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Abstract

Memory is crucial for enabling agents to tackle complex tasks with temporal1

and spatial dependencies. While many reinforcement learning (RL) algorithms2

incorporate memory, the field lacks a universal benchmark to assess an agent’s3

memory capabilities across diverse scenarios. This gap is particularly evident4

in tabletop robotic manipulation, where memory is essential for solving tasks5

with partial observability and ensuring robust performance, yet no standardized6

benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive7

Skills Assessment Suite for Agents), a comprehensive benchmark for memory8

RL, with three key contributions: (1) we propose a comprehensive classification9

framework for memory-intensive RL tasks, (2) we collect MIKASA-Base – a10

unified benchmark that enables systematic evaluation of memory-enhanced agents11

across diverse scenarios, and (3) we develop MIKASA-Robo1 – a novel benchmark12

of 32 carefully designed memory-intensive tasks that assess memory capabilities13

in tabletop robotic manipulation. Our work introduces a unified framework to14

advance memory RL research, enabling more robust systems for real-world use.15

MIKASA is available at https://tinyurl.com/membenchrobots.16
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Figure 1: Systematic classification of problems
with memory in RL reveals distinct memory uti-
lization patterns and enables objective evaluation
of memory mechanisms across different agents.

Many real-world problems involve partial ob-18

servability [43], where an agent lacks full ac-19

cess to the environment’s state. These tasks20

often include sequential decision-making [8],21

delayed or sparse rewards, and long-term in-22

formation retention [54, 72]. One approach23

to tackling these challenges is to equip the24

agent with memory, allowing it to utilize his-25

torical information [64, 67]. While there are26

well-established benchmarks in Natural Lan-27

guage Processing [3, 5], the evaluation of mem-28

ory in reinforcement learning (RL) remains29

fragmented. Existing benchmarks, such as30

POPGym [65], DMLab-30 [39] and Memory-31

Gym [75], focus on specific aspects of memory32

utilization, as they are designed around particu-33

lar problem domains.34

In contrast to classical RL, where benchmarks like Atari [7] and MuJoCo [89] serve as universal35

standards, memory-enhanced agents are typically evaluated on custom environments developed along-36

1pip install mikasa-robo-suite
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Table 1: MIKASA-Robo: A benchmark comprising 32 memory-intensive robotic manipulation
tasks across 12 categories. Each task varies in difficulty and configuration modes. The table specifies
episode timeout (T), the necessary information that the agent must memorize in order to succeed
(Oracle Info), and task instructions (Prompt) for each environment. See Appendix H for details.

Memory Task Mode Brief description of the task T Oracle Info Prompt Memory
ShellGame Touch

Push
Pick

Memorize the position of the ball after some time being covered by the
cups and then interact with the cup the ball is under 90 cup_with_ball_number — Object

Intercept Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through
those positions, and then aim the ball at the target 90 initial_velocity — Spatial

InterceptGrab Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through
those positions, and then catch the ball with the gripper and lift it up 90 initial_velocity — Spatial

RotateLenient Pos
PosNeg

Memorize the initial position of the peg and rotate it by a given angle 90 y_angle_diff target_angle Spatial

RotateStrict Pos
PosNeg

Memorize the initial position of the peg and rotate it to a given angle
without shifting its center 90 y_angle_diff target_angle Spatial

TakeItBack-v0 — Memorize the initial position of the cube, move it to the target region,
and then return it to its initial position

180 xyz_initial — Spatial

RememberColor 3 \ 5 \ 9 Memorize the color of the cube and choose among other colors 60 true_color_indices — Object
RememberShape 3 \ 5 \ 9 Memorize the shape of the cube and choose among other shapes 60 true_shape_indices — Object
RememberShape-
AndColor

3⇥2\3⇥3\
5⇥3

Memorize the shape and color of the cube and choose among other
shapes and colors 60 true_shapes_info

true_colors_info
— Object

BunchOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown simultaneously in the
bunch and touch them in any order

120 true_color_indices — Capacity

SeqOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then
select them in any order

120 true_color_indices — Capacity

ChainOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then
select them in the same order

120 true_color_indices — Sequential

Total: 32 tabletop robotic manipulation memory-intensive tasks in 12 groups

side their proposals Table 2. This fragmented evaluation landscape obscures important performance37

variations across different memory tasks. For instance, an agent might excel at maintaining object38

attributes over extended periods while struggling with sequential recall challenges. Such task-specific39

strengths and limitations often remain hidden due to narrow evaluation scopes, underscoring the need40

for a comprehensive benchmark that spans diverse memory-intensive scenarios.41

The challenge of memory evaluation becomes particularly evident in robotics. While some robotic42

tasks naturally involve partial observability, e.g. navigation tasks [2, 94], many studies artificially43

create partially observable scenarios from Markov Decision Processes (MDPs) [42] by introducing44

observation noise or masking parts of the state space [52, 55, 64, 85]. However, these approaches45

do not fully capture the complexity of real-world robotic challenges [55], where tasks may require46

the agent to recall past object configurations, manipulate occluded objects, or perform multi-step47

procedures that depend heavily on memory. Such tasks include, for example, situations where a48

service robot needs to memorize occluded objects (e.g., a plate hidden under a towel) or where a49

home robot needs to accurately wipe the door of a microwave oven several times. Without memory,50

the robot wouldn’t detect the plate in the first case, and in the second, it would wipe the door endlessly,51

unsure whether it has cleaned the area or if it’s time to stop.52

In this paper, we aim to address these challenges with the following four contributions:53

1. Memory Tasks Classification. We propose a simple yet comprehensive framework that54

organizes memory-intensive tasks into four key categories. This structure enables system-55

atic evaluation without added complexity (Figure 1), offering a clear guide for selecting56

environments that reflect core memory challenges in RL and robotics (Section 4).57

2. Memory-RL Benchmark. We introduce MIKASA-Base, a Gymnasium-based [90] frame-58

work for evaluating memory-enhanced RL agents (Section 5).59

3. Robotic Manipulation Tasks. We introduce MIKASA-Robo, a suite of 32 robotic tasks60

targeting specific memory-dependent skills in realistic settings (Section 6), and evaluate61

them using popular Online RL baselines (Subsection 6.2) and Visual-Language-Action62

(VLA) models (Subsection 6.4).63

4. Robotic Manipulation Datasets. We release datasets for all 32 MIKASA-Robo memory-64

intensive tasks to support Offline RL research (see Appendix B), and conduct extensive65

evaluations using a range of Offline RL baselines (Subsection 6.3).66

2 Related Works67

Multiple RL benchmarks are designed to assess agents’ memory capabilities. DMLab-30 [39]68

provides 3D navigation and puzzle tasks, focusing on long-horizon exploration and spatial recall.69
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Table 2: Key memory-intensive environments
from the reviewed studies for evaluating agent
memory. The Atari [7] environment with frame
stacking is included to illustrate that many
memory-enhanced agents are tested solely in MDP.
Benchmark first introduced in the same work .

