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ABSTRACT

Expressivity plays a fundamental role in evaluating deep neural networks, and it is
closely related to understanding the limit of performance improvement. In this pa-
per, we propose a three-pipeline training framework based on critical expressivity,
including global model contraction, weight evolution, and link’s weight rewiring.
Specifically, we propose a pyramidal-like skeleton to overcome the saddle points
that affect information transfer. Then we analyze the reason for the modular-
ity (clustering) phenomenon in network topology and use it to rewire potential
erroneous weighted links. We conduct numerical experiments on node classifi-
cation and the results confirm that the proposed training framework leads to a
significantly improved performance in terms of fast convergence and robustness
to potential erroneous weighted links. The architecture design on GNNs, in turn,
verifies the expressivity of GNNs from dynamics and topological space aspects
and provides useful guidelines in designing more efficient neural networks. The
code is available at https://github.com/xjglgjgl/SRGNN.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved an outstanding performance for various learning tasks
such as speech recognition, image classification, and visual object recognition etc.LeCun et al.
(2015). It is well known that DNNs can approximate almost any nonlinear functions and make
end-to-end learning possible Mallat (2016); Raghu et al. (2017). Most recently, there has been a
surge of interest in graph neural networks (GNNs) since they can capture the dependency of graphs
by accounting for the message passing between nodes Zhou et al. (2018); Wu et al. (2019). This
appealing feature has renewed interest in answering a variety of fundamental questions involving
the interpretation, generalization, model selection, and convergence of GNNs (DNNs) Novak et al.
(2018).

When developing innovative GNN techniques, it is imperative to explore the physical and mathe-
matical principles that explain the observed phenomenon, which ultimately provides guidelines for
creative designs. There is a rich literature studying the effectiveness of GNNs from various aspects
Raghu et al. (2017); Dong et al. (2017). 1 For example, Scarselli et al. (2009) first showed that
GNNs can approximate a large class of functions in probability. Kawamoto et al. (2018) provided
a theoretical analysis of GNNs based on mean-field theory for graph partitioning tasks. Lei et al.
(2017) designed a recurrent neural architecture inspired by graph kernels and discussed its equiva-
lence between Weisfeiler-Lehman kernels. Moreover, Xu et al. (2019) proved that the expressivity
of GNNs was as powerful as that of the Weisfeler-Lehman graph isomorphism test. These efforts
have deepened our understanding of the expressive power of GNNs, however, general guidelines are
still largely needed for designing better neural architectures and overcoming issues in the training
of neural networks, such as parametric choices (e.g., width and depth), vanishing, and exploding
gradient problems.

Based on the previous research regarding the expressivity of DNNs Raghu et al. (2017); Zhang et al.
(2020), we understand that DNNs use the spatial space that offers an informational representation

1This field is called the interpretability or expressivity, and here we use the later terminology to encompass
all efforts in this area.
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and evolve toward a critical state (i.e., critical points 0) as the depth increase, corresponding to
increasing informational entropy. The main goal of this paper is to further study the optimal topology
design on GNNs based on the criticality theorem. The main contributions of this paper can be
summarized as follows:

• We propose a tree-pipeline training framework involving global skeleton determination
(width determination) and local topological link rewiring.

• The weak improvement of current pruning algorithms is examined, in which a rank-
constrained or sparsity-constrained regularization imposed on non-convex optimization
will prevent the tendency toward the critical state 0.

• The modularity (clustering) phenomenon in network topology is utilized for erroneous
weight rewiring in the weight matrix, which in turn verify the modularity phenomenon
in GNNs.

