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Abstract
Cascade Ranking is a prevalent architecture in
large-scale top-k selection systems like recom-
mendation and advertising platforms. Traditional
training methods focus on single-stage optimiza-
tion, neglecting interactions between stages. Re-
cent advances have introduced interaction-aware
training paradigms, but still struggle to 1) align
training objectives with the goal of the entire cas-
cade ranking (i.e., end-to-end recall of ground-
truth items) and 2) learn effective collaboration
patterns for different stages. To address these
challenges, we propose LCRON, which intro-
duces a novel surrogate loss function derived from
the lower bound probability that ground truth
items are selected by cascade ranking, ensuring
alignment with the overall objective of the sys-
tem. According to the properties of the derived
bound, we further design an auxiliary loss for
each stage to drive the reduction of this bound,
leading to a more robust and effective top-k se-
lection. LCRON enables end-to-end training of
the entire cascade ranking system as a unified
network. Experimental results demonstrate that
LCRON achieves significant improvement over
existing methods on public benchmarks and in-
dustrial applications, addressing key limitations
in cascade ranking training and significantly en-
hancing system performance.

1. Introduction
Cascade ranking has emerged as a prevalent architecture in
large-scale top-k selection systems, widely adopted in indus-
trial applications such as recommendation and advertising
platforms. This architecture efficiently balances resource
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Figure 1. A typical cascade ranking architecture, including four
stages: Matching, Pre-ranking, Ranking, and Mix-ranking. The
red points represent the ground truth for the selection.

utilization and performance through a multi-stage, funnel-
like filtering process. A typical cascade ranking system
comprises multiple stages, including Matching, Pre-ranking,
Ranking, and Mix-ranking, as illustrated in Figure 1. The
objective is to select ground truth items (referred to as the
red points in Figure 1) as the final outputs.

Early traditional training approaches for cascade ranking
systems often optimize each stage in isolation, construct-
ing samples, designing learning objectives, and defining
proxy losses separately (Crammer & Singer, 2001; Burges
et al., 2005; Li et al., 2007; Covington et al., 2016; Wang
et al., 2018; Ma et al., 2018; Sheng et al., 2023; Wu et al.,
2024). This fragmented approach overlooks the interactions
between stages, leading to suboptimal alignment with the
overall system objective. Specifically, two key challenges
arise: 1) Misalignment of Training Objectives: Cascade
ranking aims to collaboratively select all relevant items from
the ground truth set across multiple stages. However, each
stage’s learning targets optimized by pointwise or pairwise
losses are often more strict than the collaborative goal of
cascade ranking. This misalignment may lead to ineffi-
ciency, particularly in recommendation scenarios where the
model capacity is typically limited. 2) Lack of Learning
to Collaborate: During online serving, different stages
in a cascade ranking system will interact and collaborate
with each other. Efficient interactions and collaborations
are crucial for improving the overall performance of the
cascade ranking system. For example, a Retrieval model
can preemptively avoid items that the ranking model tends
to overestimate, while the Ranking model can accurately
identify ground-truth items from the recalled set. However,
when models for different stages are trained independently,
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they lack the ability to learn these interactions and collabo-
rations, which may lead to degraded testing performance.

Recent works have attempted to address these challenges.
ICC (Gallagher et al., 2019) is an early study to partially ad-
dress challenges 1) and 2) by fusing the predicted scores of
different stages and optimizing them jointly through Lamb-
daRank (Burges, 2010). However, its stage-wise interaction
remains unidirectional, restricting the learning of bidirec-
tional collaboration. It also suffers from limited sample
space, as it focuses only on exposed items. RankFlow (Qin
et al., 2022) introduces an iterative training paradigm that
dynamically determines the training samples for each stage
by its upstream stage to address challenge 2). Although
RankFlow reports significant improvements over both in-
dependent training and ICC, its iterative training process
may lead to increased complexity and instability during
training. FS-LTR (Zheng et al., 2024) tackles challenge
2) by learning online patterns of interactions and collab-
orations with full-stage training samples and outperforms
RankFlow. However, neither RankFlow nor FS-LTR ex-
plicitly addresses the misalignment of training objectives.
ARF (Wang et al., 2024) emphasizes that learning targets
should align with the objective of cascade ranking and pro-
poses a new surrogate loss for Recall based on differentiable
sorting. However, ARF focuses on a single stage and can-
not fully address challenges 1) and 2). Additionally, ARF
does not fully utilize the information of the soft permutation
matrix, further limiting its performance.

To the best of our knowledge, no existing approach si-
multaneously addresses both challenges, highlighting the
need for a more comprehensive solution.

To address these challenges, we propose LCRON (Learning
Cascade Ranking as One Network), introducing two types
of novel surrogate losses. First, we propose a novel surro-
gate loss Le2e, which is the lower bound of a differentiable
approximation of the survival probability of ground-truth
items through the entire cascade ranking system. Le2e di-
rectly aligns the learning objective with the global goal
of the cascade ranking system, while naturally learn-
ing effective collaboration patterns for different stages.
However, optimizing Le2e alone may lead to insufficient su-
pervision for individual stages, especially when the survival
probability at a particular stage is close to 0. In addition,
we derive the lower bound and find that the tightness of the
bound is highly related to the consistency of different stages.
Therefore, we design a surrogate loss Lsingle towards the
Recall of each single stage, which enforces the model to
distinguish ground-truth items from the entire candidate set
rather than the filtered subset from upstream stages. Lsingle

can tighten the theoretical bound of Le2e and provides
additional effective supervision when the survival proba-
bility of ground-truth items in Le2e is close to 0. Inspired

by ARF (Wang et al., 2024), we use differentiable sort-
ing techniques as the foundation of our surrogate losses.
Lsingle inherits the main idea of the LRelax loss in ARF
while addressing its limited use of the soft permutation ma-
trix generated by differentiable sorting. Finally, we combine
different losses of LCRON in a UWL (Kendall et al., 2018)
form to reduce the number of hyperparameters, enhancing
its practicality and robustness.

To verify the effectiveness of our method, we conduct exten-
sive experiments on both public and industrial benchmarks.
We conduct public experiments on RecFlow (Liu et al.,
2025), the only public benchmark based on a real-world rec-
ommendation system that contains multi-stage samples of
cascade ranking. The results on the public benchmark show
that LCRON outperforms all baselines under the stream-
ing evaluation (where for any day t as a test, its training
data comes from the beginning up to day t − 1), indicat-
ing the effectiveness and robustness of our method. The
ablation study highlights the role of different components
of LCRON. The industrial experimental results show that
LCRON consistently outperforms the best two baselines in
public experiments on end-to-end Recall. We further con-
duct an online A/B experiment in a real-world advertising
system. Compared to FS-LTR, LCRON brings about a
4.10% increase in advertising revenue and a 1.60% in-
crease in the number of user conversions, demonstrating
that our approach has significant commercial value for
real-world cascade ranking systems.

2. Problem Formulation
We first introduce the formulation of a cascade ranking
system. In such systems, a large initial set of candidate items
is processed through a series of consecutive filtering stages
to identify the most relevant or optimal results efficiently.
Each stage applies a specific model Mi to evaluate and
select a subset of items from the input set for the next stage.
Let T denote the total number of stages in the cascade, with
an initial candidate inventory size of q0. For any given stage
i, we define the sample space of input candidates as Qi−1,
which contains qi−1 items. After processing by the i-th
stage model, the output consists of qi selected items. Note
that qi typically decreases as i increases.

The models in the cascade ranking system are typically
trained using specific paradigms, with training samples de-
rived from the system itself. To rank the items, we define
F↓

M(S) as the ordered terms vector of set S sorted by the
score of model M in descending order, and F↓

M(S)[: K] as
the top K terms of F↓

M(S). With the set of trained models
{Mi | 1 ≤ i ≤ T}, the final output set CSout of the cas-
cade ranking system can be obtained through a sequential
filtering operation. This process can be formulated as:
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CSout = F↓
MT

((· · · F↓
M1

(Q0)[: q1] · · · ))[: qT ] (1)

We define the ground truth set CSgt as the set of items con-
sidered relevant or optimal based on user feedback or expert
annotations. The goal of training paradigms for cascade
ranking is to optimize the Recall of CSgt using training
data collected from the system, which can be formulated
as Eq 2, where qT is the size of CSout, K is the size of
CSgt, and K < qT . Here, 1(·) is the indicator function that
returns 1 if the condition is true and 0 otherwise.