Benchmark is open-sourced.
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Atari w/o FrameStack 3 3 3
Atari with FrameStack 3 3 3 3 3 3 3

gym-gridverse 3
car flag 3
memory card 3
Hallway 3
HeavenHell 3
Ballet 3
Object Permanence 3
DMLab-30 3 3 3
POPGym 3 3 3 3
Passive T-Maze 3 3
ViZDoom-Two-Colors 3
Numpad 3
Memory Maze 3 3
Memory Maze (apples) 3
Minigrid-Memory 3
BSuite 3 3
Goal-Search 3
Doom Maze 3
PsychLab 3
Spot the Difference 3
Goal Navigation 3
Transitive Inference 3
I-Maze 3
Pattern Matching 3
Random Maze 3
Unity Fast-Mapping Task 3
Action Associative Retrieval 3
BabyAI 3

PsychLab [56] extends DMLab by incorporating70

tasks that probe cognitive processes, including71

working memory. MiniGrid and MiniWorld [12]72

emphasize partial observability in lightweight73

2D and 3D environments, while MiniHack [78]74

builds on NetHack [53], offering small rogue-75

like scenarios that require both short- and long-76

term memory. BabyAI [11] combines natural77

language instructions with grid-based tasks, re-78

quiring memory for multi-step command execu-79

tion. POPGym [65] standardizes memory evalu-80

ation with tasks ranging from pattern-matching81

puzzles to complex sequential decision-making.82

BSuite [70] offers a suite of carefully designed83

experiments that test core RL capabilities, in-84

cluding memory, through controlled tasks on85

exploration, credit assignment, and scalability.86

Memory Gym [75] offers a suite of 2D grid en-87

vironments with partial observability, designed88

to benchmark memory capabilities in decision-89

making agents, including endless versions of90

tasks for evaluating memory over extremely91

long time intervals. Memory Maze [73] presents92

3D maze navigation tasks that require memory to solve efficiently.93

While these benchmarks offer valuable insights into memory mechanisms, they generally focus94

on abstract puzzles or navigation tasks. However, none of them fully encompass the broad range95

of memory utilization scenarios an agent may encounter, and the tasks themselves often differ96

fundamentally across benchmarks, making direct comparison of memory-enhanced agents difficult.97

In the robotics domain, memory requirements become particularly challenging due to the physical98

nature of manipulation tasks. Unlike abstract environments, robotic manipulation involves complex99

physical interactions and multi-step procedures demanding both spatial and temporal memory.100

Existing memory-intensive benchmarks, while useful for diagnostic purposes, struggle to capture101

these domain-specific challenges. The physical control and object interaction inherent in manipulation102

tasks introduce additional complexities not addressed by traditional memory evaluation frameworks.103

Efforts have been made to classify memory-intensive environments by specific attributes. For104

example, Ni et al. [68] divides them into memory/credit assignment based on temporal horizons.105

Yue et al. [97] proposes memory dependency pairs to model how past events influence current106

decisions, aiding imitation learning in partially observable tasks. Cherepanov et al. [9] defines agent107

memory types: long-term vs. short-term (based on context length), and declarative vs. procedural108

(based on environments and episodes), and formalizes memory-intensive environments. Leibo109

et al. [56] instead adapts tasks from cognitive psychology and psychophysics to evaluate agents110

on human cognitive benchmarks. While these classifications highlight aspects of memory, they111

overlook physical dimensions in robotics. The link between physical interaction and memory remains112

underexplored, motivating a framework for spatio-temporal memory in real-world tasks.113

Concurrent with our work Fang et al. [21] also proposed MemoryBench, a benchmark for memory-114

intensive manipulation consisting of only three tasks designed to access only one type of memory,115

spatial memory. This benchmark is based on RLBench [40], which does not allow efficient paral-116

lelization of training.117

3 Background118

3.1 Partially Observable Markov Decision Process119

Partially Observable Markov Decision Process (POMDP) [42] extend MDP to account for partial ob-120

servability, where an agent observes only noisy or incomplete information about the true environments121

state. POMDP defined by a tuple (S,A, T,R,⌦, O, �), where: S is the set of states representing122

the complete environment configuration; A is the action space; T (s0|s, a) : S ⇥ A⇥ S ! [0, 1] is123

3



5HPHPEHU&RORU��Y�

5RWDWH/HQLHQW3RV�Y�6KHOO*DPH7RXFK�Y�

Figure 2: Illustration of demonstrative memory-intensive tasks execution from the proposed MIKASA-
Robo benchmark. The ShellGameTouch-v0 task requires the agent to memorize the ball’s
location under mugs and touch the correct one. In RememberColor9-v0, the agent must memorize
a cube’s color and later select the matching one. In RotateLenientPos-v0, the agent must
rotate a peg while keeping track of its previous rotations.

the transition function defining the probability of reaching state s
0 from state s after taking action a;124