2 GRAPH NEURAL NETWORK AND ITS CRITICAL REPRESENTATION

The goal of this paper is to explore the representation capabilities of GNNs on graphs. To this end,
we consider a vanilla GNN with feedforward dynamics. Suppose the input graphs are character-
ized by a vertex set of size V and a D-dimensional feature vector with elements Xiu(i ∈ V, u ∈
{1, . . . , D}), then the state matrix X = [Xiu] is given by

Xt+1
iu =

∑
jv

φ
(
AijX

t
jvW

t
vu

)
+ btiu, (1)

where φ(·) is a non-linear activation function, A = [Aij ] is the adjacency matrix of network topol-
ogy, W t = [W t

vu] is a linear transformation of feature space, bt = [btiu] is a bias term, and the layer
is indexed by t ∈ {1, . . . , T}.
The general idea behind GNNs is that nodes can be recursively aggregated and propagated to the
next layer for complex calculations. In this respect, the network structure of neural networks is
typically described as graphs in which nodes act as neurons, and each edge links the output of one
neuron to the input of another. Graph matching refers to a computational problem of establishing
a one-to-one bijective correspondence between the vertex set of graphs. Therefore, graph matching
between a pair of graphs is analogous to representing graphs using GNN Li et al. (2019). In the next,
we discuss the dynamics aspects of the graph matching.

Based on the Banach Fixed Point Theorem in dynamics, we know that the unique solution of differ-
ential equations in (1) can be obtained through an iterative process

Xt+1 = φ(A . . . φ(Aφ
(
AX1W 1

)
W 2) . . .W t). (2)

To prevent the system from being chaotic, the eigenvalue of hidden states should satisfy |λi(Xt)|) <
1, i ∈ 1, . . . ,∞. Assume that the weight matrix W t is randomly distributed. Then both for-
ward propagation and backpropagation are the information transfer powered by dynamics from
[λ1(X

t), . . . , λi(X
t), . . . ] toward the critical state, i,e., critical points 0, which has abundant ex-

pressivity Zhang et al. (2020). The results can be generalized to local topological vector spaces via
Schauder fixed point theorem Bonsall (1962). The theorem illustrates that there always exists a fixed
point if X is a closed convex subset of local topological space S and f is a continuous self-mapping
such that f(X) is contained in a compact subset of X . In this respect, training a GNN is to con-
struct an inexact graph matching through convex-relaxation. In the next sections, we will further
demonstrate this point in more detail.

3 THE TRAINING ISSUES AND GLOBAL SKELETON IN GRAPH NEURAL
NETWORKS

From the Schauder fixed point theorem, to reach the critical state, one should construct a convex net-
work structure and an input convex topological space. First, we examine the topological structure
issue. The current training methods in GNNs are mainly based on backpropagation, including those
gradient-based methods. However, ordinary gradient descent cannot guarantee convergence to the
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global minimum, since the cost function is always non-convex. Another impediment to the convex
optimization is the presence of saddle points in high dimensional representation. The current net-
work structure is pre-set before training, and usually over-parameterized, which may generate many
saddle points Choromanska et al. (2015). In addition, (2) suggests that a global minimum in low
dimension may attenuate to a saddle point 0 in a high dimensional setting by layer-wise multiplying
λi, the so-called proliferation of saddle points Dauphin et al. (2014).

Mathematically, to determine whether a solution is a local minimum, a global minimum or a saddle
point, one needs to calculate the eigenvalues of its Hessian matrix at any given point. If all the
eigenvalues have both positive and negative values, there will also be a zero value, corresponding
to a saddle point. If all the eigenvalues are positive at any point, there exists a global minimum.
Although some recent work addressed this issue either by adopting noisy stochastic gradient descent
(SGD) or second-order Hessian information (e.g., Adam), they only avoided the local minimums,
and the saddle point issue remains unresolved.

In addition to the backpropagation, another popular method for solving non-convex optimization is
the alternating direction method (e.g., PARAFAC for matrix/tensor decomposition) Cichocki et al.
(2016); Aghasi et al. (2017), which is an alternating matrix optimization algorithm that solves opti-
mization problems by breaking down the convex optimization into smaller parts. Taylor et al. (2016)
pointed out that the alternating direction method of multipliers (ADMM) could overcome the gra-
dient vanishing or explosion issue in backpropagation, and could be implemented in parallel and
distributed computing environment. However, the theoretical understanding of the convergence of
ADMM remains challenging when the objective function is non-convex, and simulation examples
showed that ADMM could achieve high precision very slowly Boyd et al. (2011).

