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Abstract

The increasing availability of large collections of electronic health record

(EHR) data and unprecedented technical advances in deep learning (DL) have

sparked a surge of research interest in developing DL based clinical decision

support systems for diagnosis, prognosis, and treatment. Despite the recogni-

tion of the value of deep learning in healthcare, impediments to further adop-

tion in real healthcare settings remain due to the black-box nature of

DL. Therefore, there is an emerging need for interpretable DL, which allows

end users to evaluate the model decision making to know whether to accept or

reject predictions and recommendations before an action is taken. In this

review, we focus on the interpretability of the DL models in healthcare. We

start by introducing the methods for interpretability in depth and comprehen-

sively as a methodological reference for future researchers or clinical practi-

tioners in this field. Besides the methods' details, we also include a discussion

of advantages and disadvantages of these methods and which scenarios each of

them is suitable for, so that interested readers can know how to compare and

choose among them for use. Moreover, we discuss how these methods, origi-

nally developed for solving general-domain problems, have been adapted and

applied to healthcare problems and how they can help physicians better under-

stand these data-driven technologies. Overall, we hope this survey can help

researchers and practitioners in both artificial intelligence and clinical fields

understand what methods we have for enhancing the interpretability of their

DL models and choose the optimal one accordingly.
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1 | INTRODUCTION

In recent years, the wide adoption of electronic health record (EHR) systems by healthcare organizations and subse-
quent availability of large collections of EHR data have made the application of artificial intelligence (AI) techniques in
healthcare more feasible. The EHR data contain rich, longitudinal, and patient-specific information including both
structured data (e.g., patient demographics, diagnoses, and procedures) as well as unstructured data, such as physician
notes and medical images (Mesko, 2017). Meanwhile, deep learning (DL), a family of machine learning (ML) models
based on deep neural networks, has achieved remarkable progress in the last decade on various datasets for different
modalities including images, natural language, and structured time series data (LeCun et al., 2015). The availability of
large-scale data and unprecedented technical advances have come together to spark a surge of research interest in
developing a variety of deep learning based clinical decision support systems for diagnosis, prognosis, and treatment
(Murdoch & Detsky, 2013).

Despite the recognition of the value of deep learning in healthcare, impediments to further adoption in real
healthcare settings remain (Tonekaboni et al., 2019). One pivotal impediment relates to the black box nature, or opacity,
of deep learning algorithms, in which there is no easily discernible logic connecting the data about a case to the deci-
sions of the model. Healthcare abounds with possible “high stakes” applications of deep learning algorithms: predicting
a patient's likelihood of readmission to the hospital (Ashfaq et al., 2019), making the diagnosis of a patient's disease
(Esteva et al., 2017), suggesting the optimal drug prescription and therapy plan (Rough et al., 2020), just to name a few.
In these critical use cases that include clinical decision making, there is some hesitation in the deployment of such
models because the cost of model mis-classification is potentially high (Mozaffari-Kermani et al., 2014). Moreover, it
has been widely demonstrated that deep learning models are not robust and may easily encounter failures in the face of
both artificial and natural noise (Finlayson, Bowers, et al., 2019; Jin et al., 2020; Szegedy et al., 2014).

AI systems are, on the whole, not expected to act autonomously in patient care, but to serve as decision support for
human clinicians. To support the required communication between such systems and people, and to allow the person
to assess the reliability of the system's advice, we seek to build systems that are interpretable. Interpretable DL allows
algorithm designers to interrogate, understand, debug, and even improve the systems to be deployed by analyzing and
interpreting the behavior of black-box DL systems. From the end user perspective, interpretable DL allows end users to
evaluate the model decision making to determine whether to accept or reject predictions and recommendations before
an action is taken.

In particular, in this review we focus on the interpretability of the DL models in health care. Such models are
known for both their complexity and high performance on a variety of tasks, yet the decisions and recommendations of
deep learning systems may be biased (Gianfrancesco et al., 2018). Interpretability can offer one effective approach to
ensuring that such systems are free from bias and fair in scoring different ethnic and social groups (Hajian et al., 2016).
Many DL systems have already been deployed to make decisions and recommendations in non-healthcare settings for
tens of millions of people around the world (e.g., Netflix, Google, and Amazon) and we hope that DL applied in
healthcare will also become widespread (Esteva et al., 2019). To this end, we need help from interpretability to better
understand the resulting models to help prevent potential negative impacts. Lastly, there are some legal regulations
such as the European Union (EU)'s General Data Protection Regulation (GDPR) that require organizations that use
patient data for predictions and recommendations to provide on demand explanations for an output of the algorithm,
which is called a “right to explanation” (Edwards & Veale, 2018; Tesfay et al., 2018). The inability to provide such expla-
nations on demand may result in large penalties for the organizations involved.

It should be noted that the notion of explanation of a decision in itself is not a very well defined concept: indeed the
original EU GDPR Recital 71 does not provide a clear definition beyond stating a person's right to obtain it. There have
been active discussions in the community on this notion (Lipton, 2018); for instance, Muggleton et al. (2018) proposed
an operational definition of comprehensibility and interpretability based on the ultra-strong criteria for Machine Learn-
ing proposed by Michie (1988) and inductive logic programming by Kovalerchuk et al. (2021). However, no single uni-
form definition has been reached: for any complex model with no superficial components, any simple explanation is
inherently unfaithful to the underlying model. The decision on what definition of explanation to use necessarily affects
the properties of the methods used to produce them: for example, focusing on producing a per example explanation ver-
sus the structure of the network analysis favors local (why this particular example resulted in a given prediction) expla-
nation over global ones (what kinds of knowledge are encoded in the model and how they affect predictions). In this
work, we first cover the most common type of interpretation method, in which an explanation is an assignment of a
score to each input element that reflects its importance to a model's conclusions. We also briefly discuss example based
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explanation methods. Other approaches to interpretability include a more recent focus on feature interactions for neu-
ral networks (Sundararajan et al., 2020; Tsang et al., 2018; Tsang et al., 2020) and whole network behavior analysis
(Carter et al., 2019).

It is conventionally thought that there is a trade-off between model interpretability and performance (e.g., F1, accu-
racy). For example, more interpretable models such as regression models and decision trees often perform less well on
many prediction tasks compared with less interpretable models such as deep learning models. With this constraint,
researchers have to balance the desire for the most highly performing model against adequate interpretability. Fortu-
nately in the last few years, researchers have proposed many new methods that can maintain the model performance
while producing good explanations, such as LIME (Ribeiro et al., 2016a), RETAIN (Choi et al., 2016), and SHAP
(Lundberg & Lee, 2017), described below. And many of them have been adapted and applied to healthcare problems
with good interpretability achieved. This survey aims to provide a comprehensive and in-depth summary and discus-
sion over such methods.

Previous surveys on explainable ML for healthcare (Ahmad et al., 2018; Holzinger et al., 2019; Payrovnaziri
et al., 2020; Tonekaboni et al., 2019; Vellido, 2020; Wiens et al., 2019) mainly discuss the definition, concept, impor-
tance, application, evaluation, and high-level overview of methods for interpretability. In contrast, we will focus on
introducing the methods for interpretability in depth so as to provide methodological guidance for future researchers or
clinical practitioners in this field. Besides the methods' details, we will also include a discussion of advantages and dis-
advantages of these methods and which scenarios each of them is suitable for, so that interested readers can know how
to compare and choose among them for use. Moreover, we will discuss how these methods originally developed for
solving general-domain problems have been adapted and applied to healthcare problems and how they can help physi-
cians better understand these data-driven technologies. Overall, we hope this survey can help researchers and practi-
tioners in both AI and clinical fields understand what methods we have for enhancing the interpretability of their DL
models and choose the optimal one accordingly based on a deep and thorough understanding. For readers' conve-
nience, we have provided a map between all abbreviations to be used and their corresponding full names in Table 1.