R(s, a) : S ⇥A ! R is the reward function specifying the immediate reward for taking action a in125

state s; ⌦ is the observation space containing all possible observations; O(o|s, a) : S⇥A⇥⌦ ! [0, 1]126

is the observation function defining the probability of observing o after taking action a and reaching127

state s; � 2 [0, 1) is the discount factor determining the importance of future rewards. The objective is128

to find a policy ⇡ that maximizes the expected discounted cumulative reward: E⇡ [
P1

t=0 �
t
R(st, at)],129

where at ⇠ ⇡(·|o1:t) depends on the history of observations rather than the true state. Relying on130

partial observations makes POMDPs harder to solve than MDPs.131

3.2 Memory-intensive environments132

Memory-intensive environment is an environment where agents must leverage past experiences to133

make decisions, often in problems with long-term dependencies or delayed rewards. More formally,134

following Cherepanov et al. [9], a memory-intensive task is a POMDP where there exists a correlation135

horizon ⇠ > 1, representing the minimum number of timesteps between an event critical for decision-136

making and when that information must be recalled. Popular memory-intensive environments in RL137

are listed in Table 2. One way to solving memory-intensive environments is to augment agents with138

memory mechanisms (see Appendix E).139

3.3 Robotic Tabletop Manipulation140

Robotic tabletop manipulation [80] involves robots manipulating objects on flat surfaces through141

actions like grasping, pushing, and picking. While crucial for real-world applications [57], most142

existing simulators treat these tasks as MDPs without memory requirements, failing to capture the143

spatio-temporal dependencies present in real scenarios. This limitation hinders the development of144

memory-enhanced agents for practical applications.145

4 Classification of memory-intensive tasks146

The evaluation of memory capabilities in RL faces two major challenges. First, as shown in Table 2,147

research studies use different sets of environments with minimal overlap, making it difficult to148

compare memory-enhanced agents across studies. Second, even within individual studies, benchmarks149

may focus on testing similar memory aspects (e.g., remembering object locations) while neglecting150

others (e.g., reconstructing sequential events), leading to incomplete evaluation of agents’ memory.151

Different architectures may exhibit varying performance across memory tasks. For instance, an152

architecture optimized for long-term object property recall might struggle with sequential memory153

tasks, yet these limitations often remain undetected due to the narrow focus of existing evaluation154

approaches.155

To address these challenges, we propose a systematic approach to memory evaluation in RL. Draw-156

ing from established research in developmental psychology and cognitive science, where similar157

memory challenges have been extensively studied in humans, we develop a categorization framework158

consisting of four distinct memory task classes, detailed in Subsection 4.2.159
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Figure 3: MIKASA bridges the gap between human-like memory complexity and RL agents require-
ments. While agents tasks don’t require the full spectrum of human memory capabilities, they can’t
be reduced to simple spatio-temporal dependencies. MIKASA provides a balanced framework that
captures essential memory aspects for agents tasks while maintaining practical simplicity.

4.1 Memory: From Cognitive Science to RL160

In developmental psychology and cognitive science, memory is classified into categories based on161

cognitive processes. Key concepts include object permanence [74], which involves remembering the162

existence of objects out of sight, and categorical perception [60], where objects are grouped based163

on attributes like color or shape. Working memory [4] and memory span [16] refer to the ability to164

hold and manipulate information over time, while causal reasoning [50] and transitive inference [35]165

involve understanding cause-and-effect relationships and deducing hidden relationships, respectively.166

The RL field has attempted to utilize these concepts in the design of specific memory-intensive167

environments [22, 54], but these have been limited at the task design level. Of particular interest,168

however, is how existing memory-intensive tasks can be categorized using these concepts to develop a169

benchmark on which to test the greatest number of memory capabilities of memory-enhanced agents,170

and it is this problem that we address in this paper. Thus, we aim to provide a balanced framework171

that covers important aspects of memory for real-world applications while maintaining practical172

simplicity (see Figure 3).173

4.2 Taxonomy of Memory Tasks174

We introduce a comprehensive task classification framework for evaluating memory mechanisms in175

RL. Our framework categorizes memory-intensive tasks into four fundamental types, each targeting176

distinct aspects of memory capabilities:177

1. Object Memory. Tasks that evaluate an agent’s ability to maintain object-related information178

over time, particularly when objects become temporarily unobservable. These tasks align179

with the cognitive concept of object permanence, requiring agents to track object properties180

when occluded, maintain object state representations, and recognize encountered objects.181

Example: a robot remembers which fruit it put in the fridge.182

2. Spatial Memory. Tasks focused on environmental awareness and navigation, where agents183

must remember object locations, maintain mental maps of environment layouts, and navigate184

based on previously observed spatial information. Example: the robot remembers the185

position of a mug it moved while cleaning and returns it to its place.186

3. Sequential Memory. Tasks that test an agent’s ability to process and utilize temporally187

ordered information, similar to human serial recall and working memory. These tasks require188

remembering action sequences, maintaining order-dependent information, and using past189

decisions to inform future actions. Example: a robot memorizes the order of the ingredients190

it has added to a soup.191

4. Memory Capacity. Tasks that challenge an agent’s ability to manage multiple pieces192

of information simultaneously, analogous to human memory span. These tasks evaluate193

information retention limits and multi-task information processing. Example: a robot is able194

to memorize the positions of several different objects while cleaning a table.195

This classification framework enables systematic evaluation of memory-enhanced RL agents across196

diverse scenarios. By providing a structured approach to memory task categorization, we establish a197

foundation for comprehensive benchmarking that spans the wide spectrum of memory requirements.198

In the following section, we present a carefully curated set of tasks based on this classification,199

forming the basis of our proposed MIKASA benchmark.200
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5 MIKASA-Base201

Table 3: Analysis of established robotics frame-
works with manipulation tasks, comparing their
support for memory-intensive tasks. † – excluding
Franka Kitchen. ⇤ – concurrent work with three
memory tasks with only one type of memory.

Robotics Framework
with Manipulation Tasks

Memory Tasks

Manipulation Atomic Low-level
actions

MIKASA-Robo (Ours) 3 3 3

MemoryBench⇤ [21] 3 3 3
ManiSkill3 [87] 7 7 7
ManiSkill-HAB [81] 7 7 7
FetchBench [32] 7 7 7
RoboCasa [66] 7 7 7
Gymnasium-Robotics† [17] 7 7 7
BEHAVIOR-1K [59] 3 7 7
ARNOLD [24] 7 7 7
iGibson 2.0 [58] 3 7 7
VIMA [41] 3 3 7
Isaac Sim [63] 7 7 7
panda-gym [23] 7 7 7
Habitat 2.0 [86] 7 7 7
Meta-World [96] 7 7 7
CausalWorld [1] 7 7 7
RLBench [40] 7 7 7
robosuite [102] 7 7 7
dm_control [91] 7 7 7
Franka Kitchen [29] 7 7 7
SURREAL [20] 7 7 7
AI2-THOR [49] 7 7 7