Recall@K@qT =

qT∑
i=1

1(itemi∈CSout)1(itemi∈CSgt)

K∑
j=1

1(itemj∈CSgt)

(2)

Most previous works design training sets and methodologies
for different stages separately, while a few attempt to build
universal training paradigms, as detailed in Section 3. In
this paper, we propose an all-in-one training paradigm for
cascade ranking systems, which addresses the limitations of
previous approaches and is detailed in Section 4.

3. Related Work
3.1. Learning Methodologies for Cascade Ranking

Cascade ranking (Wang et al., 2011; Li et al., 2023) is widely
used in online recommendation and advertising systems to
balance performance and resource efficiency. It employs
multiple models with varying capacities to collaboratively
select top-k items from the entire inventory. Early traditional
training approaches for cascade ranking systems often opti-
mize each stage separately, with distinct training sample or-
ganization, learning objectives, and surrogate losses. There
are three common learning tasks in cascade ranking systems:
1) probability distribution estimation (e.g., pCTR), which
aims to optimize the accuracy of probability estimation and
order and uses surrogate losses such as BCE, BPR, or their
hybrid (Zhou et al., 2018; Ma et al., 2018; Sheng et al., 2023;
Huang et al., 2022). The training samples include both pos-
itive and negative samples after exposure. 2) continuous
value estimation (e.g., video playback time, advertising
payment amount), which usually employs surrogate losses
such as ordinal regression to optimize the model (Niu et al.,
2016; Lin et al., 2023). It focuses on learning continuous
values after specific user behaviors occur (e.g., viewing time
after video exposure). 3) learning-to-rank, which is more
commonly used in the retrieval stage of cascade ranking
systems, with the entire or partial order of the ranking stage
as the ground truth. It leverages methods such as pointwise,
pairwise, and listwise approaches (Crammer & Singer, 2001;
Li et al., 2007; Covington et al., 2016; Wang et al., 2018;
Thonet et al., 2022; Tang et al., 2022; Wu et al., 2024; Wang

et al., 2024). While these methods are widely adopted, they
often fail to align training objectives with the global goal
of cascade ranking and overlook the interactions between
different stages.

Recently, several works have attempted to address
these challenges by proposing interaction-aware train-
ing paradigms to jointly train the entire cascade ranking
system. ICC (Gallagher et al., 2019) fuses the predictions
of different stages and optimizes the fusion score using
LambdaRank (Burges, 2010). However, it suffers from
limited sample space and unidirectional stage-wise interac-
tion. RankFlow (Qin et al., 2022) introduces an iterative
training paradigm. Each stage is trained with samples gen-
erated by its upstream stage and distills knowledge from
its downstream model. While RankFlow reports significant
improvements over ICC, its iterative training process may
increase complexity and instability. FS-LTR (Zheng et al.,
2024) argues that each stage model should be trained with
full-stage samples. It trains the cascade ranking system
using full-stage samples and LambdaRank loss, achieving
better results than RankFlow. However, both FS-LTR and
RankFlow fail to fully align with the global goal of cascade
ranking. Another approach, ARF (Wang et al., 2024), em-
phasizes the importance of aligning learning targets with
the Recall of cascade ranking and proposes surrogate losses
based on differentiable sorting to optimize Recall. How-
ever, ARF focuses only on a single stage and assumes that
downstream models are optimal, limiting its applicability.
In this paper, we propose LCRON for end-to-end alignment
with the global objective of cascade ranking, addressing the
aforementioned challenges.

In addition, some recent works on cascade ranking systems
offer complementary perspectives that could potentially be
integrated with joint training approaches. FAA (Li et al.,
2023) focuses on feature consistency of cascade ranking
by aligning stage-wise representations via attention, while
LCRON complements this approach by introducing end-
to-end loss functions for global optimization. SRCR (Za-
mani et al., 2022) focuses on improving two-stage cascade
systems but employs a non-learnable component (BM25)
for retrieval and employs BERT (Devlin et al., 2019) for
ranking and just jointly optimizes the number of retrieved
documents N and the ranking model. This differs from
LCRON, which enables end-to-end joint learning across
fully learnable cascade stages. These two approaches are
conceptually complementary, suggesting that future work
could explore joint optimization of both model parameters
and system-level decision variables such as retrieval quota.

3.2. Differentiable Techniques for Hard Sorting

Differentiable sorting techniques provide continuous relax-
ations of the sorting operation, enabling end-to-end training

3



Learning Cascade Ranking as One Network

within deep learning frameworks. Early work by Grover
et al.(2019) introduced NeuralSort, which approximates
hard sorting by generating a unimodal row-stochastic matrix.
Cuturi et al.(2019) further formulated the sorting process as
an optimal transport problem with entropic regularization,
enabling smooth approximations of ranks and sorted values.
Subsequently, Prillo & Eisenschlos(2020) proposed Soft-
Sort, a more lightweight and efficient approach for differen-
tiable sorting. Recent advances, such as those in (Petersen
et al., 2021; 2022; Sander et al., 2023; Cuturi et al., 2019),
have further improved the performance and efficiency of
differentiable sorting operators. These techniques have been
widely adopted in various domains, including computer vi-
sion (Grover et al., 2019; Blondel et al., 2020; Sander et al.,
2023), online recommendation and advertising (Swezey
et al., 2021; Pobrotyn & Białobrzeski, 2021; Wang et al.,
2024). In this paper, we leverage differentiable sorting oper-
ators to construct the surrogate losses of LCRON. It employs
the soft permutation matrix produced by differentiable sort-
ing methods. Thus, those differentiable sorting methods
that do not produce a soft permutation matrix, such as Fast-
Sort (Blondel et al., 2020) and OT (Cuturi et al., 2019), can
not be the foundational component of LCRON.

4. Methodology
In this section, we introduce our proposed method LCRON,
which is the abbreviation of “Learning Cascade Ranking
as One Network”. In Section 4.1, we give the organization
of full-stage training samples, which mainly follows Zheng
et al.(2024). In Section 4.2, we introduce a novel loss Le2e

that directly optimizes the lower bound of a differentiable
approximation of Equation 2, ensuring alignment with the
overall objective of cascade ranking. In section 4.3, we
discuss the limitations of LCS and introduce Lsingle as an
auxiliary loss for each single stage to tighten the theoretical
bound of Le2e and provide additional effective supervision.

4.1. Full-Stage Training Samples of Cascade Ranking

For simplicity, we illustrate our method using a two-
stage cascade ranking system (T = 2), which can be
readily extended to systems with additional stages. We
downsample items from all stages of the cascade ranking
system to construct full-stage training samples, primarily
following FS-LTR (Zheng et al., 2024).

Let M1 and M2 denote the retrieval and ranking models,
respectively. The input space of M1, the input and out-
put spaces of M2 are Q0, Q1, and Q2. We denote the
ground-truth set as CSgt, also referred to as Q3. For a given
impression, let u represent the user information and itemj

represent the item information. Let yj denote the label for
the pair (u, itemj) and y = (y1, y2, . . . , yN ). The training
samples for one impression can be formulated as Eq 3:

D = (u, {(itemj , yj) | 0 ≤ j < N})

=

(
u,

3⋃
i=0

{(itemj , yj) | 0 ≤ j < ni and itemj ∈ Qi}

)
(3)

where ni is the number of samples drawn from Qi and
N = n0 + n1 + n2 + n3. In LCRON, the construction of
full-stage training samples is a fundamental component of
our approach. While specific sampling strategies and hyper-
parameters (e.g., ni) may influence the performance, their
detailed analysis is beyond the scope of this paper. In both
public and online experiments, all methods are evaluated on
the same sampled datasets to ensure a fair comparison.

Let Rj denote the descending rank index (where a higher
value indicates a better rank) for the pair (u, itemj) within
its sampled stage. The label yj is determined by both the
stage order and the rank within the stage. Specifically, for
any two pairs (u, itemi) and (u, itemj), the label yi and yj
satisfy the following condition:

1(yi > yj) = 1(Si > Sj) ∨ (1(Si = Sj) ∧ 1(Ri > Rj)) (4)

where Si > Sj indicates that itemi belongs to a later stage
than itemj , and Ri > Rj indicates that itemi has a higher
rank than itemj within the same stage.