1.1 | Paper selection

We first conducted a systematic search of papers using MEDLINE, IEEE Xplore, Association for Computing Machinery
(ACM), and ACL Anthology databases, several prestigious clinical journals' websites such as Nature, JAMA, JAMIA,
BMC, Elsevier, Springer, PLoS One, and so on, as well as the top AI conferences such as NeurIPS, ICML, ICLR, AAAI,
KDD, and so on. The keywords for our searches are: (explainable OR explainability OR interpretable OR interpretability
OR understandable OR understandability OR comprehensible OR comprehensibility) AND (machine learning OR arti-
ficial intelligence OR deep learning OR AI OR neural network). After initial searching, we conducted manual filtering
by reading titles and abstracts and only retained three types of works for subsequent careful reading: interpretability
methods developed for general domain problems, interpretability methods specifically developed for healthcare prob-
lems, and healthcare applications that involve interpretability. We only covered the methods that can interpret DL
models. The literature of explanation methods for DL grows rapidly, so any review of this type is captive to its date of
completion. Searching the above-mentioned sources with the keywords we used for recent articles should help to bring
an appreciation of the field up to date.

2 | INTERPRETABILITY METHODS

In this section, we will introduce various kinds of interpretability methods, which aim to assign an attribution value,
sometimes also called “relevance” or “contribution,” to each input feature of a network. Such interpretability methods
can thus be called attribution methods. More formally, consider a deep neural network (DNN) that takes an input x¼
x1,…,xN½ � and produces an output S xð Þ¼ S1 xð Þ,…,SC xð Þ½ �, where C is the total number of output neurons. Given a spe-
cific target neuron c, the goal of an attribution method is to determine the contribution Rc ¼ Rc

1,…,Rc
N

� �
of each input

feature xi to the output Sc. For a classification task, the target neuron of interest is usually the output neuron associated
with the correct class for a given sample. The obtained attribution maps are usually displayed as heatmaps, where one
color indicates features that contribute positively to the activation of the target output while another color indicates fea-
tures that have a suppressing effect on it.
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TABLE 1 Glossary of abbreviations and acronyms

Abbreviation Full form

A2C Advantage actor critic

AI Artificial intelligence

BIRADS Breast imaging reporting and data system

CAGE Commonsense auto-generated explanations

CAM Class activation mapping

CD Contextual decomposition

CDEP Contextual decomposition explanation penalization

CNN Convolutional neural network

CT Computed tomography

DASP Deep approximate Shapley propagation

DDQN Double deep Q network

DL Deep learning

DNN Deep neural network

DQN Deep Q network

EEG Electroencephalography

EF Explainable factor

EHR Electronic health record

EU European Union

FGSM Fast gradient sign method

GAM Generalized additive models

GAN Generative adversarial network

GDPR General data protection regulation

GEF Generative explanation framework

HCI Human–computer interaction

HSCNN Hierarchical Semantic Convolutional Neural Network

ICU Intensive care unit

ISIC International Skin Imaging Collaboration

JSMA Jacobian-based saliency map attack

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

L2X Learning to explain

LIME Local interpretable model-agnostic explanations

LRP Layer-wise relevance propagation

LSTM Long short-term memory

ML Machine learning

MRI Magnetic resonance imaging

MRT Minimum risk training

NLP Natural language processing

PGD Projected gradient descent

PPO Proximal policy optimization

QA Question answering

ReLU Rectified linear unit

RETAIN Reverse time attention model

RNN Recurrent neural network
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To organize our presentation, we classify all attribution methods into the following categories: back-propagation
based, attention based, feature perturbation based, model distillation based, and game theory based. We also include
example and generative based interpretation for DL methods for completeness. More technical details for each category
will be elaborated below.

2.1 | Back-propagation

The most popularly used interpretability method is based on back-propagation of either gradients (Simonyan
et al., 2014) or activation values (Bach et al., 2015). This line of methods starts from the Saliency Map (Simonyan
et al., 2014), which follows the normal gradient back-propagation process and constructs attributions by taking the
absolute value of the partial derivative of the target output Sc with respect to the input features xi, that is,

∂Sc xð Þ
∂xi

��� ���. Intui-
tively, the absolute value of the gradient indicates those input features that can be perturbed the least in order for the
target output to change the most. However, the absolute value prevents the detection of positive and negative evidence
that might be present in the input. To make the reconstructed heatmaps significantly more accurate for convolutional
neural network (CNN) models, deconvolution (Zeiler & Fergus, 2014a) and guided back-propagation (Springenberg
et al., 2015) were proposed and these two methods and the Saliency Map method differ mainly in the way they handle
back-propagation through the rectified linear (ReLU) non-linearity. As illustrated in Figure 1a, for normal gradient
back-propagation in the Saliency Map method, when the activation values in the lower layer are negative, the
corresponding back-propagated gradients are masked out. In contrast, the Deconvolution method masks out the gradi-
ents when they themselves are negative, while the guided back-propagation approach combines these two methods:
those gradients are masked out for which at least one of these two values is negative.

Gradient*Input (Shrikumar, Greenside, Shcherbina, & Kundaje, 2017) was proposed as a technique to improve the
sharpness of the attribution maps. The attribution is computed taking the (signed) partial derivatives of the output with
respect to the input and multiplying them with the input itself. Integrated Gradients (Sundararajan et al., 2017) is simi-
lar to Gradient*Input, with the main difference being that Integrated Gradients computes the average gradient as the
input varies along a linear path from a baseline ex to x. The baseline is defined by the user and often chosen to be zero.
Please refer to Figure 1b for the mathematical definition for both methods.

TABLE 1 (Continued)

Abbreviation Full form

SHAP Shapley additive explanations

SHS Smart healthcare systems

SISTA Sequential iterative soft-thresholding algorithm

FIGURE 1 Mathematical formulation of different back-propagation based interpretability methods
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Pixel-space gradient visualizations such as the above-mentioned guided back-propagation and deconvolution are
high-resolution and highlight fine-grained details in the image, but are not class-discriminative, that is, the attribution
value plots for different classes may look similar. In contrast, localization approaches like class activation mapping
(CAM) (Zhou et al., 2016) are highly class-discriminative (e.g., the “cat” explanation exclusively highlights the “cat”
regions but not “dog” regions in an image containing both a cat and dog). This approach modifies image classification
CNN architectures by replacing fully connected layers with convolutional layers and global average pooling, thus
achieving class-specific feature maps. A drawback of CAM is that it requires feature maps to directly precede softmax
layers, so it is only applicable to particular kinds of CNN architectures. To solve this shortcoming, Grad-CAM
(Selvaraju et al., 2017) was introduced as a generalization to CAM, which uses the gradient information flowing into
the last convolutional layer of the CNN to understand the importance of each neuron for a decision of interest. Further-
more, it is combined with existing pixel-space gradient visualizations to create Guided Grad-CAM visualizations that
are both high-resolution and class-discriminative.