To avoid the saddle points caused by over-parameterization and high-dimensional representation, it
is recommended that the network structure should have a pyramid-like shrinkage property 2. The
shrinkage characteristics refer to the situation that the width of the next layer needs to shrink down
compared to the current layer. Specifically, a network structure is typically characterized by the
width (i.e., the number of nodes in each layer) and the depth (measured by the number of hidden
layers) of GNNs. In theory, the depth relies on the time dependence and period of data itself. Hence
there is no definitive way to determine the optimal value for depth given a specific dataset, and this
is usually obtained by numerical trials. Therefore we here mainly focus on estimating the width. In
mathematics, given a complete input, network width can be determined by identifying the latent rank
of the observable matrix. This field is called low-rank recovery (or low-rank matrix completion). By
imposing a rank constraint at each layer, the network width should show a pyramid-like structure.
We provide more details about low-rank recovery in Appendix, and examine the proposed hypothesis
via simulation experiments.

3.1 WHAT IS WRONG WITH EXISTING PRUNING ALGORITHMS

This section discuss the criticality issue by examining the current pruning algorithms. Initially,
Denil et al. showed in Denil et al. (2013) that there was a considerable redundant structure in exist-
ing networks. To reduce the number of parameters and nodes, researchers have developed various
network pruning algorithms to eliminate unnecessary connections or neurons without negatively af-
fecting convergence. A typical pruning algorithm has a three-stage pipeline, i.e., 1) training a large,
over-parameterized model; 2) pruning the trained over-parameterized model according to specific
criteria; 3) fine-tuning the pruned model to regain the optimal accuracy. The core pruning procedure
is divided into three categories: weight pruning, structured pruning, and layer pruning. Since the
layer pruning depends on the matching between the model and actual data, this paper focuses on
the first two pruning techniques. Weight pruning also learns networks by adding sparsity or rank
constraints on GNNs, i.e.,

W = argmin
W

(Xt+1 − φ(AXW t) + ‖W t‖). (3)

From the critical analysis, this constraint by imposing regularization will reverse the tendency to-
ward criticality when the network approaches the critical state 0. From a searching perspective, by
mixing up the topology search with weight evolution in one model, the resulting algorithm cannot

2Some literature calls it as model compression, here we are prone to dimensional contraction to describe the
relationship between successive layers.
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achieve representation with high precision. Liu et al. (2019) also showed in an experimental analysis
that current pruning algorithms only gave a comparable or worse performance than training models
with randomly initialized weights. They also emphasized that the pruned architecture, rather than
“significant” weights, was more important in improving convergence, which is consistent with our
analysis.

4 ROBUST TOPOLOGICAL LINK REWIRING

As mentioned earlier, the assumption in global network skeleton design is built on a complete ob-
servation of the input X . In real-world scenes, however, graphs often suffer from the missing edge
or missing node features, and the inputs are incomplete Davenport & Romberg (2016). Besides,
specific-task based backpropagation learn quickly from current inputs and may “forget” the pre-
vious learning experience. As a result, the potential accumulated erroneous inputs may eventually
form an erroneous topology structure Nelwamondo et al. (2007). In such settings, we need to recover
a complete and accurate network topology via a robust design. Therefore, this section introduces a
robust topological design for potential erroneous wights.

A classical approach for increasing network robustness is the use of local (geometric) topological
structures. An intuitive understanding of the topological robustness is to provide path redundancy
between vertices. When one path fails, communication can continue through other alternative routes.
Besides, the experiments visualizing the hidden states during training also observed a growing mod-
ularity or clustering phenomenon Kawamoto et al. (2018); Hou & Zhou (2020). This phenomenon
generally appears in the real-world coupled systems consisting of dynamics and local topological
structures Li & Shuai (2010). In all, this general phenomenon implies one can rewire the possible
erroneous links by exploiting the local topological structures as an informational redundancy for
self-checking.

The modularity presented in the network topology can be viewed as a cluster consensus that each
cluster consists of multiple interacting intelligent agents, and training the network topology is a
process of building consensus among each cluster. Most consensus problem would converge to the
average (proof is given in the Appendix), that is, the current state of each agent is an average of local
objective function

min
1

n

n∑
i=1

fi(xi) =

n∑
j=1

Aijxj(t), i = 1, . . . , n, xi ∈ X , (4)

where fi(·) is the loss function corresponding to agent i, and x ∈ X is an unknown state to be
optimized. Since network topology in GNNs can be viewed as a graph, its convergence can be
handled via graph theory.

