECG5000 Ham FordB RacketSports PenDigits FaceDetection

ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

TS-DCβ=1 0.890 0.721 0.615 0.532 0.555 0.572 0.438 0.467 0.983 0.998 0.573 0.610
TS-DCβ=2 0.868 0.841 0.531 0.566 0.565 0.573 0.458 0.728 0.978 0.997 0.602 0.653
TS-DCβ=3 0.884 0.714 0.583 0.563 0.556 0.572 0.422 0.566 0.984 0.998 0.576 0.618
TS-DCβ=4 0.885 0.678 0.583 0.536 0.579 0.612 0.414 0.568 0.976 0.997 0.578 0.622

B PARAMETER SENSITIVITY ANALYSIS

In accordance with the experimental results in the main text, we report the parameter sensitivity
analysis on the same datasets adopted in Section 4.2.

B.1 DIVERGENCE BETWEEN TREND AND SEASONALITY IN DECOMPOSITION

The parameter α in LKL (see Section 3.1) affects the divergence between the decomposed trend and
seasonality of a time series. We analyze the classification performance of the learned representation
yielded by TS-DC on different datasets with varying α from 0.1 to 3, which is demonstrated in Fig-
ure 6. As depicted (Figures 6a to 6d), univariate time series classification is more sensitive to α, i.e.,
the KL-divergence between the decomposed trend and seasonality. The probable reason behind is
that the KL-divergence between decomposed trend and seasonality of univariate time series data is
relative large, which means that the decomposition of univariate time series data is more easier. This
can be further validated by examining the effect of α on multivariate time series data (see Figures 6e
to 6h), which show that multivariate time series is immune to the time series decomposition.

B.2 THE CONSTANT CONTROLLING DECAYING WEIGHTS

To evaluate the influence of decaying function in adaptive contrasting, we vary the constant β
in Equation (6) (refer to Section 3.3 of the main text) and examine the representation learning
performance accordingly. We report the classification performance of TS-DC with β ranging in
{1, 2, 3, 4}. The classification performance on both univariate and multivariate datasets are reported
in Table 6, where β = 2 is used in the main experiment. Generally speaking, the effectiveness of the
representation learning function is relatively insensitive to β in terms of classification performance.
Whereas, the most suitable β on different datasets differs. In particular, when the time series data is
of high quality, the decomposed components are distinguishable from each other, a decaying func-
tion with conservative β value (β ≤ 2) is preferred. While if the time series is of high level noise,
like FordB, a rapid decaying function is required to distinguish the decomposed components, thus,
a large β value is beneficial.

C IN-DEPTH MODEL ANALYSIS

C.1 MORE QUALITATIVE ANALYSIS

C.1.1 QUALITATIVE ABLATION STUDY OF LKL , Ldecomp, AND Lac

We showcase t-SNE plots of TS-DC and its variants by omitting LKL, Ldecomp, and Lac in Equa-
tion (9), respectively. The clustering results on ECG5000 dataset are demonstrated in Figure 7. As
discussed in the main text of Section 4.3.1, the relative contributions of LKL, Ldecomp, and Lac are
not significant, therefore, the tailored variants of TS-DC can achieve competitive clustering results
as well.

16



Under review as a conference paper at ICLR 2023

(a) TS-DC (b) TS-DC w/o LKL (c) TS-DC w/o Ldecomp (d) TS-DC w/o Lac

Figure 7: Visualizing the embeddings generated by TS-DC and its variants on the ECG5000 dataset.
There exist 5 classes in the ECG5000 dataset.

(a) TS-DC. (b) Supervised. (c) TST. (d) TS-TCC.

(e) TS2Vec. (f) TNC. (g) CPC. (h) T-Loss.

Figure 8: t-SNE plots of the representations yielded by different TSRL methods on the PenDigits
dataset. There exist 10 classes in the PenDigits dataset.

C.1.2 MORE RESULTS OF VISUALIZING LEARNT REPRESENTATIONS

In addition to the case study in Section 4.2.3, we showcase more t-SNE plots on the PenDigits
dataset (Figure 8). Frankly speaking, as the time series in PenDigits dataset are not dominated by
certain classes, the clustering effect of outcome embeddings yielded by TS-DC is more easy to tell.
Besides, TST, TS-TCC, and TS2Vec perform much better than TNC, CPC, and T-Loss.

C.2 REVISIT TIME SERIES DECOMPOSITION IN TS-DC

Figure 9 demonstrates the detailed process of time series decomposition in TS-DC framework,
which has been described in the main text of Section 3.1.

C.2.1 HOW TO LEARN THE TS DECOMPOSITION IN TS-DC

As introduced in Section 3.1, the decomposition is repeated in a recursive way, which can be formu-
lated as follows:

Xr
0 = X,

Xr
n = Xr

n−1 − (Xt
n +Xs

n), n = 1, · · · , N.
(10)
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Figure 9: The detailed process of time series decomposition in TS-DC framework.

Algorithm 1 Training procedure of TS decomposition in TS-DC.

