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ABSTRACT

Text autoencoders are often used for unsupervised conditional text generation by
applying mappings in the latent space to change attributes to the desired values.
Recently, Mai et al. (2020) proposed Emb2Emb, a method to learn these map-
pings in the embedding space of an autoencoder. However, their method is re-
stricted to autoencoders with a single-vector embedding, which limits how much
information can be retained. We address this issue by extending their method to
Bag-of-Vectors Autoencoders (BoV-AEs), which encode the text into a variable-
size bag of vectors that grows with the size of the text, as in attention-based mod-
els. This allows to encode and reconstruct much longer texts than standard au-
toencoders. Analogous to conventional autoencoders, we propose regularization
techniques that facilitate learning meaningful operations in the latent space. Fi-
nally, we adapt Emb2Emb for a training scheme that learns to map an input bag to
an output bag, including a novel loss function and neural architecture. Our empir-
ical evaluations on unsupervised sentiment transfer and sentence summarization
show that our method performs substantially better than a standard autoencoder.

1 INTRODUCTION

In conditional text generation, we would like to produce an output text given an input text. Hence,
parallel input-output pairs are required to train a good supervised machine learning model on this
type of task. Large-scale pretraining (Peters et al., 2018; Devlin et al., 2019; Lewis et al., 2020)
can alleviate the necessity for training examples to some extent, but even this requires a substantial
number of annotations (Yogatama et al., 2019). This is an expensive process and can introduce un-
wanted artifacts itself, which are henceforth learned by the model (Gururangan et al., 2018). For
these reasons, there is substantial interest in unsupervised solutions. Text autoencoders (AEs) don’t
require labeled data for training, and are therefore a popular model for unsupervised approaches
to many tasks, such as machine translation (Artetxe et al., 2018), sentence compression (Févry &
Phang, 2018) and sentiment transfer (Shen et al., 2017). The classical text AE (Bowman et al., 2016)
embeds the input text into a single fixed-size vector via the encoder, and then tries to reconstruct the
input text from the single vector via the decoder. Single-vector embeddings are very useful, because
they allow to perform conditional text generation through simple mappings in the embedding space,
e.g. by adding a constant offset vector to change attributes such as sentiment (Shen et al., 2020). Re-
cently, Mai et al. (2020) proposed Emb2Emb, a method that can learn these mappings directly in the
embedding space of any pretrained single-vector AE. This is a powerful framework, because the AE
can then be pretrained on virtually infinite amounts of unlabeled data before applying it to any down-
stream application. This concept, transfer learning, is arguably one of the most important drivers of
progress in machine learning in the recent decade: These so-called Foundation Models (Bommasani
et al., 2021) have revolutionized natural language understanding (e.g, BERT (Devlin et al., 2019))
and computer vision (e.g, DALL-E (Ramesh et al., 2021)), among others. Since Emb2Emb was
designed to work with any pretrained AE, it was an important step towards their scalability.

However, as Bommasani et al. (2021) point out, another crucial model property is expressivity, the
ability to represent the data distribution it is trained on. In this regard, single-vector representations
are fundamentally limited; they act as a bottleneck, causing the model to increasingly struggle to
encode longer text (Bahdanau et al., 2015). In this paper, we extent Emb2Emb from single-vector
bottleneck AEs to Bag-of-Vector Autoencoders (BoV-AEs), which encode text into a variable-size
representation where the number of vectors grows with the length of the text. This gives BoV-

1



Under review as a conference paper at ICLR 2022

enc

dec

the food was terrible

the food was amazing

...

enc

dec

the food was terrible

the food was amazing

...

Figure 1: Left: In the standard setup, the
representation consists of a single vector, re-
quiring a simple vector-to-vector mapping to
do operations in the vector space. Right:
In BoV-AE, the representation consists of a
variable-size bag of vectors, requiring a more
complex mapping from one bag to another
bag.
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Figure 2: High-level view of the Emb2Emb
framework. Text Autoencoder Pretraining:
An autoencoder is trained on an unlabeled
corpus, i.e., the encoder enc transforms an
input text x into a continuous embedding zx,
which is in turn used by the decoder dec to
predict a reconstruction x̂ of the input sen-
tence. Task Training: The encoder is frozen
(grey), and a mapping Φ is trained (green) on
input embeddings zx to output predictions ẑy
such that it minimize some loss L(ẑy). In-
ference: To obtain textual predictions ŷ, the
encoder is composed with Φ and the decoder.

AEs the same kind of representations as attention-based models. But this added expressivity comes
with additional challenges, as illustrated in Figure 1. In the single-vector case, an operation Φ in
the vector space consists of a simple vector-to-vector mapping. But with BoV-AEs, Φ needs to
map a bag of vectors onto another bag of vectors, which requires more complicated operations. In
this paper, we demonstrate how such a mapping can be learned in the context of the Emb2Emb
framework by making the following novel contributions: (i) We propose a regularization scheme for
BoV-AEs, (ii) a neural mapping architecture Φ for Emb2Emb, and (iii) a suitable training loss.

Empirically, we show on two unsupervised conditional text generation tasks, sentiment trans-
fer (Shen et al., 2017) and sentence summarization (Rush et al., 2015), that BoV-AEs perform
substantially better than standard AEs if the text is too long to be captured by one vector alone.
Our ablation studies confirm that our technical contributions are crucial for this success.

In the following section, we review the Emb2Emb framework, before we introduce BoV-AE (Sec-
tion 3) and its integration within Emb2Emb (Section 4).

2 BACKGROUND: Emb2Emb

Embedding-to-Embedding (Emb2Emb) was introduced by Mai et al. (2020) as both a supervised
and an unsupervised framework for conditional text generation. The core idea is to disentangle the
transition from the discrete text space to a continuous latent space from the specific task, allowing
for larger-scale pretraining with unlabeled data.

The workflow of the framework is depicted in Figure 2. First, a text AE A = dec ◦ enc is trained
to map an input sentence from the discrete text space X to an embedding space Z via the encoder
enc : X → Z , and back to X via a decoder dec : Z → X , such thatA(x) = x, typically trained via
negative log-likelihood, Lrec = NLL(A(x), x). In contrast to other methods, A can in principle be
any AE, opening the possibility for large-scale AE pretraining with unlabeled data. Second, task-
specific training is performed only in the embedding space Z of the AE. To this end, the encoder
is frozen, and a new mapping layer Φ : Z → Z is introduced, which is trained to transform the
embedding of the input zx into the embedding of the predicted output ẑy . The concrete loss L(ẑy)
depends on the type of task. In the supervised case, the true output is also encoded into space
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Z , and the distance between the true embedding and the predicted embedding is minimized. In
the unsupervised case, the loss needs to be defined for the specific task at hand. For example, for
sentiment transfer, where the goal is to transform a negative review into a positive review while
retaining as much of the input as possible, Mai et al. (2020) compose the loss as a combination of
two loss terms1, L(ẑy) = Lsim(zx, ẑy) + λstyLsty(ẑy). Lsty encourages ẑy to be classified as a
positive review according to a separately trained sentiment classifier. Lsim encourages the output to
be close to the input in embedding space, e.g. via euclidean distance. λsty is a hyperparameter that
controls the importance of changing the sentiment of the predicted output.