4.2. End-to-end Surrogate Loss for Top-K Cascade
Ranking

Our goal is to design an efficient surrogate loss that aligns
with the Recall@K@q2 metric of the entire cascade ranking
system. We can transform the problem of optimizing the
Recall@K@q2 of cascade ranking into a survival probabil-
ity problem, allowing the model to estimate the probability
that the ground truth is selected by the cascade ranking.
Note that K is the size of CSgt. Let Mi(D) ∈ R1×N de-
note the prediction vector of Mi on the training data D. Let
P qi
Mi

represent the probability vector of each ad in D being
selected by the cascade ranking for top-qi selection. qi is
the quota of Mi, as mentioned in Section 2. The sum of
P qi
Mi

should be qi. Let the survival probability vector output
by the system be P q2

CS , and let the label y be a binary vector
indicating whether it is the ground truth. We can employ a
cross-entropy loss of P q2

CS and y to optimize the probability
of the ground truth being selected by the cascade ranking as
shown in Equation 5:

CE(P q2
CS , y) = −

∑
i

(yi ln((P
q2
CS)i)

+ (1− yi)ln(1− (P q2
CS)i)

(5)

Let π ∈ {0, 1}N denote the sampling result from P q1
M1

, and
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let Pπ represent the probability of sampling π. Then, Pπ

can be formulated as Eq 6:

Pπ =

∏
i:πi=1(P

q1
M1

)i∑
S⊆[N ],|S|=T

∏
j∈S(P

q1
M1

)j
(6)

Then P q2
CS can be expressed as Eq 7:

P q2
CS = Eπ∼Pπ

(P q2
M2

⊙ π)

⟨π, P q2
M2

⟩/⟨1, P q2
M2

⟩ (7)

where P q2
M2

and P q2
CS are vectors. ⟨·, ·⟩ denotes dot product,

and ⊙ denotes element-wise product. 1 represents a vector
where all elements are 1. Due to the intractability of directly
optimizing P q2

CS caused by sampling and integration opera-
tions, we aim to find an approximate surrogate for P q2

CS . We
define P̂ q2

CS =
∏2

i PMqi
i

. It can be shown that P̂ q2
CS serves

as an lower bound for P q2
CS , as demonstrated in Eq. 8, since

0 ≤ ⟨π, P q2
M2

⟩/⟨1, P q2
M2

⟩ ≤ 1 always holds:

P q2
CS = Eπ∼Pπ

P q2
M2

⊙ π

⟨π, P q2
M2

⟩/⟨1, P q2
M2

⟩
≥ Eπ∼Pπ

P q2
M2

⊙ π

=

2∏
i

P qi
Mi

= P̂ q2
CS

(8)

The next question is how to obtain a differentiable P qi
Mi

,

enabling us to optimize P̂ q2
CS . To achieve this, we introduce

the permutation matrix as the foundation of our approach.
For a given vector x and its sorted counterpart y, there
exists a unique permutation matrix P such that y = Px.
The elements of P are binary, taking values of either 0 or 1.
Let P↓

(·) denote the permutation matrix that sorts the vector
(·) in descending order. Specifically, (P↓

x)i,j = 1 indicates
that xj is the i-th largest element in x.

Using the permutation matrix, the top-k elements of D
selected by Mi can be formulated as:

M↓
i (k) =

k∑
j=1

(P↓
M)j,: (9)

where M↓(k) ∈ R1×n is a binary vector indicating whether
each item is selected by the model, and (P↓

M)j,: represents
the j-th row of the permutation matrix for model M.

It is evident that P qi
Mi

can be interpreted as the distribution
of M↓

i (qi), where M↓
i (qi) denotes the deterministic top-qi

selection obtained through hard sorting (represented as a
binary posterior observation, i.e., 1/0). To enable gradient-
based optimization, we can relax M↓

i (qi) into the stochastic
P qi
Mi

and optimize it via maximum likelihood. Specifically,
this can be achieved by relaxing the hard permutation matrix
P (which sorts items in descending order) into a soft permu-
tation matrix P̂ via differentiable sorting techniques (Grover
et al., 2019; Prillo & Eisenschlos, 2020; Petersen et al.,
2021). Differentiable sorting methods typically generate P̂
as a row-stochastic matrix (each row sums to 1) by apply-
ing row-wise softmax with a temperature parameter τ . As
τ → 0, P̂ converges to the hard permutation matrix P .

Specifically, let P̂↓
Mi

∈ [0, 1]N×N be the soft permutation
matrix for model Mi, where (P̂↓

Mi
)j,k represents the soft

probability that item k is ranked at position j. Then, we
can formulate the top-qi selection probability P qi

Mi
and the

end-to-end loss Le2e of the cascade ranking system as Eq 10
and Eq 11:

P qi
Mi

=

∑qi
j=1(P̂

↓
Mi

)j,:

⊘ sp(
∑

t=1(P̂
↓
Mi

)t,:)
(10)

Le2e = −
∑
j

yj ln(

2∏
i

∑qi
j=1(P̂

↓
Mi

)j,:

⊘ sp(
∑

t=1(P̂
↓
Mi

)t,:)

−
∑
j

(1− yj)ln(1−
2∏
i

∑qi
j=1(P̂

↓
Mi

)j,:

⊘ sp(
∑

t=1(P̂
↓
Mi

)t,:)
)

(11)

where ·
⊘· represents the element-wise division operator. In

Eq 10, we perform an element-wise division to ensure that
the probability values are normalized, as some differen-
tiable sorting operators cannot guarantee column-wise nor-
malization, such as NeuralSort (Grover et al., 2019) and
SoftSort (Prillo & Eisenschlos, 2020). “sp” denotes that a
stop gradient is needed during training. The end-to-end
loss Le2e in Eq. 11 directly optimizes the joint survival
probability through all cascade stages.

Traditional losses often impose strict constraints, which be-
come problematic when model capacity is insufficient to
satisfy all constraints. In contrast, Le2e directly aligns the
learning objective of the goal of cascade ranking, allow-
ing models to prioritize critical rankings while tolerating
minor errors in less important comparisons. In addi-
tion, when a stage assigns a low score to a ground-truth
item, Le2e not only optimizes that particular stage but
also encourages other stages to improve their scores for
the same ground-truth item. This mechanism enables
an efficient collaborative pattern to be learned across
stages, enhancing the overall survival probability of ground-
truth items in the cascade ranking system. Importantly, this
collaboration is bidirectional, overcoming the limitation of
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ICC (Gallagher et al., 2019), which only allows unidirec-
tional dependency from one stage to its pre-stages (e.g.,
from the ranking stage to the retrieval stage).

4.3. Auxiliary Loss of Single Stage for Tightening the
Bound

Although Le2e directly optimizes the joint survival probabil-
ity of ground-truth items through the entire cascade ranking
system, it may suffer from two weaknesses: 1) Le2e is de-
rived as a lower bound of the joint survival probability (see
Section 4.2), the tightness of this bound could influence the
overall performance, but Le2e can not optimize this bound
itself, 2) it may suffer from insufficient supervision when the
survival probability at a particular stage is close to 0. This
issue is particularly pronounced during the initial training
phase, where if all stages assign low scores to ground-truth
items, the gradients across all models would be small. This
situation could make it difficult to properly warm up the
models, resulting in slow convergence or suboptimal learn-
ing performance.

According to Eq 8, the bound depends on the magnitude of
q2

⟨π,P q2
M2

⟩ , and the equation holds as q2
⟨π,P q2

M2
⟩ approaches 1.

Since Eπ∼Pπ
(π) = P q1

M1
, it is evident that optimizing the

difference between M1(D) and M2(D) can help tighten
the bound. We provide a detailed analysis in appendix A.

To address these issues, we propose LMi

single for each sin-
gle model, which is shown in Eq 12. Lsingle provides the
same supervision for both retrieval and ranking mod-
els, thereby optimizing the consistency of M1(D) and
M2(D) and leading to a tight bound of Le2e. LMi

single

forces each model to distinguish ground-truth items from
the entire inventory, offering effective yet not overly strict
additional supervision for each model. This helps address
the insufficient supervision situation that may occur in the
Le2e loss during the initial training phase. Furthermore,
unlike LRelax in ARF, which uses only the top-m rows of
the soft permutation matrix, Lsingle imposes supervision
signals over the entire soft permutation matrix. This pro-
vides more comprehensive supervision information and is
expected to facilitate better model learning.

LMi

single = −
∑
j

yj ln(

∑K
j=1(P̂

↓
Mi

)j,:

⊘ sp(
∑

t=1(P̂
↓
Mi

)t,:)

−
∑
j

(1− yj)ln(1−
∑K

j=1(P̂
↓
Mi

)j,:

⊘ sp(
∑

t=1(P̂
↓
Mi

)t,:)
)

(12)

Inspired by ARF (Wang et al., 2024), we simply employ
UWL (Kendall et al., 2018) to balance the Le2e and Lsingle

to reduce the number of hyper-parameters. For the two-
stage cascade ranking, the final loss is formulated as Eq 13,
where α, β and γ are trainable scalars.

Table 1. Dataset Statistics.