1: Input: Original time series X , the number of decomposition steps N .
2: Initialize N decomposition modules Hθ1:N

.
3: repeat
4: Xr

0 = X
5: for n← 1 to N do
6: Xt

n,X
s
n = Hθn(X

r
n−1)

7: Calculate DKL(p(X
t
n)∥p(Xs

n))
8: Xr

n = Xr
n−1 − (Xt

n +Xs
n)

9: end for
10: Ldecomp = ∥X −

∑N
n=1(X

t
n +Xs

n)∥2

11: L̃KL =
∑N

n=1 DKL(p(X
t
n)∥p(Xs

n)); LKL = 1/(1 + eαL̃KL)
12: θ1:N ← argmin(LKL + Ldecomp)
13: until Convergence
14: Output: Trained Hθ1:N

The decomposition process described above absorbs the remainder Xr recursively, such that the
complex signals encoded in time series can be fully captured. Though similar to traditional greedy
algorithms in signal recovery, like Orthogonal Matching Pursuit (OMP) (Rezaiifar & Krishnaprasad,
1995), the parameters that govern the decomposition process in TS-DC are determined in an
end-to-end fashion. Specifically, we construct a time vector T to extract time features, a set of
trigonometric functions S as the orthogonal functions to utilize the properties of Fourier Transform,
and fully connected networks FC(·) to implement the trend and seasonality extractions. Then, let
θn denote the parameter set in the n-th decomposition, and H denote the set of neural networks
H = {FCt

n, FCs
n, g

t
n, g

s
n}, we can rewrite the above decomposition process:

Xr
n = Xr

n−1 −Hθn
(Xr

n−1), Xt
n,X

s
n = Hθn

(Xr
n−1). (11)

Afterward, with the proposed objectives LKL and Ldecomp (see Section 3.1), the related parameters
θn can be learned accordingly:

θn ← θn +∆θn = θn − η
∂Lθn

∂θn
, (12)

where η is the learning rate and Lθn = LKL +Ldecomp. For more details of the training procedure,
please refer to Algorithm 1.

C.2.2 MORE VISUALIZATION RESULTS OF TS DECOMPOSITION

We separately plot the decomposed trend and seasonality in each decomposition step for ECG5000
and Coffee datasets, respectively. The plots are demonstrated in Figure 10. We can see that, in the
first decomposition step, the combination of trend and seasonality can recover the original series
quite well. As the decomposition proceeds, less informative signals can be observed in the decom-
posed trend and seasonality. Besides, the decomposed trend prefer to be conservative in recovering
original time series, while seasonality most likely to be more radical.
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(a) ECG5000. (b) 1-st decomposition. (c) 2-nd decomposition. (d) 3-rd decomposition.

(e) Coffee. (f) 1-st decomposition. (g) 2-nd decomposition. (h) 3-rd decomposition.

Figure 10: The visualization of trend and seasonality in each decomposition step on ECG5000 and
Coffee datasets. The trend and seasonality of n-th decomposition are represented as Xt

n and Xs
n.

(a) ECG5000. (b) N = 1. (c) N = 2. (d) N = 3.

(e) Coffee. (f) N = 1. (g) N = 2. (h) N = 3.

Figure 11: Showcases of the original TS and recovered TS when the decomposition is repeated in
varying steps. The recovered TS is realized by fusing the decomposed components.

Moreover, since the information contained in the remainder keeps being lowered as the decompo-
sition proceeds, the trend and seasonality in following decomposition steps become more noisier.
In Figure 11, we plot the original TS as well as the recovered TS, and the recovered TS is real-
ized by fusing the decomposed components. It can be seen that, as the number of decomposition
steps climbs up, the recovered time series fit the original TS better yet more noises come along.
The existence of noise does negatively affect the TS decomposition. However, this is beneficial for
contrastive learning, since the robustness of the TS representation learning can be enhanced.

C.2.3 TIME SERIES CLASSIFICATION RESULTS IN TERMS OF N

In Table 7, we investigate the effectiveness of outcome representations yielded by TS-DC toward
the time series classification task. In particular, we report classification scores against the number
of components to be decomposed (i.e., N ) in TS-DC framework. We can see that, with regards to
TS classification, the right number of components differs case by case. Therefore, it is important to
determine the decomposition level for different time series data in a more heuristic and intelligent
manner.
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Table 7: Comparisons of classification performance regarding time series decomposition with dif-
ferent number of components decomposed (i.e., N ).

# Components
Univariate Multivariate

ECG5000 FordB Ham Epilepsy FaceDetection RacketSports
ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

