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Abstract

Memory is crucial for enabling agents to tackle complex tasks with temporal
and spatial dependencies. While many reinforcement learning (RL) algorithms
incorporate memory, the field lacks a universal benchmark to assess an agent’s
memory capabilities across diverse scenarios. This gap is particularly evident
in tabletop robotic manipulation, where memory is essential for solving tasks
with partial observability and ensuring robust performance, yet no standardized
benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive
Skills Assessment Suite for Agents), a comprehensive benchmark for memory
RL, with three key contributions: (1) we propose a comprehensive classification
framework for memory-intensive RL tasks, (2) we collect MIKASA-Base — a
unified benchmark that enables systematic evaluation of memory-enhanced agents
across diverse scenarios, and (3) we develop MIKASA-Robo' —a novel benchmark
of 32 carefully designed memory-intensive tasks that assess memory capabilities
in tabletop robotic manipulation. Our work introduces a unified framework to

advance memory RL research, enabling more robust systems for real-world use.

MIKASA is available at https://tinyurl.com/membenchrobots.

1 Introduction

Many real-world problems involve partial ob-
servability [43], where an agent lacks full ac-
cess to the environment’s state. These tasks
often include sequential decision-making [8],
delayed or sparse rewards, and long-term in-
formation retention [54, 72]. One approach
to tackling these challenges is to equip the
agent with memory, allowing it to utilize his-
torical information [64, 67]. While there are
well-established benchmarks in Natural Lan-
guage Processing [3, 5], the evaluation of mem-
ory in reinforcement learning (RL) remains
fragmented. Existing benchmarks, such as
POPGym [65], DMLab-30 [39] and Memory-
Gym [75], focus on specific aspects of memory
utilization, as they are designed around particu-
lar problem domains.
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Figure 1: Systematic classification of problems
with memory in RL reveals distinct memory uti-
lization patterns and enables objective evaluation
of memory mechanisms across different agents.

In contrast to classical RL, where benchmarks like Atari [7] and MuJoCo [89] serve as universal
standards, memory-enhanced agents are typically evaluated on custom environments developed along-
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Table 1: MIKASA-Robo: A benchmark comprising 32 memory-intensive robotic manipulation
tasks across 12 categories. Each task varies in difficulty and configuration modes. The table specifies
episode timeout (T), the necessary information that the agent must memorize in order to succeed
(Oracle Info), and task instructions (Prompt) for each environment. See Appendix H for details.

Memory Task Mode Brief description of the task T Oracle Info Prompt Memory
ShellGame Touch Memorize the position of the ball after some time being covered by the
Push cups and then interact with the cup the ball is under 90 cup_with_ball_number — Object
Pick
Intercept Slow Memorize the positions of the rolling ball, estimate its velocity through
Medium  those positions, and then aim the ball at the target 90 initial_velocity — Spatial
Fast
InterceptGrab Slow Memorize the positions of the rolling ball, estimate its velocity through
Medium  those positions, and then catch the ball with the gripper and liftitup 90 initial_velocity — Spatial
Fast
RotateLenient ggzNeg Memorize the initial position of the peg and rotate it by a given angle 90 _cnEile GHEE tomet_creile Spatial
RotateStrict Pos Memorize the initial position of the peg and rotate it to a given angle . L
PosNeg without shifting its center 90 y-angle diff target_angle Spatial
TakeltBack-v0 — Memorize the initial position of the cube, move it to the target region, 180 xyz_initial — Spatial
and then return it to its initial position
RememberColor 3\5\9 Memorize the color of the cube and choose among other colors 60 true_color_indices — Object
RememberShape 3\5\9 Memorize the shape of the cube and choose among other shapes 60 true_shape_indices — Object
RememberShape- 3x2\3x3\ Memorize the shape and color of the cube and choose among other true_shapes_info .
60 N — Object
AndColor 5x3 shapes and colors true_colors_info
BunchOfColors 3\5\7 Remember the colors of the set of cubes shown simultaneously in the 120 true_color_indices — Capacity
bunch and touch them in any order
SeqOfColors 3\5\7 Remember the colors of the set of cubes shown sequentially and then 120 true_color_indices  — Capacity
select them in any order
ChainOfColors  3\5\7 Remember the colors of the set of cubes shown sequentially and then 120 true_color_indices — Sequential

select them in the same order

Total: 32 tabletop robotic manipulation memory-intensive tasks in 12 groups

side their proposals Table 2. This fragmented evaluation landscape obscures important performance
variations across different memory tasks. For instance, an agent might excel at maintaining object
attributes over extended periods while struggling with sequential recall challenges. Such task-specific
strengths and limitations often remain hidden due to narrow evaluation scopes, underscoring the need
for a comprehensive benchmark that spans diverse memory-intensive scenarios.