Stage Users Impressions Items per impression the range of labels
rank pos 38,193 6,062,348 10 [1,20]
rank neg 38,193 6,062,348 10 [21,21]

coarse neg 38,193 6,062,348 10 [22,22]
prerank neg 38,193 6,062,348 10 [23,23]

L =
Le2e

2α2
+

LM1

single

2β2
+

LM2

single

2γ2
+ log2(αβγ) (13)

5. Experiments
5.1. Experiment Setup

We conduct comprehensive experiments on both public and
industrial datasets. We conduct public experiments to ver-
ify the effectiveness of our proposed method and perform
ablation studies along with in-depth analysis. We conduct
online experiments to study the impact of our method on
real-world cascade ranking applications. Here we mainly
describe the setup for public experiments, and details of
online experiments are described in section 5.5.

• Public Benchmark. We conduct public experiments
based on RecFlow (Liu et al., 2025), which, to the best of
our knowledge, is the only public benchmark that collects
data from all stages of real-world cascade ranking sys-
tems. RecFlow includes data from two periods (denoted
as Period 1 and Period 2), spanning 22 days and 14 days,
respectively. While Period 2 is primarily designed for
studying the distribution shift problem in recommendation
systems, which is beyond the scope of this paper, we focus
on Period 1 data as our testbed. To train the two-stage cas-
cade ranking, we adopt four stages of samples: rank pos,
rank neg, coarse neg, and prerank neg. Table 1 sum-
marizes the dataset statistics.

• Cascade Ranking Setup. We employ a typical two-
stage cascade ranking system as the testbed, utilizing
DIN (Zhou et al., 2018) for the ranking model and
DSSM (Huang et al., 2013) for the retrieval model. The
retrieval and ranking models are completely parameter-
isolated, ensuring no parameters are shared between
stages. This design eliminates potential confounding ef-
fects from parameter sharing, enabling a fair comparison
between different methods. In this setup, the retrieval
model selects the top 30 items, and subsequently, the
ranking model chooses the top 20 items out of these 30
for “exposure”. Each impression contains 10 ground-truth
items, referred to rank pos, which serve as the ground
truth for exposure evaluation. This setup aligns with the
data structure of the benchmark, ensuring evaluation con-
sistency with real-world cascade ranking scenarios.

• Evaluation. We employ Recall@k@m defined in Equa-
tion 2 as the golden metric to evaluate the overall per-
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formance of the cascade ranking system. Corresponding
to the cascade ranking and public benchmark setup, the
m and k for the evaluation are 20 and 10, respectively.
In order to explore the impact of different baselines on
model learning at different stages, we also evaluate the
Recall@k@m and NDCG@k of each model on the en-
tire inventory of candidate items as auxiliary observation
metrics for analysis.

Following the mainstream setup for evaluating recommen-
dation datasets, we use the last day of Period 1 as the
test set to report the main results of our experiments (Sec-
tion 5.3), while the second-to-last day serves as the valida-
tion set for tuning the hyperparameters (e.g., the tempera-
ture parameters of ICC, ARF, and LCRON; the α of Rank-
Flow; the top-k and smooth factor of FS-LambdaLoss) of
different methods. Considering that industrial scenarios
commonly employ streaming training, we further evaluate
the performance of different methods by treating each
day as a separate test set (in Section 5.4). In this setting,
when day t is designated as the test set, the corresponding
training data encompass all days from the beginning of
Period 1 up to day t− 1.

• LCRON Setup. We employ NeuralSort (Grover et al.,
2019) as the differentiable sorting operator, aligning with
the baseline method ARF to ensure a fair comparison. We
tune the hyper-parameter τ on the validation set, which
controls the temperature of NeuralSort. We set q1 and q2
in Le2e to 10 during training. Although this value does
not exactly match the quotas of the cascade ranking setup,
it represents a trade-off between gradient optimization
stability and maintaining the interpretability of the loss
due to the properties of the permutation matrix. A larger qi
is more likely to lead to gradient conflicts during training.
We further provide a detailed discussion of this limitation
in Section E.1.

• Implementation Details. We utilize the training pipeline
and implementations of DSSM (Huang et al., 2013) and
DIN (Zhou et al., 2018) models provided by the open-
source code1 from (Liu et al., 2025), and we primarily
focus on implementing the training loss functions of base-
lines and our method. The Multi-layer Perceptron (Rosen-
blatt, 1958) of the user and item towers in DSSM are
set to be [128, 64, 32]. The architecture of DIN’s MLP
is [128, 128, 32, 1]. All offline experiments are imple-
mented using PyTorch 1.13 in Python 3.7. We employ the
Adam optimizer with a learning rate of 0.01 for training
all methods. Following the common practice in online
recommendation systems (Liu et al., 2025; Zhang et al.,
2022), each method is trained for only one epoch. The
batch size is set to 1024. The source code of our public
experiments is publicly available2.

1https://github.com/RecFlow-ICLR/RecFlow
2https://github.com/Kwai/LCRON

5.2. Competing Methods

We compare our method with the following state-of-the-art
methods in previous studies.

• Binary Cross-Entropy (BCE). We treat the “rank pos”
samples as positive and others as negative to train a BCE
loss. The retrieval model is trained with all stages sam-
ples in Table 1. The ranking model is trained with only
rank pos and rank neg samples, following the classic set-
ting of cascade ranking systems. The rank pos is regarded
as positive samples, and others are regarded as negative
samples. It is denoted as “BCE” in the following.

• ICC. It’s an early study for joint learning the models of
cascade ranking (Gallagher et al., 2019), which fuse
multi-stage predictions and optimize them by Lamb-
daRank (Burges, 2010).

• RankFlow. Qin et al.(2022) propose RankFlow, a method
that iteratively updates the retrieval and ranking models,
achieving better results than ICC (Gallagher et al., 2019).
The training sample space for the ranking model is de-
termined by the retrieval model, and the ranking model’s
predictions are distilled back to the retrieval model.

• FS-LTR. Zheng et al.(2024) propose a method to train
all models in a cascade ranking system using full-stage
training samples and learning-to-rank surrogate losses,
achieving better results than RankFlow (Qin et al., 2022).
Since Zheng et al.(2024) primarily focuses on the orga-
nization of training samples rather than the design of
surrogate losses, we design two representative variants
to cover a wide spectrum of LTR losses. The first vari-
ant, FS-RankNet, utilizes the RankNet (Burges et al.,
2005) loss, a classic pairwise learning-to-rank method.
The second variant, FS-LambdaLoss, utilizes the Lamb-
daLoss (Wang et al., 2018) loss, an advanced listwise
LTR method. These variants represent two fundamental
paradigms in LTR, ensuring a comprehensive comparison.

• ARF. It is designed to adapt to varying model capacities
and data complexities by introducing an adaptive target
that combines “Relaxed” loss and “Global” loss (Wang
et al., 2024). We use ARF loss to train both the retrieval
and ranking models. To further improve ARF, we intro-
duce ARF-v2 as an enhanced baseline, which replaces
the relaxed loss of ARF with our proposed Lsingle (Sec-
tion 4.3). We set the hyper-parameters corresponding to
the q of the cascade ranking system. For the retrieval
model, we set the parameters m and k to 30 and 10, re-
spectively. For the ranking model, we set these parameters
to 20 for m and 10 for k.

5.3. Main Results

Table 2 presents the main results of the public experiments
conducted on RecFlow. LCRON significantly outperforms
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Table 2. Main results of public experiments on RecFlow. Each
method was run 5 times, and the results are reported as mean±std.
∗ indicates the best results. Bold numbers indicate that LCRON
shows statistically significant improvements over the baselines,
as determined by a t-test at the 5% significance level. Note that
the Recall@10@20 of Joint is the golden metric for the whole
cascade ranking system. The test set is the last day, with the
remaining data used for training.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

BCE 0.8539±0.0006 0.8410±0.0007 0.7043±0.0008 0.9706±0.0004∗ 0.7150±0.0019
ICC 0.8132±0.0003 0.8100±0.0003 0.6980±0.0003 0.9288±0.0003 0.6155±0.0003

RankFlow 0.8647±0.0007 0.8629±0.0006 0.7274±0.0010 0.9656±0.0006 0.7087±0.0003
FS-RankNet 0.7881±0.0007 0.7908±0.0008 0.6864±0.0004 0.9321±0.0004 0.6710±0.0005

FS-LambdaLoss 0.8666±0.0016 0.8660±0.0018 0.7306±0.0027 0.9691±0.0004 0.7190±0.0027∗

ARF 0.8608±0.0006 0.8616±0.0007 0.6655±0.0027 0.9631±0.0008 0.5437±0.0110
ARF-v2 0.8678±0.0009 0.8679±0.0009 0.7269±0.0005 0.9684±0.0006 0.7152±0.0028

LCRON (ours) 0.8732±0.0005∗ 0.8729±0.0004∗ 0.7291±0.0008 0.9700±0.0004 0.7151±0.0009

all baselines on the end-to-end (joint) Recall, demonstrating
its effectiveness in optimizing cascade ranking systems. No-
tably, while LCRON does not dominate all individual stage
metrics (e.g., the Recall of the Ranking model), it achieves
substantial improvements in joint metrics, highlighting the
importance of stage collaboration. This aligns with our de-
sign philosophy: LCRON fully considers the interaction and
collaboration between different stages, enabling significant
gains in joint performance even with modest improvements
in single-stage metrics.