Motivation and Overview. Despite the im-202

portance of memory in decision-making, the RL203

community lacks standardized tools for bench-204

marking memory capabilities. Existing studies205

typically introduce bespoke environments tai-206

lored to their proposed algorithms, leading to207

fragmentation and limited comparability across208

works (see Table 2). Moreover, many pop-209

ular memory benchmarks focus narrowly on210

specific memory types, overlooking the diver-211

sity of memory demands found in real-world212

applications. To address this gap, we intro-213

duce MIKASA-Base, a unified benchmark that214

consolidates widely used open-source memory-215

intensive environments under a common Gym-216

like API. Our goal is to streamline reproducibil-217

ity, support fair comparisons, and promote sys-218

tematic evaluation of memory in RL.219

Benchmark Design Principles. MIKASA-220

Base is designed around core principles that221

support rigorous and interpretable evaluation222

of memory in RL. To disentangle memory from223

unrelated challenges, we organize tasks into two224

tiers. The first tier consists of diagnostic vector-225

based environments that isolate specific memory mechanisms. The second tier includes complex226

image-based tasks that incorporate realistic perception challenges, thus more closely resembling227

real-world settings. This hierarchical structure enables researchers to validate memory capabilities228

incrementally – from atomic reasoning to high-dimensional sensory input.229

Task Classification and Selection. Building on our taxonomy from Subsection 4.2, we system-230

atically reviewed open-source memory benchmarks and categorized their tasks into four distinct231

types of memory usage. We selected a diverse yet representative subset of environments to cover232

this taxonomy – ranging from object permanence to sequential planning. All selected tasks are233

unified under a single, consistent API. Descriptions are provided in Appendix I, and an overview of234

MIKASA-Base tasks appears in Table 6. This consolidation supports architectural ablations, direct235

comparison of methods, and simplified evaluation pipelines. Implementation details can be found236

in Appendix C.237

MIKASA-Base provides the first systematic and unified benchmark for evaluating memory in RL. It238

mitigates fragmentation by standardizing task access and evaluation, and its structured progression239

enables precise attribution of memory-related agent failures. By covering a broad spectrum of240

memory challenges within a common framework, MIKASA-Base offers a foundation for robust,241

reproducible research in memory-centric RL.242

6 MIKASA-Robo243

The landscape of robotic manipulation frameworks reveals significant limitations in addressing244

memory-intensive tasks. While partial observability is well-studied in navigation, manipulation245

scenarios are still predominantly evaluated under full observability, with limited focus on memory246

demands (see Table 3). Among frameworks that do consider memory, BEHAVIOR-1k [59] and247

iGibson 2.0 [58] include highly complex, non-atomic tasks, which obscure the evaluation of specific248

memory mechanisms. VIMA [41] relies on high-level action abstractions, limiting temporal memory249

assessment. To address these gaps, we introduce MIKASA-Robo, a benchmark specifically designed250

to evaluate diverse memory skills in robotic manipulation through well-isolated, fine-grained tasks.251

6



Figure 4: Performance of PPO-MLP trained in
state mode, i.e., in MDP mode without the
need for memory. These results suggest that the
proposed tasks are inherently solvable with a
success rate of 100%.

Figure 5: Online RL baselines with MLP
and LSTM backbones trained in RGB+joints
mode on the RememberColor-v0 environ-
ment with dense rewards. Both architectures
fail to solve medium and high complexity tasks.

Concurrently with our work, Fang et al. [21] proposed MemoryBench, a benchmark focused on252

spatial memory with three robotic tasks. In contrast, MIKASA-Robo spans four memory categories253

and 32 tasks, enabling broader and more systematic evaluation of memory mechanisms in RL agents.254

MIKASA-Robo is a benchmark designed for memory-intensive robotic tabletop manipulation tasks,255

simulating real-world challenges commonly encountered by robots. These tasks include locating256

occluded objects, recalling previous configurations, and executing complex sequences of actions over257

extended time horizons. By incorporating meaningful partial observability, this framework offers a258

systematic approach to test an agent’s memory mechanisms.259

Building upon the robust foundation of ManiSkill3 framework [87], our benchmark leverages its260

efficient parallel GPU-based training capabilities to create and evaluate these tasks.261

6.1 MIKASA-Robo Manifestation262

In designing the tasks, we drew inspiration from the four memory types identified in our classification263

framework (Subsection 4.2). We developed 32 tasks across 12 categories of robotic tabletop264

manipulation, each targeting specific aspects of object memory, spatial memory, sequential memory,265

and memory capacity. These tasks feature varying levels of complexity, allowing for systematic266

evaluation of different memory mechanisms. For instance, some tasks test object permanence by267

requiring the agent to track occluded objects, while others challenge sequential memory by requiring268

the reproduction of a strict order of actions. A summary of these tasks and their corresponding269

memory types is provided in Table 1, with detailed descriptions in Appendix H.270

To illustrate the concept of our memory-intensive framework, we present ShellGameTouch-v0,271

RememberColor-v0, and RotateLenientPos-v0 tasks in Figure 2. In the272

ShellGameTouch-v0 task, the agent observes a red ball placed in one of three positions over the273

first 5 steps (t 2 [0, 4]). At t = 5, the ball and the three positions are covered by mugs. The agent274

must then determine the location of the ball by interacting with the correct mug. In the simplest mode275

(Touch), the agent only needs to touch the correct mug, whereas in other modes, it must either push276

or lift the mug. In the RememberColor-v0 task, the agent observes a cube of a specific color for277

5 steps (t 2 [0, 4]). After the cube disappears for 5 steps, 3, 5, or 9 (depending on task mode) cubes278

of different colors appear at t = 10. The agent’s task is to identify and select the same cube it initially279

saw. In the RotateLenientPos-v0 task, the agent must rotate a randomly oriented peg by a280

specified clockwise angle.281

The MIKASA-Robo benchmark offers multiple training modes: state (complete vector information282

including oracle data and Tool Center Point (TCP) pose), RGB (top-view and gripper-camera images283

with TCP position), joints (joint states and TCP pose), oracle (task-specific environment data284

for debugging), and prompt (static task instructions). While any mode combination is possible,285

RGB+joints serves as the standard memory testing configuration, with state mode reserved286

for MDP-based tasks.287

The MIKASA-Robo benchmark implements two types of reward functions: dense and sparse. The288

dense reward provides continuous feedback based on the agent’s progress towards the goal, while289

the sparse reward only signals task completion. While dense rewards facilitate faster learning in our290

experiments, sparse rewards better reflect real-world scenarios where intermediate feedback is often291

unavailable, making them crucial for evaluating practical applicability of memory-enhanced agents.292
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6.2 Online RL baselines293
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Figure 6: Results of Offline RL baselines with memory
(RATE, DT) and without memory (BC-MLP, CQL-MLP,
DP) on all 32 MIKASA-Robo tasks. Training was performed
in RGB mode with sparse rewards (success condition).