The challenge of memory evaluation becomes particularly evident in robotics. While some robotic
tasks naturally involve partial observability, e.g. navigation tasks [2, 94], many studies artificially
create partially observable scenarios from Markov Decision Processes (MDPs) [42] by introducing
observation noise or masking parts of the state space [52, 55, 64, 85]. However, these approaches
do not fully capture the complexity of real-world robotic challenges [55], where tasks may require
the agent to recall past object configurations, manipulate occluded objects, or perform multi-step
procedures that depend heavily on memory. Such tasks include, for example, situations where a
service robot needs to memorize occluded objects (e.g., a plate hidden under a towel) or where a
home robot needs to accurately wipe the door of a microwave oven several times. Without memory,
the robot wouldn’t detect the plate in the first case, and in the second, it would wipe the door endlessly,
unsure whether it has cleaned the area or if it’s time to stop.

In this paper, we aim to address these challenges with the following four contributions:

1. Memory Tasks Classification. We propose a simple yet comprehensive framework that
organizes memory-intensive tasks into four key categories. This structure enables system-
atic evaluation without added complexity (Figure 1), offering a clear guide for selecting
environments that reflect core memory challenges in RL and robotics (Section 4).

2. Memory-RL Benchmark. We introduce MIKASA-Base, a Gymnasium-based [90] frame-
work for evaluating memory-enhanced RL agents (Section 5).

3. Robotic Manipulation Tasks. We introduce MIKASA-Robo, a suite of 32 robotic tasks
targeting specific memory-dependent skills in realistic settings (Section 6), and evaluate
them using popular Online RL baselines (Subsection 6.2) and Visual-Language-Action
(VLA) models (Subsection 6.4).

4. Robotic Manipulation Datasets. We release datasets for all 32 MIKASA-Robo memory-
intensive tasks to support Offline RL research (see Appendix B), and conduct extensive
evaluations using a range of Offline RL baselines (Subsection 6.3).

2 Related Works

Multiple RL benchmarks are designed to assess agents’ memory capabilities. DMLab-30 [39]
provides 3D navigation and puzzle tasks, focusing on long-horizon exploration and spatial recall.
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PsychLab [56] extends DMLab by incorporating Table 2: Key memory-intensive environments
tasks that probe cognitive processes, including  from the reviewed studies for evaluating agent
working memory. MiniGrid and MiniWorld [12] memory. The Atari [7] environment with frame
emphasize partial observability in hghtwelght S[acking is included to illustrate that many
2D and 3D environments, while MiniHack [78] memory-enhanced agents are tested solely in MDP.
builds on NetHack [53], offering small rogue- [\ Bgichmark first introduced in the same work .
like scenarios that require both short- and long- o\ chmark is open-sourced.

term memory. BabyAl [11] combines natural
language instructions with grid-based tasks, re-
quiring memory for multi-step command execu-
tion. POPGym [65] standardizes memory evalu-
ation with tasks ranging from pattern-matching
puzzles to complex sequential decision-making.
BSuite [70] offers a suite of carefully designed B 7

experiments that test core RL capabilities, in- 25 VR y .7
cluding memory, through controlled tasks on ’
exploration, credit assignment, and scalability.
Memory Gym [75] offers a suite of 2D grid en-
vironments with partial observability, designed
to benchmark memory capabilities in decision-
making agents, including endless versions of
tasks for evaluating memory over extremely
long time intervals. Memory Maze [73] presents
3D maze navigation tasks that require memory to solve efficiently.

EMDQN [61]
MRA [22]
FMRQN [69]
DCEM [36]

DTQN[19]
HCAM [54]
AMAGO [26]
GTRXL [72]
R2A[77]
RATE [10]

~ | DRON[3]
«| AprQN{101]

SN NN

AN

AN

While these benchmarks offer valuable insights into memory mechanisms, they generally focus
on abstract puzzles or navigation tasks. However, none of them fully encompass the broad range
of memory utilization scenarios an agent may encounter, and the tasks themselves often differ
fundamentally across benchmarks, making direct comparison of memory-enhanced agents difficult.
In the robotics domain, memory requirements become particularly challenging due to the physical
nature of manipulation tasks. Unlike abstract environments, robotic manipulation involves complex
physical interactions and multi-step procedures demanding both spatial and temporal memory.
Existing memory-intensive benchmarks, while useful for diagnostic purposes, struggle to capture
these domain-specific challenges. The physical control and object interaction inherent in manipulation
tasks introduce additional complexities not addressed by traditional memory evaluation frameworks.