N = 1 0.856 0.723 0.520 0.555 0.573 0.641 0.382 0.609 0.615 0.667 0.410 0.740

N = 2 0.846 0.759 0.523 0.535 0.625 0.638 0.297 0.662 0.608 0.654 0.438 0.788

N = 3 0.868 0.841 0.565 0.573 0.531 0.566 0.320 0.642 0.602 0.653 0.458 0.728

N = 4 0.831 0.736 0.506 0.536 0.572 0.645 0.430 0.762 0.604 0.645 0.299 0.586

C.3 FURTHER ANALYSIS OF ADAPTIVE CONTRASTING

C.3.1 ABLATION STUDY OF ADAPTIVE CONTRASTING: QUALITATIVE ANALYSIS

In addition to the quantitative ablation study of the adaptive contrasting of TS-DC (see Section 4.3.3
in the main text), we visualize the representations learned by TS-DC and its variants on univariate
and multivariate time series datasets, respectively, in Figure 12. In particular, we visualize the t-SNE
plots of the representations learned by TS-DC and its variants, including TS-DC w/o weight ad-
justment (TS-DC−W ), TS-DC w/o predefined monotonically decreasing weights (TS-DCβ=0) and
TS-DC w/o adaptive contrasting (TS-DCβ=0,−W ). The visualizations are carried out on ECG5000
(univariate TS) and PenDigits (multivariate TS) datasets, respectively. We can observe that, the
representations yielded by TS-DC−W are less distinguishable, while more distinguishable repre-
sentations can be learned by TS-DCβ=0 yet too excessive (even the samples in the same category
cannot be grouped together). This is consistent with the analysis of Section 4.3.3 in the main text.
Moreover, the representations learned by TS-DCβ=0,−W mistakenly group the samples in different
classes and separate the samples in the same category. Therefore, not only weight decaying but also
weight adjustment are helpful in contributing to the outcome representation learning.

(a) TS-DC (b) TS-DC−W (c) TS-DCβ=0 (d) TS-DCβ=0,−W

Figure 12: Ablation study of adaptive contrasting in TS-DC on univariate ECG5000 (top row) and
multivariate PenDigits (bottom row) time series datasets. There exist 5 and 10 classes in ECG5000
and PenDigits datasets, respectively.
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(a) w/ weight adjustment (on ECG5000 dataset). (b) w/o weight adjustment (on ECG5000 dataset).

(c) w/ weight adjustment (on Ham dataset). (d) w/o weight adjustment (on Ham dataset).

Figure 13: Learning curves w/ and w/o weight adjustment. The learning curves of the original time
series (left) and the decomposed components (right) are plotted, respectively.

C.3.2 WEIGHT ADJUSTMENT ANALYSIS: IMPACTS ON LEARNING PROCEDURE

The weight adjustment in TS-DC framework can not only weigh different components in the time
series data but also handle the heterogeneity among different types of time series, and thus im-
prove the robustness of representation learning. Here we analyze the impacts of the weight ad-
justment on the training procedure of TS-DC by inspecting the learning curves w/ and w/o the
weight adjustment. In Figure 13, we plot the curves of contrastive losses of decomposed com-
ponents {X1,X2, · · · ,XN} where N = 3, and compare the loss curves w/ and w/o the weight
adjustment, denoted by Ln

ac and Ln
ac,−W (n = 1, 2, 3). Besides, the curves of the original training

loss and validation loss are also plotted. In general, the weight adjustment improves the stability
of the overall learning procedure as the validation loss decreases smoothly. In addition, the curves
of different decomposed components behave more discriminatively when the weight adjustment is
introduced.

C.4 CONTRASTING WITH TREND/SEASONALITY AT DIFFERENT DECOMPOSITION LEVELS

Rather than contrasting the decomposed component at different levels, in this experiment, we at-
tempt to rebuild a new contrastive loss by contrasting trend/seasonality at different levels. Specifi-
cally, at each decomposition level n ∈ {1, 2, · · · , N}, the decomposed trend/seasonality is treated
as the positive and the corresponding seasonality/trend as the negative. For instance, if we contrast
trend Xt

n (positive) with Xs
n (negative), then the loss function in Equation (5) can be rewritten as:

L̃n
c (X,Xt

n,X
s
n) = − log

eE(X)T E(Xt
n)

eE(X)T E(Xt
n) + eE(X)T E(Xs

n)
, (13)

then the corresponding objective for adaptive contrasting is:

L̃t+/s− =

N∑
n=1

wn

nβ
L̃n
c (X,Xt

n,X
s
n) . (14)

Vice versa, we can build an alternative of Equation (14) by contrasting seasonality Xs
n with Xt

n (de-
noted by L̃s+/t− ). Afterward, we compare the classification performance of TS-DC on univariate
and multivariate time series datasets with different contrastive loss functions and report correspond-
ing experiment results in Table 8. We can see that, in terms of AUPRC, the classification perfor-
mance on Ham and Epilepsy datasets can be improved with the new contrasting mechanism, which
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Table 8: Performance comparisons toward univariate and multivariate time series classification. TS-
DCt+/s− denotes the variant of TS-DC by replacing original adaptive contrasting mechanism with
Equation (14), and TS-DCs+/t− is an alternative that contrasts seasonality with trend.

Method
Univariate Multivariate

ECG5000 FordB Ham Epilepsy FaceDetection RacketSports
ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC ACC AUPRC

TS-DCt+/s− 0.907 0.764 0.553 0.569 0.583 0.639 0.398 0.622 0.591 0.615 0.382 0.649

TS-DCs+/t− 0.915 0.817 0.545 0.567 0.572 0.586 0.406 0.671 0.597 0.632 0.431 0.729

TS-DC 0.868 0.841 0.565 0.573 0.531 0.566 0.320 0.642 0.602 0.653 0.458 0.728

mainly indicates that a certain temporal pattern (trend or seasonality) in these two datasets should
be paid more attentions.