For weights in GNNs, there are both positive and negative values. For an undirected graph with
all positive weights, that belongs to a class of Z matrix admitting many favorable properties, has
been widely studied. For example, the spectrum of the positive weighted graph Laplacian S(L)
has the form: S(L) = {0 = λ1 ≤ λ2 ≤ · · · ≤ λ∞}. The second smallest Laplacian eigenvalue
λ2(L) is considered as a measure of algebraic connectivity on graphs. For directed graphs, algebraic
connectivity also holds (proof is given in the Appendix). The consensus can be reached when all
weights within a connected graph are positive. In contrast, negative weights indicate an antagonistic
or anticorrelated interaction between nodes. The existence of both positive and negative weights in
the neural architecture may lead to network modularity (clustering) Zelazo & Bürger (2014). The
consensus of a graph with negative weights relies on the specific algebraic connectivity measure.
On the other hand, one can make graph cuts or graph partitioning in which the link with positively
weighted edges is within one module and the negative ones are between modules.

Given the modularity feature exhibited in the evolutionary dynamics, an intuitive idea is to ex-
ploit local connectivity as redundant information to fine-tune the local link during training. Since
the original weights are in general randomly generated, and the algebraic connectivity increases
monotonously to form clustering, one can impose the algebraic connectivity based regularization on
the loss function after several epochs waiting for the cluster forming Tam & Dunson (2020)

min
W
L
(
Y, f̂W (X)

)
+ δλ2(|L|), (5)
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where L is the Laplacian matrix converted from the weight matrix W , λ2(| · |) is the Fielder value
of the graph of each cluster, and δ is a tuning parameter.

By imposing the regularization term in the loss function, (5) becomes less transparent to observe
the specific erroneous links. Meanwhile, the link should be pruned to exert a localized influence,
i.e., the regularization imposed on the overall topology may offset the effects of local link rewiring.
To achieve a better interpretation of the results, we choose to use a greedy algorithm to verify our
hypothesis, rewire possible erroneous links and better understand the clustering phenomena in the
training procedure. We discuss the localized link rewiring in GNNs in the next section.

4.1 LINK’S WEIGHT REWIRING TO ENHANCE ALGEBRAIC CONNECTIVITY

Input 
graphs

Global width contraction                                                 Weight evolution                                  Link’s  weight  rewiring

Rewiring

Rewiring

Figure 1: A graph neural network architecture design. The tree-pipeline successively includes global
width contraction, weight evolution, and link’s weight rewiring. In the initial dynamics, information
transfer is from front to back. In supervised learning, information transfer is in the opposite direction
since it is subject to specific task constraints imposed by outputs, accompanied by declining transfer
capacity in backpropagation caused by numerous local minimums or saddle points. To accelerate the
informational transfer, the global architecture should have a pyramid-like shrinkage shape to prevent
the saddle points caused by over-parameterized settings. After the weight evolution forming the
modularity in topological structure, one can use the topological structure as redundant information
to rewire possible erroneous topological links.

For a disconnected graph, its algebraic connectivity is 0, and one can increase the algebraic connec-
tivity by rewiring links. Note that in addition to the adjacency matrix, incidence matrices can also
be used to reprensent a gragh

L = HHT =

m∑
l=1

hlh
T
l . (6)

H = [h1, . . . ,hm] ∈ Rn×m is the node-edge incidence matrix of graph Gsub, and each edge vector
hl denotes vertex Vi joining with vertex Vj whose entries are [hl]i = 1, [hl]j = −1 and 0 elsewhere.
Given an initial graph G0, the connectivity of weighted Laplacian matrix L0 can be increased by
adding new edges

L(x) = L0 +

L∑
l=1

βlwlhlh
T
l , (7)

where βl ∈ {0, 1} is a boolean variable indicating whether the lth edge is selected, and wl is the
weight being added to edge l. If edge l is added to graph G, the partial derivative of λ2(L(β))
with respect to βl gives the first order approximation of the increase of λ2(L(β)). According to the
algebraic connectivity of directed graphs in Appendix, we have

∂

∂βlλ2(L(β))
= vT ∂L(β)

∂βl
v. (8)
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Substitute (7) into (8), we obtain

∂

∂βl
λ2(L(β))

=vT
∂
(
L0 +

∑L
l=1 βlwlhlh

T
l

)
∂βl

v

=vT
(
wlhlh

T
l

)
v = wl

(
vThl

) (
hT
l v
)

=wl (vi − vj)2 .