A main question in Emb2Emb is how to choose the embedding spaceZ . Mai et al. (2020) use a sin-
gle continuous vector to encode all the information of the input, i.e. Z = Rd. This choice simplifies
the mapping Φ to an MLP and the training loss to vector space distances, which is relatively easy to
train. On the other hand, it limits the model in fundamental ways: The representation is fixed-sized,
i.e., the representation cannot grow in size. Sequence-to-sequence models with a fixed-size bottle-
neck struggle to encode long text sequences (Bahdanau et al., 2015), which is a key reason why
attention-based models are now standard practice in sequence-to-sequence models. Hence, it would
be desirable to adapt Emb2Emb in such a way that Z contains variable-sized embeddings instead.

3 BAG-OF-VECTORS AUTOENCODER

We propose Bag-of-Vectors Autoencoders (BoV-AEs) to be used with Emb2Emb. Following the
naming convention by Henderson (2020), we refer to a bag of vectors as a (multi)-set of vectors that
(i) can grow arbitrarily large, and (ii) where the elements are not ordered (a basic property of sets).
A type of BoV representation that is used very commonly is found in Transformer (Vaswani et al.,
2017) encoder-decoder models, where there is one vector to represent each token of the input text,
and the order of the vectors does not matter when the decoder accesses the output of the encoder.
In this work, we also rely on Transformer models as the backbone of our encoders and decoders.
However, in principle, any encoder and decoder can be used, as long as the encoder produces a bag
as output and the decoder takes a bag as input. Formally, Z = (Rd)+, so the encoder produces a
bag-of-vectors X = {z1, ..., zn} := enc(x), where n is the number of vectors in the input bag.

3.1 REGULARIZATION

The fact that we use a BoV-based AE presents a major challenge: AEs have to be regularized
to prevent them from learning a simple identity mapping where the input is merely copied to the
output, which does not result in a meaningful embedding space. In fixed-size embeddings, this is for
example achieved through under-completeness (choosing a latent dimension that is smaller than the
input dimension) or through injection of noise, either at the input or in the embedding space. While
there exists a lot of research on regularizing fixed-sized AEs, it is not clear how to achieve the same
goal in a BoV-AE. Here, regularizing the capacity of each vector is not enough. As long as each
vector can store a (constant) positive amount of information, a bag of unlimited size can still store
infinite information. However, it is not clear to what extent the size of the bag needs to be restricted.
By default, a standard Transformer model produces as many vectors as there are input tokens, but
this is likely too many, as it makes copying from the input to the output trivial. Hence, we want the
encoder to output fewer vectors. In the following we explain how this is achieved in BoV-AEs.

L0Drop Ideally, we want the model to decide for itself on a per-example basis which vectors it
needs to retain for reconstruction. To this end, we adopt L0Drop, a differentiable approximation to
L0 regularization, which was originally developed by Zhang et al. (2021) for the purpose of speeding
up a model through sparsification. The model computes scalar gates gi = g(zi) ∈ [0, 1] (which can
be exactly zero or one) for each encoder output. After the gates are computed, we multiply them
with their corresponding vector. Vectors whose gates are near zero (i.e., smaller than some ε > 0)
are removed from the bag entirely. An additional loss term, LL0

(X) = λL0

∑n
i gi encourages the

model to close as many gates as possible, where the hyperparameter λL0 controls the sparsity rate
implicitly. However, in initial experiments, we found λL0 difficult to tune, as it is very sensitive with
respect to other hyperparameters. We instead employ a modified loss that seeks to explicitly match

1Their total loss includes an adversarial component that encourages the outputs of the mapping to stay on
the latent space manifold. We leave adaptation of this component to the BoV scenario for future work.
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a certain target ratio r of open gates. Similar to the free-bits objective that is used to prevent the
posterior collapse problem in VAEs (Kingma et al., 2016), the objective becomes

LL0
(X) = λL0 max(r, 1

n

∑n
i gi). (1)

By setting λL0 to a large enough value (empirically, λL0 = 10), we find that this objective reaches
the target ratio r reliably for different r while at the same time reducing the reconstruction loss. This
allows to compare different strengths of regularization while reducing the tuning effort substantially.

4 EMB2EMB WITH BOV-AES

In the following we describe how to adapt the Emb2Emb model to BoV-AEs, i.e., how to generate an
output bag X̂ = {ẑ1, . . . , ẑn} given an input bag X through the mapping Φ(X), and how to choose
the loss function L(X̂,X). For example, in the case of style transfer, we want X̂ to be similar to X.

4.1 MAPPING Φ

In contrast to Mai et al. (2020), who use a single-vector embedding and hence Φ can be as simple as
an MLP, in our work, Φ must be capable of producing a bag of vectors. The straight-forward choice
for Φ is a Transformer decoder that uses cross-attention on the input BoV, and generates vectors
autoregressively one at a time, formally ẑ = Transformer(zs, ẑ1, . . . , ẑt−1,X), t ≥ 1, where zs is
the embedding of some starting symbol. Depending on the difficulty of the task, this mapping may
be sufficiently powerful, in particular for short texts (i.e. bags with few vectors). For longer texts,
however, learning to map from one bag to another is difficult, and may hence require the integration
of inductive biases.

Based on the assumption that the output should be close to the input in embedding space, Mai et al.
(2020) propose OffsetNet for the single vector case, which computes an offset vector to be added to
the input. With a similar motivation, we propose a variant of pointer-generator networks (See et al.,
2017), which allows the model to choose between copying an input vector and generating a new one.
Instead of just copying, however, our model (Transformer++) allows to compute an offset vector to
be added to the copied vector, analogous to Mai et al. (2020). Formally, at each timestep t,

ẑt = (1− pgen)(zcopy + zoffset) + pgenz
′
t, (2)

where z′t = Transformer(zs, ..., ẑt−1,X). Intuitively, by controlling pgen ∈ (0, 1), the model
makes the (soft) decision to either copy a vector from the input and add an offset, or to generate a
completely new vector. Here, pgen is a function of z′t and the starting symbol which we treat as a
context vector, pgen = σ(W[zs; z

′
t]). Similarly, zoffset is a one-layer MLP with [z′t; zcopy] as input.

zcopy is determined through an attention function:

zcopy =

|X|∑
i=1

αizi, K = WcpyX, αi = softmax(zTs K)i, (X)i := zi (3)

where Wcpy is a learnable weight matrix. We refer to this model as Transformer++.

4.2 GENERATING VARIABLE SIZED BAGS

The output bag is generated in an autoregressive manner. In the unsupervised case, it is not al-
ways clear how many vectors the bag should contain. However, due to the unsupervised nature,
all information needed for computing the (task-dependent) training loss L(X̂,X) are also available
at inference time. In this case, we can first generate some fixed maximum number N of vectors
autoregressively, and then determine the optimal bag by computing the minimal (inference-time)
loss value, X∗ = min

l=1,...,N
L(X̂1:l,X). This can be valuable for tasks where we do not have a good

prior on the size of the target bag. During training, we minimize the loss locally at every step. But
we don’t necessarily care about the loss at very small or big bags, so we might want to weight the
steps as Ltotal(X̂,X) =

∑N
l=1 wlL(X̂1:l,X). Here, w ∈ RN

+ could be any weighting, but it is more
beneficial for training to only backpropagate from bag sizes that we expect to be close to the optimal
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output bag size. For instance, in style transfer, the output typically has about the same length as the
input. Hence, for an input size of length n, a useful weighting could be

wl =

{
1 n− k ≤ l ≤ n+ k

0 otherwise
, (4)

in which k denotes the size of a window around the input bag size.