D TIME SERIES FORECASTING RESULTS

In this section, we evaluate the effectiveness of representation learning towards the time series fore-
casting task. We conduct the time series forecasting with the learnt TS representation functions on
three publicly available datasets: Traffic 1, Weather 2 and Electricity 3. In particular, Traffic dataset
includes 862 variables, and it is a collection of 48 months (2015-2016) hourly recorded data from
the California Department of Transportation; Electricity dataset collects the electricity consumption
of 321 clients from 2012 to 2014. Weather dataset was recorded between 2020-2021 every 10 min-
utes including 21 weather indicators. We split the training/validation/test set as 7:1:2 for these three
datasets, and three prediction lengths (i.e., 32, 64 and 128) are tested. To construct the instance
set suitable for TS forecasting, an input-Lx-predict-Ly sliding window is adopted to roll the train,
validation and test sets with stride 1 time step, respectively, which is illustrated in Figure 14. In
the experiment, the input length is the same with the prediction length, i.e., Lx = Ly . Besides, we
employ MSE and MAE as the evaluation metrics. Moreover, the same settings of the representation
learning for the classification task (see Appendices A.1 to A.3) are adopted.

Figure 14: The schematic diagram of the time series forecasting. An input-Lx-predict-Ly sliding
window is adopted to roll the series with stride 1 time step.

The forecasting results are reported in Table 9, which shows that TS-DC consistently achieves better
forecasting results compared to other baseline representation learning methods. Moreover, TST also
performs well toward the time series forecasting task, which can demonstrate the superiority of
the Transformer-based model on the high-dimension data among these baseline contrastive learning
methods. TS-TCC and TS2Vec both stress the temporal and contextual patterns of the time series
data, and the superior forecasting performance than other representation learning methods highlight

1http://pems.dot.ca.gov
2https://www.bgc-jena.mpg.de/wetter/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Table 9: Comparisons of different representation learning methods in terms of multivariate time
series forecasting performance.

Dataset
TS-DC Supervised TST TS-TCC TS2Vec TNC CPC T-Loss

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Tr
af

fic

32 0.427 0.769 0.400 0.724 0.447 0.820 0.489 0.887 0.791 1.406 0.970 2.092 0.574 1.064 0.777 1.411
64 0.446 0.801 0.430 0.802 0.457 0.836 0.607 1.055 0.762 1.419 0.818 1.467 0.571 1.071 0.730 1.305
128 0.465 0.856 0.441 0.838 0.463 0.864 0.572 1.049 0.783 1.431 0.935 1.789 0.533 0.980 0.628 1.165

E
le

ct
ri

ci
ty 32 0.389 0.304 0.457 0.436 0.497 0.498 0.550 0.572 0.719 0.856 1.079 1.801 0.762 0.926 0.647 0.731

64 0.405 0.330 0.460 0.444 0.484 0.475 0.669 0.770 0.760 0.906 1.777 5.092 0.608 0.663 0.685 0.793
128 0.429 0.348 0.473 0.473 0.486 0.474 0.728 0.888 0.798 0.970 1.857 5.961 0.649 0.737 0.670 0.771

W
ea

th
er 32 0.444 0.551 0.807 1.368 0.844 1.426 0.837 1.348 0.838 1.432 0.896 1.548 0.902 1.587 0.861 1.442

64 0.509 0.682 0.785 1.276 0.792 1.313 0.809 1.302 0.825 1.406 0.881 1.510 0.899 1.570 0.840 1.410
128 0.483 0.546 0.706 1.058 0.703 1.004 0.720 0.995 0.811 1.348 0.811 1.278 0.929 1.660 0.819 1.322

(a) TS-DC. (b) Supervised. (c) TST. (d) TS2Vec.

(e) TS-TCC. (f) TNC. (g) T-Loss. (h) CPC.

Figure 15: A showcase of TS-DC and six baseline unsupervised representation learning methods
plus one supervised method on Electricity dataset. The target value is the “MT 321” dimension of
the Electricity dataset and the prediction length is 128.

the important role of temporal pattern modeling in forecasting. Due to the limited capability of
exploring the essential characteristics of time series data, like temporal dependencies, CPC and
TNC perform not satisfactory for the time series forecasting. Moreover, TNC performs worse than
other baselines, which suggests that the signals focusing on local smoothness hinders the model
foreseeing the future changes, thus limits the capacity of forecasting.

Showcases of forecasting results. We additionally showcase the results of different representation
learning methods toward time series forecasting on Electricity dataset, which is shown in Figure 15.
Compared to other unsupervised representation learning methods as well as the supervised repre-
sentation learning method, TS-DC represents the trends and peaks more accurately, which further
validate the superiority of TS-DC in capturing the temporal dynamics that are helpful in forecasting
the future time series.

E TIME SERIES ANOMALY DETECTION RESULTS

To evaluate the time series representation learning for the time series anomaly detection task, we
conduct experiments on two public time series anomaly detection datasets: KPI (Ren et al., 2019a)
and Yahoo (Yahoo!, 2015). KPI dataset was released by AIOPS challenge in 2017. This dataset
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Table 10: The anomaly detection results on KPI and Yahoo datasets. The best and the 2nd best
scores are boldfaced and underlined, respectively.