(9)

which indicates that the largest connected edge can be found by maximizing wl(vi − vj)2, where vi
and vj are the ith and jth items of Fielder vector v.

Since the algebraic connectivity of a weighted graph can be measured with respect to each edge, we
can first use the graph partitioning for GNN’s node classification, then if the nodes in one classifi-
cation change in the later training, we can detect them based on the greedy algorithm of algebraic
connectivity, and rewire them via a link prediction method. In real-world scenes, the dynamics and
local connectivity also exhibit coupling characteristics, therefore, one can use a coupling coefficient
to measure their relationship. Based on the above analysis on global skeleton and local link rewiring,
we now present the new GNN architecture design in Fig.1.

5 EXPERIMENTS

This section provides some empirical evaluations for the proposed architecture design via node
classification tasks (the datasets and parameters is outlined in the Appendix).

5.1 MODEL CONTRACTION PROPERTIES

we Fig. 2 show the model contraction properties, where the results are based on 20 Monte Carlo
experiments. Subfigure(above) show the network width after automatic pruning. Here we indeed
observe a layer-by-layer shrinkage width, confirming our proposed shrinkage property when the
depth increases. These contraction ratios, however, seem to be relatively small. Subfigure(bottom)
compare the learning rates on test datasets, we find that the convergence continues to decrease even
adopting a large rate (i.e., 0.2, 0.5), which illustrates that shrinkage structure can overcome the
saddle point problem, and ultimately improves the convergence. To enhance the interpretability of
GNN, Fig. 3 demonstrates the evolutionary dynamics with respect to 5 prominent eigenvalues of
hidden states. We observe the eigenvalues of each layer conversation from descending to ascending
during the training procedure, confirming the proposed information transfer in dynamics.

5.2 MULTI-AGENT CONSENSUS-BASED LINK’S WEIGHT REWIRING

This section investigates the performance of multi-agents consensus-based link’s weight rewiring.
Fig. 4 shows the effects of coupling coefficients on the convergence of test error. We see the link
rewiring on Citeseer, Pubmed and CoraFull are clear, while it is not obvious on Cora datasets, since
the erroneous weights are not obvious. Tab. 1 shows the test accuracy of different graph classifica-
tion methods. The results show our shrinkage-rewiring structure (SRGCN and SRChebNet) could
greatly improve the node classification accuracy after automatic width pruning.

6 RELATED WORKS

More recently, many innovative GNN frameworks have been developed. Notable methods include
gated GNN Li et al. (2016), GraphSAGE Hamilton et al. (2017), message-passing neural networks
Gilmer et al. (2017), and pruning networks Li et al. (2017). In terms of architecture design on topo-
logical spaces, the most related work to ours is that Li et al. (2019), where the authors established the
equivalence between GNN and graph matching, and emphasized modeling in GNN was a convex
optimization process. The major difference is that their work does not provide a specific network
skeleton design, while our method provides a shrinkage network skeleton. Various regularization
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Figure 2: Performance analysis of the proposed framework. (Above) the observed shrinking property of
network width after automatical pruning. (Bottom) the impact of learning rate on convergence.

Figure 3: Evolutionary dynamics in training process. Each figure contains the 5 prominent eigen-
values of hidden states.

Figure 4: The effect of coupling coefficient on convergence.