4.3 ALIGNING TWO BAGS OF VECTORS

As described in Section 2, unsupervised sentiment transfer involves two loss terms, Lsty and Lsim.
In order to adapt Lsty from the single vector case to the BoV case, we can simply switch from an
MLP classifier to a Transformer-based classifier. For Lsim, however, we need to switch to a loss
function that is defined on sets. While there are well-known losses for the single-vector case, in NLP
set-level loss functions are not well-studied.

Here, we propose a novel variant of the Hausdorff distance. This distance is commonly used in
vision applications: as a performance evaluation metric in e.g. medical image segmentation (Taha &
Hanbury, 2015; Aydin et al., 2020), or in vision systems as a way to compare images (Huttenlocher
et al., 1992; Takács, 1998; Lin et al., 2003; Lu et al., 2001). More recently, variants (different from
ours) of the Hausdorff distance have also been used as loss functions to train neural networks (Fan
et al., 2017; Ribera et al., 2019; Zhao et al., 2021). In NLP, its use is very rare (Nutanong et al.,
2016; Chen, 2019; Kuo et al., 2020). To the best of our knowledge, our paper is the first to present
a novel, fully differentiable variant of the Hausdorff distance as a loss for language learning.

The Hausdorff distance is a method for aligning two sets. Given two sets X and X̂, their Hausdorff
distance H is defined as

H(X, X̂) =
1

2
align(X, X̂) +

1

2
align(X̂,X), align(X, X̂) = max

x∈X
min
y∈X̂

d(x, y) (5)

Intuitively, two sets are close if each point in either set has a counterpart in the other set that is
close to it according to some distance metric d. We choose d to be the euclidean distance, but
in principle any differentiable distance metric could be used (e.g. cosine distance). However, the
vanilla Hausdorff distance is very prone to outliers, and therefore often reduced to the average
Hausdorff distance (Dubuisson & Jain, 1994), where

align(X, X̂) =
1

|X|
∑
x∈X

min
y∈X̂

d(x, y). (6)

The average Hausdorff function is step-wise smooth and differentiable. Empirically, however, we
find step-wise smoothness to be insufficient for the best training outcome. Therefore, we propose a
fully differentiable version of the Hausdorff distance by replacing the min operation with softmin
like follows:

align(X, X̂) =
1

|X|
∑
x∈X

∑
y∈X̂

 e(−d(x,y))∑
y′∈X̂

e(−d(x,y′))
· d(x, y)

 . (7)

This variant is reminiscent of the attention mechanism Bahdanau et al. (2015) in the sense that a
weighted average is computed, which has been very successful at smoothly approximating discrete
decisions, e.g., read and write operations in the Differentiable Neural Computer (Graves et al., 2016)
among many others.

5 EXPERIMENTS

Our experiments are designed to test the following two hypotheses. H1: If the input text is too long
to be encoded into a fixed-size single vector representation, BoV-AE-based Emb2Emb provides a
substantial advantage over the fixed-sized model. H2: Our technical contributions, namely L0Drop
regularization, the training loss, and the mapping architecture, are necessary for BoV-AE’s success.

We evaluate our model on two unsupervised conditional text generation tasks: In Section 5.1, we
show that H1 holds even when the single-vector dimensionality is large (d=512). To this end, we
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create a new sentiment transfer dataset, Yelp-Reviews, whose inputs are relatively long. However,
training on this dataset is computationally very demanding2. Therefore, we turn to shorter text
datasets to test hypothesis H2. Concretely, we test on a sentiment transfer dataset of short texts
(Section 5.2), and a sentence summarization dataset of medium length texts (Section 5.3).

Evaluation metrics: In sentiment transfer, the goal is to rewrite a negative review as a positive re-
view while keeping as much of the content as possible. Hence, two metrics are important, sentiment
transfer ability and content retention. Following common practice (Hu et al., 2017; Shen et al., 2017;
Lample et al., 2019), we measure the former with a separately trained style classifier based on Dis-
tilBERT (Sanh et al., 2019), and content retention in terms of self-BLEU (Papineni et al., 2002) be-
tween the input and the predicted output. Sometimes, comparing models is easiest via a single value.
Therefore, others have argued to aggregate content retention and transfer accuracy metrics (Xu et al.,
2018; Krishna et al., 2020). We follow the argumentation of Krishna et al. (2020) that this aggrega-
tion should be per sentence and compute a single score = 1

M

∑M
i=1 ACC(ŷ) ·BLEU(ŷ, x) where x

is the input sentence, ŷ is the predicted sentence, andM is the number of data points. For readability,
we multiply all metrics by 100 before reporting.

As is standard practice in summarization, we evaluate performance on this task with ROUGE-L (Lin,
2004). Note, however, that ROUGE scores can be misleading if summaries are longer than the gold
summary (Napoles et al., 2011). For this reason, we also report the average output length.

5.1 YELP-REVIEWS

Our hypothesis is that AEs with a single vector bottleneck are unable to reliably compress the text
when it is too long. Here, we test if this holds true even for a large single-vector model with d=512.
To this end, we create the dataset Yelp-Reviews, which consists of strongly positive and strongly
negative English restaurant reviews on Yelp (see appendix A.3.1 for a detailed description). This
dataset is very similar to Yelp-Sentences introduced by Shen et al. (2017). However, while Yelp-
Sentences consists of single sentences of about 10 words on average, Yelp-Reviews consists of entire
reviews of 52 words on average. To assess the reconstruction ability of BoV-AEs and fixed-sized
AEs, we train 5 models that only differ in the target ratio. Models named L0-r denote L0Drop-based
BoV-AE models with a target ratio r. The single vector fixed-size AE is obtained by averaging
the representations at the last layer of the encoder. For style transfer, we train a Transformer++
mapping using the loss described in Section 2. To obtain results at varying transfer levels, we train
multiple times with varying λsty , resulting in multiple points for each model in Figure 3 and 5.
Further details can be found in the appendix A.3.2.

Results: The results (full graph shown in Figure 7 in the appendix) indicate that even large single
vector models (d=512) are unable to compress the text well; the NLL loss on the validation set
of the fixed-size model is ≈3.9. L0-0.05 is only slightly better than the fixed-size model, whereas
L0-0.1 already reaches a substantially lower reconstruction loss (≈2.1). We evaluated the down-
stream sentiment transfer performance of Transformer++ with L0-0.1 3 and the fixed-size model,
respectively. Figure 3 shows a scatter plot of the results, where results that are further to the top-right
corner are better. We see that at a comparable transfer level, the BoV is substantially better at retain-
ing the input content. This supports hypothesis H1 that variable-size BoV models are particularly
beneficial in cases where the text length is too long to be encoded in a single-vector.