Besides gradients, back-propagation of activation values can also be leveraged as an interpretability approach.
Layer-wise relevance propagation (LRP) (Bach et al., 2015) is the first to adopt this method, where the algorithm starts
at the output layer L and assigns the relevance of the target neuron equal to the output of the neuron itself (i.e., the acti-
vation value of the neuron) and the relevance of all other neurons to zero, as shown in Equation (1). Then the recursive
back-propagation rule (called the ϵ-rule) for the redistribution of a layer's relevance to the preceding layer is described
in Equation (2), where we define zji ¼w lþ1,lð Þ

ji x lð Þ
i to be the weighted activation of a neuron i onto neuron j in the next

layer and bj the additive bias of unit j. Once the back-propagation reaches the input layer, the final attributions are
defined as Rc

i xð Þ¼ r 1ð Þ
i . As an alternative, DeepLIFT (Shrikumar, Greenside, & Kundaje, 2017) proceeds in a backward

fashion similar to LRP but calibrates all relevance scores by subtracting reference values that are determined by run-
ning a forward pass through the network using the baseline x as input and recording the activation of each unit.
Although LRP and DeepLIFT were invented based on back-propagation of activation values, it has been demonstrated
in (Ancona et al., 2018) that they can also be computed by applying the chain rule for gradients and the converted equa-
tions are summarized in Figure 1b.

r Lð Þ
i ¼ Si xð Þ if unit i is the target unit of interest

0 otherwise

�
ð1Þ

rli ¼
X
j

zjiP
i0

zji0 þbj
� �þ ϵ � sign P

i0
zji0 þbj
� � !rlþ1

j ð2Þ

2.2 | Feature perturbation

Compared with back-propagation based methods, which compute gradients of outputs with respect to input features,
feature perturbation methods explicitly examine the change in model confidence resulting from occluding or ablating
certain features.

The idea of masking parts of the input and measuring the model's change in confidence was introduced in a model
agnostic context, pre-DL by works such as Štrumbelj et al. (2009) and Robnik-Sikonja and Kononenko (2008). Based on
some of these works, there have been multiple methods in DL for feature perturbation, attempting to explain the model
based on the change in output classification confidence upon perturbation of features. These include model agnostic
works based on conditional multivariate analysis and deep visualization (Zintgraf et al., 2017; based on the instance-
specific method known as prediction difference analysis) and explicit erasure of parts of input representations (Li
et al., 2016); as well as convolution neural network specific identification of image regions for which the model reacts
most to perturbation (Zeiler & Fergus, 2014b) and image masking models that are trained to manipulate scores outputted
by the predictive model by masking salient parts of the input image (Dabkowski & Gal, 2017). Similar to image masking
models, recent model-agnostic methods use generative models to sample plausible in-fills (as opposed to full masking)
and optimize to find image regions that most change the classifier decision after in-filling (Chang et al., 2019).

In the direction of more theoretically grounded variable importance-based techniques, (Fisher et al., 2019) measure
the model prediction difference upon adding noise to the features. Additionally, various adversarial perturbation
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techniques have been introduced that add noise to the feature representations, falling in the category of Evasion Attacks
(Tabassi et al., 2019). Evasion attacks involve finding small input perturbations that cause large changes in the loss
function and lead to mispredictions. These input perturbations are usually found by solving constrained optimization
problems. These include gradient-based search algorithms like limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS; Szegedy et al., 2013), fast gradient sign method (FGSM; Goodfellow et al., 2015), Jacobian-based saliency map
attack (JSMA; Papernot, McDaniel, Jha, et al., 2016) and projected gradient descent (PGD; Madry et al., 2018) among
others. For detailed surveys on adversarial perturbation techniques in computer vision see Akhtar and Mian (2018); for
surveys on adversarial attacks in general see Chakraborty et al. (2018) and Yuan et al. (2019). While the goal of these
methods is to actively change model confidence for the purpose of attacking the model, they take advantage of the
black box nature of DL models and have led to creation of techniques that can be used to deploy more robust and inter-
pretable models.

2.3 | Attention

Attention mechanisms have played an important role in model interpretations and the attention weights have been
widely adopted as a proxy to explain a given model's decision making (Clark et al., 2019; Voita et al., 2019; Xie
et al., 2017; Xu et al., 2015).

Historically, attention mechanisms have been introduced in the context of sequence to sequence text model align-
ment as the way to directly incorporate the importance of the context to any given word representation. Each input
word in a given context is represented by a weighted sum of the representations of other words. Naturally, the dynamic
weights for each word can be interpreted as the contribution (or importance) of the words to a given word
representation.

While the exact architecture of the attention-utilizing models differs from model to model, all of them make use of
the set of computations known as the attention mechanism. The basic building block of attention is a generalized train-
able function (Bahdanau et al., 2014; Vaswani et al., 2017):

Attention V ,Q,Kð Þ¼ Score WqQ,WkK
� � �WvV ð3Þ

where Q and K represent the context of a given element, V the unmodified element contribution to the representation
without the context being taken into an account, and the set of weights Wk,Wq,Wv are the adaptable weights that rep-
resent the learned elements' contributions.

The output of the score function is known as the attention weights and represents the contributions of the other ele-
ments of the input to the representation of the given element or sequence as a whole; in the naive interpretation setting,
a high post-training attention weight of an input feature or a set of features corresponds to a higher importance of the
given feature value in producing a prediction.

Note that this methods of producing interpretation is intrinsically linked to the model itself and constitutes a direct
interpretation of the outputs of the parts of a given attention-utilizing model (attention scores) as an explanation for the
prediction. Since attention scores are often computed over already pooled representations of the elements and
sequences, the element scores do not necessarily represent the direct feature contributions (Brunner et al., 2019; Jain &
Wallace, 2019; Zhong et al., 2019).

The majority of work on attention based interpretability has been in the general time-series processing field due to
both the success of the attention-using models and the natural idea of viewing the contribution of the other elements of
the sequence to the current state (Ardabili et al., 2019; Fawaz et al., 2019; Sezer et al., 2020; Wang et al., 2019).

Fully-attention based models and attention based interpretations are also popular in natural language processing
(NLP) due to the compositional nature of syntax and meaning (Wolf et al., 2020).

2.4 | Model distillation

Model distillation (also known as Network distillation) is a model compression technique where a simpler model (stu-
dent) is “taught” by a more complex model (teacher). While the original use of the technique focused on the improved
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performance or compactness of the student model (Hinton et al., 2015), it is important to note that if the simpler model
is naturally interpretable, the transfer results in an “interpretable” model explaining the behavior of the more complex
teacher model.

A complex model's behavior may be approximated either locally, by fitting a simpler model around a given example
to produce an explanation for a given point (Ribeiro et al., 2016a), or globally, by fitting one simple model directly to
the teacher model, using all the training data (Lakkaraju et al., 2017).

Due to the explicit “interpretation” use case of the technique, the student models are in general limited to either gener-
alized linear models (Ribeiro et al., 2016a), decision trees (Craven & Shavlik, 1995; Plumb et al., 2018; Schmitz et al., 1999)
or direct rules or set inductions (Lakkaraju et al., 2017; Ribeiro et al., 2018; Sethi et al., 2012; Zilke et al., 2016).

The most influential member of this family of interpretation producing techniques is LIME (Ribeiro et al., 2016a), a
general method for generating local explanation for a specific input case. The local model that serves as an explanation
for a given point is obtained by minimizing

ξ x*
� �¼ argmin

g∈G
L f ,g,πx*ð ÞþΩ gð Þ ð4Þ

where G is a class of the interpretable models used to produce an explanation, πx* defines the neighborhood of points
near x*, L is the measure of the difference between the original model and the explanation model prediction in that
neighborhood, and Ω gð Þ is a complexity measure of the explanation model.