Method Cora Citeseer Pubmed CoraFull
DeepWalk 67.2 43.2 65.3 80.3
GAT 56.8 72.5 79.0 82.5
ChebNet 62.1 69.8 74.4 81.4
GraphSAGE 64.2 70.6 70.5 82.2
Planetoid 75.7 64.7 77.2 80.5
GPNN 68.1 79.0 73.6 80.4
MPNN 72.0 64.0 75.6 79.8
GCN 76.5 81.5 79.0 86.6
SRGCN (ours) 80.45 83.43 80.16 87.13
SRChebNet (ours) 79.96 82.93 80.98 86.09

Table 1: Performance comparison of different graph classification methods.
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methods performed by randomly deleting hidden weights or activations are all for forming convex
sets Srivastava et al. (2014); Rodrı́guez et al. (2017). Zhang et al. (2019) showed that the success
of several recently proposed architectures (e.g., ResNet, Wide ResNet, Xception, SqueezeNet, and
Inception) was mainly related to the fact that multi-branch structures help reduce the non-convex
property of network topology.i Regarding the observed modularity (clustering) features in weight
evolution, several authors suggested defining convolutional neural network or recurrent neural net-
work modules composed of topologically identical or similar blocks to simplify the topology design.
Results illustrated these methods could achieve a large compression ratio in terms of parameters with
excellent performance guarantees Zoph et al. (2018). Compared to their works, our method offers a
theoretical explanation for the observed modularity phenomenon, and further employ it as an infor-
mational redundancy to guarantee local topological accuracy.

7 CONCLUDING REMARKS

This paper presents a three-pipeline training framework based on global criticality and local topolog-
ical connectivity. From the critical Theorem on topological spaces, to reach the critical state, input
and network structure should match to build a convex matching (optimization). In specific training,
to promote the information transfer under the over-parameterized setting, we propose a layer-wise
shrinkage topological structure to prevent the proliferation of saddle points in high dimensional
spaces. In facing actual erroneous inputs, we give a robust topological link rewiring method based
on the local connectivity required by cluster consensus, which is similar to the idea of self-supervised
learning that applies structural information as redundant information for self-checking. Our work
contributes by shedding light on the success of GNNs from dynamics and topological spaces aspect.
Due to current topological structure constraints, this paper only involves the intra-layer erroneous
weight rewiring, the inter-layer link imputation is still unresolved. Further exploiting the modular-
ity in more general topological architecture and more complex data (e.g., attacked data) is our next
concern, which may provide guidelines to approach the critical expressivity.
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A APPENDIX

A.1 SCHAUDER FIXED POINT THEOREM

Definition 1 (Schauder Fixed Point Theorem) Let S be a local topological vector space, and X ⊂
S be a closed, non-empty, bounded and convex set, given any continuous self-mapping f : X → X ,
there exists a fixed point satisfing f(x) = x.

A.2 LOW-RANK MATRIX RECOVERY FOR RANK DETERMINATION

For the input XV×D, we assume its rank R � min{V,D}, and let A be a linear map from
RV×D → RM . The purpose of low-rank matrix recovery is to recover X from the measurement
vector y = A(X) ∈ RM . As in the vector case, this can be achieved by solving the following
problem,

min rank(X) ≤ R subject to A(X) = y. (10)

The rank(·) operator equals the L0-norm of X . Computing the best low-rank approximation is
analogous to the truncated singular value decomposition (SVD): compute the SVD of the matrix, re-
tain the larger singular values while removing the smaller ones, and then reconstruct. The truncated
SVD achieves the best approximation under Frobenius norm, which is also called the Eckart-Young
theorem. A variant of equation 10 is its Lagrangian form:

min
A
‖y −AX‖2F + α · rank(A), (11)

where ‖·‖F is the Frobenius Norm and α is the tuning parameter. The solutions obtained for different
values of α with 0 ≤ α <∞ corresponds to the solution of (10) obtained for 1 ≤ R ≤ min(V,D).
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Unfortunately, rank minimizing for X is a non-convex and NP-hard problem due to the combina-
tional nature of the rank(·) operator. Under some conditions, the solution of problem (11) can be
found by solving its convex relaxation:

min
A
‖y −AX‖2F + α‖X‖∗, (12)

where ‖·‖∗ is the nuclear norm, which is equal to the sum of singular values of X . ‖X‖∗ is also
called trace norm when it is positive semidefinite. Unlike the rank(·) operator in (11), ‖X‖∗ is a
convex function, and hence can be optimized via semi-definite programming and various types of
other algorithms. One method is the singular value thresholding algorithm using a hard-thresholding
or soft-thresholding operator on the singular value of a specific matrix. For medium-scale problems,
computing the SVD is tractable, with a computational complexity scaling as O(R2 max(V,D)).