The results also reveal interesting insights about the base-
lines: 1) While FS-LambdaLoss shows strong performance,
FS-RankNet performs poorly under the same sample orga-
nization. This indicates that the choice of learning-to-rank
methods plays a critical role in optimizing cascade ranking
systems. 2) ARF-v2 outperforms ARF in all metrics, sug-
gesting that Lsingle effectively mitigates the disadvantages
of the LRelax loss in ARF, as discussed in Section 4.3.

5.4. In-depth Analysis

We first conduct an ablation study to evaluate the contribu-
tion of each component in LCRON. Specifically, we analyze
the impact of Le2e and Lsingle by removing them individu-
ally. The results are summarized in Table 3. The ablation
study demonstrates that both Le2e and Lsingle are essen-
tial components of LCRON. While their removal may not
lead to statistically significant changes in all the individual
ranking or retrieval metrics, the joint evaluation metric con-
sistently shows a statistically significant improvement. This
suggests that the interaction effects between the two stages
of the cascade ranking system are optimized more effec-
tively with the collaboration of Le2e and Lsingle, enhancing
the overall performance.

In Section 5.3, we report the results tested on the last day
of the dataset. Although this is a mainstream test setting
for recommendation benchmarks (Zheng et al., 2024; Wang
et al., 2024; Liu et al., 2025), we argue that it may not fully

Table 3. Ablation study of LCRON. ∗ indicates the best results.
Each method was run 5 times, and the results are reported as
mean ± std. Bold numbers indicate that LCRON shows sta-
tistically significant improvements over each ablation model, as
determined by a t-test at the 5% significance level. The test set is
the last day, with the remaining data used for training.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

LCRON 0.8732 ± 0.0005 ∗ 0.8729 ± 0.0004∗ 0.7291 ± 0.0008 ∗ 0.9700 ± 0.0003 ∗ 0.7151 ± 0.0009
-Le2e 0.8710 ± 0.0013 0.8707 ± 0.0012 0.7280 ± 0.0007 0.9695 ± 0.0007 0.7153 ± 0.0009∗

-Lsingle 0.8712 ± 0.0004 0.8712 ± 0.0005 0.7286 ± 0.0007 0.9692 ± 0.0006 0.7142 ± 0.0013
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Figure 2. The evaluation results of different methods on RecFlow,
in a streaming manner.

reflect real-world industrial scenarios, where models are
typically trained in an online, streaming manner. To provide
a more comprehensive evaluation, we conduct additional
experiments under a streaming training setup, where each
day is treated as a separate test set. Specifically, when day t
is designated as the test set, the training data encompass all
days from the beginning up to day t− 1. The results, shown
in Figure 2, reveal two key observations: 1) In the initial
phase (first 10 days), LCRON exhibits rapid convergence,
matching the performance of ARF-v2 and significantly out-
performing other baselines. 2) In the later phase (last 12
days), LCRON not only surpasses all baselines but also
demonstrates a widening performance gap over time, indi-
cating its superior adaptability and robustness in long-term
industrial applications. These findings underscore LCRON’s
ability to achieve both fast convergence and sustained per-
formance improvements, making it a practical and effective
solution for real-world cascade ranking systems.

Furthermore, we investigate the impact of manually tuning
the weights of Le2e and Lsingle in LCRON. While the UWL
formulation is designed to reduce hyperparameter tuning
costs, it does not guarantee optimal performance theoret-
ically. Table 4 shows the results of fixing Le2e to 1 and
varying the weight of Lsingle. We observe that different
weight configurations yield varying performance, with most
configurations outperforming the baselines. The best man-
ual configuration achieves a joint Recall@10@20 of 0.8733,
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Table 4. Experimental results of LCRON under fixed-weight con-
figurations of Le2e and Lsingle. We fix Le2e to 1 and evaluate
different weights for Lsingle. The test set is the last day, with the
remaining data used for training.

weight of Lsingle
Joint Ranking Retrieval

Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑
0.01 0.8712 0.8713 0.7294 0.9691 0.7122
0.1 0.8706 0.8706 0.7292 0.9686 0.7109
0.5 0.8705 0.8703 0.7279 0.9694 0.7132
1 0.8723 0.8723 0.7284 0.9691 0.7136
2 0.8731 0.8731 0.7295 0.9690 0.7132
3 0.8730 0.8730 0.7289 0.9694 0.7120
4 0.8720 0.8718 0.7293 0.9689 0.7118
5 0.8733 0.8730 0.7299 0.9697 0.7140

which is almost the same as UWL-based LCRON. This sug-
gests that while manual tuning can yield competitive results,
UWL provides a robust and efficient way to combine Le2e

and Lsingle without extensive hyperparameter search.

Overall, these in-depth analyses, including the ablation
study, streaming evaluation, and weight tuning experiments,
collectively demonstrate the robustness and practicality of
LCRON in real-world cascade ranking systems. The abla-
tion study confirms the necessity of both Le2e and Lsingle

for optimizing the interaction effects between ranking and
retrieval stages. The streaming evaluation results further
validate LCRON’s ability to adapt to dynamic, real-world
scenarios, while the weight tuning experiments highlight
the efficiency of the UWL (Kendall et al., 2018) formu-
lation in reducing hyperparameter tuning efforts without
sacrificing performance. These findings solidify LCRON
as a strong candidate for industrial applications, offering
a balanced combination of performance, adaptability, and
ease of deployment.

In addition, we conducted several supplementary experi-
ments to further validate the effectiveness and robustness of
LCRON under various settings. These include studies on
cascade ranking systems with more than two stages (T > 2),
the impact of different differentiable sorting operators, sensi-
tivity analysis on hyperparameter τ , as well as performance
under varying learning rates and batch sizes. These ex-
periments not only demonstrate LCRON’s scalability to
multi-stage cascade ranking systems (see Appendix C.2),
but also its compatibility with alternative differentiable sort-
ing techniques (see Appendix C.3). Moreover, LCRON
exhibits stable performance across a wide range of τ values
(see Appendix C.4) and consistently outperforms baselines
under different training configurations (see Appendix C.5),
highlighting its practicality and robustness for real-world
applications. Due to space constraints, detailed settings,
results, and analysis are provided in Appendix C.

5.5. Online Deployment

To study the impact of LCRON on real-world industrial ap-
plications, we further deploy LCRON in the advertising sys-
tem of Kuaishou Technology. Due to the scarcity of online

Table 5. Industrial experimental results for 15 days on a real-world
advertising system. Each method was allocated 10% of the online
traffic. For online metrics, we calculate the relative improvement
of other methods compared to FS-LambdaLoss as the baseline.

Method/Metric Offline Metrics Online Metrics
Joint Recall Revenue Ad Conversions

FS-LambdaLoss 0.8210 – –
ARF-v2 0.8237 +1.66% +0.65%

LCRON (ours) 0.8289 +4.1% +1.6%

resources, we opted to select only the two best-performing
baselines from the public experiment, along with LCRON
for the online A/B test. Each experimental group was al-
located 10% of the online traffic. Each model was trained
using an online learning approach and was deployed online
after seven days of training, followed by a 15-day online
A/B test. Due to the space limitation, implementation details
are described in appendix B. The results of the online exper-
iments, as shown in Table 5, demonstrate that our LCRON
model achieves significant improvements in both revenue
and ad conversions compared to the two baseline methods,
FS-LambdaLoss and ARF-v2. Notably, LCRON delivers
superior performance in both public and industrial experi-
ments, where variations in data size and model architecture
are present. This indicates not only the effectiveness but also
the robust generalization capabilities of our approach. Based
on the results of rigorous A/B testing, LCRON has been
fully rolled out on the Kuaishou advertising platform since
January 2025. The two models trained under LCRON have
successfully replaced the primary pathways (i.e., those with
the highest weight) in the Matching and Pre-ranking stages,
marking a major milestone in its industrial deployment.