5.2 YELP-SENTENCES

In order to answer research question H2, we perform a large set of controlled experiments over
our model’s components. Due to the high computational demand, we turn to the popular Yelp-
Sentences sentiment transfer dataset by Shen et al. (2017). Texts in this dataset are ≈ 10 words on
average. As these sentences are much easier to reconstruct, we set the embedding size to d=32 so
that the condition for hypothesis H1 is still valid. Here, we again train BoV-AEs for target rates
r = 0.2, 0.4, 0.6, 0.8 and then evaluate their reconstruction and style transfer ability in the same
fashion as for Yelp-Reviews. Finally, we investigate the impact of the window size and differentiable
Hausdorff loss. Experimental details are given in appendix A.4.2. For completeness, we provide an

2Pretraining a model of this size until convergence took more than a month on a single 24GB GPU.
3We restrict our analysis to L0-0.1 because this dataset have is computationally demanding.
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Figure 3: Style transfer on Yelp-Reviews.

Table 1: Results on Gigaword sentence
summarization. Scores represent ROUGE-
L with average output words in parenthe-
ses. T and T++ denote Transformer and
Transformer++, respectively.

Model T T++
fixed 13.1 (18.3) 13.2 (17.6)

L0-0.2 19.8 (23.2) 18.3 (10.7)
L0-0.4 8.0 (18.7) 16.4 (12.5)
L0-0.6 6.6 (83.5) 14.7 (51.1)
L0-0.8 9.3 (5.1) 13.2 (48.6)

0 250 k 500 k 750 k 1 M 1.25 M 1.5 M
step

1

2

3

4

5

Va
lid

at
io

n 
re

co
ns

tru
ct

io
n 

lo
ss

Validation reconstruction loss
run

fixed
L0-0.2
L0-0.4
L0-0.6
L0-0.8

Figure 4: Reconstruction loss on the valida-
tion set for different AEs. fixed: The bag
consists of a single vector obtained by aver-
aging the embeddings at the last layer of the
Transformer encoder. L0-r: BoV-AEs with
L0Drop target ratio r.
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Figure 5: Style transfer performance on
Yelp-Sentences of BoV models compared to
a fixed-size AE for varying λsty . As both
content retention and style transfer are im-
portant for style transfer, the further a graph
is to the top right, the better the model.

analysis of the computational complexity of BoV-AE in Appendix B.2.2, and a qualitative analysis
in Appendix B.2.3.

Reconstruction ability: Figure 4 shows the reconstruction loss on the validation set for the fixed-
size model compared to BoV models. The fixed-size AE does not reach satisfactory reconstruction
ability, converging at an NLL loss value of about 3. In contrast, BoV models are able to outperform
the fixed-size model considerably. As expected, higher target ratios lead to better reconstruction,
because the model can use more vectors to store the information. Models with a higher target ratio
also reach their optimal loss value more quickly. While L0-0.6 approaches the best reconstruction
value (≈1.0) eventually, the model needs more than 1 million training steps to reach it. In contrast,
L0-0.8 needs less than 100k steps to converge, which could indicate that L0-0.8 learns to copy rather
then compress the input, resulting in a bad latent space. L0-0.4 yields to a higher loss, but is still
drastically better than the fixed size model. L0-0.2 is not enough to outperform the fixed-size model.
Overall, these results show we have the right settings for evaluating H1 and H2, as 10 words is too
long to be encoded well into a single vector of d=32, whereas a BoV-AE with a high enough target
ratio r can fit it well.

Style transfer ability: Results are shown in Figure 5. Up to r=0.6, they correspond well to the
reconstruction ability, in that BoV models with higher target ratios yield higher self-BLEU scores
at comparable transfer abilities, outperforming the fixed-size model (H1). However, at r=0.8, the
performance suddenly deteriorates at medium to high transfer levels. This supports the hypothesis
that L0-0.8 lacks smoothness in the embedding space due to insufficient regularization, which in
turn complicates downstream training. This is the first piece of evidence that L0Drop is necessary
for the success of our model (H2).

Window size: The window size k determines which bag sizes around the input bag size we back-
propagate from. Here, we investigates its influence on the model’s performance. Since the λsty
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hyperparameter is very sensitive to other model hyperparameters, we train with varying λsty for
each fixed window size and report the best style transfer score for each window size. Further exper-
imental details and full results can be found in appendix A.4.3. Our results indicate that increasing
the window size from zero (score 22.7) is beneficial up to some point (k=5, score 32.6), whereas
increasing by too much (k=20, score 15.6) is detrimental to model performance even compared to
a window size of zero. We hypothesize that backpropagating bags that are either very small or very
large is detrimental because it forces the model to adjust its parameters to optimize unrealistic bags,
taking away capacity for fitting realistic bags.

Differentiable Hausdorff: In Section 4.3, we argue that the min operation should be replaced by
softmin in order to facilitate backpropagation. Here, we test if the differentiable version is really
necessary, that is, we compare Eq. 6 to Eq. 7. Like before, we train the two variants with different
λsty and select the best style transfer score on the validation set. Further experimental details can
be found in appendix A.4.3. The difference is substantial: Average Hausdorff reaches 14.6, whereas
differentiable Hausdorff reaches 24.2. We hypothesize that this discrepancy is due to the difficult
nature of the style transfer problem, which requires carefully balancing the two objectives, content
retention (via Hausdorff) and style transfer (via the classifier). This is easier when the objective
functions are smooth, which is the key advantage of differentiable Hausdorff.

5.3 SENTENCE SUMMARIZATION

In sentence summarization (Rush et al., 2015), the goal is to capture the essence of a sentence in
fewer words. We evaluate on the Gigaword corpus (Graff et al., 2003) similar to Rush et al. (2015).
This corpus consists of more than 8.5 million training samples, but we use a random subset of 500k
to limit the computational cost. Inputs are on average 27 words long, which is medium length
compared to the other two datasets in this study. We use moderately sized vectors of d=128 and
again train different BoV-AEs with target ratios r = 0.2, 0.4, 0.6, 0.8. When applying the model to
the sentence summarization downstream task, we train using the loss term L(ẑy) = Lsim(zx, ẑy) +
λlenLlen(ẑy). This loss term is conceptually similar to the loss term used for style transfer, except
that Llen denotes the prediction of a model trained to predict the length of the input text from
the text’s latent representation (the shorter the better). We train with varying values of λlen =
0.1, 0.2, 0.5, 1, 2, 5, 10 and select the best model (ROUGE-L) on the development set. Intuitively,
this model learns to retain as much from the input as possible while minimizing the output length.
Note that this model of summarization could certainly be improved further, e.g. by accounting for
relevancy and informativeness of the output (Peyrard, 2019). However, our goal is not to create the
best task-specific model possible, so these considerations are out of scope for this paper.

The input texts in this task are relatively long. Due to the higher number of vectors in a BoV,
it may be difficult to learn the mapping, especially for large target ratios r. We experiment with
Transformer++ to observe to what extent this can facilitate learning.

Results: Despite the moderately large vector dimensionality, the single-vector bottleneck model
achieves only considerably lower reconstruction performance than the BoV models (for details,
please refer to Figure 8 in the appendix). Again, larger target rates r lead to faster convergence, and
all BoV models converge to approximately the same validation loss value (0.9). The only exception
is L0-0.2, which converges to a higher loss value (1.25), but is still vastly stronger than the fixed
size model (3.01).