In practice, in the classical LIME use, L is set to be the distance weighted squared loss between the original model
and the explanation model prediction computed over a randomly sampled set of data points biased to lie near x* by πx* .
The explanation model class G is the class of all linear models and Ω gð Þ is a regularization term to prevent overfitting.

The vast majority of local knowledge distillation for interpretability models are the result of modifying Lime in
either the neighborhood construction (ALIME; Shankaranarayana & Runje, 2019), sampling (MPS-LIME; Shi
et al., 2020) and input structure constraining procedure (GraphLime; Huang et al., 2020), or the nature of the explana-
tion model (SurvLIME; Kovalev et al., 2020, GRAPHLime; Huang et al., 2020). Another popular trend is producing
semi-global explanation models through LIME-like fitting procedures (LIME-SUP, Hu et al., 2018; Klime, Hall
et al., 2017; NormLime, Ahern et al., 2019; DLIME, Zafar & Khan, 2019; ILIME, Shawi et al., 2019).

2.5 | Game theory based interpretability methods

DL models can also be interpreted via Shapley value, a game theory concept inspired by local surrogate models
(Lundberg & Lee, 2017). Shapley value is a concept of fair distribution of gains and losses to several unequal players in
a cooperative game (Shapley, 1953). It is an average value of all marginal contributions to all possible interactions of
features (i.e., players in the game) given a particular example. Therefore, the Shapley value can explain how feature
values contribute to the model prediction of the given example by comparing against the average prediction for the
whole dataset. Nevertheless, the Shapley value approximation is not easy to compute when the learning model becomes
complicated.

Recently, researchers proposed a unified framework, SHapley Additive exPlanations (SHAP) values, to approximate
the classical Shapley values with conditional expectations for various kinds of machine learning models, which include
linear models, tree models (Lundberg, Erion, & Lee, 2018), and even complicated deep neural networks (Lundberg &
Lee, 2017). SHAP has been widely used recently for DL interpretation, yet researchers also admit to concerns about this
popular interpretability method.

First, the SHAP for neural networks (KernelSHAP) is based on an assumption of model linearity. To mitigate the
problem, (Ancona et al., 2019) propose a polynomial-time approximation algorithm of Shapley values, Deep Approxi-
mate Shapley Propagation (DASP), to learn a better Shapley value approximation in non-linear models, especially
deeper neural networks. DASP is a perturbation-based method using uncertainty propagation in the neural networks. It
requires a polynomial number of network evaluations, which is faster than other sampling-based methods, without los-
ing approximation performance. Also, Sundararajan and Najmi (2020) showed that SHAP, or other methods using
Shapley values with conditional expectations, can be sensitive to data sparsity and yield counterintuitive attributions
that make an incorrect model interpretation. They propose a technique, Baseline Shapley, to provide a good unique
result.
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2.6 | Example based interpretability methods

Instead of explaining the model using the attributive contribution of input data points, example based methods inter-
pret the model behavior using only the particular training data points that are representative or influential for the
model prediction.

For DL models, there are several interpretation methods based on example-level information. For example, the
influence function (Koh & Liang, 2017), example-level feature selection (Chen et al., 2018), contextual decomposition
(CD; Murdoch et al., 2018), and the combination of both prototypes and criticism samples—data points that cannot be
represented by prototypes (Kim et al., 2016). Other popular methods for interpretation, such as LIME (Ribeiro
et al., 2016a; Section 2.4) and SHAP (Lundberg & Lee, 2017; Section 2.5), also provide example-level model
interpretability.

The influence function is an example of example-based interpretability (Koh & Liang, 2017), which can be used in
both computer vision (Koh & Liang, 2017), and NLP (Han, Wallace, & Tsvetkov, 2020). The goal of the influence func-
tion is to measure the change in the loss function as we add a small perturbation, weight, or remove an influence
instance, which is a representative, influential training point. Under the smoothness assumptions, the influence func-
tion can be computed using the inverse of the Hessian matrix of the loss function or by using the Hessian-vector prod-
ucts to approximate the result. The influence function can also be used to generate an adversarial attack.

Researchers developed DL-based instance-wise feature selection at the example-level for feature importance mea-
surement (Chen et al., 2018). Instance-wise feature selection (Learning to Explain [L2X]) measures feature importance
locally for each specific example and therefore indicates which features are the key for the model to make its prediction
on that instance. L2X is trained to maximize the mutual information between selected features and the response vari-
able, where the conditional distribution of the response variable given the input is the model to be explained. To solve
an intractable issue of direct estimation of mutual information and discrete feature subset sampling, the authors apply
a variational approximation for mutual information, then develop a continuous reparameterization of the sampling dis-
tribution. The method has been applied to CNN and hierarchical long short-term memory (LSTM) on different datasets
and yields a better explanation performance quantitatively and qualitatively.

CD is an interpretation method to analyze individual predictions by decomposing the output of LSTMs without any
changes to the underlying model (Murdoch et al., 2018). In NLP, it decomposes an LSTM into a sum of two contribu-
tions: those resulting solely from the given phrase and those involving other factors. CD captures the contributions of
combinations of words or variables to the final prediction of an LSTM. In the study, researchers demonstrate that CD
can explain both NLP and general LSTM applications. For example, they model for sentiment analysis by identifying
words and phrases of differing sentiment within a given review and extracting positive and negative words from the
model. The CD method can be further extended to a more general version, contextual decomposition explanation
penalization (CDEP) (Rieger et al., 2020). CDEP is a method that allows the insertion of domain knowledge into a
model to ignore spurious correlations, correct errors and generalize to different types of dataset shifts. It is general and
can be applied to different neural network architectures.

For graph neural networks, (Ying et al., 2019) further propose a model-agnostic GnnExplainer to provide interpret-
ability on graph-based tasks, such as node and graph classification. By identifying the prediction-relevant edges,
GnnExplainer can highlight local subgraph structures and small subsets of important features to the prediction. The
method can be used for single and multiple instance explanations in a graph.

To tackle the real-world data, which may not have a set of prototypical examples representing the data well, we can
also utilize both the prototypical examples and criticism samples that do not fit the model well (Kim et al., 2016). The
maximum mean discrepancy-critic (MMD-critic) method uses a Bayesian approach to select the prototype and criticism
samples and to provide explanations that can facilitate human reasoning and understanding of the model.

2.7 | Generative based interpretability methods

The basis of generative based methods for explaining a model's behavior uses information that does not occur explicitly
in attributes of the input, but is derived from external knowledge sources, from a causal model, or from explainable
probabilistic modeling.

For example, the state-of-the-art general domain neural question answering (QA) system attempts to provide
human-understandable explanations for better commonsense reasoning, yet to interpret how the model utilizes
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common sense knowledge, a common-sense explanation generation framework is required (Rajani et al., 2019).
Researchers collect human narrative explanations for common sense reasoning and pretrain language models (Rajani
et al., 2019), which can generate explanations and be used concurrently with the QA system (Commonsense Auto-
Generated Explanations [CAGE] framework). They further transfer knowledge (generated explanations) to out-of-
domain tasks and demonstrate the capacity of pretrained language models for common sense reasoning.

Generative Explanation Framework (GEF) is another hybrid generative-discriminative method that explicitly cap-
tures the information inferred from raw texts, generates abstractive, fine-grained explanations (attributes), and simulta-
neously conducts classification tasks. It can interpret the predicted classification results and improve the overall
performance at the same time (Liu et al., 2019). More specifically, the authors introduce the explainable factor (EF) and
the minimum risk training (MRT) approach that learn to generate more reasonable explanations. They pretrain a classi-
fier using explanations as inputs to classify texts, then adopt the classifier to jointly train a text encoder by computing
EF, which is the semantic distance between generated explanations, gold standard explanations, and inputs, and then
minimizing MRT loss that considers both the distance between predicted overall labels and ground truth labels, as well
as the semantic distance represented in EF. GEF is a model-agnostic method that can be used in different neural net-
work architectures.