Efforts have been made to classify memory-intensive environments by specific attributes. For
example, Ni et al. [68] divides them into memory/credit assignment based on temporal horizons.
Yue et al. [97] proposes memory dependency pairs to model how past events influence current
decisions, aiding imitation learning in partially observable tasks. Cherepanov et al. [9] defines agent
memory types: long-term vs. short-term (based on context length), and declarative vs. procedural
(based on environments and episodes), and formalizes memory-intensive environments. Leibo
et al. [56] instead adapts tasks from cognitive psychology and psychophysics to evaluate agents
on human cognitive benchmarks. While these classifications highlight aspects of memory, they
overlook physical dimensions in robotics. The link between physical interaction and memory remains
underexplored, motivating a framework for spatio-temporal memory in real-world tasks.

Concurrent with our work Fang et al. [21] also proposed MemoryBench, a benchmark for memory-
intensive manipulation consisting of only three tasks designed to access only one type of memory,
spatial memory. This benchmark is based on RLBench [40], which does not allow efficient paral-
lelization of training.

3 Background

3.1 Partially Observable Markov Decision Process

Partially Observable Markov Decision Process (POMDP) [42] extend MDP to account for partial ob-
servability, where an agent observes only noisy or incomplete information about the true environments
state. POMDP defined by a tuple (S, A, T, R, 2, O, ), where: S is the set of states representing
the complete environment configuration; A is the action space; T'(s'|s,a) : S x A x S — [0,1] is
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Figure 2: Illustration of demonstrative memory-intensive tasks execution from the proposed MIKASA-
Robo benchmark. The ShellGameTouch-vO0 task requires the agent to memorize the ball’s
location under mugs and touch the correct one. In RememberColor9-vO0, the agent must memorize
a cube’s color and later select the matching one. In RotateLenientPos-vO0, the agent must
rotate a peg while keeping track of its previous rotations.

the transition function defining the probability of reaching state s’ from state s after taking action a;
R(s,a) : S x A — Ris the reward function specifying the immediate reward for taking action a in
state s; 2 is the observation space containing all possible observations; O(o|s, a) : Sx AxQ — [0, 1]
is the observation function defining the probability of observing o after taking action a and reaching
state s; v € [0, 1) is the discount factor determining the importance of future rewards. The objective is
to find a policy 7 that maximizes the expected discounted cumulative reward: E [> oo o v R(ss, ar)],
where a; ~ 7(-|o1.+) depends on the history of observations rather than the true state. Relying on
partial observations makes POMDPs harder to solve than MDPs.

3.2 Memory-intensive environments

Memory-intensive environment is an environment where agents must leverage past experiences to
make decisions, often in problems with long-term dependencies or delayed rewards. More formally,
following Cherepanov et al. [9], a memory-intensive task is a POMDP where there exists a correlation
horizon £ > 1, representing the minimum number of timesteps between an event critical for decision-
making and when that information must be recalled. Popular memory-intensive environments in RL
are listed in Table 2. One way to solving memory-intensive environments is to augment agents with
memory mechanisms (see Appendix E).

3.3 Robotic Tabletop Manipulation

Robotic tabletop manipulation [80] involves robots manipulating objects on flat surfaces through
actions like grasping, pushing, and picking. While crucial for real-world applications [57], most
existing simulators treat these tasks as MDPs without memory requirements, failing to capture the
spatio-temporal dependencies present in real scenarios. This limitation hinders the development of
memory-enhanced agents for practical applications.

4 Classification of memory-intensive tasks

The evaluation of memory capabilities in RL faces two major challenges. First, as shown in Table 2,
research studies use different sets of environments with minimal overlap, making it difficult to
compare memory-enhanced agents across studies. Second, even within individual studies, benchmarks
may focus on testing similar memory aspects (e.g., remembering object locations) while neglecting
others (e.g., reconstructing sequential events), leading to incomplete evaluation of agents’ memory.

Different architectures may exhibit varying performance across memory tasks. For instance, an
architecture optimized for long-term object property recall might struggle with sequential memory
tasks, yet these limitations often remain undetected due to the narrow focus of existing evaluation
approaches.

To address these challenges, we propose a systematic approach to memory evaluation in RL. Draw-
ing from established research in developmental psychology and cognitive science, where similar
memory challenges have been extensively studied in humans, we develop a categorization framework
consisting of four distinct memory task classes, detailed in Subsection 4.2.
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4.1 Memory: From Cognitive Science to RL

In developmental psychology and cognitive science, memory is classified into categories based on
cognitive processes. Key concepts include object permanence [74], which involves remembering the
existence of objects out of sight, and categorical perception [60], where objects are grouped based
on attributes like color or shape. Working memory [4] and memory span [16] refer to the ability to
hold and manipulate information over time, while causal reasoning [50] and transitive inference [35]
involve understanding cause-and-effect relationships and deducing hidden relationships, respectively.