For the experimental evaluation, we294

chose on-policy Proximal Policy Op-295

timization (PPO, [79]) with two un-296

derlying architectures: Multilayer Per-297

ceptron (MLP) and Long Short-Term298

Memory (LSTM, [37]), as well as299

popular in robotics off-policy Soft300

Actor-Critic (SAC, [30]) and model-301

based Temporal Difference Learning302

for Model Predictive Control (TD-303

MPC2, [33]).304

The MLP variant serves as a memory-305

less baseline, while LSTM represents306

a widely-adopted memory mechanism307

in RL, known for its effectiveness in308

solving POMDPs [67]. This choice309

of architectures enables direct com-310

parison between memory-less and311

memory-enhanced agents while val-312

idating our benchmark’s ability to as-313

sess memory. We focus specifically on these fundamental architectures as they align with our primary314

goal of benchmark validation rather than comprehensive algorithm comparison. To demonstrate315

that all proposed environments are solvable with 100% success rate (SR), we trained a PPO-MLP316

agent using state mode, where it had full access to system information. Results for select tasks are317

shown in Figure 4; full results are in Appendix F.318

Training under the RGB+joints mode with dense rewards reveals the memory-intensive nature of319

our tasks. Using the RememberColor-v0 task as an example, PPO-LSTM demonstrates superior320

performance compared to PPO-MLP when distinguishing between three colors (see Figure 5).321

However, both agents’ success rates drop dramatically to near-zero as the task complexity increases322

to five or nine colors. Moreover, under sparse reward conditions, both architectures fail to solve323

even the three-color variant (see Appendix F, Figure 10). Additionally, our findings indicate that,324

while SAC and TD-MPC2 exhibit higher sample efficiency compared to PPO-MLP, when faced with325

more complex challenges, the lack of an explicit memory mechanism becomes a critical shortcoming,326

resulting in low performance, which also emphasizes the inappropriateness of algorithms common327

in the robotics community for memory-intensive tasks. These results validate our benchmark’s328

effectiveness in evaluating agents’ memory, showing clear performance degradation as memory329

demands increase.330

6.3 Offline RL baselines331

Since dense rewards are typically not available in the real world, it is of particular interest to train on332

sparse rewards represented as a binary flag of a successfully completed episode. Whereas models333

with online learning are extremely hard to handle in this setting, we also conducted experiments with334

five Offline RL models: Decision Transformer (DT) [8]) and Recurrent Action Transformer with335

Memory (RATE) [10]) based on the Transformer architecture, Standard Behavioral Cloning (BC) and336

Conservative Q-Learning (CQL) [51]) with MLP backbones, as well as Diffusion Policy (DP) [13])337

– a recent and popular approach in robotic manipulation that leverages diffusion models for direct338

action prediction.339

Experimental results with Offline RL models trained using two RGB camera views and sparse340

rewards are presented in Figure 6. As can be seen from Figure 6, none of the models – including341

those explicitly designed for sequence modeling – were able to successfully solve the majority of342

MIKASA-Robo tasks, demonstrating the challenge posed by the benchmark. Training was conducted343

using datasets consisting of 1000 successful trajectories per task (see Appendix B for details).344

Notably, none of the evaluated models were able to solve tasks requiring high Memory Capacity345

or Sequential Memory, further underscoring their complexity. More detailed results for Offline RL346

algorithms are presented in Appendix, Table 5.347
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Table 4: Performance of VLA models on selected memory-intensive tasks from the MIKASA-
Robo benchmark. Reported values denote average success rates over 100 evaluation episodes
(mean ± sem). Tasks include spatial reasoning (ShellGameTouch, InterceptMedium) and
color-based memory retrieval (RememberColor3/5/9).

Model ShellGameTouch- InterceptMedium RememberColor3 RememberColor5 RememberColor9

Octo-small 0.46 ± 0.05 0.39 ± 0.04 0.45 ± 0.06 0.17 ± 0.03 0.11 ± 0.03
OpenVLA (K=4) 0.12 ± 0.05 0.06 ± 0.02 0.21 ± 0.00 0.09 ± 0.02 0.08 ± 0.02
OpenVLA (K=8) 0.47 ± 0.05 0.14 ± 0.03 0.59 ± 0.04 0.16 ± 0.03 0.06 ± 0.02

6.4 VLA baselines348

To investigate the capabilities of state-of-the-art Visual-Language-Action (VLA) models in memory-349

intensive robotic tasks, we selected two representative baselines: Octo [88] and OpenVLA [47].350

Although neither model explicitly claims to implement sophisticated memory mechanisms, these351

experiments provide valuable insights into the current state of memory capabilities in VLA agents.352

Octo is a transformer with diffusion heads trained from scratch on 25 Open X-Embodiment353

datasets [15]; in our experiments, only the readout heads were fine-tuned using the full pretrained354

context length of 10 and action chunk size (K=4). OpenVLA uses a Prismatic-7B backbone [46],355

fine-tuned for action prediction with LoRA adapters, action chunking, and an L1 loss [48]. We356

tested chunk sizes K=4 and K=8. Both models were trained on 250 expert trajectories per task, using357

128⇥ 128 RGB image pairs (base and wrist views) and end-effector control (see Appendix D).358

Experimental results (Table 4) reveal notable trends. Octo (context size 10) outperforms random359

on simpler tasks, suggesting some innate memory capacity, but its performance degrades with task360

complexity, indicating limited scalability. OpenVLA shows contrasting behavior across chunk sizes:361

with K = 8, it exceeds random on tasks like RememberColor3 and ShellGameTouch, despite362

lacking step-wise history. However, performance drops sharply on harder tasks. With K = 4, it fails363

across the board. These results suggest that larger chunk sizes can help bypass explicit memory by364

generating full trajectories from early cues, but this strategy fails with smaller chunks, where initial365

correct actions often give way to confusion. Thus, action chunking offers limited compensation for366

the absence of a true memory mechanism.367

The sharp decline in performance on higher-complexity tasks underscores the necessity for dedicated368

memory architectures and validates the importance of the multi-difficulty hierarchy in MIKASA-369