Madumal et al. (2020) introduced action influence models that utilize the structural causal model to generate the
explanation of the behavior of model-free reinforcement learning agents through knowing the cause-effect relationships
using counterfactual analysis. The proposed model has been evaluated on deep reinforcement learning algorithms, such
as Deep Q Network (DQN; Mnih et al., 2013), Double DQN (DDQN; Van Hasselt et al., 2016), Proximal Policy Optimi-
zation (PPO; Schulman et al., 2017), and Advantage Actor Critic (A2C; Mnih et al., 2016).

Wisdom et al. (2016) developed a model-based interpretation method, sequential iterative soft-thresholding algo-
rithm (SISTA), to construct recurrent neural network (RNN) without black-box components like LSTMs, via the trained
weights of the explicit probabilistic model.

3 | METHODS FOR INTERPRETABILITY IN HEALTHCARE

In the last section, we have summarized the methodology for each class of interpretation methods. Most of these
methods were initially proposed for general domain applications. In order to deploy them to healthcare problems, some
customization needs to be performed. Therefore in this section, we discuss how each class of interpretation methods
can be adapted to healthcare systems. We also discuss what kinds of clinical/medical observations and findings we can
make with the help of these interpretation methods.

3.1 | Back-propagation

Back-propagation based interpretability methods have been widely used to help visualize and analyze those DL models
adopted for healthcare problems, which include computer vision, NLP (Gehrmann et al., 2018), time series analysis,
and static features-based predictive modeling. We would like to summarize these successful applications and categorize
them based on the applied task types.

In computer vision tasks, many powerful DL models have achieved close to expert doctor performance (Esteva
et al., 2017; Ran et al., 2021) and thus it is very meaningful to study how these models can accomplish such great suc-
cess (Singh, Sengupta, & Lakshminarayanan, 2020). Xie et al. (2019) adopted CAM (Zhou et al., 2016) to generate
heatmaps separately for melanoma and nevus cells in skin cancer histology images so that the morphological difference
between these two types of cells can be visualized: the melanoma cells are of irregular shape and the nevus cells are dis-
tinctly shaped and regularly distributed. Zhang et al. (2021) used Grad-CAM to provide an explainable heatmap for an
attention network built for classifying chest CT images for COVID-19 diagnosis, while Grad-CAM was also used to
explain a graph convolutional network for secondary pulmonary tuberculosis diagnosis based on chest CT images
(Wang et al., 2021). Integrated gradients (Sundararajan et al., 2017) was used to visualize the features of a CNN model
used for classifying estrogen receptor status from breast magnetic resonance imaging (MRI) images (Pereira
et al., 2018), where the model was found to have learned relevant features in both spatial and dynamic domains with
different contributions from both. Overall, back-propagation based methods have been used to visualize and interpret
various medical imaging modalities such as brain MRI (Eitel & Ritter, 2019), retinal imaging (Sayres et al., 2019; Singh,
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Mohammed, et al., 2020), breast imaging (Kim et al., 2018; Papanastasopoulos et al., 2020), skin imaging (Young
et al., 2019), computed tomography (CT) scans (Couteaux et al., 2019), and chest X-rays (Wang et al., 2020).

For features-based predictive modeling, back-propagation based interpretability methods can be applied to both
static and time-series analysis. For static analysis (e.g., therapy recommendation based on a fixed set of features), fully
connected neural networks are typically utilized for modeling and thus are the target to be interpreted. Commonly used
interpretability methods include DeepLIFT (Fiosina et al., 2020), LRP (Li et al., 2018; Zihni et al., 2020), and so on. For
time-series analysis, besides being able to analyze which features are more important or relevant to the prediction
among all features used (Yang et al., 2018), it is noteworthy that we can also analyze what temporal patterns are more
influential to the final model decision (Mayampurath et al., 2019; Suresh et al., 2017).

3.2 | Feature perturbation

Feature perturbation methods have primarily been discussed in the context of adversarial attacks in the healthcare
domain (Finlayson, Bowers, et al., 2019), mainly as potential future risks due to the ready acceptance of machine learn-
ing in diagnosis and insurance claims approval. Nevertheless, the features that are most influential if altered by an
attacker are also the ones to which the model's responses are most sensitive (Finlayson, Bowers, et al., 2019).

Finlayson, Chung, et al. (2019) perform adversarial perturbations (a variation on FGSM attack; Goodfellow
et al., 2015) by addition of gradient-based noise to three highly accurate deep learning systems for medical imaging. By
attacking models that classify diabetic retinopathy, pneumothorax, and melanoma, they show vulnerabilities in three of
the most highly visible successes for medical deep learning. In addition, they discuss hypothetical scenarios of how
attackers could take advantage of the vulnerabilities the systems demonstrate. More broadly, they comment on indus-
tries and scenarios that could be affected by adversarial attacks in the future: insurance fraud and determining pharma-
ceutical and device approvals. They discuss the challenging tradeoff between forestalling approval until a resilient
algorithm is built and the harm that delaying the deployment of a technology impacting healthcare delivery for millions
could entail.

Iqtidar Newaz et al. (2020) show vulnerability in smart healthcare systems (SHS) by manipulating device readings
to alter patient status. By performing two types of attacks, including Evasion Attacks (Tabassi et al., 2019), they identify
flaws in an underlying ML model in a SHS. Employing feature perturbation methods such as FGSM (Goodfellow
et al., 2015), randomized gradient-free attacks based on Carlini and Wagner (2017), Croce et al. (2020), and Croce and
Hein (2018), and zeroth order optimization based attacks (Chen et al., 2017), are able to alter patient status for ML
models based on patient vital signs.

Chen et al. (2020) generate adversarial examples based on perturbation techniques for electrocardiograms. They use
techniques from Carlini and Wagner (2017) and Athalye et al. (2018) to misguide arrhythmia classification. In a similar
application, Han, Hu, et al. (2020) introduce a smooth method for perturbing input features to misclassify arrhythmia.

For temporal data in EHR, Sun et al. (2018) introduce an optimization based attack strategy, similar to Chen
et al. (2017), to perturb EHR input data. An et al. (2019) introduce a JSMA and attention-based attack by jointly model-
ing the saliency map and attention mechanism. Finally, in a domain agnostic setting, Naseer et al. (2019) introduce
cross-domain transferability of adversarial perturbations using a generative adversarial network (GAN)-based frame-
work. They show how networks trained on medical imaging datasets can be used to fool ImageNet based classifiers.
Successful transferability of adversarial perturbations can make it even simpler to fool healthcare models across multi-
ple task domains, and potentially modalities. One such paper examines the effect of universal adversarial perturbations
in the medical imaging space (Hirano et al., 2021).