6. Conclusion
In this paper, we present LCRON, a novel training frame-
work for cascade ranking systems, which incorporates two
complementary loss functions: Le2e and Lsingle. Le2e opti-
mizes a lower bound of the survival probability of ground-
truth items throughout the cascade ranking process, ensuring
theoretical consistency with the system’s global objective.
To address the limitations of Le2e, we introduce Lsingle,
which tightens the theoretical bound and provides additional
supervisory signals to enhance stage-wise learning. We
conduct extensive experiments on both public (RecFlow)
and industrial benchmarks, as well as online A/B testing,
demonstrating that LCRON significantly improves end-to-
end Recall, advertising revenue, and user conversion rates.
This work has the potential to make a broad positive impact
across a range of applications, such as recommendation, ad-
vertising, and search systems. We also provide an in-depth
discussion of the limitations and potential future directions
of this work in Appendix E.
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A. Theoretical Analysis for the Gap Between P q2
CS and P̂ q2

CS

Here, we provide a more detailed theoretical analysis of the gap between P q2
CS and its lower bound P̂ q2

CS , and explain how
Lsingle contributes to tightening this bound.

The gap between P q2
CS and P̂ q2

CS can be formulated as Eq. 14:

∆ = P q2
CS − P̂ q2

CS

= Eπ∼Pπ
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Here, we have derived a theoretical upper bound for ∆, denoted as ∆
′
. Note that P q2

M2
∈ [0, 1]N , P q1

M1
∈ [0, 1]N , and∑

P q2
M2

= q2,
∑

P q1
M1

= q1.

Next, we consider how the relationship between the model outputs might affect ∆
′
. For a given P q2

M2
, treating P q2

M2
as the

only variable to minimize ∆
′
, it is evident that the following condition must be satisfied:

(P q1
M1

)i =

1 if i ∈ argTopK
i

(P q2
M2

) (K=q1)

0 otherwise
(15)

where (P q1
M1

)i represents the i-th element of the vector P q1
M1

, and argTopK
i

(P q2
M2

) denotes the indices of the top K elements

of P q2
M2

. This indicates that if the top q2 sets of the two models are consistent, it helps to reduce ∆
′
. Of course, optimizing

the consistency of the entire output distributions across different models also achieves the same goal, as this is a stronger
constraint. Furthermore, if (P q2

M1
)i is a binary vector (i.e., its elements are either 0 or 1), then ∆ achieves its minimum value

(∆
′
= 0) when Eq. 15 is satisfied.

The single-stage loss LMi

single (Eq. 12) directly optimizes the ranking consistency of each model with the same supervision
(ground-truth labels), thereby implicitly aligning M1(D) and M2(D). This helps to reduce ∆

′
, indirectly optimizing the

bound ∆. It is worth noting that there are many methods to optimize the consistency of model outputs, such as model
distillation or minimizing the KL divergence between outputs. The Lsingle we designed not only optimizes the consistency
of output distributions across different models but also mitigates potential gradient vanishing issues in Le2e under certain
circumstances, providing additional effective supervision signals.

B. Implementation Details of Online Experiments
In this section, we provide additional details on the implementation of the online experiments. Our online system consists
of four stages: Matching, Pre-ranking, Ranking, and Mix-ranking. However, for the purpose of this study, we focus on a
two-stage cascade ranking setup, comprising the Matching (Retrieval) and Pre-ranking stages (illustrated in Figure 1). This
design choice is motivated by several practical and methodological considerations: 1) Generality of Two-Stage Setup: The
two-stage cascade ranking setup (Matching and Pre-ranking) does not lose generality, as it captures the core challenges of
cascade ranking optimization, which are fundamental to any multi-stage ranking system. The insights gained from this setup
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can be extended to systems with more stages. 2) Practical Constraints: Conducting experiments on the entire four-stage
system would introduce significant engineering challenges, particularly in data construction and model deployment. For
instance, aligning the format of training logs and deployment details across all stages is non-trivial. Deploying and evaluating
a full four-stage cascade ranking system in an online environment would require substantial infrastructure support, which is
beyond the scope of this study.

Regarding the features, we utilize approximately 150 sparse features and 4 dense features. Sparse features are represented
by embeddings derived from lookup tables, with each ID embedding having a dimensionality of 64. Dense features, on the
other hand, directly use raw values or pre-trained model outputs, with a total dimensionality of 512. The Retrieval model
includes all features used in the Pre-ranking model, except for combined features. Combined features refer to the process
of integrating multiple individual features into a new, unified feature set to improve model performance. This technique
captures interactions between different variables, providing richer information than each feature could individually. The
combined features also fall under the category of sparse features. In our experiments, there are 20 combined features. In our
experiments, models of different stages do not share any parameters.

Regarding the model architectures, we adopt DSSM (Huang et al., 2013) for the retrieval stage and MLP (Rosenblatt,
1958) for the Pre-ranking stage. For DSSM (Huang et al., 2013), the FFN layers’ size of both the user and item towers is
[1024,256,256,64]. The layer size of the MLP (Rosenblatt, 1958) is [1024,512,512,1]. We employ PRelu (He et al., 2015)
as the activation function for hidden layers. We use HeInit (He et al., 2015) to initialize all the training parameters. We
adopt batch normalization for each hidden layer, and the normalization momentum is 0.999.

Regarding the training samples, we organize our training samples according to Section 4.1. We collect samples from the
Matching, Pre-ranking, and Ranking stages, with items that succeed in the Ranking stage treated as ground-truth items. For
each impression, we collect 20 items for training (i.e., N = 20 in Section 4.1). The sample distribution across stages is
defined by n0 = 5, n1 = 5, n2 = 8, and n3 = 2.

The models are trained in an online streaming manner. During each day of training, 20 billion (user, ad) pairs were processed.
The optimizer is AdaGrad with a learning rate of 1e-2. All parameters are trained from scratch, without any pre-trained
embeddings. The batch size is set to 4096 for both the retrieval and Pre-ranking models. Both the training and serving
frameworks are developed based on TensorFlow. We use LCRON to train the retrieval and pre-rank model together and save
unified checkpoints. Subsequently, by reconstructing two metadata files, these two models are deployed separately. During
deployment, each model loads only the parameters corresponding to its own structure from the saved checkpoint during the
joint training phase.

C. More Experimental Details and Results on the Public Benchmark
C.1. Implementation and Hyper-parameters Tuning Details of Baselines

Since none of the baseline methods have been evaluated on the RecFlow (Liu et al., 2025) dataset under cascade ranking
settings, all baseline results were obtained by re-implementing or adapting the source code under the same experimental
conditions as our proposed LCRON, rather than directly citing results from previous papers. For FS-RankNet and FS-
LambdaLoss, we adapt standard implementations from the TF-Ranking library to PyTorch versions. For other baselines,
when open-source code was available and runnable, we used it directly; otherwise, we implemented the baselines based on
the descriptions in their respective papers. To ensure fair comparison, all methods were evaluated using the same common
hyperparameters, such as learning rate, batch size, optimizer, initialization method, etc.

We performed a grid search on the main hyperparameters for all methods to ensure fair comparisons. We report the best
results for the baselines. Specifically, the parameters we tuned include: temperature for ICC (0.05,0.1,0.5,1.0), tau for ARF
and LCRON (1,20,50,100,200,1000); alpha (0,0.25,0.5,0.75,1) for RankFlow; and top-k (10,20,30,40) and smooth factor
(0,0.25,0.5,0.75,1) for FS-LambdaLoss. BCE and FS-RankNet do not have independent hyperparameters.

C.2. Experiments on Three-stage Cascade Ranking

In the main text, we only show the experiments on two-stage cascade ranking scenarios. Although LCRON is readily
extended to cascade ranking systems with more than two stages, which is emphasized in Section 4.1, there is no experimental
evidence for this claim. To further verify the scalability of LCRON for T > 2 stages, we also conduct experiments under the
three-stage cascade ranking setting, which is also a typical setting for T in real-world cascade ranking applications. Limited
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Table 6. Experimental results for three-stage cascade ranking. Each method was run 5 times, and the results are reported as mean±std.
∗ indicates the best results. Bold numbers indicate that LCRON shows statistically significant improvements over the baselines, as
determined by a t-test at the 5% significance level. The test set is the last day, with the remaining data used for training.