Method
KPI Yahoo

F1 Recall Precision ACC AUC F1 Recall Precision ACC AUC

CPC 0.0659 0.3045 0.0413 0.8902 0.6035 0.0077 0.0531 0.0041 0.8931 0.4047

T-Loss 0.1236 0.5168 0.0767 0.8973 0.7114 0.0169 0.1172 0.0091 0.8941 0.5116

TNC 0.1132 0.4439 0.0715 0.8963 0.6747 0.0159 0.1043 0.0081 0.8939 0.5094

TST 0.1281 0.5104 0.0802 0.8980 0.7084 0.0168 0.1163 0.0090 0.8940 0.5242
TS-TCC 0.1314 0.5246 0.0823 0.8984 0.7156 0.0160 0.1108 0.0086 0.8940 0.5225

TS2Vec 0.0656 0.2882 0.0408 0.8901 0.5952 0.0164 0.1136 0.0088 0.8940 0.5225

TS-DC 0.1354 0.5299 0.0801 0.8975 0.7182 0.0172 0.1190 0.0092 0.8941 0.5096

includes 29 different minutely sampled KPI curves from various Internet companies. Yahoo dataset
is an open anomaly detection dataset released by Yahoo Lab. This dataset contains 367 hourly
sampled time series with anomaly points being labeled.

The settings of constructing training/validation/test sets are as follows. For the KPI dataset, we
follow the training/test split setting of released data, and further split each time series in the training
set as 4:1 following the time order to form the training and validation sets accordingly. For each
time series in Yahoo dataset, we chronically split a time series as 7:1:2 and construct the training,
validation and test sets. Subsequently, we employ a streaming evaluation protocol. To be specific,
given a time series in training/validation sets, a length l sliding window is utilized to roll the series
with stride d time steps. In the evaluation, we set l = 128 and d = 12. Then, given a sliced time
series with fixed length l, for each time point within this sliced series, we predict whether a point is
anomaly or not. Besides, a time series in the test set is evaluated without being sliced.

The representation learning is conducted on training and validation sets, and the dimensionality of
the latent representation is 32 and the batch size is 100. The other settings of the representation
learning for TS-DC and baselines are the same with the descriptions in Appendices A.1 to A.3.
Then, a learned time series representing function takes the time series data in the test set as input
and encodes them accordingly. Afterward, the outcome representations are fed into a downstream
anomaly detector. To fairly compare the effectiveness of different representation learning methods,
we employ the same anomaly detection method for different representation learning models. We
take ECOD4 as the anomaly detector (Zhao et al., 2019; Li et al., 2022) to evaluate the quality of
obtained representations yielded by different methods. The evaluation metrics including accuracy,
precision, recall, F1 and AUC are reported. The results can be seen in Table 10.

We can see that TS-DC consistently outperforms baseline representation learning models, while
the margins are not considerable. In particular, the poor performance of CPC suggests that the
forecasting capacity relying on the temporal dependencies does not help in anomaly detection task.
Basically, the overall anomaly detection performance of the representation learning algorithms are
not impressive. The probable reason is that the current time series representation learning models
mostly emphasize the macroscopic signals, which is immune to the rare, sparse and disordered
outliers. Therefore, it is still an open question for unsupervised time series representation learning
to fuel the downstream anomaly detection task.

4https://github.com/yzhao062/pyod.
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F FULL TIME SERIES CLASSIFICATION RESULTS

F.1 FULL RESULTS OF UNIVARIATE TIME SERIES CLASSIFICATION

The full results of univariate time series classification on 128 UCR datasets can be found in Table 11.
In general, the averaged accuracy of TS-DC outperforms other baseline unsupervised time series
representation learning methods. Besides, TS-DC even outperforms the supervised method in terms
of averaged accuracy.

Table 11: Full accuracy results of univariate time series classification on 128 UCR datasets.