Robo to prevent such “shortcuts”. Our experiments with Octo and OpenVLA highlights a critical370

gap in current VLA models: the absence of effective long-term memory leads to brittle performance371

on tasks demanding strong memory capabilities. These experiments not only illuminate present372

limitations but also reinforce the value of the MIKASA-Robo benchmark.373

7 Limitations374

While our benchmark provides a comprehensive evaluation framework, some limitations remain.375

In particular, the performance of Octo and OpenVLA may not reflect their full potential, as we376

performed limited fine-tuning due to computational constraints. Future work could explore more377

extensive adaptation of large VLA models within MIKASA to better assess their memory capabilities.378

Additionally, while MIKASA covers a broad range of memory challenges, further extensions could379

incorporate tasks with longer temporal dependencies or meta-RL.380

8 Conclusion381

We present MIKASA, a unified benchmark suite for evaluating memory in RL. Our work addresses382

key gaps in the field by introducing: (1) a taxonomy of memory types – object, spatial, sequential,383

and capacity; (2) MIKASA-Base, a standardized collection of open-source memory tasks; (3)384

MIKASA-Robo, a suite of 32 robotic manipulation tasks targeting diverse memory demands; and (4)385

accompanying offline datasets to support reproducible evaluation. Experiments with online, offline,386

and VLA agents reveal that current methods struggle with many tasks, highlighting the need for better387

memory architectures. MIKASA aims to guide and accelerate progress in memory-intensive RL for388

real-world applications. The MIKASA-Robo suite is publicly available and can be easily installed389

via pip install mikasa-robo-suite.390
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RL Subsection 6.3, and VLA models Subsection 6.4. Limitations and assumptions are763

transparently discussed.764
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made in the paper.767

• The abstract and/or introduction should clearly state the claims made, including the768

contributions made in the paper and important assumptions and limitations. A No or769

NA answer to this question will not be perceived well by the reviewers.770

• The claims made should match theoretical and experimental results, and reflect how771

much the results can be expected to generalize to other settings.772

• It is fine to include aspirational goals as motivation as long as it is clear that these goals773

are not attained by the paper.774

2. Limitations775

Question: Does the paper discuss the limitations of the work performed by the authors?776

Answer: [Yes]777
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authors acknowledge that the evaluation of Octo and OpenVLA may not fully reflect the779
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undermining the paper’s contributions.783
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• While the authors might fear that complete honesty about limitations might be used by805

reviewers as grounds for rejection, a worse outcome might be that reviewers discover806

limitations that aren’t acknowledged in the paper. The authors should use their best807

judgment and recognize that individual actions in favor of transparency play an impor-808

tant role in developing norms that preserve the integrity of the community. Reviewers809

will be specifically instructed to not penalize honesty concerning limitations.810

3. Theory assumptions and proofs811
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a complete (and correct) proof?813

Answer: [NA]814

Justification: The paper does not include formal theoretical results or proofs. While Section 4815

presents a conceptual taxonomy of memory tasks grounded in cognitive science, it is not816

formalized as a mathematical theory with theorems or proofs. Therefore, this question is not817

applicable.818
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• Inversely, any informal proof provided in the core of the paper should be complemented827

by formal proofs provided in appendix or supplemental material.828

• Theorems and Lemmas that the proof relies upon should be properly referenced.829

4. Experimental result reproducibility830

Question: Does the paper fully disclose all the information needed to reproduce the main ex-831

perimental results of the paper to the extent that it affects the main claims and/or conclusions832

of the paper (regardless of whether the code and data are provided or not)?833

Answer: [Yes]834

Justification: The paper provides detailed descriptions of all experimental settings, including835

environment configurations, reward types, input modalities, architecture details, and dataset836

sizes. We also release all 32 MIKASA-Robo datasets, and implementation details for Online837

RL, Offline RL, and VLA evaluations are included in the appendices. The benchmark838

code and data are publicly available at https://tinyurl.com/membenchrobots,839

ensuring reproducibility of the results and conclusions.840

Guidelines:841

• The answer NA means that the paper does not include experiments.842

• If the paper includes experiments, a No answer to this question will not be perceived843

well by the reviewers: Making the paper reproducible is important, regardless of844

whether the code and data are provided or not.845

• If the contribution is a dataset and/or model, the authors should describe the steps taken846

to make their results reproducible or verifiable.847
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For example, if the contribution is a novel architecture, describing the architecture fully849

might suffice, or if the contribution is a specific model and empirical evaluation, it may850

be necessary to either make it possible for others to replicate the model with the same851

dataset, or provide access to the model. In general. releasing code and data is often852
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instructions for how to replicate the results, access to a hosted model (e.g., in the case854

of a large language model), releasing of a model checkpoint, or other means that are855

appropriate to the research performed.856
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• While NeurIPS does not require releasing code, the conference does require all submis-857

sions to provide some reasonable avenue for reproducibility, which may depend on the858

nature of the contribution. For example859

(a) If the contribution is primarily a new algorithm, the paper should make it clear how860

to reproduce that algorithm.861

(b) If the contribution is primarily a new model architecture, the paper should describe862

the architecture clearly and fully.863

(c) If the contribution is a new model (e.g., a large language model), then there should864

either be a way to access this model for reproducing the results or a way to reproduce865

the model (e.g., with an open-source dataset or instructions for how to construct866

the dataset).867

(d) We recognize that reproducibility may be tricky in some cases, in which case868

authors are welcome to describe the particular way they provide for reproducibility.869

In the case of closed-source models, it may be that access to the model is limited in870

some way (e.g., to registered users), but it should be possible for other researchers871

to have some path to reproducing or verifying the results.872

5. Open access to data and code873

Question: Does the paper provide open access to the data and code, with sufficient instruc-874

tions to faithfully reproduce the main experimental results, as described in supplemental875

material?876

Answer: [Yes]877

Justification: The paper provides open access to both the benchmark code and all 32878