Method/Metric Joint Ranking Pre-ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑ Recall@10@40 ↑ NDCG@10 ↑

BCE 0.7191±0.0005 0.6574±0.0011 0.5714±0.0009 0.8814±0.0009 0.6382±0.0007 0.9709±0.0006∗ 0.6350±0.0019∗

ICC 0.6386±0.0071 0.6196±0.0120 0.5794±0.0038 0.7682±0.0408 0.4925±0.0463 0.8526±0.0467 0.4754±0.0679
RankFlow 0.7308±0.0005 0.7230±0.0008 0.6400±0.0008 0.8729±0.0014 0.6396±0.0008 0.9611±0.0008 0.6265±0.0013

FS-RankNet 0.6200±0.0010 0.6224±0.0008 0.5756±0.0006 0.8038±0.0006 0.5733±0.0008 0.9373±0.0008 0.5678±0.0008
FS-LambdaLoss 0.7319±0.0038 0.7292±0.0042 0.6431±0.0014∗ 0.8803±0.0029 0.6443±0.0024∗ 0.9662±0.0012 0.6297±0.0022

ARF 0.7256±0.0004 0.7251±0.0005 0.5675±0.0036 0.8712±0.0008 0.5099±0.0074 0.9612±0.0004 0.4268±0.0031
ARF-v2 0.7332±0.0020 0.7285±0.0051 0.6430±0.0015 0.8777±0.0064 0.6438±0.0031 0.9649±0.0029 0.6284±0.0039
LCRON 0.7390±0.0008∗ 0.7338±0.0008∗ 0.6017±0.0009 0.8859±0.0007∗ 0.6010±0.0031 0.9678±0.0012 0.5758±0.0055

Table 7. Experimental results for directly using differentiable sorting operators to learning the rank, and test LCRON with different
differentiable sorting operators. The experiments are under the settings of the two-stage cascade ranking. Each method was run 5 times,
and the results are reported as mean±std. ∗ indicates the best results. The test set is the last day, with the remaining data used for training.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

SoftSort 0.8103±0.0013 0.8138±0.0011 0.7148±0.0006 0.9386±0.0003 0.7066±0.0005
NeuralSort 0.8210±0.0016 0.8233±0.0007 0.7138±0.0004 0.9469±0.0010 0.6979±0.0013

LCRON(Softort) 0.8723±0.0008 0.8720±0.0009 0.7246±0.0096 0.9703±0.0015∗ 0.7035±0.0265
LCRON(NeuralSort) 0.8732±0.0005∗ 0.8731±0.0004∗ 0.7292±0.0008∗ 0.9700±0.0004 0.7152±0.0009∗

by our industrial scenario, we can only implement two-stage experiments. Thus, we only conduct the three-stage experiments
on the public benchmark. Concretely, we constructed a three-stage cascade ranking system (T = 3) on RecFlow (Liu et al.,
2025), using its prerank neg, coarse neg, rank neg, rerank neg, and rerank pos samples. The samples of rerank pos are
treated as ground truth. The three stages utilized DSSM (Huang et al., 2013), MLP (Rosenblatt, 1958), and DIN (Zhou
et al., 2018) architectures, respectively, which are widely adopted in industrial recommendation systems for Matching,
Pre-ranking, and Ranking stages. The results are shown in Table 6, formatted as mean±std. LCRON still significantly
outperforms the baselines on end-to-end recall, suggesting the scalability of LCRON to cascade ranking systems with
more than two stages.

C.3. Experiments with Different Differentiable Sorting Operators

In the ablation study in Section 5.4, we separately validate the effects of Le2e and Lsingle. It is also curious about the
performance of directly applying differentiable sorting techniques. To further validate the effectiveness of LCRON, we
conduct experiments that solely use differentiable sorting techniques (i.e., aligning model predictions with label permutation
matrices through CE loss), which share the same underlying rationale as FS-RankNet in making models fit complete orders.
In addition, LCRON’s compatibility with different differentiable sorting techniques is also curious. Thus, we further conduct
experiments that test SoftSort (Prillo & Eisenschlos, 2020) as an alternative to NeuralSort (Grover et al., 2019).

All experimental results are shown in Table 7, formatted as mean±std. Each method was run five times. In Table 7,
“NeuralSort” and “SoftSort” represent the results of evaluating standalone the NeuralSort (Grover et al., 2019) and
SoftSort (Prillo & Eisenschlos, 2020) operators respectively. “LCRON(NeuralSort)” and “LCRON(SoftSort)” represent the
results of LCRON that employs NeuralSort and SoftSort as its foundation, respectively.

The results show that LCRON significantly outperforms directly using the differentiable sorting operators, further
validating the effectiveness of our proposed method. Another fact is that LCRON(SoftSort) also achieves significantly
better performance than baselines. These experiments verify LCRON’s effectiveness and generalization capability
across differentiable sorting operators, also suggesting that LCRON’s effectiveness could benefit from more advanced
differentiable sorting techniques.

C.4. Sensitivity Analysis on Hyper-parameters of LCRON

We analyze the sensitivity of LCRON to its hyperparameter τ , which controls the smoothness of NeuralSort (Grover et al.,
2019). Table 8 summarizes the results for different values of τ . The best performance is achieved at τ = 50. Even
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Table 8. Sensitivity analysis results of the hyper-parameter τ of LCRON on the public benchmark, under the settings of the two-stage
cascade ranking. The test set is the last day, with the remaining data used for training.

τ
Joint Ranking Retrieval

Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑
1 0.8701 0.8701 0.7276 0.9677 0.7071

20 0.8709 0.8708 0.7285 0.9696 0.7145
50 0.8732 0.8729 0.7291 0.9700 0.7151
100 0.8722 0.8719 0.7292 0.9707 0.7155
200 0.8721 0.8719 0.7278 0.9703 0.7156

1000 0.8716 0.8711 0.7285 0.9711 0.7197

Table 9. Sensitivity analysis with a learning rate of 0.001 and a batch size of 512, under the settings of the two-stage cascade ranking. The
test set is the last day, with the remaining data used for training. * indicates the best results. The number in bold means that our method
outperforms all the baselines on the corresponding metric.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

BCE 0.8181 0.8000 0.6700 0.9576∗ 0.6918
ICC 0.7644 0.7662 0.6648 0.8825 0.5094

RankFlow 0.8326 0.8272 0.6909 0.9535 0.6922∗

FS-RankNet 0.7537 0.7543 0.6546 0.9184 0.6547
FS-LambdaLoss 0.8289 0.8250 0.6878 0.9558 0.6899

ARF 0.8288 0.8256 0.6316 0.9515 0.5115
ARF-v2 0.8302 0.8295 0.6907 0.9550 0.6838
LCRON 0.8396∗ 0.8380∗ 0.6944∗ 0.9573 0.6839

suboptimal values of τ within a wide range (e.g., τ = 100 or τ = 200) yield significant improvements over the
baselines, demonstrating the robustness of LCRON to hyper-parameter choices. From the results, we observe that
the performance seems to exhibit an unimodal trend with respect to τ , peaking at τ = 50 and gradually decreasing as τ
moves away from this value. This unimodal behavior provides practical guidance for hyperparameter tuning in real-world
industrial applications, suggesting that a moderate value of τ is likely to yield near-optimal performance.

C.5. Sensitivity Analysis on Batch Size and Learning Rate

We also conduct sensitivity analysis experiments on the main hyper-parameters common to all methods, namely batch
size and learning rate. Concretely, we perform the sensitivity analysis on four hyperparameter configurations: (1) learning
rate=0.001 with batch size=512; (2) learning rate=0.001 with batch size=2048; (3) learning rate=0.02 with batch size=512;
(4) learning rate=0.02 with batch size=2048. The experimental results are shown in Table Tables 9 to 12, respectively. It is
noteworthy that these methods show different degrees of effectiveness at different learning rates and batch sizes, among
which ICC is particularly sensitive to these hyperparameters, revealing that its gradient is more likely to be too sharp or
vanish. Most of these methods achieved the best results under learning rate=0.02 and batch size=512. It can be seen that our
method consistently achieves optimal results, demonstrating the robustness of our approach.

D. Runtime and Space Complexity Analysis
This section presents a runtime and space complexity analysis of the discussed methods, aiming to evaluate their practicality
in real-world applications.