Dataset TS-DC Supervised TS2Vec TS-TCC TST TNC CPC T-Loss

Adiac 0.195 0.292 0.096 0.102 0.229 0.099 0.216 0.169

ArrowHead 0.374 0.414 0.362 0.402 0.443 0.31 0.333 0.437

Beef 0.333 0.367 0.233 0.233 0.4 0.267 0.3 0.267

BeetleFly 0.65 0.650 0.55 0.55 0.7 0.65 0.6 0.7

BirdChicken 0.55 0.550 0.5 0.55 0.5 0.5 0.55 0.55

Car 0.317 0.283 0.35 0.3 0.25 0.4 0.317 0.283

CBF 0.438 0.496 0.501 0.483 0.527 0.521 0.457 0.511

ChlorineConcentration 0.548 0.564 0.555 0.549 0.562 0.554 0.561 0.547

CinCECGTorso 0.37 0.437 0.243 0.285 0.292 0.253 0.278 0.338

Coffee 0.786 0.500 0.464 0.607 0.357 0.536 0.429 0.571

Computers 0.642 0.371 0.475 0.527 0.471 0.5 0.478 0.479

CricketX 0.224 0.268 0.266 0.216 0.211 0.182 0.214 0.221

CricketY 0.245 0.310 0.253 0.203 0.245 0.214 0.271 0.25

CricketZ 0.221 0.299 0.271 0.201 0.216 0.167 0.281 0.237

DiatomSizeReduction 0.578 0.611 0.327 0.575 0.549 0.258 0.592 0.592

DistalPhalanxOutlineAgeGroup 0.523 0.539 0.469 0.633 0.523 0.477 0.57 0.492

DistalPhalanxOutlineCorrect 0.728 0.676 0.68 0.688 0.676 0.658 0.656 0.669

DistalPhalanxTW 0.609 0.648 0.461 0.641 0.664 0.352 0.586 0.531

Earthquakes 0.813 0.789 0.758 0.805 0.813 0.758 0.797 0.789

ECG200 0.708 0.792 0.719 0.667 0.708 0.74 0.74 0.813

ECG5000 0.868 0.896 0.599 0.846 0.882 0.583 0.811 0.651

ECGFiveDays 0.547 0.594 0.533 0.651 0.623 0.516 0.68 0.606

ElectricDevices 0.695 0.497 0.291 0.309 0.558 0.257 0.213 0.341

FaceAll 0.142 0.146 0.1 0.163 0.174 0.085 0.098 0.114

FaceFour 0.284 0.352 0.295 0.295 0.33 0.261 0.261 0.33

FacesUCR 0.304 0.403 0.227 0.3 0.315 0.192 0.338 0.299

FiftyWords 0.201 0.230 0.163 0.185 0.225 0.125 0.234 0.183

Fish 0.338 0.369 0.25 0.313 0.381 0.219 0.369 0.325

FordA 0.55 0.532 0.544 0.524 0.521 0.501 0.536 0.51

FordB 0.565 0.549 0.544 0.529 0.55 0.553 0.511 0.539

GunPoint 0.713 0.767 0.673 0.673 0.593 0.58 0.673 0.593
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Dataset TS-DC Supervised TS2Vec TS-TCC TST TNC CPC T-Loss

Ham 0.531 0.542 0.521 0.563 0.51 0.542 0.573 0.521

HandOutlines 0.796 0.780 0.704 0.802 0.69 0.674 0.795 0.777

Haptics 0.27 0.309 0.296 0.303 0.329 0.257 0.326 0.283

Herring 0.594 0.578 0.594 0.594 0.578 0.469 0.516 0.625

InlineSkate 0.186 0.184 0.189 0.175 0.165 0.176 0.217 0.169

InsectWingbeatSound 0.172 0.197 0.211 0.194 0.188 0.147 0.184 0.194

ItalyPowerDemand 0.836 0.933 0.58 0.877 0.899 0.619 0.907 0.804

LargeKitchenAppliances 0.467 0.318 0.353 0.321 0.332 0.389 0.335 0.326

Lightning2 0.633 0.633 0.533 0.667 0.6 0.75 0.6 0.55

Lightning7 0.431 0.444 0.292 0.333 0.5 0.264 0.5 0.431

Mallat 0.228 0.277 0.183 0.21 0.256 0.227 0.169 0.215

Meat 0.383 0.383 0.433 0.383 0.333 0.483 0.417 0.383

MedicalImages 0.523 0.540 0.517 0.508 0.528 0.513 0.522 0.525

MiddlePhalanxOutlineAgeGroup 0.278 0.368 0.153 0.403 0.361 0.292 0.383 0.375

MiddlePhalanxOutlineCorrect 0.601 0.573 0.594 0.542 0.656 0.573 0.625 0.611

MiddlePhalanxTW 0.514 0.535 0.382 0.521 0.542 0.361 0.516 0.549

MoteStrain 0.704 0.769 0.645 0.767 0.744 0.595 0.757 0.669

NonInvasiveFetalECGThorax1 0.306 0.528 0.212 0.379 0.385 0.134 0.324 0.322

NonInvasiveFetalECGThorax2 0.444 0.657 0.172 0.481 0.552 0.11 0.466 0.484

OliveOil 0.533 0.467 0.4 0.467 0.367 0.367 0.5 0.367

OSULeaf 0.263 0.358 0.188 0.267 0.292 0.204 0.272 0.292

PhalangesOutlinesCorrect 0.642 0.657 0.636 0.647 0.662 0.627 0.657 0.642

Phoneme 0.108 0.087 0.064 0.034 0.066 0.081 0.055 0.075

Plane 0.344 0.583 0.313 0.396 0.427 0.302 0.406 0.458

ProximalPhalanxOutlineAgeGroup 0.818 0.844 0.563 0.875 0.802 0.448 0.859 0.786

ProximalPhalanxOutlineCorrect 0.698 0.726 0.688 0.729 0.705 0.677 0.694 0.694

ProximalPhalanxTW 0.74 0.734 0.396 0.719 0.74 0.37 0.719 0.75

RefrigerationDevices 0.435 0.326 0.288 0.351 0.353 0.351 0.366 0.337

ScreenType 0.34 0.370 0.356 0.372 0.391 0.302 0.375 0.367

ShapeletSim 0.483 0.489 0.5 0.511 0.528 0.45 0.494 0.522

ShapesAll 0.047 0.074 0.017 0.063 0.074 0.027 0.085 0.041

SmallKitchenAppliances 0.429 0.353 0.348 0.397 0.348 0.454 0.355 0.332

SonyAIBORobotSurface1 0.433 0.592 0.568 0.535 0.542 0.422 0.578 0.602

SonyAIBORobotSurface2 0.712 0.734 0.639 0.727 0.714 0.542 0.739 0.724

StarLightCurves 0.844 0.883 0.779 0.81 0.827 0.677 0.843 0.815

Strawberry 0.864 0.802 0.625 0.668 0.723 0.565 0.71 0.72

SwedishLeaf 0.558 0.546 0.171 0.329 0.479 0.196 0.438 0.439

Symbols 0.467 0.438 0.248 0.339 0.387 0.338 0.465 0.387

SyntheticControl 0.42 0.486 0.385 0.378 0.444 0.292 0.365 0.403
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Dataset TS-DC Supervised TS2Vec TS-TCC TST TNC CPC T-Loss

