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Abstract

As Large Language Models (LLMs) are increasingly integrated in diverse appli-
cations, obtaining reliable measures of their predictive uncertainty has become
critically important. A precise distinction between aleatoric uncertainty, arising
from inherent ambiguities within input data, and epistemic uncertainty, originating
exclusively from model limitations, is essential to effectively address each uncer-
tainty source and improve the reliability of the user-LLM interaction. In this paper,
we introduce Spectral Uncertainty, a novel approach to quantifying and decompos-
ing uncertainties in LLMs. Leveraging the Von Neumann entropy from quantum
information theory, Spectral Uncertainty provides a rigorous theoretical foundation
for separating total uncertainty into distinct aleatoric and epistemic components.
Unlike existing baseline methods, our approach incorporates a fine-grained repre-
sentation of semantic similarity, enabling nuanced differentiation among various
semantic interpretations in model responses. Empirical evaluations demonstrate
that Spectral Uncertainty outperforms state-of-the-art methods in estimating both
aleatoric and total uncertainty across diverse models and benchmark datasets.

1 Introduction

Since the public release of ChatGPT [1], Large Language Models (LLMs) have exhibited exponen-
tial improvements in capabilities across numerous benchmarks and have demonstrated increased
algorithmic efficiency [2]. Concurrently, infrastructure advancements and the proliferation of APIs,
agent-based systems, and integrations into consumer software and devices have further enhanced
their accessibility, leading to an unprecedented democratization of these models [3]. Consequently,
LLMs are increasingly employed in critical domains such as scientific research [4, 5], politics [6],
and medicine [7, 8]. This widespread adoption has underscored the need to not only generate better
predictions but also reliably quantify their uncertainty.

While several recent approaches have been developed to quantify uncertainty in LLMs, they exhibit
key limitations: many rely on token-level representations, treat semantic similarity as a binary
relation, or fail to decompose predictive uncertainty into its epistemic and aleatoric components.
These limitations hinder the interpretability and practical utility of uncertainty estimates in real-world
applications.

To address this gap, we propose the Spectral Uncertainty framework, which provides a fine-grained,
theoretically grounded decomposition of uncertainty in LLMs. Our approach leverages von Neumann
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Figure 1: Illustration of our Spectral Uncertainty Decomposition. Given an ambiguous query like
“Who’s won the most World Series in baseball?”, an LLM may interpret it in multiple valid ways
(e.g., by team or by player), leading to high predictive uncertainty. Unlike existing methods, our
spectral decomposition quantifies not just the magnitude but also the source of uncertainty, revealing
in this case a dominant aleatoric component rooted in semantic ambiguity.

entropy [9] and functional Bregman information [10] to derive a kernel-based decomposition into
aleatoric and epistemic components. A two-stage sampling and embedding process, followed by
spectral analysis using a kernel function, enables practical estimation of these uncertainty measures in
a continuous semantic space. Consequently, practitioners can use Spectral Uncertainty to determine
whether an LLM is uncertain because of ambiguous user input or because it lacks knowledge. In
the former case, the user can be prompted to clarify their question, improving the reliability of the
interaction with the LLM.

The main contributions of our work are as follows:

(a) We introduce Spectral Uncertainty, a novel uncertainty quantification framework for LLMs
that enables fine-grained estimation of both aleatoric and epistemic uncertainty. We provide
a rigorous theoretical derivation of this framework from a novel and general uncertainty
decomposition based on functional Bregman information, applicable to any concave uncer-
tainty measure.

(b) We instantiate this decomposition using von Neumann entropy and propose practical, kernel-
based estimators for each component: aleatoric, epistemic, and total uncertainty. These
estimators allow the theoretical framework to be applied in real-world LLM scenarios using
embedding-based representations of model outputs.

(c) We demonstrate through extensive empirical evaluation that Spectral Uncertainty achieves
state-of-the-art performance in both ambiguity detection and correctness prediction tasks,
outperforming strong semantic and decomposition-based baselines. This highlights its
potential for improving the reliability and interpretability of LLM predictions in practice.

2 Related Work

Early approaches to estimating model uncertainty [11, 12] relied exclusively on output token proba-
bilities, which rendered them infeasible in black-box scenarios. Moreover, such methods primarily
measured lexical and syntactic confidence, failing to account for the semantic correctness of model
responses. For instance, a model generating both “France’s capital is Paris” and “Paris is France’s
capital” may appear uncertain under token-level measures despite conveying the same meaning.

To overcome these limitations, semantic entropy [13, 14] defines entropy in a semantic rather than
token-based space. This technique samples multiple responses and groups them into clusters of
semantically equivalent responses, using a Natural Language Inference (NLI) model [15]. Subse-
quently, entropy is computed from the resulting categorical distribution of clusters. While this method
significantly improves over lexical measures, it treats semantic equivalence as binary, thus failing
to capture finer semantic nuances—such as gradations between “extremely high,” “somewhat high,”
and “moderate” temperatures.

Kernel Language Entropy [16] provides a finer semantic representation by computing discrete
similarity scores between generated responses using weighted NLI predictions. Although this
improves granularity, it still discretizes the semantic space and does not fully leverage continuous
embeddings.
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A further advancement, predictive kernel entropy [17], represents model outputs using sentence
embeddings and computes similarity via kernel functions in a continuous semantic space. This
method currently achieves state-of-the-art performance and offers the most refined representation of
uncertainty.

Despite these advancements, existing methods focus solely on predictive (or total) uncertainty and do
not disentangle its underlying components. Predictive uncertainty captures the overall confidence in
a model’s response but offers no insight into the source of that uncertainty. In particular, two major
types of uncertainty are well-recognized [18]:

• Aleatoric uncertainty arises from inherent ambiguity or noise in the input (e.g., unclear
queries or underspecified instructions) and cannot be reduced by improving the model.

• Epistemic uncertainty, by contrast, reflects the model’s lack of knowledge, often due to
gaps in training data, and can potentially be reduced through additional learning or data
collection.