The time and space complexity of BCE is O(DN), where N is the number of sampled items within a single impression and
D is the number of impressions in the training. RankFlow involves sequential training stages, using BCE and distillation
losses (each with O(DN) complexity). The serial nature of these steps introduces only a constant multiplicative factor,
preserving the overall O(DN) complexity. Differentiable sorting techniques such as NeuralSort and SoftSort typically have
a per-impression time and space complexity of O(N2), where N is the number of items sampled within a single impression.
This complexity is on par with classic learning-to-rank methods like RankNet (Burges et al., 2005) and LambdaLoss (Wang
et al., 2018). As a result, methods based on differentiable sorting—including ICC, FS-RankNet, FS-LambdaLoss, ARF,
ARF-v2, and LCRON—also exhibit an overall time and space complexity of O(DN2).
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Table 10. Sensitivity analysis with a learning rate of 0.001 and a batch size of 2048, under the settings of the two-stage cascade ranking.
The test set is the last day, with the remaining data used for training. * indicates the best results. The number in bold means that our
method outperforms all the baselines on the corresponding metric.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

BCE 0.8106 0.7947 0.6629 0.9484 0.6808
ICC 0.7459 0.7490 0.6497 0.8754 0.5278

RankFlow 0.8166 0.8135 0.6857∗ 0.9438 0.6811∗

FS-RankNet 0.7533 0.7554 0.6526 0.9111 0.6463
FS-LambdaLoss 0.8194 0.8172 0.6843 0.9467 0.6737

ARF 0.8174 0.8148 0.6269 0.9443 0.5039
ARF-v2 0.8202 0.8193 0.6824 0.9463 0.6632
LCRON 0.8247∗ 0.8219∗ 0.6771 0.9508∗ 0.6750

Table 11. Sensitivity analysis with a learning rate of 0.02 and a batch size of 512, under the settings of the two-stage cascade ranking. The
test set is the last day, with the remaining data used for training. * indicates the best results. The number in bold means that our method
outperforms all the baselines on the corresponding metric.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

BCE 0.8637 0.8522 0.7138 0.9673∗ 0.7027
ICC 0.4972 0.5037 0.4151 0.7426 0.4020

RankFlow 0.7935 0.7983 0.6914 0.9238 0.6607
FS-RankNet 0.8768 0.8772 0.7409 0.9641 0.7049∗

FS-LambdaLoss 0.8778 0.8792 0.7430∗ 0.9658 0.6968
ARF 0.8704 0.8739 0.6843 0.9583 0.5147

ARF-v2 0.8776 0.8803 0.7345 0.9635 0.6935
LCRON 0.8841∗ 0.8859∗ 0.7396 0.9671 0.6969

In real-world applications, N is usually small (e.g., 20 in our system). Moreover, the main computational cost comes from
the model’s prediction generation, which is independent of the specific loss function used. As a result, the computational
cost from the O(DN2) operations in the loss function remains manageable. Under such settings, LCRON should incur no
additional training overhead compared to baseline methods. To validate this, we conducted experiments on RecFlow using
A800 GPUs and recorded the GPU memory usage and runtime. Taking two-stage cascade ranking experiments (N is 40) on
RecFlow as an example, the maximum of GPU memory usage for BCE, ICC, RankFlow, FS-RankNet, FS-LambdaLoss,
ARF, ARF-v2, and LCRON was approximately 37.7 / 38.2 / 38.2 / 37.7 / 38.2 / 37.3 / 37.3 / 38.2 GB, respectively. The
one-epoch runtimes were 5358 / 5376 / 5057 / 5104 / 5076 / 5362 / 5573 / 5418 seconds, respectively. All methods show
comparable runtime performance, with minor differences likely due to runtime environmental factors rather than algorithmic
complexity. In terms of GPU memory usage, model parameters dominate the consumption. Differences in space complexity
among the various loss functions have a negligible impact on overall GPU memory usage.

In summary, the analysis demonstrates that LCRON does not introduce significant computational or memory overhead
compared to existing methods, making it well-suited for industrial deployment.

E. Limitations and Future Work
E.1. Limitations of Using Soft Permutation Matrix to Express the Probability of Top-k Set Selection

For a permutation matrix A, the elements A[j, i] and A[k, i] represent the probabilities that the i-th element of the vector
ranks j-th and k-th, respectively. For any j ̸= k, the values of A[j, i] and A[k, i] are mutually exclusive; in other words,
an increase in one value will suppress the other. This characteristic leads to a challenge in LCRON: although Equation 10
expresses the probability of an item appearing in the top-qi set, when optimizing the probability of the ground-truth item
(assumed to be the i-th item) using our proposed loss, LCRON tends to simultaneously increase both A[j, i] and A[k, i].
This results in gradient conflicts and cancellations, slowing down the optimization process and degrading performance.
Moreover, this issue becomes more pronounced as qi increases.

As mentioned in the main text, to improve performance, we set q1 and q2 in Equation 11 to 10. While this somewhat
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Table 12. Sensitivity analysis with a learning rate of 0.02 and a batch size of 2048, under the settings of the two-stage cascade ranking.
The test set is the last day, with the remaining data used for training. * indicates the best results. The number in bold means that our
method outperforms all the baselines on the corresponding metric.

Method/Metric Joint Ranking Retrieval
Recall@10@20 ↑ Recall@10@20 ↑ NDCG@10 ↑ Recall@10@30 ↑ NDCG@10 ↑

BCE 0.8582 0.8469 0.7086 0.9691 0.7061
ICC 0.5061 0.4927 0.4151 0.7615 0.4647

RankFlow 0.8722 0.8729 0.7360 0.9625 0.6910
FS-RankNet 0.7884 0.7924 0.6875 0.9277 0.6630

FS-LambdaLoss 0.8726 0.8728 0.7368∗ 0.9689 0.7141
ARF 0.8667 0.8680 0.6786 0.9632 0.5364

ARF-v2 0.8725 0.8730 0.7323 0.9691 0.7157∗

LCRON 0.8785∗ 0.8785∗ 0.7327 0.9713∗ 0.7132

compromises the physical meaning of the end-to-end loss, it achieves a better trade-off between alignment with physical
meaning and ease of gradient optimization. If we align q1 and q2 with the cascade ranking setup (i.e., setting q1 = 30
and q2 = 20 for the end-to-end loss), the end-to-end recall of LCRON corresponding to Table 2 would decrease to
0.8714± 0.0008.

We believe that future research should explore new differentiable operators directly designed for top-k set selection, rather
than constructing the probability distribution based on sorting results. Such operators could potentially resolve the conflict
issues observed in LCRON. Alternatively, another feasible approach might involve introducing carefully designed weights
for different A[j, i] and A[k, i] terms in Equation 11, thereby mitigating the conflict problem.

E.2. Limitations of the Fusion of Multiple Surrogate Losses

LCRON adopts UWL (Kendall et al., 2018) as a strategy to fuse different surrogate losses (i.e., Le2e and Lsingle). As shown
in Table 2 and Table 4, UWL demonstrates robustness by reducing the need for manual hyperparameter tuning without
compromising performance. However, it is worth noting that UWL makes an implicit assumption—originally proposed in
its paper—that each loss follows a Gaussian distribution. This assumption may not hold in practice, making UWL more of
a heuristic approach that primarily aims at balancing the scales of different loss terms rather than providing theoretically
grounded fusion.

It remains unclear whether this strategy can maintain its effectiveness and robustness across broader scenarios, such as those
involving varying model capacities or data complexities. Therefore, exploring more principled approaches for combining
multiple losses in LCRON is an important direction for future work.

We argue that the problem of loss combination in LCRON can be viewed as a special case of multi-task learning, where
the goal is to combine multiple objectives in a way that better optimizes the final target. Advanced techniques from the
fields of multi-task learning (Liu et al., 2019; Chen et al., 2020; Wang et al., 2021) and meta-learning (Finn et al., 2017;
Jamal & Qi, 2019; Lee & Yoon, 2024) are likely to offer valuable insights into improving both the effectiveness and
generalization of the LCRON framework. As discussed in ARF (Wang et al., 2024), certain sub-losses may carry overlapping
or hierarchical semantic meanings. Different settings—such as models with varying capacities or datasets with different
levels of complexity—may benefit from distinct weighting strategies. Designing a dedicated meta-learner that adapts the
loss weights based on the characteristics of the model and data might lead to a more universally robust solution.

E.3. Computational Complexity Limitations of LCRON for Cascade Top-K Selection

LCRON utilizes a soft permutation matrix generated through differentiable sorting techniques, resulting in an O(n2)
computational complexity. Although an O(n2) complexity is generally acceptable (as many mainstream learning-to-rank
methods, such as LambdaLoss (Wang et al., 2018), also exhibit this complexity), it still falls short compared to the theoretical
optimal complexity of O(n) for hard top-k selection problems.

A key direction for future research could be to explore how to directly relax hard top-k selection methods to obtain
differentiable operators for top-k selection and cascade top-k selection with a complexity of O(n). Moreover, investigating
how more computationally efficient algorithms can be combined with data scaling-up strategies—and their potential impact
on industrial applications—is also likely to be of great significance.
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