Several methods have been proposed in the general domain to counter these adversarial attacks, namely proactive
defense (Cisse et al., 2017; Gu & Rigazio, 2014; Papernot, McDaniel, Wu, et al., 2016; Shaham et al., 2018) and reactive
defense (Feinman et al., 2017; Grosse et al., 2017; Lu et al., 2017). Proactive defense methods increase the robustness of
models retroactively, whereas reactive defense models detect the adversarial examples. There are also other methods,
such as using collaborative multitask learning (Wang et al., 2020). While it may seem that the possibility of adversarial
perturbations works against the recommendation of using deep learning in healthcare settings, there are recent works
pushing the boundaries by actively examining the reasons for the susceptibility of healthcare data to attacks (Ma
et al., 2021). Since feature perturbation techniques have strong policy-level implications in healthcare, it is also impera-
tive to tailor general domain defense methods to the healthcare setting.
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3.3 | Attention

Attention architectures designed with a special consideration for interpretability are routinely used for EHR-based longitudi-
nal prediction tasks such as heart failure prediction (Choi et al., 2016; Kaji et al., 2019), sepsis (Kaji et al., 2019), intensive care
unit (ICU) mortality (Shi et al., 2019), automated diagnosis, and disease progression modeling (Alaa & van der Schaar, 2019;
Bai et al., 2018; Gao et al., 2019; Ma et al., 2017; Mullenbach et al., 2018). The underlying representation of such a model is
often produced by an LSTM variant with the attention used to compute the contribution of a given feature or time step ele-
ment of the sequence to the prediction. The best known model of this kind is RETAIN (Choi et al., 2016), which includes
computing the attention weights over both the time-step of the time-series and the individual features of the inputs.

Pure attention-based architectures such as the transformer have revolutionized NLP-based modeling, allowing the
use of massive unlabeled medical text for pretraining (Alsentzer et al., 2019; Beltagy et al., 2019; Lee et al., 2020). Adop-
tion of such models for non-text data is still relatively rare (Li, Rao, et al., 2020; Rajan et al., 2017).

A special variant of the attention mechanism that seeks to address interpretability allows the model to output uncer-
tainty on each input feature and use the aggregated uncertainty information for prediction (Heo et al., 2018).

Despite the widespread use of the attention maps as explanations, we would caution against the direct interpreta-
tion of attention as an element's contributions to the prediction in the medical domain. More studies are needed to dis-
entangle self-attention produced representations from the context contribution itself.

3.4 | Model distillation

LIME (Ribeiro et al., 2016a) is one of the most popular techniques used to produce instance-level explanations for
black-box model predictions in medical AI. The model-agnostic nature of the technique has led to its use in a diverse
set of longitudinal EHR-based prediction tasks such as heart failure prediction (Khedkar et al., 2020), cancer type and
severity inferences (Moreira et al., 2020), breast cancer survival prediction (Jansen et al., 2020), and predicting develop-
ment of hypertension (Elshawi et al., 2019).

It should be noted that the LIME variants are not widely used, despite the potential clinical usefulness of such inter-
pretation methods. Among the potentially useful variants for ML in medicine are SurvLIME (Kovalev et al., 2020),
introduced specifically for producing Cox proportional hazards explanations for black-box survival models, and DLIME
(Zafar & Khan, 2019), a hierarchical clustering neighborhood based semi-global LIME variant for producing more con-
sistent explanations for predictions over similar inputs.

3.5 | Game theory based interpretability

The game theory based SHAP algorithm has been widely applied in the medical domain for feature contribution analy-
sis due to its ability to explain not only individual predictions but also global model behavior via the aggregation of
Shapley values. SHAP is also model-agnostic, so that it can be applied to various machine learning algorithms
(Lundberg & Lee, 2017; Lundberg, Nair, et al., 2018).

In the direct usage of SHAP for deep learning in healthcare, Arcadu et al. (2019) applied SHAP to find the crucial
regions, which are peripheral fields, for identifying diabetic retinopathy progression. Also, for the interpretation of med-
ical imaging, Young et al. (2019) and Pianpanit et al. (2021) utilized KernelSHAP to generate the saliency maps for
interpreting the deep neural networks for melanoma prediction and Parkinson's disease prediction, respectively. Levy
et al. (2020) also adopted SHAP to interpret the portal region prediction in pathology slide imaging. Beyond medical
imaging, Boshra et al. (2019) used SHAP to investigate the features' influence on concussion identification given the
electroencephalography (EEG) signals.

Ancona et al. (2019) uses the DASP algorithm to approximate the Shapley values and yields the explanation of the
deep learning models and applies it to a fully connected network model for predicting the Parkinson's disease rating
scale (UPDRS), which is a regression task to predict the severity of Parkinson's disease based on 18 clinical features in a
telemonitoring dataset.

In Lundberg, Nair, et al. (2018), they also have anesthesiologists consulted to ensure that their model explanations
are clinically meaningful. The anesthesiologists were asked to justify the SHAP explanations with the change in model
output when a feature is perturbed. Li, Shinde, et al. (2020) also shows that it is possible to use SHAP for modeling and
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visualizing nonlinear relationship between prostate-specific antigen and Gleason score in prostate cancer that is consis-
tent with the prior knowledge in the medical literature. Such clinical evaluations help the medical community to accept
the interpretation method better.

Other works mentioned in this section also provide explanations that are aligned with prior knowledge and ground
truth given by the dataset via visualization or computing quantitative metrics, yet none of them are justified by a formal
clinical user study. Further study is needed for these methods and applications in healthcare.

One major concern of using SHAP in the medical domain is that the Shapley value and SHAP was originally derived
from economics tasks, where the cost is additive. However, clinical features are usually heterogeneous, and the Shapley
values derived from the model may not be meaningful in the domain (Kovalerchuk et al., 2021). Further investigation
is needed to justify real-world clinical use of SHAP-based interpretations.

3.6 | Example based interpretability

Example-based model interpretation provides a mental model that allows clinicians to refer to some similar cases, pro-
totypes, or clusters given a new case.

Researchers utilize CDEP to ignore spurious confounders in skin cancer diagnosis (Rieger et al., 2020). The study
uses a publicly available image dataset from International Skin Imaging Collaboration (ISIC), which has colorful patches
present in approximately 50% of the non-cancerous images but not in the cancerous images. It can be problematic if the
learned model uses such spurious patch features as an indicator but not the critical underlying information for skin can-
cer prediction. The CDEP helps penalize the patches for having zero importance during training and mitigates the issue.

Although yielding better model performance with a quasi-explanation with a skin cancer classification example,
CDEP has not yet been justified by a formal clinical user study and not yet been accepted by the medical community. It
is still at the research rather than the deployment stage.

3.7 | Generative based interpretability

DL interpretability can also be learned based on expert-interpretable features provided during the learning process.
To provide visually interpretable evidence for breast cancer diagnostic decisions, Kim et al. (2018) developed an

interpretability framework that includes a breast imaging reporting and data system (BIRADS) guided diagnosis net-
work and a BIRADS critic network. The interpretable two-dimensional (2D) BIRADS guide map, which is generated
from the visual feature encoder, can help the diagnosis network focus on the critical areas related to the human-
understandable BIRADS lexicon via the critic network.

The study shows that with the BIRADS guide map, the performance is significantly higher than the network with-
out the guide map. This finding also indicates the critical role and necessity of integrating medical domain knowledge
while deploying machine learning models in healthcare.

For radiology, Shen et al. (2019) proposed an interpretable deep hierarchical semantic convolutional neural network
(HSCNN) for pulmonary nodule malignancy prediction on CT images. HSCNN generates the binarized low-level
expert-interpretable diagnostic semantic features that are commonly used by radiologists, such as sphericity, margin,
and calcification; these are inputs to the high-level classification model, along with the latent representations learned
from the visual encoder.

Both Kim et al. (2018) and Shen et al. (2019) demonstrate that the image guide map and label generation process
may help clinicians curate the raw image information to high-level diagnostic criteria, yet the method is not yet justified
by formal clinical user studies. Further study is needed for these methods to be accepted by the medical community.