Uncertainty decomposition aims to separate total predictive uncertainty into its constituent compo-
nents: aleatoric and epistemic uncertainty. While this has been studied extensively in the context
of classification tasks [19, 10], its application to LLMs remains relatively underexplored. A recent
effort by Hou et al. [20] extends uncertainty decomposition to LLMs using a clustering-based method
akin to semantic entropy.

Conceptually, their approach draws on the standard information-theoretic decomposition of uncer-
tainty [19]:

H(q(Y | X)) = Eq(θ|D) [H(q(Y | X, θ))] + I(Y ; θ | X),

whereH denotes Shannon entropy [21] and I the mutual information. Here, q(Y | X) represents the
model’s predictive distribution for output Y given input X , and θ is a latent variable representing
different model configurations—typically instantiated via ensembling. In this decomposition, the
mutual information term I(Y ; θ | X) captures the disagreement among ensemble members and is
thus interpreted as epistemic uncertainty. The expected conditional entropy Eq(θ|D) [H(q(Y | X, θ))]
quantifies the remaining irreducible uncertainty, attributed to aleatoric uncertainty.

However, Hou et al. [20] diverge from this standard decomposition in two key ways to adapt it to
LLMs. First, although uncertainty in classification or regression tasks can be estimated using Bayesian
Neural Networks (BNNs) [22, 23] or Deep Ensembles [24], these approaches are computationally
infeasible for LLMs. Even limiting such methods to the fine-tuning stage requires white-box access
to the model, which is often impractical or unavailable for proprietary LLMs.

To circumvent this limitation, Hou et al. [20] propose substituting model variability (θ) with input
context variability. Specifically, they generate multiple clarifications C1, C2, . . . , Cn of the user’s
input question, each representing an interpretation or reformulation of the question. The model is
then conditioned on these clarifications, effectively creating an ensemble over input contexts rather
than over models. This leads to a reformulated decomposition:

H(q(Y | X)) = Eq(C|D) [H(q(Y | X,C))] + I(Y ;C | X),

where the mutual information term I(Y ;C | X) reflects disagreement between interpretations
and is therefore attributed to aleatoric uncertainty. Conversely, the expected conditional entropy
Eq(C|D) [H(q(Y | X,C))] is interpreted as epistemic uncertainty, as it captures residual uncertainty
after conditioning on a particular interpretation.

While this method achieves state-of-the-art performance, it inherits a key limitation from earlier
clustering-based techniques: the reliance on discrete clusters to compute entropy reduces semantic
similarity to a binary notion. As a result, the decomposition remains coarse and unable to fully
capture fine-grained distinctions in meaning, which limits the accuracy and expressiveness of its
uncertainty estimates.

3 A Novel Uncertainty Decomposition

In this section, we introduce a novel and general uncertainty decomposition of aleatoric and epistemic
uncertainty given any total uncertainty represented by a concave function. This is followed by a
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discussion of the special case of von Neumann entropy, and an introduction of estimators useable in
practice. A core definition, which we require for our contribution, is Bregman Information given as
follows.
Definition 3.1 (Gruber and Buettner [10]). For a random variable X with outcomes in an appropriate
space X , and a convex function g : X → R, the (functional) Bregman Information of X generated
by g is defined by

Bg (X) := E [g (X)]− g (E [X]) .

Further details about the Bregman Information are included in Appendix A. The Bregman Information
arises naturally in our decomposition as follows.

3.1 Decompositions: General and Special Cases

Based on the above definition, we provide the following general uncertainty decomposition of a
marginal distribution.
Theorem 3.2. Let P be a set of probability distributions over a set Y and H : P → R a concave
function. Let Y be a random variable with outcomes in Y , and marginal distribution PY . Further, let
PY |W be a conditional distribution of Y given another random variable W . Then,

H (PY ) = EW

[
H

(
PY |W

)]
+ B−H

(
PY |W

)
.

The proof of this general result is remarkably short:

H (PY ) = H
(
EW

[
PY |W

])
+ EW

[
H

(
PY |W

)]
− EW

[
H

(
PY |W

)]
= EW

[
H

(
PY |W

)]
+ B−H

(
PY |W

)
.

A very common example of a concave function H of distributions is the Shannon entropy [21], defined
as H(p) = −

∑n
i=1 pi log pi for a discrete probability distribution p = (p1, . . . , pn). Substituting H

with the Shannon entropy in Theorem 3.2 recovers the classical information-theoretical decomposition
of total uncertainty into aleatoric and epistemic uncertainty [19].

Besides the classical Shannon entropy, the kernel-based von Neumann entropy [9, 25] is another
case of a concave function, which is used in recent advances for detecting hallucinations of large
language models [16]. Informally, the von Neumann entropy receives a covariance operator as
its argument and is equal to the Shannon entropy of the eigenvalues of the respective covariance
operator. For a rigorous definition, we require some fundamental concepts related to reproducing
kernel Hilbert spaces (RKHS) [25]. Let X be a compact set and k : X × X → R be continuous
positive semidefinite (p.s.d.) kernel function. Let H be the corresponding RKHS. The kernel is
normalized if k(x, x) = 1 for all x ∈ X . Further, let Φ: X −→ H be the corresponding feature map,
with k(x, y) = ⟨Φ(x),Φ(y)⟩H, for all x, y ∈ X . The respective tensor product ⊗H is defined for
every f, g, h ∈ H by an operator (f ⊗H g) : H −→ H via (f ⊗H g)(h) = ⟨g, h⟩Hf. We can now
introduce covariance operators, which act as arguments for the von Neumann entropy.
Definition 3.3 (Bach [25]). The non-central covariance operator of the distribution P w.r.t the
kernel k is defined by:

ΣP := EX∼P [Φ(X)⊗H Φ(X)] ,

for a P−distributed random variable X with values in X .