ToeSegmentation1 0.5 0.474 0.68 0.509 0.461 0.5 0.496 0.544

ToeSegmentation2 0.746 0.431 0.708 0.508 0.423 0.5 0.469 0.438

Trace 0.479 0.750 0.5 0.531 0.635 0.531 0.667 0.604

TwoLeadECG 0.567 0.579 0.514 0.559 0.573 0.49 0.536 0.551

TwoPatterns 0.51 0.667 0.371 0.627 0.532 0.408 0.638 0.62

UWaveGestureLibraryAll 0.378 0.460 0.224 0.309 0.41 0.234 0.345 0.331

UWaveGestureLibraryX 0.462 0.489 0.473 0.349 0.446 0.334 0.416 0.404

UWaveGestureLibraryY 0.426 0.490 0.457 0.374 0.459 0.301 0.426 0.393

UWaveGestureLibraryZ 0.43 0.508 0.454 0.341 0.425 0.293 0.419 0.401

Wafer 0.944 0.955 0.933 0.941 0.94 0.899 0.952 0.927

Wine 0.481 0.389 0.537 0.556 0.5 0.426 0.481 0.426

WordSynonyms 0.253 0.303 0.287 0.288 0.296 0.218 0.291 0.292

Worms 0.516 0.406 0.516 0.344 0.375 0.359 0.359 0.422

WormsTwoClass 0.531 0.500 0.531 0.531 0.453 0.5 0.5 0.5

Yoga 0.534 0.652 0.535 0.606 0.592 0.533 0.572 0.588

ACSF1 0.25 0.271 0.229 0.208 0.292 0.208 0.292 0.229

AllGestureWiimoteX 0.209 0.131 0.129 0.093 0.113 0.102 0.098 0.102

AllGestureWiimoteY 0.189 0.108 0.118 0.113 0.094 0.102 0.125 0.102

AllGestureWiimoteZ 0.15 0.129 0.108 0.119 0.115 0.102 0.109 0.115

BME 0.393 0.420 0.333 0.387 0.413 0.347 0.427 0.407

Chinatown 0.693 0.480 0.512 0.523 0.471 0.523 0.515 0.43

Crop 0.286 0.172 0.093 0.133 0.175 0.05 0.095 0.141

DodgerLoopDay 0.275 0.213 0.138 0.238 0.25 0.15 0.213 0.15

DodgerLoopGame 0.558 0.543 0.529 0.486 0.522 0.522 0.507 0.551

DodgerLoopWeekend 0.63 0.696 0.681 0.71 0.71 0.739 0.659 0.71

EOGHorizontalSignal 0.207 0.224 0.159 0.179 0.156 0.205 0.182 0.199

EOGVerticalSignal 0.156 0.188 0.185 0.168 0.122 0.165 0.162 0.142

EthanolLevel 0.25 0.242 0.254 0.258 0.254 0.266 0.26 0.254

FreezerRegularTrain 0.612 0.627 0.807 0.661 0.591 0.591 0.642 0.603

FreezerSmallTrain 0.643 0.654 0.78 0.617 0.641 0.58 0.627 0.605

Fungi 0.075 0.075 0.059 0.048 0.086 0.07 0.086 0.113

GestureMidAirD1 0.07 0.125 0.102 0.109 0.141 0.039 0.18 0.156

GestureMidAirD2 0.086 0.109 0.102 0.094 0.078 0.039 0.102 0.078

GestureMidAirD3 0.047 0.102 0.094 0.039 0.055 0.039 0.078 0.063

GesturePebbleZ1 0.275 0.356 0.381 0.263 0.213 0.175 0.306 0.263

GesturePebbleZ2 0.243 0.292 0.278 0.201 0.215 0.167 0.125 0.194

GunPointAgeSpan 0.526 0.523 0.563 0.513 0.526 0.48 0.556 0.553

GunPointMaleVersusFemale 0.727 0.757 0.507 0.678 0.691 0.53 0.719 0.78
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Dataset TS-DC Supervised TS2Vec TS-TCC TST TNC CPC T-Loss