However, as shown in Table 1, L0-0.2 performs the best on the downstream task, outperforming the
single-vector model by more than 5 ROUGE-L points while simultaneously requiring much fewer
output words. BoV models with higher target ratios than r=0.2 perform worse. Moreover, the
Transformer++ architecture tends to improve results, particularly with target rates r > 0.2. The
ROUGE-L score itself does not improve for r=0.2, but note that this comes at the expense of more
than doubling the output length. Also note that L0-0.6 and L0-0.8 only obtain relatively high scores
because they produce long outputs that even exceed the length of the input. In fact, for r = 0.6, 0.8
no value of λlen produces outputs that are reasonably good (> 10 ROUGE-L) and short (< 20
BLEU) at the same time.

The above results confirm both our hypotheses: First (H1), it is beneficial to use a BoV model over a
single-vector model to reduce the compression issues induced by the fixed-size bottleneck. Secondly
(H2), when using a BoV model, it is imperative to regularize the number of vectors in the bag as
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a way of smoothing the embedding space, making it easier to learn the mapping for unsupervised
text generation tasks. Moreover, if the number of vectors in the bag is large, our Transformer++
architecture can substantially facilitate learning the mapping.

6 RELATED WORK

Manipulations in latent space: Besides Emb2Emb, latent space manipulations for textual style
transfer are performed either via gradient descent (Wang et al., 2019; Liu et al., 2020) or by adding
constant style vectors to the input (Shen et al., 2020; Montero et al., 2021). In computer vision,
discovering latent space manipulations for image style transfer has recently become a topic of in-
creased interest, in both supervised (Jahanian et al., 2020; Zhuang et al., 2021) and unsupervised
ways (Härkönen et al., 2020; Voynov & Babenko, 2020). While these vision methods are similar to
Emb2Emb conceptually, they differ from our work in important ways. First, they focus on the latent
space of GANs (Goodfellow et al., 2014), which work well for image generation but are known to
struggle with text (Caccia et al., 2020). Secondly, images typically have a fixed size, and conse-
quently their latent representations consist of single vectors. Our work focuses on data of variable
size, which may have important insights for modalities other than text, e.g. videos and speech.

Unsupervised conditional text generation: Modern unsupervised conditional text generation ap-
proaches are based on either (a) language models (LMs) or (b) autoencoders (AEs). (a) One type of
LM approach explicitly conditions on attributes during pretraining (Keskar et al., 2019), which puts
restrictions on the training data that can be used for training. Another type adapts pretrained LMs
for conditional text generation by learning modifications in the embedding space (Dathathri et al.,
2020). These approaches work well because LMs are pretrained with very large amounts of data
and compute power, which results in exceptional generative ability (Radford et al., 2019; Brown
et al., 2020) that even enables impressive zero-shot style transfer results (Reif et al., 2021). How-
ever, in contrast to AEs, LMs are not designed to have a latent space that facilitates learning in it.
We therefore argue that AE approaches could perform even better than LMs if they were given equal
resources. This motivates our research. (b) A very common approach to AE-based unsupervised
conditional text generation is to learn a shared latent space for input and output corpora that is ag-
nostic to the attribute of interest (e.g., sentiment transfer (Shen et al., 2017), style transfer (Lample
et al., 2019), summarization (Liu et al., 2019), machine translation (Artetxe et al., 2018)). However,
in these approaches, the decoder is explicitly conditioned on the desired attribute that must be avail-
able for all data points, complicating pretraining on unlabeled data. To overcome this, Mai et al.
(2020) recently proposed Emb2Emb, which disentangles AE pretraining from learning to change
the attributes via a simple mapping. Our paper makes an important contribution by improving the
expressivity of Emb2Emb through variable-size representations.

7 CONCLUSION

Our paper addresses a fundamental research question from representation learning: How do we learn
text representations in such a way that NLP tasks, specifically conditional text generation, can be
learned in the latent space? Previous work (Emb2Emb) uses single-vector bottleneck autoencoders,
which we argued to be fundamentally limited in how much text they can capture. We presented Bag-
of-Vectors Autoencoders whose latent representation grows in size with the input as in attention-
based models. We proposed L0Drop regularization, Transformer++, and differentiable Hausdorff
to facilitate training in its embedding space. Controlled experiments revealed that BoV-AEs perform
substantially better when the text is too long to be encoded into a single vector, even of size d = 512.

Our study is fundamental in nature; we do not focus on any particular task. Instead, we systemati-
cally demonstrate the benefit of Emb2Emb with variable-size representations rather than fixed-sized
representations via controlled experiments. However, our model is in principle fit for the future.
Mai et al. (2020) showed that the Emb2Emb framework benefits immensely from unlabeled data.
As such, given enough compute and data for large-scale pretraining, Bag-of-Vectors Autoencoders
could have the potential to become a Foundation Model (Bommasani et al., 2021) like BERT and
GPT-3. Our study paves the way for the application of BoV-AEs for unsupervised tasks by demon-
strating how to learn in their latent space.
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ETHICS STATEMENT

Applications The focus of our study is not any particular application, but concerns fundamental
questions in unsupervised conditional text generation in general. Unsupervised applications are
useful in scenarios where few annotations exists, which is particularly common in understudied
low-resource languages (e.g. unsupervised neural machine translation (Kuwanto et al., 2021)). Of
course, oftentimes unsupervised solutions perform worse than supervised ones, requiring extra care
during deployment to avoid harm from potential mistakes.

Despite the fundamental nature of our study, we test our model on two concrete problems, a) text
style transfer and b) sentence summarization. a) Style transfer has applications that are beneficial
to society, such as expressing ”complicated” text in simpler terms (text simplification) or avoiding
potentially offensive language (detoxification), both of which are particularly beneficial for tradition-
ally underprivileged groups such as non-native English speakers. However, the same technology can
also be used maliciously by simply inverting the style transfer direction. In this paper, we decided
to study sentiment transfer of restaurant reviews as a style transfer task. The reasons are primarily
practical; deriving both from the Yelp dataset, we can study the effectiveness of our model on two
datasets (sentences and full reviews) that are very similar in content but considerably different in
length. On one hand, this allows us to demonstrate the effectiveness of our model in a realistic, but
computationally demanding setting. On the other hand, we can perform ablations in a less expen-
sive setting. Apart from serving as a test bed for scientific research, sentiment transfer itself has
no obvious real-world application. With enough imagination one can construe a scenario where a
bad actor hacks into the database of a review platform like Yelp to e.g. manipulate the content of
existing reviews. However, we rate this as highly unrealistic due to high opportunity cost, as it is
much easier to generate fake reviews with large language models rather than hack into a system and
alter existing reviews.

b) Summarization systems can be very valuable for society by enabling people to process informa-
tion faster. But this depends on the system’s output to be mostly factual, which neural summarization
systems struggle with (Maynez et al., 2020). Unfaithful outputs may convey misinformation, which
can potentially harm users.