Note that ΣP is a self-adjoint and p.s.d. operator, and has unit trace [25].
Definition 3.4 (Bach [25]). For a self-adjoint, p.s.d. operator A with a unit trace on the Hilbert space
H, the von Neumann entropy (VNE) of A is defined as

HV N (A) := −Tr[A logA].

It holds that HV N is concave. Further, HVN(A) = −
∑

λ∈Λ(A) λ log λ, with Λ(A) being the
(possibly infinite) sequence of eigenvalues of A2. In that sense, the VNE of the operator A is the
Shannon entropy of its eigenvalues. Based on its properties, we can use the covariance operator ΣP
as the argument for HVN, yielding the following.

2We use the convention 0 log 0 = 0
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Definition 3.5 (Kernel-based von Neumann entropy [25]). Let P be a probability distribution over X
and ΣP be the respective covariance operator. The kernel-based VNE of P is defined as

HV N (P) := HV N (ΣP) = −Tr [ΣP log ΣP] .

Since HVN is also concave with the distribution as argument, we can use it to generate a Bregman
Information for the conditional distribution PY |W . This recovers the Holevo Information [26] given
by

H
(
PY |W

)
:= B−HV N

(
PY |W

)
.

Now, we apply Theorem 3.2 to obtain the following important special case.
Corollary 3.6 (Spectral uncertainty decomposition). The following holds for given random variables
Y and W :

HV N (PY )︸ ︷︷ ︸
I

= EW

[
HV N

(
PY |W

)]︸ ︷︷ ︸
II

+H
(
PY |W

)︸ ︷︷ ︸
III

.

For Spectral Uncertainty, we follow [20]’s approach and condition on the input clarifications (inter-
pretations), represented here by the random variable W . In this decomposition:

• Term I denotes the total predictive uncertainty, expressed as the von Neumann entropy
(VNE) of the marginal predictive distribution PY .

• Term II corresponds to the expected conditional entropy, computed by marginalizing out the
clarification variable W . This captures the model’s intrinsic uncertainty after conditioning
on a specific interpretation of the input. As such, we interpret this term as measuring
epistemic uncertainty, which reflects the model’s limitations in knowledge or training data,
independent of input ambiguity.

• Term III represents the functional Bregman information (here using VNE as the uncertainty
functional), quantifying the variability in the conditional distributions PY |W as W varies. In
our framework, following the intuition of [20], the variable W captures different plausible
clarifications or interpretations of the user’s input.

When aleatoric uncertainty is low (i.e., the input is unambiguous) there is little variation in W , and the
conditional distribution PY |W remains stable. In the limiting case where W is almost surely constant,
we have B−HV N

(PY |W ) = 0, indicating the absence of aleatoric uncertainty. In contrast, high
aleatoric uncertainty manifests as greater variability in how the input can be interpreted, leading to
greater variation in PY |W , and therefore, a larger Bregman information term. Based on this behavior,
we attribute term III to aleatoric uncertainty.

3.2 Finite-Sum Spectral Estimators

Having established a novel uncertainty decomposition with a relevant special case, we now describe
how to estimate the individual terms of the spectral uncertainty decomposition in Corollary 3.6.

The estimation of HV N (PX) is based on [25]. Let X = X1, . . . , Xn ∼ PX be i.i.d. random variables
with values in X . We can estimate ΣPX

via Σ̂PX
:= 1

n

∑n
i=1 Φ(Xi)⊗ Φ(Xi). This yields a plug-in

estimator for HV N (PX):
ĤV N (X) := −Tr

[
Σ̂PX

log Σ̂PX

]
. (1)

SinceH and Σ̂PX
are possibly infinite-dimensional, computing ĤV N (X) based on the above formula

may be practically infeasible. In consequence, we use the following property.
Proposition 3.7 ([25]). Let K ∈ Rn×n be the empirical kernel matrix defined by [K]ij := k(Xi, Xj)

with i, j ∈ [n] := {1, . . . n}, and denote with λ̂1, . . . , λ̂n the eigenvalues of 1
nK. Then

Tr
[
Σ̂PX

log Σ̂PX

]
=

n∑
i=1

λ̂i log λ̂i .

We restate the proof in Appendix B. Thus, we can express ĤV N (X) as a finite sum and compute it in
practice.
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Building upon that, we propose an analogous plug-in estimator of the kernel-based Holevo Information
H(PY |W ). Similarly to Theorem 3.2, we consider Y to be a random variable with values in X and
PY |W its conditional distribution, conditioned on another random variable W . To estimate this
quantity, we need a two-stage sampling procedure:

• First, an outer sample W1, . . .Wn
i.i.d.∼ PW .

• Second, for each i ∈ [n], an inner sample Yi1, . . . , Yim
i.i.d.∼ PY |Wi

, yielding a sample matrix
Y := (Yij)i∈[n],j∈[m].

Similar to Proposition 3.7, we require the following eigenvalues. Define the inner kernel matrices
Ki ∈ Rm×m with [Ki]j1j2 := k (Yij1 , Yij2) for each i ∈ [n] and j1, j2 ∈ [m]. Further, define the
outer kernel matrix Kout ∈ Rnm×nm with[

Kout
]
(i1−1)m+j1,(i2−1)m+j2

:= k(Yi1j1 , Yi2j2)

for i1, i2 ∈ [n] and j1, j2 ∈ [m]. Denote with λ̂i1, . . . , λ̂im the eigenvalues of 1
mKi for every

i ∈ [n] and with λ̂out
1 , . . . , λ̂out

nm the nm eigenvalues of 1
nmKout. Now, we propose for the aleatoric

uncertainty H(PY |W ) the novel estimator

Ĥ (Y) :=
1

n

n∑
i=1

m∑
j=1

λ̂ij log λ̂ij −
nm∑
i=1

λ̂out
i log λ̂out

i . (2)

In Appendix B, we show how this a plug-in estimator based on Proposition 3.7. Using Proposition
3.7, we also derive the estimator for the epistemic uncertainty EW

[
HV N

(
PY |W

)]
as

− 1

n

n∑
i=1

m∑
j=1

λ̂ij log λ̂ij . (3)

Finally, adding up both estimators yields the total uncertainty estimator.