The RL field has attempted to utilize these concepts in the design of specific memory-intensive
environments [22, 54], but these have been limited at the task design level. Of particular interest,
however, is how existing memory-intensive tasks can be categorized using these concepts to develop a
benchmark on which to test the greatest number of memory capabilities of memory-enhanced agents,
and it is this problem that we address in this paper. Thus, we aim to provide a balanced framework
that covers important aspects of memory for real-world applications while maintaining practical
simplicity (see Figure 3).

4.2 Taxonomy of Memory Tasks

We introduce a comprehensive task classification framework for evaluating memory mechanisms in
RL. Our framework categorizes memory-intensive tasks into four fundamental types, each targeting
distinct aspects of memory capabilities:

1. Object Memory. Tasks that evaluate an agent’s ability to maintain object-related information
over time, particularly when objects become temporarily unobservable. These tasks align
with the cognitive concept of object permanence, requiring agents to track object properties
when occluded, maintain object state representations, and recognize encountered objects.
Example: a robot remembers which fruit it put in the fridge.

2. Spatial Memory. Tasks focused on environmental awareness and navigation, where agents
must remember object locations, maintain mental maps of environment layouts, and navigate
based on previously observed spatial information. Example: the robot remembers the
position of a mug it moved while cleaning and returns it to its place.

3. Sequential Memory. Tasks that test an agent’s ability to process and utilize temporally
ordered information, similar to human serial recall and working memory. These tasks require
remembering action sequences, maintaining order-dependent information, and using past
decisions to inform future actions. Example: a robot memorizes the order of the ingredients
it has added to a soup.

4. Memory Capacity. Tasks that challenge an agent’s ability to manage multiple pieces
of information simultaneously, analogous to human memory span. These tasks evaluate
information retention limits and multi-task information processing. Example: a robot is able
to memorize the positions of several different objects while cleaning a table.

This classification framework enables systematic evaluation of memory-enhanced RL agents across
diverse scenarios. By providing a structured approach to memory task categorization, we establish a
foundation for comprehensive benchmarking that spans the wide spectrum of memory requirements.
In the following section, we present a carefully curated set of tasks based on this classification,
forming the basis of our proposed MIKASA benchmark.
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5 MIKASA-Base

Motivation and Overview. Despite the im- Table 3: Analysis of established robotics frame-
portance of memory in decision-making, the RL works with manipulation tasks, comparing their
community lacks standardized tools for bench- support for memory-intensive tasks. T — excluding
marking memory Capabi]itieS. Existing studies Franka Kitchen. * — concurrent work with three
typically introduce bespoke environments tai- memory tasks with only one type of memory.
lored to their proposed algorithms, leading to

fragmentation and limited comparability across ~ Robotics Framework Memory Tasks
works (see Table 2). Moreover, many pop- " Manipulation Tasks - nponipulation  Atomie  Lovilevel
ular memory benchmarks focus narrowly on

A . A MIKASA-Robo (Ours) v v v
spec1ﬁc memory types, overlooking the diver- MemoryBench [21] 7 ; ;
sity of memory demands found in real-world  Maniskili3 [87] X X x
applications. To address this gap, we intro-  Mer3KIHA [91] X X X
duce MIKASA-Base, a unified benchmark that  RoboCasa [66] X X x
consolidates widely used open-source memory- ~ Gymnasium-Robotics™ [17] X X X
. . - BEHAVIOR-1K [59] v X x
intensive environments under a common Gym-  srNoLD [24] X X x
like API. Our goal is to streamline reproducibil- i\%\lﬁmfio (58] ; X ;
ity, support fair comparisons, and promote Sys-  qac Si[m EMJ X X X
tematic evaluation of memory in RL. panda-gym [23] X X X

Habitat 2.0 [86] X x x

Meta-World [96] X X X

. .. CausalWorld [1] X X X

Benchmark Design Principles. MIKASA-  RLBench [40] X X X
Base is designed around core principles that ;‘;‘;";s;‘;&l‘["ﬂ] ; ; ;
support rigorous and interpretable evaluation  Franka Kitchen [29] X x X
of memory in RL. To disentangle memory from  SURREAL [20] X X ol
AI2-THOR [49] X X x

unrelated challenges, we organize tasks into two
tiers. The first tier consists of diagnostic vector-
based environments that isolate specific memory mechanisms. The second tier includes complex
image-based tasks that incorporate realistic perception challenges, thus more closely resembling
real-world settings. This hierarchical structure enables researchers to validate memory capabilities
incrementally — from atomic reasoning to high-dimensional sensory input.