4 | DISCUSSION

4.1 | Dimensions of different interpretability methods

The current literature presents several different classification schemes for interpretation methods in DL (Doshi-Velez &
Kim, 2017; Lipton, 2018; Pedreschi et al., 2019). In addition to the methodology motivated classification used in the

JIN ET AL. 13 of 25

 26929368, 2022, 3, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
sbm

.1548 by M
it L

ibraries Serials &
 Journa, W

iley O
nline L

ibrary on [02/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



interpretability methods section of the article, we present two different questions that every interpretation producing
method naturally poses:

1. Model dependence: Does the explanation model depend on the internal structure of the model it is explaining or can
it be used for producing an explanation of any “black-box” model?

2. Explanation scope: Does the explanation model focus on producing an explanation for a given input-prediction pair
or is it attempting to create a unified global explanation of the model's behavior?

A characterization of the most commonly used methods to produce interpretations in health care with respect to
these aspects is presented in Table 2.

In general, the vast majority of the methods are explicitly local, producing the explanation for a given decision only,
with some attempts at aggregation of the local explanation into patterns (Lakkaraju et al., 2019; Ramamurthy
et al., 2020).

The community appears to be deeply split on the issue of model dependence, with the proponents citing the neces-
sity of explanation fidelity (Rudin, 2019), while opponents doubt the inherent fidelity of the directly model-dependent
explanations (Jacovi & Goldberg, 2020) and stress the need for flexible model-independent explanation methods
(Ribeiro et al., 2016b).

4.2 | Credibility and trustworthiness of interpretability methods

In this section we will discuss two aspects of the methods used to produce interpretations of decision models used in
health care:

1. How faithful is the interpretation to the underlying decision making model?
2. How understandable are the interpretations to human expert users?

The two aspects are often at odds with each other: A complex model decision might require a rather complex explana-
tion to cover all of the possible aspects of the model's behaviors on different inputs, which might not look easy to under-
stand to humans.

4.2.1 | Faithfulness of the interpretation

We first discuss the direct correspondence between the produced interpretation and the model's decision making,
known in the literature under the terms Fidelity (Jacovi & Goldberg, 2020) or Faithfulness (Rudin, 2019). A perfectly
faithful interpretation accurately represents the decision making of the model being explained. If the interpretation is
constrained to agree with the model's behavior on all possible inputs, then no simpler explanation than the original
model is possible. Even model dependent explanation producing methods may not be faithful to the original model
because, as a simplified model, they may not include all parts of the original decision making process (Jain &
Wallace, 2019).

When using an explanation producing model for black-box models trained on complex healthcare data, we recom-
mend the user to consider the following issues to gain more insight into the explanation model's faithfulness.

1. For explanations that, in themselves, are predictive models, look at the prediction agreement between the explana-
tion model and the original: if the concordance is low, then the model is not faithful.

2. While it is hard to estimate the fidelity of an explanation method, consider computing recently proposed fidelity
measures over the set of the explanation methods you are planning to use (Yeh et al., 2019).

3. Consider running “feature occlusion” sanity checks, to check if changing those model elements according to the
explanation change the original predictions (Hooker et al., 2018).

4. Due to the nature of some interpretation producing models, the same model might produce different explanations
for the same pair of input–outputs over multiple runs.
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4.2.2 | Plausibility of the interpretation as defined by the expert user

Traditionally, clinicians tend to embrace expert-curated models, such as the Acute Physiology and Chronic Health Eval-
uation (APACHE) score for evaluating the patient severity in the ICU (Knaus et al., 1985), due to the consistency
between used model features and domain knowledge. In contrast, machine learning approaches for healthcare prob-
lems aim to further improve performance by learning a much more complex representations from raw features while
sacrificing model transparency. Machine learning interpretability methods may provide human-understandable expla-
nations, yet it is crucial that the explanations should be aligned with our knowledge to be trustable, especially for real-
world deployment in the healthcare domain. However, current deployments with interpretability methods mainly focus

TABLE 2 Most popular methods intended for providing interpretation (cited more than 50 times)

Class: Model Scope Dep. Potential issues Refs.

Back-prop. Integrated
Gradients

L I More computationally expensive than Gradients*Inputs, the
baseline needs to be carefully selected/tuned for some cases

Sundararajan
et al. (2017)

CAM L I Label/class discriminative features revealed by this method
may not be convincing and accurate for some data samples

Zhou et al. (2016)

LRP L I Initially proposed for interpreting multilayer perceptions and
hard to generalize well to more complex neural networks
such as LSTM and Transformers

Bach et al. (2015)

Feat perturbation Prediction
Difference
Analysis

L I Computationally expensive. Simulates the absence of feature
via marginalization, rather than exact knowledge of model
behavior without the feature present.

Zintgraf
et al. (2017)

Representation
Erasure

G I Computationally expensive, requires several steps of probing.
Injects random noise into input for representation erasure.

Li et al. (2016)

Counterfactual
Generation

L I Computationally expensive due to intermediate generative
stage for injecting noise respecting data distribution.
Involves similar marginalization approximations as
Prediction Difference Analysis.

Chang
et al. (2019)

Attention RETAIN L D Attention weight correspond to the importance of the
intermediate representations to the final representation, not
the input elements directly.

Choi et al. (2016)

Attend and
Diagnose

L D Same issues as retain, exacerbated by the use of the fully-
additional architecture of the model

Rajan et al. (2017)

Model distillation LIME L D The explanation is not cross instances consistent and might
vary wildly for even for very similar instances. Possible
issues on discontinuous data. Might produce inconsistent
results across the multiple runs

Ribeiro
et al. (2016a)

Anchors S I Might produce inconsistent results across multiple runs. The
explanation might be too specific and not very robust at the
decision boundary

Ribeiro
et al. (2018)

Game theory SHAP L I Computationally expensive. Require the access to training
data for interpretation.

Lundberg and
Lee (2017)

Example Influence function L I Would not work for models without differentiable parameters
and losses. Only an approximation. No clear cut of
“influential” and “non-influential.” May not be human-
interpretable if there are too many feature values in a
prototype.

Koh and
Liang (2017)

Contextual
decomposition

L D Only for LSTM. Require further algorithm modifications to
extend the method for other network architecture.

Murdoch
et al. (2018)

Generative CAGE L D Require high-quality external knowledge resources. Task-
specific method.

Rajani
et al. (2019)

Note: Scope: L, local; S, semi-global; G, global. Model dependence: D, dependent; I, independent.
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only on helping to debug the model for engineers, but not the real-world use for end users (Bhatt, Xiang, et al., 2020).
The appropriate interpretability methods should be selected and evaluated both to help model developers (data scien-
tists and machine learning practitioners) understand how their models behave, and to assist clinicians to understand
the rationale for model predictions for decision making.

For model developers, researchers evaluate their use of interpretability methods with different levels of model trans-
parency (generalized additive models [GAMs] and SHAP), from both quantitative (machine-learned interpretability)
and qualitative (visualization) perspectives using interviews and surveys (Kaur et al., 2020). The results, however, show
that developers usually over-trust the methods and this may lead to their misuse, especially over-relying on their
“thinking fast (system 1)” (Kahneman, 2011) since the good visualization may sway human thought, but may not fully
explain the behavior of the system and may be incorrectly interpreted by developers. Moreover, visualization sometimes
is not able to be fully understood and interpreted correctly by the model developers. The authors point out that devel-
opers usually just focus on superficial values for model debugging instead of using explanations to dig deeper into data
or model problems. They also enumerate the common issues faced by developers, which include missing values, data
change over time, data duplication, redundant features, ad-hoc categorization, and difficulties of debugging the
methods based on explanations. The developers are also shown to be biased toward model deployment even after recog-
nizing suspicious aspects of the models.