4 Methodology

We consider a scenario in which a user provides a question or an instruction (e.g., “Who has won
the most World Series championships in baseball?”) to a target LLM. Our method computes various
uncertainty measures based on the Spectral Uncertainty decomposition presented in Equation 3.6. An
overview of the proposed method is illustrated in Figure 1.

To compute estimators corresponding to each component of the decomposition, we employ a two-stage
sampling procedure for generating answers from the target LLM. First, following the methodology
described by Hou et al. [20], we utilize a clarification LLM to generate n clarifications W1, . . . ,Wn

of the user’s original input. For example, these clarifications could be “Which team has won the
most World Series championships in baseball?” and “Which player has won the most World Series
championships in baseball?”. The clarification LLM may either coincide with or differ from the
target LLM. A more capable model, such as GPT-4o, naturally provides superior clarifications,
thereby yielding improved uncertainty estimates, albeit with higher inference costs. Nonetheless,
all n clarifications can be efficiently generated within a single prompt, significantly reducing the
computational cost. Moreover, Hou et al. [20] demonstrate that supervised fine-tuning of a smaller
model (e.g., Llama-3-8B) on clarification generation substantially improves performance, resulting in
uncertainty estimation capabilities comparable to those of larger proprietary models.

Second, for each clarification Wi, we generate m answers Xi1, . . . , Xim from the target LLM using
multinomial sampling at a temperature t > 0.

Next, we employ a pretrained sentence embedding model on all generated answers to obtain corre-
sponding embeddings Yij for each sampled answer, indexed by i ∈ [n] and j ∈ [m].

Finally, we apply the estimators introduced in Section 3 to compute the respective uncertainty
measures. In our example, the generated answers to the “which team” clarification could be identically
“The New York Yankees”, while answers to the “which player” clarification would be identically
“Yogi Barra”. Spectral Uncertainty correctly attributes zero epistemic uncertainty and high aleatoric
uncertainty in this case (which is equal to total uncertainty).

The complete procedure is summarized in Algorithm 1.
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Algorithm 1 Spectral Uncertainty
Input: Target LLM Mtarget, clarification LLM Mclarification, sentence embedding model femb,
kernel k, user task t
Output: Total, aleatoric, and epistemic uncertainty estimates

1: W1, . . . ,Wn ←Mclarification(t) ▷ Generate clarifications
2: for i← 1 to n do
3: Xi1, . . . Xim ←Mtarget(Wi) ▷ Sample model answers
4: for j ← 1 to m do
5: Yij ← femb(Xij) ▷ Compute answer embedings
6: end for
7: Ki ← pairwiseCompute(k, Yi,1:m) ▷ Compute pairwise kernel values
8: λ̂i1, . . . , λ̂im ← computeEigenvalues( 1

mKi)
9: end for

10: Kout ← pairwiseCompute(k, flatten(Y1:n,1:m))

11: λ̂out
1 , . . . , λ̂out

nm ← computeEigenvalues( 1
nmKout)

12: aleatoric← computeAleatoricEstimator(λ̂1:n,1:m, λ̂out
1:nm) ▷ Apply Eq. 2

13: epistemic← computeEpistemicEstimator(λ̂1:n,1:m) ▷ Apply Eq. 3
14: total← aleatoric + epistemic
15: return total, aleatoric, epistemic

5 Experiments

We validate our proposed uncertainty decomposition framework through a comprehensive experimen-
tal analysis. Specifically, we assess the effectiveness of our estimates of aleatoric and total uncertainty
in tasks where each type of uncertainty is relevant.

5.1 Metrics and Tasks

To evaluate aleatoric uncertainty estimates, we follow prior work [27, 28] and treat label disagreement
as ground truth. We use datasets in which samples with high annotator disagreement are labeled as
“ambiguous” and measure how well an uncertainty estimator can discriminate between ambiguous
and unambiguous inputs.

To evaluate total predictive uncertainty, we adopt the correctness prediction task [28, 13], which
measures an estimator’s ability to predict whether a model’s output is correct.

In both tasks, we quantify performance using the Area Under the Receiver Operating Characteristic
curve (AUROC), which reflects the quality of the uncertainty ranking. Additionally, we report the
Area Under the Precision-Recall curve (AUPR) as a complementary metric.

5.2 Baselines

We focus on baselines that leverage semantic representations of model outputs, as methods based
solely on token-level probabilities have shown limited performance [13, 14]. Our evaluation includes
Semantic Entropy [13], Kernel Language Entropy [16], Predictive Kernel Entropy [17], and Input
Clarification Ensembling [20]. The latter is the state-of-the-art decomposition method specifically
targeting aleatoric uncertainty by generating multiple clarifications of the input.

5.3 Datasets and Models

For ambiguity detection, we use the AmbigQA dataset [29], which provides ambiguity annotations for
questions. We conduct our evaluation on a randomly selected subset of 200 samples. Additionally,
we include the synthetic AmbigInst dataset [20], which focuses on instruction-based tasks rather than
general knowledge questions.

For correctness prediction, we evaluate on two widely-used question answering benchmarks: TriviaQA
[30] and Natural Questions [31], randomly sampling 300 questions from the development set of each.
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Table 1: Comparison of aleatoric uncertainty estimation for different methods on the AmbigQA and
AmbigInst datasets using Phi-4 14B and LLaMA 4 Maverick. Metrics are reported as percentages.