Task Classification and Selection. Building on our taxonomy from Subsection 4.2, we system-
atically reviewed open-source memory benchmarks and categorized their tasks into four distinct
types of memory usage. We selected a diverse yet representative subset of environments to cover
this taxonomy — ranging from object permanence to sequential planning. All selected tasks are
unified under a single, consistent API. Descriptions are provided in Appendix I, and an overview of
MIKASA-Base tasks appears in Table 6. This consolidation supports architectural ablations, direct
comparison of methods, and simplified evaluation pipelines. Implementation details can be found
in Appendix C.

MIKASA-Base provides the first systematic and unified benchmark for evaluating memory in RL. It
mitigates fragmentation by standardizing task access and evaluation, and its structured progression
enables precise attribution of memory-related agent failures. By covering a broad spectrum of
memory challenges within a common framework, MIKASA-Base offers a foundation for robust,
reproducible research in memory-centric RL.

6 MIKASA-Robo

The landscape of robotic manipulation frameworks reveals significant limitations in addressing
memory-intensive tasks. While partial observability is well-studied in navigation, manipulation
scenarios are still predominantly evaluated under full observability, with limited focus on memory
demands (see Table 3). Among frameworks that do consider memory, BEHAVIOR-1k [59] and
iGibson 2.0 [58] include highly complex, non-atomic tasks, which obscure the evaluation of specific
memory mechanisms. VIMA [41] relies on high-level action abstractions, limiting temporal memory
assessment. To address these gaps, we introduce MIKASA-Robo, a benchmark specifically designed
to evaluate diverse memory skills in robotic manipulation through well-isolated, fine-grained tasks.
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Figure 4: Performance of PPO-MLP trained in Figure 5: Online RL baselines with MLP
state mode, i.e., in MDP mode without the and LSTM backbones trained in RGB+joints
need for memory. These results suggest that the ~Mode on the RememberColor-v0 environ-

proposed tasks are inherently solvable with a  ment with dense rewards. Both architectures
success rate of 100%. fail to solve medium and high complexity tasks.

Concurrently with our work, Fang et al. [21] proposed MemoryBench, a benchmark focused on
spatial memory with three robotic tasks. In contrast, MIKASA-Robo spans four memory categories
and 32 tasks, enabling broader and more systematic evaluation of memory mechanisms in RL agents.

MIKASA-Robo is a benchmark designed for memory-intensive robotic tabletop manipulation tasks,
simulating real-world challenges commonly encountered by robots. These tasks include locating
occluded objects, recalling previous configurations, and executing complex sequences of actions over
extended time horizons. By incorporating meaningful partial observability, this framework offers a
systematic approach to test an agent’s memory mechanisms.

Building upon the robust foundation of ManiSkill3 framework [87], our benchmark leverages its
efficient parallel GPU-based training capabilities to create and evaluate these tasks.

6.1 MIKASA-Robo Manifestation

In designing the tasks, we drew inspiration from the four memory types identified in our classification
framework (Subsection 4.2). We developed 32 tasks across 12 categories of robotic tabletop
manipulation, each targeting specific aspects of object memory, spatial memory, sequential memory,
and memory capacity. These tasks feature varying levels of complexity, allowing for systematic
evaluation of different memory mechanisms. For instance, some tasks test object permanence by
requiring the agent to track occluded objects, while others challenge sequential memory by requiring
the reproduction of a strict order of actions. A summary of these tasks and their corresponding
memory types is provided in Table 1, with detailed descriptions in Appendix H.

To illustrate the concept of our memory-intensive framework, we present ShellGameTouch-vO0,
RememberColor-v0, and RotatelenientPos-v0 tasks in Figure 2. In the
ShellGameTouch-vO0 task, the agent observes a red ball placed in one of three positions over the
first 5 steps (¢ € [0,4]). Att = 5, the ball and the three positions are covered by mugs. The agent
must then determine the location of the ball by interacting with the correct mug. In the simplest mode
(Touch), the agent only needs to touch the correct mug, whereas in other modes, it must either push
or lift the mug. In the RememberColor-vo0 task, the agent observes a cube of a specific color for
5 steps (t € [0, 4]). After the cube disappears for 5 steps, 3, 5, or 9 (depending on task mode) cubes
of different colors appear at ¢ = 10. The agent’s task is to identify and select the same cube it initially
saw. In the RotateLenientPos~-vO0 task, the agent must rotate a randomly oriented peg by a
specified clockwise angle.