Deployment While we argue above that sentiment transfer has no useful real-world application,
the model can still be deployed for demonstration purposes, or be trained and deployed for other
tasks, e.g., sentence simplification. However, we urge not to deploy the models developed in this pa-
per directly without adaptation for several reasons. i) The absolute performance is suboptimal (e.g.,
no large-scale pretraining) and hence makes many mistakes that a real-world application should
avoid to prevent harm. ii) The model can occasionally produce toxic output. Of course, the ex-
tent to which this happens strongly depends on the training data. E.g., Yelp restaurant reviews can
sometimes contain vulgar language. Any real-world application should hence consider pre- and
post-filtering methods. iii) The model might be biased towards certain populations, the extent of
which is not the subject of this study. For example, the sentiment transfer models would likely work
better for fast food restaurants than restaurants of African cuisine, because the former is more com-
mon in the mostly US-centric data that the model is trained on. A real-world application needs to
consider the requirements of the target audience.

Similarly, we argue that the sentence summarization model studied in this paper needs further im-
provements before deployment, some of which we mentioned in the main paper. Large-scale pre-
training could also help to mitigate hallucinated facts (Maynez et al., 2020).

Dataset The Yelp-Reviews dataset is a direct derivative of the Yelp Open Dataset4. Their license
agreement states that any derivative remains the property of Yelp, hence we can not directly release
the dataset. However, academic researchers can easily obtain their own license for non-commercial
use and recreate the dataset used in this study via the script we provide in the supplementary material.
No further data collection was conducted.

4www.yelp.com/dataset
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REPRODUCIBILITY STATEMENT

We took several precautions to ensure that our work is reproducible.

Datasets Our study is based on two existing datasets, Gigaword sentence summarization, and
Yelp-Sentences style transfer. For these two datasets, we provide scripts that preprocess them as in
our study. For Yelp-Reviews dataset, we provide a detailed description in appendix A.3.1. More-
over, we provide a script that allows to construct the dataset as a derivative from Yelp data. In
order to get access to Yelp data, practitioners have to obtain a license from Yelp that is free of
charge. The data may only be used for non-commercial or academic purposes, but this suffices to
reproduce our study. The Gigaword corpus is commonly used, and can be downloaded from the
Linguistic Dataset Consortium at https://catalog.ldc.upenn.edu/LDC2012T21. For
downloading, a membership is mandatory, or otherwise fees apply. However, this commonplace in
NLP research institutes.

Code We provide anonymized code to reproduce all our experiment in the supplementary materi-
als. Upon acceptance, the code will be made available to the public.

Experiments We provide details on each experiment’s setup in the appendix. However, it’s im-
practical to report all details that may impact the outcome. Therefore, for each experiment we
additionally provide a csv file in the supplementary material. The file contains information on all
training parameters, model hyperparameters and results. In combination with the code, this allows
to reconstruct almost the exact experimental setup used in our study apart from parameters that are
beyond our control, such as the computation environment.
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Garry Kuwanto, Afra Feyza Akyürek, Isidora Chara Tourni, Siyang Li, and Derry Wijaya. Low-
resource machine translation for low-resource languages: Leveraging comparable data, code-
switching and compute resources. arXiv preprint arXiv:2103.13272, 2021.

Guillaume Lample, Sandeep Subramanian, Eric Smith, Ludovic Denoyer, Marc’Aurelio Ranzato,
and Y-Lan Boureau. Multiple-attribute text rewriting. In International Conference on Learning
Representations, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In ACL, pp. 7871–7880.
Association for Computational Linguistics, 2020.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Kwan-Ho Lin, Kin-Man Lam, and Wan-Chi Siu. Spatially eigen-weighted hausdorff distances for
human face recognition. Pattern Recognit., 36(8):1827–1834, 2003.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and Jiancheng Lv. Revision in continuous space:
Unsupervised text style transfer without adversarial learning. In AAAI, pp. 8376–8383. AAAI
Press, 2020.

Peter J Liu, Yu-An Chung, and Jie Ren. Summae: Zero-shot abstractive text summarization using
length-agnostic auto-encoders. arXiv preprint arXiv:1910.00998, 2019.

Yue Lu, Chew Lim Tan, Weihua Huang, and Liying Fan. An approach to word image matching
based on weighted hausforff distance. In ICDAR, pp. 921–925. IEEE Computer Society, 2001.

Florian Mai, Nikolaos Pappas, Ivan Montero, Noah A. Smith, and James Henderson. Plug and play
autoencoders for conditional text generation. In EMNLP (1), pp. 6076–6092. Association for
Computational Linguistics, 2020.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan T. McDonald. On faithfulness and fac-
tuality in abstractive summarization. In ACL, pp. 1906–1919. Association for Computational
Linguistics, 2020.

Ivan Montero, Nikolaos Pappas, and Noah A Smith. Sentence bottleneck autoencoders from trans-
former language models. arXiv preprint arXiv:2109.00055, 2021.

Courtney Napoles, Benjamin Van Durme, and Chris Callison-Burch. Evaluating sentence com-
pression: Pitfalls and suggested remedies. In Monolingual@ACL, pp. 91–97. Association for
Computational Linguistics, 2011.

Sarana Nutanong, Chenyun Yu, Raheem Sarwar, Peter Xu, and Dickson Chow. A scalable frame-
work for stylometric analysis query processing. In ICDM, pp. 1125–1130. IEEE Computer Soci-
ety, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, pp. 311–318. ACL, 2002.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In NAACL-HLT, pp. 2227–2237.
Association for Computational Linguistics, 2018.

Maxime Peyrard. A simple theoretical model of importance for summarization. In ACL (1), pp.
1059–1073. Association for Computational Linguistics, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, volume 139 of Proceedings of
Machine Learning Research, pp. 8821–8831. PMLR, 2021.

13



Under review as a conference paper at ICLR 2022

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason
Wei. A recipe for arbitrary text style transfer with large language models. arXiv preprint
arXiv:2109.03910, 2021.

Javier Ribera, David Guera, Yuhao Chen, and Edward J. Delp. Locating objects without bounding
boxes. In CVPR, pp. 6479–6489. Computer Vision Foundation / IEEE, 2019.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sen-
tence summarization. In EMNLP, pp. 379–389. The Association for Computational Linguistics,
2015.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In ACL (1), pp. 1073–1083. Association for Computational Linguis-
tics, 2017.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. Style transfer from non-parallel
text by cross-alignment. In NIPS, pp. 6830–6841, 2017.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and Tommi S. Jaakkola. Educating text autoen-
coders: Latent representation guidance via denoising. In ICML, volume 119 of Proceedings of
Machine Learning Research, pp. 8719–8729. PMLR, 2020.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014.

Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3d medical image segmentation: anal-
ysis, selection, and tool. BMC Medical Imaging, 15:29, 2015.
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Appendix
A EXPERIMENTAL DETAILS

Here, we describe the experimental setup used in our experiments. We try to be exhaustive, but the
exact training configurations and code will also be given as downloadable source code for reference.

Table 2: Basic statistics for each dataset used in this study. Average number of words refers to input
texts and output texts, respectively.