Uncertainty Method Phi-4 14B LLaMA 4 Maverick
AUROC (%) AUPR (%) AUROC (%) AUPR (%)

AmbigQA
Semantic Entropy 53.29 51.85 46.14 49.36
Kernel Language Entropy 49.88 48.11 45.59 48.84
Predictive Kernel Entropy 48.37 48.94 45.10 49.12
Input Clarification Ensembling (aleatoric) 63.46 62.23 59.51 60.12
Spectral Uncertainty (aleatoric) 69.15 67.98 60.39 60.48

AmbigInst
Semantic Entropy 60.58 69.18 55.88 64.37
Kernel Language Entropy 60.60 69.35 55.80 61.83
Predictive Kernel Entropy 75.93 79.90 66.83 71.31
Input Clarification Ensembling (aleatoric) 71.70 80.62 69.66 79.04
Spectral Uncertainty (aleatoric) 86.37 90.10 85.95 89.46

To evaluate model performance across different scales, we utilize two large language models: the
109B-parameter LLaMA 4 Maverick and the 14B-parameter Phi-4. Both models serve as the target
LLM for generating responses across all methods. For clarification-based approaches — namely Input
Clarification Ensembling as well as Spectral Uncertainty — we employ GPT-4o as the clarification
LLM to generate high-quality input clarifications. All prompts used for generating model responses
and clarifications are detailed in Appendix E. To compute semantic similarity, we use normalized
sentence embeddings from the all-mpnet-base-v2 model. Further implementation details are included
in Appendix C.

5.4 Ambiguity Detection Task (Aleatoric Uncertainty)

Table 1 presents AUROC and AUPR scores for aleatoric uncertainty estimation on the AmbigQA and
AmbigInst datasets, evaluated using both the Phi-4 14B and LLaMA 4 Maverick models.

Across both datasets and model scales, Spectral Uncertainty consistently achieves the best perfor-
mance among all baselines. On AmbigQA, which contains real-world ambiguous questions, Spectral
Uncertainty yields the highest AUROC (69.15% and 60.39%) and AUPR (67.98% and 60.48%)
on Phi-4 and LLaMA 4, respectively. Notably, it provides almost a 9% higher AUROC for Phi-4,
compared to Input Clarification Ensembling, the best-performing baseline.

The performance gap becomes even more pronounced on AmbigInst. Here, Spectral Uncertainty
reaches AUROC scores of 86.37% (Phi-4) and 85.95% (LLaMA 4), significantly outperforming all
baselines. Compared to the next-best method—Predictive Kernel Entropy for Phi-4 and Input Clarifi-
cation Ensembling for LLaMA 4—our method improves AUROC by over 13% and 23% , respectively.
Similar trends are observed in AUPR scores. These results indicate that our decomposition-based
method is particularly effective at capturing aleatoric uncertainty.

These findings are supported by kernel density plots (Appendix F) showing the probability distribu-
tions of uncertainty values for ambiguous vs. unambiguous samples across all considered methods.
In particular, they visually highlight how Spectral Uncertainty provides substantially better separation
of ambiguous samples from unambiguous ones compared to baselines.

5.5 Correctness Prediction Task (Total Uncertainty)

In the correctness prediction task, we aim to quantify the ability of an LLM to give a correct answer
to a given question. To establish ground truth for correctness prediction, we follow the protocol of
Farquhar et al. [14]: First, we sample the most likely answer from the model at temperature t = 0.1,
treating this as the model’s best effort. Then, we prompt GPT-4.1, to compare this answer to the
ground truth and determine whether it is correct (Appendix E).
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Table 2: Comparison of predictive uncertainty estimation for different methods on the TriviaQA
and Natural Questions datasets using Phi-4 14B and LLaMA 4 Maverick. Metrics are reported as
percentages.

Uncertainty Method Phi-4 14B LLaMA 4 Maverick
AUROC (%) AUPR (%) AUROC (%) AUPR (%)

TriviaQA
Semantic Entropy 84.70 71.10 71.64 43.75
Kernel Language Entropy 86.20 76.64 71.95 45.72
Predictive Kernel Entropy 85.88 74.66 73.85 45.86
Input Clarification Ensembling (total) 89.45 74.54 82.76 55.95
Spectral Uncertainty (total) 91.92 80.79 84.82 60.84

Natural Questions (NQ)
Semantic Entropy 76.24 74.36 70.24 52.35
Kernel Language Entropy 82.77 81.84 71.60 60.79
Predictive Kernel Entropy 77.67 76.57 70.56 58.73
Input Clarification Ensembling (total) 81.91 81.04 74.93 60.72
Spectral Uncertainty (total) 81.63 81.98 75.02 62.87

Table 2 reports results for correctness prediction, measuring the effectiveness of total uncertainty
estimates across the TriviaQA and Natural Questions datasets.

On TriviaQA, Spectral Uncertainty achieves the best performance across both models. For Phi-4,
it reaches 91.92% AUROC and 80.79% AUPR, outperforming Input Clarification Ensembling by
2.5 and 6.2 percentage points, respectively. For LLaMA 4, Spectral Uncertainty again leads with an
AUROC of 84.82% and AUPR of 60.84%.

On Natural Questions, the differences among methods are more nuanced. While Kernel Language En-
tropy achieves the highest AUROC on Phi-4 (82.77%), Spectral Uncertainty attains the highest AUPR
(81.98%), indicating stronger precision-recall performance. On LLaMA 4, Spectral Uncertainty
yields the best scores on both metrics.

We also validate our approach via kernel density plots of correct vs. incorrect predictions across dif-
ferent methods (see Appendix F). Once again, Spectral Uncertainty provides visibly better separation
of uncertainty values than the baselines.

Overall, these results demonstrate that Spectral Uncertainty outperforms state-of-the-art baselines
in most scenarios, achieving robust performance regardless of model scale or dataset. Its consistent
gains across evaluation setups suggest that our theoretically grounded decomposition framework
provides more reliable and fine-grained uncertainty estimates than baselines.

6 Discussion and Conclusion

We introduced Spectral Uncertainty, a novel framework for decomposing predictive uncertainty
in LLMs into aleatoric and epistemic components. Our approach is theoretically grounded in a
general uncertainty decomposition based on functional Bregman information, and instantiated using
von Neumann entropy in a kernel-induced semantic space. This yields fine-grained, theoretically
motivated uncertainty estimates that outperform existing baselines across standard benchmarks.