The MIKASA-Robo benchmark offers multiple training modes: state (complete vector information
including oracle data and Tool Center Point (TCP) pose), RGB (top-view and gripper-camera images
with TCP position), joints (joint states and TCP pose), oracle (task-specific environment data
for debugging), and prompt (static task instructions). While any mode combination is possible,
RGB+joints serves as the standard memory testing configuration, with st ate mode reserved
for MDP-based tasks.

The MIKASA-Robo benchmark implements two types of reward functions: dense and sparse. The
dense reward provides continuous feedback based on the agent’s progress towards the goal, while
the sparse reward only signals task completion. While dense rewards facilitate faster learning in our
experiments, sparse rewards better reflect real-world scenarios where intermediate feedback is often
unavailable, making them crucial for evaluating practical applicability of memory-enhanced agents.
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6.2 Online RL baselines

For the experimental evaluation, we
chose on-policy Proximal Policy Op-
timization (PPO, [79]) with two un-
derlying architectures: Multilayer Per-

ceptron (MLP) and Long Short-Term |\<
Memory (LSTM, [37]), as well as
popular in robotics off-policy Soft
Actor-Critic (SAC, [30]) and model-
based Temporal Difference Learning
for Model Predictive Control (TD-

0.1
Sequential Memory
Memory Capacity
Spatial Memory
Object Memory

el =
MPC2, [33]). — —RATE
The MLP variant serves as a memory- . Z§$
less baseline, while LSTM represents —cQL

a widely-adopted memory mechanism
in RL, known for its effectiveness in

solving POMDPs [67]. This choice  Fjgure 6: Results of Offline RL baselines with memory
of architectures enables direct com- (RATE, DT) and without memory (BC-MLP, CQL-MLP,
parison between memory-less and  pp) on all 32 MIKASA-Robo tasks. Training was performed

merpory—enhanced agents While val- in RGB mode with sparse rewards (success condition).
idating our benchmark’s ability to as-

sess memory. We focus specifically on these fundamental architectures as they align with our primary
goal of benchmark validation rather than comprehensive algorithm comparison. To demonstrate
that all proposed environments are solvable with 100% success rate (SR), we trained a PPO-MLP
agent using st ate mode, where it had full access to system information. Results for select tasks are
shown in Figure 4; full results are in Appendix F.

Training under the RGB+joints mode with dense rewards reveals the memory-intensive nature of
our tasks. Using the RememberColor-v0 task as an example, PPO-LSTM demonstrates superior
performance compared to PPO-MLP when distinguishing between three colors (see Figure 5).
However, both agents’ success rates drop dramatically to near-zero as the task complexity increases
to five or nine colors. Moreover, under sparse reward conditions, both architectures fail to solve
even the three-color variant (see Appendix F, Figure 10). Additionally, our findings indicate that,
while SAC and TD-MPC2 exhibit higher sample efficiency compared to PPO-MLP, when faced with
more complex challenges, the lack of an explicit memory mechanism becomes a critical shortcoming,
resulting in low performance, which also emphasizes the inappropriateness of algorithms common
in the robotics community for memory-intensive tasks. These results validate our benchmark’s
effectiveness in evaluating agents’ memory, showing clear performance degradation as memory
demands increase.

6.3 Offline RL baselines

Since dense rewards are typically not available in the real world, it is of particular interest to train on
sparse rewards represented as a binary flag of a successfully completed episode. Whereas models
with online learning are extremely hard to handle in this setting, we also conducted experiments with
five Offline RL models: Decision Transformer (DT) [8]) and Recurrent Action Transformer with
Memory (RATE) [10]) based on the Transformer architecture, Standard Behavioral Cloning (BC) and
Conservative Q-Learning (CQL) [51]) with MLP backbones, as well as Diffusion Policy (DP) [13])
— arecent and popular approach in robotic manipulation that leverages diffusion models for direct
action prediction.

Experimental results with Offline RL models trained using two RGB camera views and sparse
rewards are presented in Figure 6. As can be seen from Figure 6, none of the models — including
those explicitly designed for sequence modeling — were able to successfully solve the majority of
MIKASA-Robo tasks, demonstrating the challenge posed by the benchmark. Training was conducted
using datasets consisting of 1000 successful trajectories per task (see Appendix B for details).