A.2.1 GRAPH LAPLACIAN

A weighted adjacency matrix A = [Aij ] ∈ Rn×n of a directed graph G is defined such that Aij is
the weight Wj,i satisfying Aij 6= 0 if (j, i) ∈ E(G), and Aij = 0 otherwise. The unnormalised
Laplacian matrix L, is then denoted as

L = D −A, (13)

where the diagonal degree matrix D = [dij ] ∈ Rn×n is defined as

dij =

{ ∑
j∈Ni

Wij , i = j
0, Otherwise.

One popular variant of graph Laplacian is its normalized form

LN = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 , (14)

where D−
1
2 = diag

(
1√
D1
, 1√

D2
, . . . , 1√

Dn

)
. For simplicity, we denote the normalized LN as L

here. From the Definition of graph Laplacian, we know that L1 = 0 is always hold. That is, 0 is
an eigenvalue of L with the corresponding eigenvector 1√

n
1. The Laplacian matrix L is symmetric,

and its eigenvalues and eigenvectors satisfy

L = UΛUT ,UTU = I,UUT = I, (15)

where Λ = diag (λ1, λ2, . . . , λn) and U =
(

1√
n
1 Ũ

)
with ŨT Ũ = In−1 and ŨT1 = 0.

A.2.2 ALGEBRAIC CONNECTIVITY OF DIRECTED GRAPHS

Definition 2 According to Mohar, no matter graph G is weighted or not, there is a real vector
u ∈ Rn of unit norm that can obtain the algebraic connectivity

λ2(L) = min
u6=0,1Tu=0

uTLu

uTu
. (16)

For directed graphs, the algebraic connectivity can be effectively calculated by the symmetry of the
Laplacian matrix

λ2(L) = min
‖Ũu‖=1

uT ŨTLŨu = λmin

(
1/2ŨT

(
L+LT

)
Ũ
)
. (17)

A.2.3 THE CONVERGENCE OF EACH SUBNETWORK

Suppose a network has K subnetworks, each subnetwork can be viewed as a multi-agent system
consisting of n interacting agents, and each agent is viewed as a node of the weighted undirected
graph Gsub. Each edge (Vj ,Vi) ∈ E(Gsub(t)) or (Vi,Vj) ∈ E(Gsub(t)) represents an information
channel between agent Vi and Vj at time t.

Multi-agent consensus can often be modeled as information received from its value and its neighbors

xi(t+ 1) = Aiixii(t) +
∑
j∈Ni

Aijxj(t), (18)
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where Ni is the in-neighbor set of agent i. A = [Aij ] is the weight matrix of GNN. It has matrix
form

x(t+ 1) = Ax(t), (19)
Each subnetwork converges if and only if the eigenvalues of A are bounded between−1 and 1. This
can be easily obtained by reiterating t epochs

x[t] = Atx[0]. (20)

According the matrix decomposition of graph Laplacian in (15), we can rewrite (20) as

x[t] = U

( ∞∏
i=1

(I −Λ)

)
UTx[0] (21)

If the subnetwork is a connected graph, it converges to

lim
t→∞

x[t] =
1

N
11Tx[0]. (22)

This means that each node converges to the average value collected by the whole subnetwork, i.e.,

lim
t→∞

xi(t) =
1

N

N∑
i=1

xi(0) = x∗. (23)

A.2.4 DATASETS AND HYPERPARAMETERS

This paper employ four standard citation network datasets for node classification as benchmarks,
namely, Cora, Citeseer, Pubmed, and CoraFull. We only allow for 20 nodes per class to be used
for training, use 100 nodes for verification data, and 1000 nodes for testing. Table 2 shows the
hyperparameters used in the experiments.

Table 2: Simulation parameters

Parameter Value
Epochs 200
Optimizer SGD
Activation function Swish
Monentum 0.9
Weight decay 5e-4
layer number 2-3
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