MIKASA-Robo datasets via https://tinyurl.com/membenchrobots. The repos-879

itory includes detailed instructions for setup, environment configuration, and training, along880

with scripts for reproducing key experimental results.881

Guidelines:882

• The answer NA means that paper does not include experiments requiring code.883

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/884

public/guides/CodeSubmissionPolicy) for more details.885

• While we encourage the release of code and data, we understand that this might not be886

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not887

including code, unless this is central to the contribution (e.g., for a new open-source888

benchmark).889

• The instructions should contain the exact command and environment needed to run to890

reproduce the results. See the NeurIPS code and data submission guidelines (https:891

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.892

• The authors should provide instructions on data access and preparation, including how893

to access the raw data, preprocessed data, intermediate data, and generated data, etc.894

• The authors should provide scripts to reproduce all experimental results for the new895

proposed method and baselines. If only a subset of experiments are reproducible, they896

should state which ones are omitted from the script and why.897

• At submission time, to preserve anonymity, the authors should release anonymized898

versions (if applicable).899

• Providing as much information as possible in supplemental material (appended to the900

paper) is recommended, but including URLs to data and code is permitted.901

6. Experimental setting/details902

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-903

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the904

results?905

Answer: [Yes]906

Justification: The paper provides detailed descriptions of training and evaluation settings for907

all experiments, including the number of trajectories used (e.g., 1000 for Offline RL Sub-908

section 6.3, 250 for VLA Subsection 6.4), observation modalities, action representations,909

and reward structures. Model architectures, context lengths, chunk sizes, optimizers, and910

training durations are specified for each baseline.911
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Guidelines:912

• The answer NA means that the paper does not include experiments.913

• The experimental setting should be presented in the core of the paper to a level of detail914

that is necessary to appreciate the results and make sense of them.915

• The full details can be provided either with the code, in appendix, or as supplemental916

material.917

7. Experiment statistical significance918

Question: Does the paper report error bars suitably and correctly defined or other appropriate919

information about the statistical significance of the experiments?920

Answer: [Yes]921

Justification: The paper reports mean success rates with standard errors across evaluation922

episodes for all key experiments, including VLA and Offline RL baselines (e.g., Table 4, Fig-923

ure 6). Each reported value represents the average over multiple independent rollouts under924

fixed seeds, capturing variability due to policy stochasticity and environment randomness.925

Guidelines:926

• The answer NA means that the paper does not include experiments.927

• The authors should answer "Yes" if the results are accompanied by error bars, confi-928

dence intervals, or statistical significance tests, at least for the experiments that support929

the main claims of the paper.930

• The factors of variability that the error bars are capturing should be clearly stated (for931

example, train/test split, initialization, random drawing of some parameter, or overall932

run with given experimental conditions).933

• The method for calculating the error bars should be explained (closed form formula,934

call to a library function, bootstrap, etc.)935

• The assumptions made should be given (e.g., Normally distributed errors).936

• It should be clear whether the error bar is the standard deviation or the standard error937

of the mean.938

• It is OK to report 1-sigma error bars, but one should state it. The authors should939

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis940

of Normality of errors is not verified.941

• For asymmetric distributions, the authors should be careful not to show in tables or942

figures symmetric error bars that would yield results that are out of range (e.g. negative943

error rates).944

• If error bars are reported in tables or plots, The authors should explain in the text how945

they were calculated and reference the corresponding figures or tables in the text.946

8. Experiments compute resources947

Question: For each experiment, does the paper provide sufficient information on the com-948

puter resources (type of compute workers, memory, time of execution) needed to reproduce949

the experiments?950

Answer: [Yes]951

Justification: In the paper and supplementary materials, the authors provide code for training952

and evaluation, specify random seeds and the number of runs, and detail the compute setup953

(single NVIDIA A100 GPU with 96 GB RAM), enabling exact reproduction of results (see954

Appendix G).955

Guidelines:956

• The answer NA means that the paper does not include experiments.957

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,958

or cloud provider, including relevant memory and storage.959

• The paper should provide the amount of compute required for each of the individual960

experimental runs as well as estimate the total compute.961

• The paper should disclose whether the full research project required more compute962

than the experiments reported in the paper (e.g., preliminary or failed experiments that963

didn’t make it into the paper).964
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9. Code of ethics965

Question: Does the research conducted in the paper conform, in every respect, with the966

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?967

Answer: [Yes]968

Justification: The research adheres to the NeurIPS Code of Ethics. All experiments are969

conducted in simulation with no human subjects or sensitive data involved. The released970

benchmark and datasets are open-source and designed to support transparent, reproducible971

research. The work does not raise concerns related to privacy, fairness, misuse, or environ-972

mental impact beyond standard computational practices in the field.973

Guidelines:974

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.975

• If the authors answer No, they should explain the special circumstances that require a976

deviation from the Code of Ethics.977

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-978

eration due to laws or regulations in their jurisdiction).979

10. Broader impacts980

Question: Does the paper discuss both potential positive societal impacts and negative981

societal impacts of the work performed?982

Answer: [Yes]983

Justification: The paper discusses broader impacts in the context of advancing memory-984

intensive RL. On the positive side, the proposed benchmark may accelerate progress toward985

more capable and reliable autonomous systems in fields such as assistive robotics and986

household automation. While the work is entirely simulation-based, the authors acknowledge987

potential concerns regarding the misuse of memory-equipped agents (e.g., in surveillance988

or manipulation scenarios) and highlight the importance of responsible deployment. These989

considerations are briefly addressed in the broader impact discussion to guide ethical use.990

Guidelines:991

• The answer NA means that there is no societal impact of the work performed.992

• If the authors answer NA or No, they should explain why their work has no societal993

impact or why the paper does not address societal impact.994

• Examples of negative societal impacts include potential malicious or unintended uses995

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations996

(e.g., deployment of technologies that could make decisions that unfairly impact specific997

groups), privacy considerations, and security considerations.998

• The conference expects that many papers will be foundational research and not tied999

to particular applications, let alone deployments. However, if there is a direct path to1000

any negative applications, the authors should point it out. For example, it is legitimate1001

to point out that an improvement in the quality of generative models could be used to1002

generate deepfakes for disinformation. On the other hand, it is not needed to point out1003

that a generic algorithm for optimizing neural networks could enable people to train1004

models that generate Deepfakes faster.1005

• The authors should consider possible harms that could arise when the technology is1006

being used as intended and functioning correctly, harms that could arise when the1007

technology is being used as intended but gives incorrect results, and harms following1008

from (intentional or unintentional) misuse of the technology.1009

• If there are negative societal impacts, the authors could also discuss possible mitigation1010

strategies (e.g., gated release of models, providing defenses in addition to attacks,1011