Notably, none of the evaluated models were able to solve tasks requiring high Memory Capacity
or Sequential Memory, further underscoring their complexity. More detailed results for Offline RL
algorithms are presented in Appendix, Table 5.
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Table 4: Performance of VLA models on selected memory-intensive tasks from the MIKASA-
Robo benchmark. Reported values denote average success rates over 100 evaluation episodes
(mean =+ sem). Tasks include spatial reasoning (ShellGameTouch, InterceptMedium) and
color-based memory retrieval (RememberColor3/5/9).

Model ShellGameTouch- InterceptMedium RememberColor3 R berColor5 R berColor9
Octo-small 0.46 + 0.05 0.39 £+ 0.04 0.45 + 0.06 0.17 +0.03 0.11 +0.03
OpenVLA (K=4) 0.12 + 0.05 0.06 £ 0.02 0.21 + 0.00 0.09 + 0.02 0.08 £ 0.02
OpenVLA (K=8) 0.47 +0.05 0.14 £+ 0.03 0.59 + 0.04 0.16 + 0.03 0.06 & 0.02

6.4 VLA baselines

To investigate the capabilities of state-of-the-art Visual-Language-Action (VLA) models in memory-
intensive robotic tasks, we selected two representative baselines: Octo [88] and OpenVLA [47].
Although neither model explicitly claims to implement sophisticated memory mechanisms, these
experiments provide valuable insights into the current state of memory capabilities in VLA agents.

Octo is a transformer with diffusion heads trained from scratch on 25 Open X-Embodiment
datasets [15]; in our experiments, only the readout heads were fine-tuned using the full pretrained
context length of 10 and action chunk size (K=4). OpenVLA uses a Prismatic-7B backbone [46],
fine-tuned for action prediction with LoRA adapters, action chunking, and an L; loss [48]. We
tested chunk sizes K=4 and K=8. Both models were trained on 250 expert trajectories per task, using
128 x 128 RGB image pairs (base and wrist views) and end-effector control (see Appendix D).

Experimental results (Table 4) reveal notable trends. Octo (context size 10) outperforms random
on simpler tasks, suggesting some innate memory capacity, but its performance degrades with task
complexity, indicating limited scalability. OpenVLA shows contrasting behavior across chunk sizes:
with K = 8, it exceeds random on tasks like RememberColor3 and ShellGameTouch, despite
lacking step-wise history. However, performance drops sharply on harder tasks. With K = 4, it fails
across the board. These results suggest that larger chunk sizes can help bypass explicit memory by
generating full trajectories from early cues, but this strategy fails with smaller chunks, where initial
correct actions often give way to confusion. Thus, action chunking offers limited compensation for
the absence of a true memory mechanism.

The sharp decline in performance on higher-complexity tasks underscores the necessity for dedicated
memory architectures and validates the importance of the multi-difficulty hierarchy in MIKASA-
Robo to prevent such “shortcuts”. Our experiments with Octo and OpenVLA highlights a critical
gap in current VLA models: the absence of effective long-term memory leads to brittle performance
on tasks demanding strong memory capabilities. These experiments not only illuminate present
limitations but also reinforce the value of the MIKASA-Robo benchmark.

7 Limitations

While our benchmark provides a comprehensive evaluation framework, some limitations remain.
In particular, the performance of Octo and OpenVLA may not reflect their full potential, as we
performed limited fine-tuning due to computational constraints. Future work could explore more
extensive adaptation of large VLA models within MIKASA to better assess their memory capabilities.
Additionally, while MIKASA covers a broad range of memory challenges, further extensions could
incorporate tasks with longer temporal dependencies or meta-RL.

8 Conclusion

We present MIKASA, a unified benchmark suite for evaluating memory in RL. Our work addresses
key gaps in the field by introducing: (1) a taxonomy of memory types — object, spatial, sequential,
and capacity; (2) MIKASA-Base, a standardized collection of open-source memory tasks; (3)
MIKASA-Robo, a suite of 32 robotic manipulation tasks targeting diverse memory demands; and (4)
accompanying offline datasets to support reproducible evaluation. Experiments with online, offline,
and VLA agents reveal that current methods struggle with many tasks, highlighting the need for better
memory architectures. MIKASA aims to guide and accelerate progress in memory-intensive RL for
real-world applications. The MIKASA-Robo suite is publicly available and can be easily installed
viapip install mikasa-robo-suite.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s four main contribu-
tions: (1) a taxonomy of memory task types in RL, (2) the MIKASA-Base benchmark
unifying open-source memory-intensive tasks, (3) the MIKASA-Robo benchmark with 32
robotic tasks targeting diverse memory skills. These claims are substantiated by theoretical
motivation and extensive experimental validation with online RL Subsection 6.2, offline
RL Subsection 6.3, and VLA models Subsection 6.4. Limitations and assumptions are
transparently discussed.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated Limitations section (Section 7), where the
authors acknowledge that the evaluation of Octo and OpenVLA may not fully reflect the
models’ capabilities due to limited fine-tuning constrained by computational resources. The
section also suggests directions for extending the benchmark to cover more complex settings.
This discussion transparently outlines the scope of claims and experimental coverage without
undermining the paper’s contributions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA|