From a clinical perspective, it is necessary and critical to have clinically relevant features that align with medical
knowledge and clinical practice (Caruana et al., 2015), while under-performing models may still be acceptable as long
as the errors are explainable. In (Tonekaboni et al., 2019), the authors survey clinicians in the ICU and emergency
department to understand the clinicians' need for explanation, which is mainly to justify their clinical decision-making
to patients and colleagues.

Depending on the problem scope, different levels of interpretability may be considered by clinicians. Elshawi
et al. (2019) conduct a case study of the hypertension risk prediction problem using the random forest algorithm and
explore the important factors with different model-agnostic interpretability techniques at either global or local-level
interpretation. They find that different interpretability methods in general provide insights from different perspectives
to assist clinicians to have a better understanding of the model behavior depending on clinical applications. Global
methods can generalize over the whole cohort while local methods show the explanation for specific instances. Thus,
applications such as the hypertension risk prediction problem may focus on global risk factors derived from either
global interpretability methods, mainly non-DL based techniques such as feature importance and partial dependence
plot, or the aggregation of local explainers (e.g., SHAP, LIME; Elshawi et al., 2019), while disease progression prediction
requires integrated interpretations at local, cohort-specific, and global levels (Ahmad et al., 2018).

However, different interpretability methods may yield a different subset of clinically relevant important features
due to their ways to obtain feature importance. For instance, SHAP, coefficient of regression models, and permutation-
based feature importance may provide completely different interpretations even if they are all at the global level. With
some clinical examples, researchers found that the local interpretation methods (LIME and SHAP) of the correctly
predicted samples are in general intuitive and follow common patterns, yet for the incorrectly predicted cases (either
false positive or false negative cases), these local methods can be less consistent and more difficult to interpret (Elshawi
et al., 2019). Nevertheless, the users may not be aware of the assumption of using the model and how it makes the deci-
sion: for example, the additivity assumption of the SHAP algorithm. Interpretability can be quite subjective, and the
computerized techniques for producing interpretations lack the interactivity that is often crucial when one human
expert is trying to convince another (Lahav et al., 2018).

Studies also show shortcomings of some interpretability methods while adopting them for real-world clinical set-
tings (Elshawi et al., 2019; Tonekaboni et al., 2019). For example, the complex correlation between features in feature
importance-based methods, the weak correlation between feature importance and learned attention weights for recur-
rent neural encoders (Jain & Wallace, 2019), and the trade-off between performance and explainability for rule-based
methods, are all potential problems of using global interpretability methods (Tonekaboni et al., 2019). For local inter-
pretability methods, researchers also show that clinicians can easily conclude the explanation at the feature-level using
LIME, but the main problem is that the LIME explanation can be quite unstable, where patients with similar patterns
may have very different interpretations (Elshawi et al., 2019). Instead, the advantage of the Shapley value interpretation
method is that it makes the instance prediction considering all feature values of the instance, and therefore the patients
with similar feature values will also have similar interpretations (Elshawi et al., 2019). But the cons of Shapley value-
based methods are that they can be computationally expensive and that they need to access the training data while
building model explainers (Janzing et al., 2020; Lundberg & Lee, 2017).
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It is not trivial to select appropriate interpretability methods for real-world healthcare applications. Researchers there-
fore provide a list of metrics, including identity, stability, separability, similarity, time, bias detection, and trust, to evaluate
different interpretability methods when considering real-world deployment (ElShawi et al., 2021). However, they find that
there is no consistent winning method for all metrics across various interpretability methods, such as LIME, SHAP, and
Anchors. Thus, it is essential to make a clear plan and think more about the clinical application and interpretability focus
in order to select the reasonable and effective interpretability methods and metrics for real-world use.

To further achieve the potential clinical impact of deployed models, we should not only focus on advancing
machine learning techniques, but also need to consider human–computer interaction (HCI), which investigates com-
plex systems from the user viewpoint, and propose better designs to bridge the gap between users and machines. End
users' involvement in the design of machine learning tools is also critical to understand the skills and real needs of end
users and how they will utilize the model outputs (Ahmad et al., 2018; Feng & Boyd-Graber, 2019). Kaur et al. (2020)
suggest that it may be beneficial to design interpretability tools that allow back-and-forth communication (human-in-
the-loop) to make interpretability a bidirectional exploration, and also to build tools that can activate thinking via “sys-
tem 2” for deeper reasoning (Kahneman, 2011).

4.3 | Benchmarking interpretation methods

Now we have many different kinds of interpretation methods to choose when we want to analyze a neural model,
although they are still in need of further improvement. At the current state of the art, which method we should choose
still does not have a definite answer. The choice of the right interpretation method should depend on the specific model
type we want to interpret; however, such a detailed and comprehensive guideline for all kinds of models to be analyzed
is currently not available. Several recent studies started to look into this problem by benchmarking some popularly used
interpretation methods applied to some neural models such as CNN, RNN, and transformer. For example, (Arras
et al., 2019) first use four interpretation methods, namely LRP, Gradient*Input, occlusion-based explanation (Li
et al., 2016), and CD (Murdoch et al., 2018), to obtain the relevance scores of each word in the text for the LSTM model
for text classification tasks, and then measure the change of accuracy after removing two or three words in decreasing
order of their relevance. By comparing the percentage of accuracy decrement, they observe that LRP and CD perform
on-par with the occlusion-based relevance, with near 100% accuracy change, followed by Gradient*Input which leads
to only 66% accuracy change. This experiment indicates that LRP, CD, and occlusion-based methods can better identify
the most relevant words than Gradient*Input. As a counterpart, Ismail et al. (2020) argue that one should not compare
interpretation methods solely on the loss of accuracy after masking since the removal of two or three features may not
be sufficient for the model to behave incorrectly. Instead, they choose to measure the precision and recall of features
identified as salient by comparing against ground truth important features and report the weighted precision and recall
as the benchmarking metric. However, their annotations of which features are important are synthesized rather than
collected by human annotation, which is not that convincing. In a more theoretical way, Bhatt, Weller, and
Moura (2020) propose several equations as quantitative evaluation criteria to measure and compare the sensitivity,
faithfulness, and complexity of feature-based explanation methods.

Through these benchmarking evaluations, we find that different interpretation methods may vary a lot in their
advantages and disadvantages. To make use of this fact, some studies propose to aggregate two kinds of interpretation
methods so that they can complement each other (Ismail et al., 2020). For instance, Bhatt, Weller, and Moura (2020)
develop an aggregation scheme for learning combinations of various explanation functions, and devise schemes to learn
explanations with lower complexity and lower sensitivity. We hope to see more efforts along this direction to generalize
such an aggregation scheme to a broader range of interpretation methods.

5 | CONCLUSION

In this review, we provided a broad overview of interpretation methods for interpreting the black-box DL models
deployed for healthcare problems. We started by summarizing the methodologies of seven classes of interpretation
methods in Section 2. Then we proceeded to discuss how these methods, which were initially proposed for general
domain applications, are adapted for solving healthcare problem in Section 3. Finally in Section 4, we continued dis-
cussing three important aspects in the process of applying these interpretation methods to medical/clinical problems:
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(1) Are these interpretation methods model agnostic? (2) How good are their credibility and trustworthiness? (3) How
to compare the performance of the methods so as to choose the most appropriate one for use? We hope these summa-
ries and discussions can throw some light onto the field of explainable DL in healthcare and help healthcare
researchers and clinical practitioners build both high-performing and explainable models.
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