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1012

feedback over time, improving the efficiency and accessibility of ML).1013

11. Safeguards1014

Question: Does the paper describe safeguards that have been put in place for responsible1015

release of data or models that have a high risk for misuse (e.g., pretrained language models,1016

image generators, or scraped datasets)?1017
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Answer: [Yes]1018

Justification: The paper discusses the broader implications of standardizing memory eval-1019

uation in RL, which can positively impact the development of more capable and reliable1020

autonomous systems for real-world applications such as assistive robotics and home automa-1021

tion. While the benchmark itself poses minimal direct societal risk, we acknowledge that1022

advances in memory-equipped agents could potentially be misused in surveillance or other1023

sensitive contexts. However, as the work is entirely simulation-based and intended to support1024

open academic research, we believe the positive impacts outweigh the risks. Responsible1025

use and continued community oversight remain essential as memory-centric RL systems1026

mature.1027

Guidelines:1028

• The answer NA means that the paper poses no such risks.1029

• Released models that have a high risk for misuse or dual-use should be released with1030

necessary safeguards to allow for controlled use of the model, for example by requiring1031

that users adhere to usage guidelines or restrictions to access the model or implementing1032

safety filters.1033

• Datasets that have been scraped from the Internet could pose safety risks. The authors1034

should describe how they avoided releasing unsafe images.1035

• We recognize that providing effective safeguards is challenging, and many papers do1036

not require this, but we encourage authors to take this into account and make a best1037

faith effort.1038

12. Licenses for existing assets1039

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1040

the paper, properly credited and are the license and terms of use explicitly mentioned and1041

properly respected?1042

Answer: [Yes]1043

Justification: All third-party assets used in this work—including codebases, datasets, and1044

pretrained models—are properly cited with references to their original publications. We use1045

publicly available environments and models (e.g., ManiSkill3, Octo, OpenVLA), each under1046

a permissive open-source license, which we respect in accordance with their terms of use.1047

Guidelines:1048

• The answer NA means that the paper does not use existing assets.1049

• The authors should cite the original paper that produced the code package or dataset.1050

• The authors should state which version of the asset is used and, if possible, include a1051

URL.1052

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1053

• For scraped data from a particular source (e.g., website), the copyright and terms of1054

service of that source should be provided.1055

• If assets are released, the license, copyright information, and terms of use in the package1056

should be provided. For popular datasets, paperswithcode.com/datasets has1057

curated licenses for some datasets. Their licensing guide can help determine the license1058

of a dataset.1059

• For existing datasets that are re-packaged, both the original license and the license of1060

the derived asset (if it has changed) should be provided.1061

• If this information is not available online, the authors are encouraged to reach out to1062

the asset’s creators.1063

13. New assets1064

Question: Are new assets introduced in the paper well documented and is the documentation1065

provided alongside the assets?1066

Answer: [Yes]1067

Justification: The paper introduces two new benchmark suites—MIKASA-Base and1068

MIKASA-Robo—as well as 32 offline RL datasets for robotic memory tasks. All as-1069

sets are released under a permissive license and are accompanied by comprehensive1070
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documentation, including environment descriptions, task specifications, dataset struc-1071

ture, and usage instructions. The documentation is provided in the code repository1072

(https://tinyurl.com/membenchrobots) to ensure usability and reproducibility1073

by the community.1074

Guidelines:1075

• The answer NA means that the paper does not release new assets.1076

• Researchers should communicate the details of the dataset/code/model as part of their1077

submissions via structured templates. This includes details about training, license,1078

limitations, etc.1079

• The paper should discuss whether and how consent was obtained from people whose1080

asset is used.1081

• At submission time, remember to anonymize your assets (if applicable). You can either1082

create an anonymized URL or include an anonymized zip file.1083

14. Crowdsourcing and research with human subjects1084

Question: For crowdsourcing experiments and research with human subjects, does the paper1085

include the full text of instructions given to participants and screenshots, if applicable, as1086

well as details about compensation (if any)?1087

Answer: [NA]1088

Justification: The paper does not involve any crowdsourcing or research with human subjects.1089

All experiments were conducted entirely in simulated environments with no human data1090

collection or interaction.1091

Guidelines:1092

• The answer NA means that the paper does not involve crowdsourcing nor research with1093

human subjects.1094

• Including this information in the supplemental material is fine, but if the main contribu-1095

tion of the paper involves human subjects, then as much detail as possible should be1096

included in the main paper.1097

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1098

or other labor should be paid at least the minimum wage in the country of the data1099

collector.1100

15. Institutional review board (IRB) approvals or equivalent for research with human1101

subjects1102

Question: Does the paper describe potential risks incurred by study participants, whether1103

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1104

approvals (or an equivalent approval/review based on the requirements of your country or1105

institution) were obtained?1106

Answer: [NA]1107

Justification: The paper does not involve research with human subjects or any form of data1108

collection from individuals. All experiments were conducted in simulation and do not pose1109

ethical risks requiring IRB or equivalent approval.1110

Guidelines:1111

• The answer NA means that the paper does not involve crowdsourcing nor research with1112

human subjects.1113

• Depending on the country in which research is conducted, IRB approval (or equivalent)1114

may be required for any human subjects research. If you obtained IRB approval, you1115

should clearly state this in the paper.1116

• We recognize that the procedures for this may vary significantly between institutions1117

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1118

guidelines for their institution.1119

• For initial submissions, do not include any information that would break anonymity (if1120

applicable), such as the institution conducting the review.1121

16. Declaration of LLM usage1122
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1123

non-standard component of the core methods in this research? Note that if the LLM is used1124

only for writing, editing, or formatting purposes and does not impact the core methodology,1125

scientific rigorousness, or originality of the research, declaration is not required.1126

Answer: [NA]1127

Justification: LLMs were only used for spell checking and grammar suggestions.1128

Guidelines:1129

• The answer NA means that the core method development in this research does not1130

involve LLMs as any important, original, or non-standard components.1131

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/1132

LLM) for what should or should not be described.1133

25