Justification: The paper does not include formal theoretical results or proofs. While Section 4
presents a conceptual taxonomy of memory tasks grounded in cognitive science, it is not
formalized as a mathematical theory with theorems or proofs. Therefore, this question is not
applicable.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of all experimental settings, including
environment configurations, reward types, input modalities, architecture details, and dataset
sizes. We also release all 32 MIKASA-Robo datasets, and implementation details for Online
RL, Offline RL, and VLA evaluations are included in the appendices. The benchmark
code and data are publicly available at https://tinyurl.com/membenchrobots,
ensuring reproducibility of the results and conclusions.

Guidelines:

» The answer NA means that the paper does not include experiments.

» If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to both the benchmark code and all 32
MIKASA-Robo datasets viahttps://tinyurl.com/membenchrobots. The repos-
itory includes detailed instructions for setup, environment configuration, and training, along
with scripts for reproducing key experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed descriptions of training and evaluation settings for
all experiments, including the number of trajectories used (e.g., 1000 for Offline RL Sub-
section 6.3, 250 for VLA Subsection 6.4), observation modalities, action representations,
and reward structures. Model architectures, context lengths, chunk sizes, optimizers, and
training durations are specified for each baseline.
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Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports mean success rates with standard errors across evaluation
episodes for all key experiments, including VLA and Offline RL baselines (e.g., Table 4, Fig-
ure 6). Each reported value represents the average over multiple independent rollouts under
fixed seeds, capturing variability due to policy stochasticity and environment randomness.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the paper and supplementary materials, the authors provide code for training
and evaluation, specify random seeds and the number of runs, and detail the compute setup
(single NVIDIA A100 GPU with 96 GB RAM), enabling exact reproduction of results (see
Appendix G).

Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

*» The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. All experiments are
conducted in simulation with no human subjects or sensitive data involved. The released
benchmark and datasets are open-source and designed to support transparent, reproducible

research. The work does not raise concerns related to privacy, fairness, misuse, or environ-
mental impact beyond standard computational practices in the field.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses broader impacts in the context of advancing memory-
intensive RL. On the positive side, the proposed benchmark may accelerate progress toward
more capable and reliable autonomous systems in fields such as assistive robotics and
household automation. While the work is entirely simulation-based, the authors acknowledge
potential concerns regarding the misuse of memory-equipped agents (e.g., in surveillance
or manipulation scenarios) and highlight the importance of responsible deployment. These
considerations are briefly addressed in the broader impact discussion to guide ethical use.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [Yes]

Justification: The paper discusses the broader implications of standardizing memory eval-
uation in RL, which can positively impact the development of more capable and reliable
autonomous systems for real-world applications such as assistive robotics and home automa-
tion. While the benchmark itself poses minimal direct societal risk, we acknowledge that
advances in memory-equipped agents could potentially be misused in surveillance or other
sensitive contexts. However, as the work is entirely simulation-based and intended to support
open academic research, we believe the positive impacts outweigh the risks. Responsible
use and continued community oversight remain essential as memory-centric RL systems
mature.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets used in this work—including codebases, datasets, and
pretrained models—are properly cited with references to their original publications. We use
publicly available environments and models (e.g., ManiSkill3, Octo, OpenVLA), each under
a permissive open-source license, which we respect in accordance with their terms of use.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has

curated licenses for some datasets. Their licensing guide can help determine the license

of a dataset.

For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces two new benchmark suites—MIKASA-Base and
MIKASA-Robo—as well as 32 offline RL datasets for robotic memory tasks. All as-
sets are released under a permissive license and are accompanied by comprehensive
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documentation, including environment descriptions, task specifications, dataset struc-
ture, and usage instructions. The documentation is provided in the code repository
(https://tinyurl.com/membenchrobots) to ensure usability and reproducibility
by the community.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|

Justification: The paper does not involve any crowdsourcing or research with human subjects.
All experiments were conducted entirely in simulated environments with no human data
collection or interaction.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: The paper does not involve research with human subjects or any form of data
collection from individuals. All experiments were conducted in simulation and do not pose
ethical risks requiring IRB or equivalent approval.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

» We recognize that the procedures for this may vary significantly between institutions

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the

guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: LLMs were only used for spell checking and grammar suggestions.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1.1M) for what should or should not be described.
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