Dataset avg. #words #inputs #outputs
Yelp-Sentences 9.7 / 8.5 177k 267k

Gigaword 27.2 / 8.2 500k 500k
Yelp-Reviews 56.1 / 48.7 500k 500k

A.1 AUTOENCODER PRETRAINING

All autoencoders consist of standard Transformer encoders and decoders (Vaswani et al., 2017), with
3 encoder and decoder layers, respectively. The Transformers have 2 heads and the dimensionality
is set to the same as the latent vectors (Yelp-Reviews: 512, Yelp-Sentences: 32, Gigaword: 128).
In case of the fixed sized model, the representations at the last layer are averaged. Otherwise we
perform L0Drop as described in Section 3. We set λL0 = 10 for all BoV models and only vary
the target ratio. All models are trained with a dropout (Srivastava et al., 2014) probability of 0.1
and a denoising objective, i.e, tokens have a chance of 10% to be dropped from the sentence. We
train the model with the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of
lr = 0.00005 (Yelp-Reviews and Gigaword) or lr = 0.0001 (Yelp-Sentences) and a batch size of
64. We experimented with other learning rates (0.00005, 0.0005) for the fixed-size model on Yelp-
Reviews, but the results did not improve. Models are trained for 2 million steps on Gigaword and
Yelp-Reviews and for 1.5 million steps on Yelp-Sentences. We check the validation set performance
every 20,000 steps and select the best model according to validation reconstruction performance.

A.2 DOWNSTREAM TASK TRAINING

After the autoencoder pretraining, we train downstream by freezing the parameters of the encoder
and decoder. The dimensionality of the one-layer mapping Φ (a Transformer decoder with 4 heads)
is set to the same as the latent representation (Yelp-Reviews: 512, Yelp-Sentences: 32, Gigaword:
128). We set the maximum number of output vectors to N = 250 on Yelp-Reviews and Gigaword,
and N = 30 on Yelp-Sentences. The batch size is 64 for Yelp-Sentences and Gigaword and 16
on Yelp-Reviews. We train for 10 epochs on Yelp-Sentences and Gigaword, and for 3 epochs on
Yelp-Reviews. The validation performance is evaluated after each epoch.

Losses: In all tasks we have two loss components. For Lsim, we use differentiable Hausdorff unless
specified otherwise (in the ablation). Lsty andLlen depend on classifiers / regressors, which we train
separately after the autoencoder pretraining as a one-layer Transformer encoder. The embeddings
are then averaged and plugged into a one-layer MLP whose hidden size is half of the input size
and uses the tanh activation function. These classifiers are trained via Adam (lr = 0.0001) for
10 epochs and we evaluate the validation set performance after each. The total loss depends on a
window size as described in Equation 4. For performance reasons (multiple computations of the
loss), we set k = 0 unless specified differently.

A.3 YELP-REVIEWS

A.3.1 DATASET

The dataset was obtained from https://www.yelp.com/dataset in May 2021. Our goal is
to obtain texts long enough such they cannot be reconstructed by a reasonably sized autoencoder
with a single-vector bottleneck. We find that to be the case when limiting ourselves to reviews of
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maximum 100 words. We apply this limit due to the computational complexity of Transformers
on long texts. Otherwise, we stick with similar filtering criteria as Shen et al. (2017): We only
consider restaurant businesses. We consider reviews with 1 or 2 stars as negative, and reviews with
5 stars as positive. We don’t consider reviews with 3 or 4 stars to avoid including neutral reviews.
We subsample 400,000 positive and negative reviews for training, respectively, and use 50,000 for
validation and test set each.

In order to demonstrate the usefulness of our model on long texts, we turn to the original Yelp
dataset5. Our goal is to obtain texts long enough such they cannot be reconstructed by a reason-
ably sized autoencoder with a single-vector bottleneck. We find that to be the case when limiting
ourselves to reviews of maximum 100 words6. Otherwise, we stick with similar filtering criteria as
Shen et al. (2017): We only consider restaurant businesses. We consider reviews with 1 or 2 stars
as negative, and reviews with 5 stars as positive. We don’t consider reviews with 3 or 4 stars to
avoid including neutral reviews. We subsample 400,000 positive and negative reviews for training,
respectively, and use 50,000 for validation and test set each.

A.3.2 DOWNSTREAM TRAINING

For both the fixed-size model and the BoV model (L0-0.1), we choose the best learning rate among
lr = 0.0001 and lr = 0.0005 on the validation set and report test set results. We train with
Lsty ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}, resulting in the scatter plot in Figure 3.

A.4 YELP-SENTENCES

A.4.1 DATASET

Yelp-Sentences consists of the sentiment transfer dataset created by Shen et al.
(2017), who made their data available at https://github.com/shentianxiao/
language-style-transfer/tree/master/data/yelp. We use their data as is
without further preprocessing. Table 2 presents some basic statistics about this dataset.

A.4.2 DOWNSTREAM TRAINING

We train BoV models with λsty ∈ {1, 2, 5, 10, 20, 50, 100}. To make sure that our results
are not due to insufficient tuning, for the fixed-sized model, we use the following larger range:
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}. All configurations are trained with lr =
0.0005. These results produce the scatter plot in Figure 5.

A.4.3 ABLATIONS

For the ablations on differentiable Hausdorff distance and the window size, we use the L0-0.6 model.
For each option, we train with Lsty ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 40, 60, 80, 100} and report the
best value in terms of style transfer score on the validation set.

A.5 SENTENCE SUMMARIZATION

A.5.1 DATASET

The dataset is based on the Gigaword corpus (Graff et al., 2003). We largely follow the pre-
processing in Rush et al. (2015), which we obtained from the paper’s GitHub repository at
https://github.com/facebookarchive/NAMAS. Different from them, we convert all
inputs and outputs to lower case and use a smaller split (1 million examples). We provide the scripts
for constructing the dataset from a copy of the Gigaword corpus (which can be obtained from the
Linguistic Dataset Consortium) together with the rest of our code.

5The dataset was obtained from https://www.yelp.com/dataset in May 2021.
6We apply this limit due to the computational complexity of Transformers on long texts.
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Figure 6: Style transfer score depending on the window size.

A.5.2 DOWNSTREAM TRAINING

We train all models with lr = 0.00005. For each target ratio r and each of Transformer and
Transformer++, we select the best λlen ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10} in terms of ROUGE-L on the
validation set and report test set results in Table 1.

B ADDITIONAL RESULTS

B.1 YELP-REVIEWS

In Figure 7, we plot the reconstruction ability of the fixed-size model compared to the BoV-AEs on
the validation set.

Again, despite a large dimensionality (d = 512), the single-vector model achieves substantially
lower reconstruction ability than BoV-AE. With respect to the target sparsity rate, we find that r =
0.1 is enough to reach dramatically better results than the fixed-size model, whereas r = 0.05 only
reaches slightly better results after two million training steps. However, the plot shows clearly that
L0-0.05 has not converged, suggesting that L0-0.05 could reach much better performance if trained
for even longer.

B.2 YELP-SENTENCES

B.2.1 WINDOW SIZE

In Figure 6, we plot the style transfer score as a function of the window size. As already described
in Section 5.2, the performance improves almost monotonically up to a certain point, after which the
performance decreases again. This demonstrates the importance of choosing the right window size.