While effective, the method involves computational cost due to the number of generated responses
(n×m), even though each clarification uses only a small number of samples. Reducing this cost via
more efficient or adaptive sampling strategies is a promising direction for future work. Moreover,
although the decomposition and estimators are derived from first principles, our evaluation remains
empirical—consistent with the broader trend in LLM uncertainty research.

Overall, Spectral Uncertainty offers a principled and practical decomposition framework for modeling
uncertainty in language models, with potential applications in safety-critical and interactive AI
settings, resulting in more reliable systems.
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A Bregman Information

The Bregman Information is a generalisation of the variance of a random variable, i.e., if X = R
and gsq(x) = x2, then Bgsq (X) = Var (X). Additionally, for any g it holds that Bg (X) = 0 if X
has only one outcome with non-zero probability. Further, if g is differentiable, then the Bregman
Information is the expected Bregman divergence between X and its expectation E [X] [32].

B Proofs

B.1 Proof of Proposition 3.7

In the following, we restate the proof of Proposition 3.7 from [25]:

Proof. The non-zero eigenvectors of Σ̂p belong to the image space of Σ̂p and are thus linear combi-
nations f =

∑n
j=1 αjΦ(Xj) for α ∈ Rn. Then

Σ̂pf =
1

n

n∑
i=1

n∑
j=1

αj

[
Φ(Xi)⊗ Φ(Xi)

]
Φ(Xj)

=
1

n

n∑
i=1

n∑
j=1

αjk(Xi, Xj)Φ(Xi)

=
1

n

n∑
i=1

(Kα)iΦ(Xi).

Thus, if Kα = nλα, Σ̂pf = λf , and if Σ̂pf = λf with λ ̸= 0 and f ̸= 0 (which implies Kα ̸= 0),
then

∑n
i=1

[
(Kα)i − nλαi

]
Φ(Xi) = 0, which implies K2 = nλKα and then Kα = nλα since

Kα ̸= 0. Thus, the non-zero eigenvalues of Σ̂p are exactly the ones of 1
nK, and we thus get

Tr
[
Σ̂p log Σ̂p

]
= Tr

[
1
nK log

(
1
nK

)]
.

B.2 Estimators

By definition

H
(
PY |W

)
= B−HV N

(
PY |W

)
= −EW [HV N (PY |W )] +HV N

(
EW [PY |W ]

)
= −EW [HV N (PY |W )] +HV N (PY ) .

As mentioned in Section 3, we perform a two-stage sampling procedure:

• First, an outer sample W1, . . .Wn
i.i.d.∼ PW .

• Second, for each i ∈ [n], an inner sample Yi1, . . . , Yim
i.i.d.∼ PY |Wi

, yielding a sample matrix
Y := (Yij)i∈[n],j∈[m]. Here, the nm elements of Y are then samples from the marginal
distribution PY .

Let the inner kernel matrices Ki ∈ Rm×m be such that [Ki]j1j2 := k (Yij1 , Yij2) for each i ∈ [n]

and j1, j2 ∈ [m]. Further, let the outer kernel matrix Kout ∈ Rnm×nm be defined with[
Kout

]
(i1−1)m+j1,(i2−1)m+j2

:= k(Yi1j1 , Yi2j2)

for i1, i2 ∈ [n] and j1, j2 ∈ [m]. Denote with λ̂i1, . . . , λ̂im the eigenvalues of 1
mKi for every i ∈ [n]

and with λ̂out
1 , . . . , λ̂out

nm the nm eigenvalues of 1
nmKout. Applying the estimator in Equation 1 and

Proposition 3.7 yields the following estimator for HV N (PY |Wi
):

−
m∑
j=1

λ̂ij log λ̂ij .
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Similarly, we get the following estimator for the kernel-based VNE of the marginal distribution
HV N (PY ):

−
nm∑
i=1

λ̂out
i log λ̂out

i .

Combining both estimators together and averaging over Wi yields the following estimator for the
Holevo Information:

Ĥ (Y) :=
1

n

n∑
i=1

m∑
j=1

λ̂ij log λ̂ij −
nm∑
i=1

λ̂out
i log λ̂out

i .

C Implementation Details

To generate multiple model outputs required by our method and the selected baselines, we use
multinomial sampling from the LLM with a temperature setting of t = 0.5, following prior work by
Kuhn et al. [13], Gruber and Buettner [17]. In line with the recommendations of Farquhar et al. [14],
we sample m = 10 model answers per question for the Semantic Entropy, Kernel Language Entropy,
and Predictive Kernel Entropy baselines. Similarly, for clarification-based methods — including
our Spectral Uncertainty approach and Input Clarification Ensembling— we sample m = 10 model
answers for each generated clarification.

For both clarification-based approaches, the number of clarifications per input is determined dynami-
cally by the clarification LLM. To ensure computational tractability, we impose an upper bound of 10
clarifications per input.

For kernel choice, we follow common practice [17] and employ the Radial Basis Function (RBF)
kernel in our experiments. The choice of the kernel scale parameter γ is detailed in Appendix D.

Finally, as compute infrastructure, we use NVIDIA Quadro RTX 5000 GPUs to compute sentence
embeddings and run Phi-4 experiments. GPT models and LLaMA 4 are accessed via OpenAI and
Groq API calls, respectively.

D Kernel Scale Choice

Figure 2: Cumulative distribution function of pairwise L2 distances between answer embeddings for
AmbigInst. Answers are generated using Phi 4.

13



Figure 3: Cumulative distribution function of pairwise L2 distances between answer embeddings for
AmbigQA. Answers are generated using Phi 4.