GunPointOldVersusYoung 0.98 0.536 0.497 0.493 0.503 0.487 0.535 0.553

HouseTwenty 0.746 0.669 0.415 0.627 0.686 0.5 0.644 0.627

InsectEPGRegularTrain 0.835 0.556 0.48 0.48 0.46 0.508 0.456 0.488

InsectEPGSmallTrain 0.794 0.460 0.363 0.512 0.492 0.464 0.464 0.504

MelbournePedestrian 0.404 0.263 0.109 0.157 0.182 0.101 0.098 0.101

MixedShapesRegularTrain 0.382 0.282 0.232 0.303 0.275 0.213 0.318 0.326

MixedShapesSmallTrain 0.226 0.288 0.209 0.27 0.254 0.213 0.29 0.307

PickupGestureWiimoteZ 0.16 0.080 0.1 0.12 0.08 0.1 0.16 0.16

PigAirwayPressure 0.019 0.053 0.014 0.019 0.053 0.038 0.047 0.043

PigArtPressure 0.038 0.038 0.038 0.029 0.034 0.063 0.057 0.058

PigCVP 0.038 0.038 0.038 0.034 0.053 0.034 0.042 0.038

PLAID 0.163 0.157 0.17 0.182 0.102 0.063 0.17 0.167

PowerCons 0.898 0.625 0.557 0.597 0.619 0.625 0.731 0.568

Rock 0.44 0.360 0.36 0.34 0.32 0.34 0.34 0.28

SemgHandGenderCh2 0.667 0.630 0.659 0.652 0.669 0.65 0.674 0.65

SemgHandMovementCh2 0.292 0.199 0.167 0.188 0.185 0.185 0.19 0.179

SemgHandSubjectCh2 0.308 0.272 0.185 0.234 0.237 0.23 0.234 0.232

ShakeGestureWiimoteZ 0.22 0.180 0.1 0.14 0.2 0.1 0.14 0.14

SmoothSubspace 0.667 0.576 0.41 0.597 0.563 0.361 0.688 0.556

UMD 0.424 0.424 0.396 0.465 0.382 0.34 0.306 0.347

Average 0.454 0.449 0.382 0.416 0.424 0.358 0.424 0.416
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F.2 FULL RESULTS OF MULTIVARIATE TIME SERIES CLASSIFICATION

Table 9 shows the full results of TS-DC and other baseline unsupervised representation learning
methods as well as the supervised representation learning method on 30 UEA datasets. As depicted,
TS-DC achieves better classification performance in terms of averaged accuracy.

Table 9: Full accuracy results of multivariate time series classification on 30 UEA datasets.

Dataset TS-DC Supervised TS2Vec TS-TCC TST TNC CPC T-Loss

ArticularyWordRecognition 0.337 0.441 0.201 0.316 0.330 0.111 0.382 0.299

AtrialFibrillation 0.357 0.500 0.429 0.357 0.429 0.500 0.286 0.286

BasicMotions 0.675 0.300 0.200 0.300 0.375 0.300 0.225 0.300

CharacterTrajectories 0.060 0.048 0.058 0.060 0.048 0.050 0.062 0.060

Cricket 0.438 0.453 0.453 0.328 0.469 0.359 0.297 0.438

DuckDuckGeese 0.200 0.220 0.140 0.180 0.260 0.160 0.240 0.120

EigenWorms 0.383 0.305 0.430 0.250 0.313 0.234 0.305 0.359

Epilepsy 0.320 0.328 0.313 0.281 0.367 0.383 0.281 0.344

EthanolConcentration 0.246 0.254 0.234 0.270 0.277 0.246 0.266 0.238

ERing 0.715 0.800 0.637 0.678 0.696 0.341 0.733 0.741

FaceDetection 0.602 0.577 0.521 0.517 0.578 0.520 0.502 0.585

FingerMovements 0.458 0.510 0.458 0.490 0.469 0.500 0.479 0.510

HandMovementDirection 0.297 0.391 0.234 0.250 0.219 0.266 0.250 0.328

Handwriting 0.072 0.100 0.068 0.084 0.085 0.078 0.097 0.097

Heartbeat 0.703 0.583 0.630 0.615 0.667 0.672 0.641 0.646

InsectWingbeat 0.100 0.101 0.101 0.099 0.103 0.099 0.100 0.100

JapaneseVowels 0.065 0.125 0.092 0.125 0.092 0.120 0.076 0.084

Libras 0.250 0.261 0.244 0.188 0.227 0.142 0.170 0.284

LSST 0.521 0.193 0.198 0.199 0.259 0.249 0.195 0.188

MotorImagery 0.615 0.563 0.458 0.427 0.490 0.490 0.458 0.604

NATOPS 0.773 0.659 0.773 0.642 0.733 0.676 0.778 0.767

PenDigits 0.978 0.981 0.946 0.963 0.903 0.647 0.828 0.889

PEMS-SF 0.363 0.563 0.300 0.263 0.263 0.231 0.331 0.338

PhonemeSpectra 0.042 0.040 0.032 0.028 0.038 0.031 0.026 0.026

RacketSports 0.458 0.333 0.375 0.333 0.361 0.285 0.292 0.292

SelfRegulationSCP1 0.566 0.788 0.510 0.757 0.740 0.431 0.681 0.639

SelfRegulationSCP2 0.506 0.466 0.506 0.500 0.489 0.574 0.472 0.506

SpokenArabicDigits 0.099 0.107 0.100 0.101 0.100 0.103 0.103 0.100

StandWalkJump 0.357 0.214 0.357 0.500 0.500 0.357 0.429 0.500

UWaveGestureLibrary 0.409 0.356 0.453 0.309 0.375 0.178 0.319 0.400

Average 0.399 0.385 0.348 0.347 0.375 0.311 0.343 0.369
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