B.2.2 COMPUTATION TIME

Our experiments have shown that bag-of-vector representations are more powerful than single-vector
representations. However, the increased capacity of BoV-AE comes at the expense of higher com-
putation time. The size of the latent representation impacts the computation time in two places: Dur-
ing cross-attention in the decoder and when computing the mapping. Asymptotically, the decoder’s
cross-attention mechanism computes O(n · |s|) dot-products, where n is the number of vectors in
the latent representation and |s| is the length of the text sequence s. When computing the mapping,
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Table 3: Asymptotic computation time in the Emb2Emb framework as a function of the latent
representation size n and the length of the input text |s|, depending on the type of autoencoder.

AE type Cross-Attention Decoding Mapping
in general O(n · |s|) O(n2)

fixed O(|s|) O(1)
BoV-AE O(|s|2) O(|s|2)

Table 4: The number of seconds it takes to process 5% of the validation set (1264 samples) with a
batch size of 1. Lower is better.

Model Encoding Mapping Decoding
fixed 4.8 2.4 51.7

L0-0.4 7.2 12.6 50.1
L0-0.8 7.3 20.6 50.3

both at training and inference time, we produce a fixed number N of vectors autoregressively, but
in most applications, N can reasonably be bound by a linear function of n (e.g., 2n in style transfer
or 0.5n in summarization). The mapping is essentially a Transformer decoder, so both the cross
attention and self attention parts compute O(n2) dot-products. Given that n = 1 for single-vector
AEs and n = O(|s|) for BoV-AEs with L0Drop, we obtain the asymptotic complexities as shown in
Table 3.

To assess the empirical impact, we measure the wallclock time of Emb2Emb’s ”Inference” stage
(cf. Figure 2). We take separate measurements for encoding, mapping, and decoding, respectively.
Since decoding speed depends on the quality of generation (e.g., when the end-of-sequence symbol
is generated late due to repetitions), we do the following to enable fairer comparisons. We enforce
the same fixed number of decoding steps (10) in all models. The mapping is set to produce as many
output vectors as input vectors. We use a batch size of 1, but note that the results would largely
extend to larger batch sizes when binned batching is used. The results are shown in Table 4.

Both the encoding and the mapping stages of Emb2Emb are more expensive in BoV models than in
the fixed-size model. The difference in the encoding stage can be explained by the overhead through
the L0Drop layer, which includes identifying near-zero gates and discarding their respective vec-
tors. The difference in the mapping grows with higher L0Drop target ratios. This is expected since
the number of autoregressive steps decreases with the target ratio. Finally, we do not observe any
meaningful speed differences between the models at decoding time. This is somewhat surprising,
but could be explained by two factors. First, the self-attention part of the decoder already has a com-
plexity ofO(|s|2), which probably dominates the total computation time. Secondly, the computation
of the dot-product is easy to parallelize. In summary, we find that BoV models are slower overall,
especially in the mapping. However, since our L0Drop implementation prunes near-zero vectors,
lower target rates mitigated the additional computation overhead. This is especially evident when
comparing training speeds. While L0-0.8 processes 15 sentences per second, L0-0.4 processes can
process 21 (fixed-size: 42).

B.2.3 QUALITATIVE ANALYSIS

Standard autoencoders suffer from poor performance with Emb2Emb if the text is too long to be
encoded into a single vector. BoV-AEs were designed to alleviate this issue. Here, we conduct a
qualitative analysis of 10 randomly selected model outputs on Yelp-Sentences. For comparability,
we select models with similar levels of style transfer accuracy, namely the fixed size model with
a performance of 59% accuracy and 17 points self-BLEU to L0-0.4 with a performance of 55%
accuracy and 38 points self-BLEU. We randomly sample 10 examples and show them in Table 5.
By design of the Yelp-Sentences dataset (Shen et al., 2017), the input sentences are sentences drawn
from negative reviews, whose sentiment are supposed to be changed to positive. Note that due to
how the dataset was constructed, some of the input sentences are already positive (#7) or just neutral
(#2).

We observe several trends:
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# Input sentence Output of fixed-size model Output of L0-0.4
1 generally speaking it was

nothing worth coming back
to .

but there here here and it
will enjoy it .

generally remain it was it
worth it and always happy !

2 then why did n’t they put
some in ?

then she , you ta are the in
the ?

then ’ why n ’ t they put
some delicious !

3 horrible experience ! horrible ! horrible experience !
4 it was a shame because we

were really looking forward
to dining there .

it was a a fun , there and we
have been to .

it really nice shame because
we were really looking for-
ward forward and fantastic !

5 suffice to stay , this is not a
great place to stay .

suffice to to not stay to this
place is a stay .

suffice is not stay , this is a
great place and always great
!

6 the chicken was weird . the chicken was weird . the chicken was weird .
7 my mom ordered the mar-

garita panini which was
pretty good .

my my margarita was or-
dered which was very good
.

my mom ordered the mar-
garita panini which was
pretty good .

8 i ’m not willing to take the
chance .

i will definitely recommend
your time or you .

i ’ m not willing to take the
great .

9 i would say for the price
point that it was uninspired
.

i had this place at the food ,
it ’s super .

i would say for the price
point that it was delicious .

10 the only pool complaint i
have was from the last day
of our stay .

the waitress was the the the
the time here a last time

the only pool complaint i
have was from the day was
wonderful !

Table 5: 10 randomly sampled examples from Yelp-Sentences.

1. The fixed-sized model has a difficult time retaining the aspect discussed in the input sen-
tence (#10: staff instead of location, #9: food instead of price), whereas the BoV-AE stays
on topic. This is likely a consequence of the fixed-sized model’s inability to encode the
input well into a single vector.

2. The outputs of the fixed-sized models are often completely unusable (#1, #2) or nonsensical
(#5, #9, #10), whereas the outputs of the BoV-AE are at least intelligible.

3. In absolute terms, the outputs of neither model are reliably grammatical or able to flip
the sentiment. This is understandable since no large pretrained language model is used.
We would like to stress that therefore our models should not be used in production as
they are (cf. Ethics Statement). Large-scale pretraining is needed to produce coherent
outputs (Brown et al., 2020), which then produces impressive outputs on style transfer (Reif
et al., 2021). As we argue in Section 1 and 7, our paper contributes to the foundation for
large scale pretraining of autoencoder models to be used in Emb2Emb.

B.3 SENTENCE SUMMARIZATION

Figure 8 shows the development of the reconstruction loss on the validation set over the course of 2
million training steps. Despite a moderately sized dimensionality (d = 128), the single-vector bot-
tleneck model achieves only considerably lower reconstruction performance than the BoV models.
Moreover, we can see again that larger target rates r lead to faster convergence, and all BoV models
converge to approximately the same validation loss value.
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Figure 7: Reconstruction loss on the validation set of Yelp-Reviews
for different autoencoders. fixed: The bag consists of a single vector
obtained by averaging the embeddings at the last layer of the Trans-
former encoder. L0-r: BoV-AE with L0Drop target ratio r.
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Figure 8: Reconstruction loss on the validation set of Gigaword for
different autoencoders. fixed: The bag consists of a single vector
obtained by averaging the embeddings at the last layer of the Trans-
former encoder. L0-r: BoV-AE with L0Drop target ratio r.
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