Since we operate on normalized sentence embeddings, we adopt the default kernel scale parameter
of γ = 1.0 across all datasets, with the exception of AmbigInst. For this dataset, we use a larger
scale parameter of γ = 100.0 to account for its distinct distributional characteristics. As illustrated in
Figure 2, approximately 60% of pairwise ℓ2 distances between answer embeddings in AmbigInst fall
below 0.4, whereas in AmbigQA, the 60th percentile corresponds to a distance close to 1.0. This
indicates that the embedding space for AmbigInst is more compact, with generally smaller distances
between answers.

This phenomenon is attributable to the nature of the task: nearly half of the questions in AmbigInst
involve sorting a set of objects, where ambiguity arises from differing sorting criteria. For instance, a
question might elicit "Apple, Book, Pen" under an alphabetical sort, and "Pen, Book, Apple" under a
sort by word length. While these sequences represent distinct clarifications and thus receive different
embeddings, their embeddings remain relatively close in vector space. Consequently, a larger kernel
scale parameter γ is necessary to place greater emphasis on small distances, enabling the kernel to
better distinguish between subtly different answer embeddings.

E Prompts

Figures 4, 6, and 8 present the prompt templates provided to the clarification LLM for generating task
clarifications. Figures 5, 7, and 9 display the prompt templates used by the target LLM to generate
answers to the user’s original questions and/or their clarifications. For the predictive uncertainty setup,
the prompt shown in Figure 10 is used to elicit judgments from an LLM regarding the correctness of
model-generated answers. These judgments serve as ground truth labels for the correctness prediction
task.

F Kernel Density Plots

The kernel density plots shown in Figures 11,12,13, and 14 are based on model outputs generated
by Phi 4. Figures 11 and 12 depict the distributions of uncertainty values for ambiguous versus non-
ambiguous instances, while Figures 13 and 14 compare uncertainty distributions between correctly
and incorrectly predicted answers.

In both settings, an effective uncertainty measure should yield a clear separation between the
respective distributions. Empirically, Spectral Uncertainty consistently demonstrates substantially
better separation compared to baseline methods, with Input Clarification Ensembling also showing
competitive performance. These results further underscore the effectiveness of our proposed approach.
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Objective
Analyze the given question for ambiguities. If the question is ambiguous, your task is to
clarify it by interpreting the ambiguous concepts, specifying necessary conditions, or using
other methods. Provide as much different clarifications as possible. An ambiguous question
is a question that has different correct answers, depending on individual interpretations. Your
clarifications are supposed to remove any ambiguity in the question so every clarified question
will have a single possible correct answer. These ambiguities can arise from various factors,
including but not limited to:
1. Ambiguous references to entities in the question.
2. Multiple properties of objects/entities in the question leading to different interpretations.
3. Ambiguities due to unclear timestamps.
4. Ambiguities stemming from unclear locations.
5. Multiple valid answer types based on the question.
6. References to undefined or underspecified entities in the question.

Important Rules
1. Perform detailed analyses before concluding whether the question is clear or ambiguous. In
the analyses, you can rely on your general knowledge to anticipate possible correct answers and
interpretations of the question.
2. Output clarifications in the specified format. Do not include possible answers in the
clarifications. The clarifications should be only more precise rephrasings of the same question.
3. For each ambiguous question, you are to provide at least two distinct rephrasings that resolve
these ambiguities. By "rephrasing," we mean you should reformulate the question to be clear
and direct, eliminating any possible ambiguity without altering the original intent of the question.
You should not seek further information or produce a binary (yes-no) question as a result of
the clarification. Instead, you must create a direct question (wh-question) that aims to obtain a
specific answer.
4. Do not provide more than 10 clarifications for an ambiguous question.
5. Do not provide placeholders in your clarifications. They must be fully contained explicit
questions. If the question refers to an undefined entity, provide possible values and definitions
for the entity in different clarifications.
6. Do not add explainations within the clarifications of the questions. All your reasoning,
analyses and explaination should be contained in the Analyses section only.

Output Format
Your output should follow this format:
—Analyses:
[Think step-by-step to reason on the clarity of the question, possible answers and interpretations.
After that, output your judgement on whether the question is ambiguous or not]

—Clarifications:
-1 [First rephrased question]
-2 [Second rephrased question]
-3 [Third rephrased question]
...

If the question is clear and unambiguous, simply output:
—Clarifications:
-1 No clarification needed.

Figure 4: Clarification prompt template for AmbigQA.
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Objective
In the following, I will provide a question and you need to provide a corresponding answer.
Your answer has to be short and precise. Do not write extra text or explanation, just give
the answer directly. If the question is unclear or you do not know the answer, do not
answer with phrases like "I’m sorry.." or "The question is unclear". Instead, you need to
give a random guess for the answer. Do not ask follow-up questions or indicate that you
do not know the answer. You should always provide a short and precise answer; either
the true answer if you know it or your random guess if you are unsure. It should not be
recognizable in your output whether your answer is the true answer or the random guess.
Your output should follow the format specified below in the Output Format and Example sections.

Output Format
Answer: [Your short and precise answer or random guess. Do not include any additional
information.]

Examples
Question: When did the british army got final defeat against the united state of america?
Answer: February, 1815

Question: What kind of dog in little rascals movie?
Answer: doberman pinscher

Question: Where does the last name carson come from?
Answer: Scottish and Irish origin

Question: Who wrote the music for game of thrones?
Answer: Ramin Djawadi

Task
Question: ..

Figure 5: Answer generation prompt template for AmbigQA.
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Objective
Analyze the given task description for ambiguities based on the description itself and the
provided task input. If the task description is ambiguous, your task is to clarify it by interpreting
the ambiguous concepts, specifying necessary conditions, or using other methods. Provide all
possible clarifications.
An ambiguous task is a task that has different correct answers, given the provided input. Your
clarifications are supposed to remove any ambiguity in the task so every clarified task will have
a single possible correct answer, given the provided input.

Important Rules
1. Perform detailed analyses before concluding whether the task description is clear or
ambiguous.
2. Output clarifications in the specified format.
3. Some seemingly unambiguous task descriptions are actually ambiguous given that particular
input. So, do not forget to leverage the input to analyze whether the task description is
underspecified.
4. You can only clarify the task description. The input should remain the same. Please
provide only your reasoning (Analyses) and then the clarified versions of the task description
(Clarifications).

Output Format Your output should follow this format:
—Analyses:
[Think step-by-step to reason on the clarity of the task description. After that, output your
judgement on whether the task description is ambiguous or not]

—Clarifications:
-1 [One disambiguated task description]
-2 [Another disambiguated task description]
-3 [Yet another disambiguated task description]
...

If the task description is clear and unambiguous, simply output:
—Clarifications:
-1 No clarification needed.

Figure 6: Clarification prompt template for AmbigInst.
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Objective
In the following, I will provide a task description and an input and you need to provide a
corresponding answer that solves the task for the given input. Your answer has to be short and
precise.
First think step-by-step explaining how you want to solve the task, then give a final concise and
precise answer.
If the task is unclear, provide an interpretation that clarifies the task in the reasoning step, then
give your final precise answer based on your interpretation.
Your output should follow the format specified below in the Output Format and Example sections.

Output Format
Reasoning: [Provide a description of how you understand and interpret the task and how you are
planning to solve it, thinking step-by-step.]
Answer: [Your short and precise solution for the task.]

Example
Task description: Determine the length of a sentence.
Input: "To be or not to be, that is the question."
Reasoning: The task asks for the length of the sentence, which I interpret as the total count of
characters, including letters, spaces, punctuation, and any other symbols. Counting all characters
in the given input string will yield the correct length of the sentence. Quotation marks will not
be included since they are considered as delimiters and not part of the sentence.
Answer: 41

Your Task
...

Figure 7: Answer generation prompt template for AmbigInst.

Objective
In this task, you will receive a question. Your goal is to generate multiple versions of the
question that convey the same meaning as the original one.

Important Rules
1. Ensure that each rephrasing of the question is distinct from the others.
2. Ensure that all rephrasings of the question are semantically equivalent to the original question.
3. Provide 5 different rephrasings of the question.

Output Format
Your output should follow this format:
—Rephrasings:
-1 [Your rephrased question]
-2 [Another rephrased question]
-3 [Yet another rephrased question]
-4 [A fourth rephrasing of the question]
-5 [A fifth rephrasing of the question]

Figure 8: Clarification prompt template for Natural Questions and TriviaQA.
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Objective
In the following, I will provide a question and you need to provide an answer to the question.
Your answer has to be short and precise. Do not write extra text or explanation, just give the
answer directly. If the question is unclear or you do not know the answer, do not answer with
phrases like "I’m sorry.." or "The question is unclear". Instead, you need to give a random guess
for the answer. Do not ask follow-up questions or indicate that you do not know the answer.
You should always provide a short and precise answer; either the true answer if you know it or
your random guess if you are unsure. It should not be recognizable in your output whether your
answer is the true answer or the random guess.
Your output should follow the format specified below in the Output Format section.

Output Format
A: [Your short and precise answer or random guess to the question. Do not include any
additional information.]

Task
...

Figure 9: Answer generation prompt template for Natural Questions and TriviaQA.

Objective
In this task, you will receive a question. You will also receive a ground truth answer to the
question and a model generated answer. Your goal is to compare the ground truth answer and the
model generated answer in order to decide whether the model generated answer is correct or not.

Important Rules
1. The model generated answer is correct, when it is a valid answer to the question, and
semantically equivalent to the ground truth answer. It does not necessarily need to overlap with
the ground truth answer lexically.
2. If the model generated answer contains more information (more specific) or less information
(less specific) than the ground truth answer, but still correctly answers the question, then you
should consider it correct.
3. If you decide that the model generated answer is correct, say yes, otherwise say no.
4. Your output should only contain your decision (yes or no). It should not contain any other
text, explanation or reasoning.

Figure 10: Correctness judge prompt template for Natural Questions and TriviaQA.
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Figure 11: Kernel density plots of uncertainty values for ambiguous vs. non-ambiguous AmbigQA
questions across different uncertainty baselines.

Figure 12: Kernel density plots of uncertainty values for ambiguous vs. non-ambiguous AmbigInst
tasks across different uncertainty baselines.
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Figure 13: Kernel density plots of uncertainty values for correctly predicted vs. incorrectly predicted
TriviaQA questions across different uncertainty baselines.

Figure 14: Kernel density plots of uncertainty values for correctly predicted vs. incorrectly predicted
Natural Questions (NQ) questions across different uncertainty baselines.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section 1 clearly state the theoretical framework (Spectral
Uncertainty), its instantiation through the Von Neumann Entropy, and overall empirical
results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 discusses computational cost from generating n×m samples and
notes that evidence is empirical, outlining increasing computational efficiency as future
work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 3 presents the formal setup and estimators, with remaining proofs and
derivations included in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4, Algorithm 1, sampling/temperature settings, kernel choices, datasets,
and full prompt templates (Appendix C, D, and E) are provided to reproduce the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: There is no field in the OpenReview form of the workshop to submit a .zip
file for code. To preserve anonymity, we refrain from including a public repository link.
However, all implementation details are included so readers can easily re-implement our
experiments. Moreover, we will make the code publicly available upon paper acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 details tasks, metrics, datasets/models, and settings. Appendix D
documents the kernel scale choice and Appendix C covers implementation specifics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Running all experiments multiple times to generate confidence intervals or error
bars would bring very high computational costs (repeated calls to target and clarification
LLMs).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are specified in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses established public datasets and off-the-shelf models and APIs
without collecting sensitive human data, and preserves anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used sources are cited to the best of our knowledge.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper introduces a method but does not release a new dataset/model asset
requiring documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human-subjects study is conducted; experiments use
public datasets and model outputs.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human-subjects research is performed, so IRB approval does not apply.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are central to the method: GPT-4o is used for clarifications, Phi-4 and
LLaMA-4 as targets, and prompts are included in Appendix E.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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