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Abstract

As Large Language Models (LLMs) are increasingly integrated in diverse appli-1

cations, obtaining reliable measures of their predictive uncertainty has become2

critically important. A precise distinction between aleatoric uncertainty, arising3

from inherent ambiguities within input data, and epistemic uncertainty, originating4

exclusively from model limitations, is essential to effectively address each uncer-5

tainty source and improve the reliability of the user-LLM interaction. In this paper,6

we introduce Spectral Uncertainty, a novel approach to quantifying and decompos-7

ing uncertainties in LLMs. Leveraging the Von Neumann entropy from quantum8

information theory, Spectral Uncertainty provides a rigorous theoretical foundation9

for separating total uncertainty into distinct aleatoric and epistemic components.10

Unlike existing baseline methods, our approach incorporates a fine-grained repre-11

sentation of semantic similarity, enabling nuanced differentiation among various12

semantic interpretations in model responses. Empirical evaluations demonstrate13

that Spectral Uncertainty outperforms state-of-the-art methods in estimating both14

aleatoric and total uncertainty across diverse models and benchmark datasets.15

1 Introduction16

Since the public release of ChatGPT [1], Large Language Models (LLMs) have exhibited exponen-17

tial improvements in capabilities across numerous benchmarks and have demonstrated increased18

algorithmic efficiency [2]. Concurrently, infrastructure advancements and the proliferation of APIs,19

agent-based systems, and integrations into consumer software and devices have further enhanced20

their accessibility, leading to an unprecedented democratization of these models [3]. Consequently,21

LLMs are increasingly employed in critical domains such as scientific research [4, 5], politics [6],22

and medicine [7, 8]. This widespread adoption has underscored the need to not only generate better23

predictions but also reliably quantify their uncertainty.24

While several recent approaches have been developed to quantify uncertainty in LLMs, they exhibit25

key limitations: many rely on token-level representations, treat semantic similarity as a binary26

relation, or fail to decompose predictive uncertainty into its epistemic and aleatoric components.27

These limitations hinder the interpretability and practical utility of uncertainty estimates in real-world28

applications.29

To address this gap, we propose the Spectral Uncertainty framework, which provides a fine-grained,30

theoretically grounded decomposition of uncertainty in LLMs. Our approach leverages von Neumann31

entropy [9] and functional Bregman information [10] to derive a kernel-based decomposition into32

aleatoric and epistemic components. A two-stage sampling and embedding process, followed by33

spectral analysis using a kernel function, enables practical estimation of these uncertainty measures in34

a continuous semantic space. Consequently, practitioners can use Spectral Uncertainty to determine35

whether an LLM is uncertain because of ambiguous user input or because it lacks knowledge. In36
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Figure 1: Illustration of our Spectral Uncertainty Decomposition. Given an ambiguous query like
“Who’s won the most World Series in baseball?”, an LLM may interpret it in multiple valid ways
(e.g., by team or by player), leading to high predictive uncertainty. Unlike existing methods, our
spectral decomposition quantifies not just the magnitude but also the source of uncertainty, revealing
in this case a dominant aleatoric component rooted in semantic ambiguity.

the former case, the user can be prompted to clarify their question, improving the reliability of the37

interaction with the LLM.38

The main contributions of our work are as follows:39

(a) We introduce Spectral Uncertainty, a novel uncertainty quantification framework for LLMs40

that enables fine-grained estimation of both aleatoric and epistemic uncertainty. We provide41

a rigorous theoretical derivation of this framework from a novel and general uncertainty42

decomposition based on functional Bregman information, applicable to any concave uncer-43

tainty measure.44

(b) We instantiate this decomposition using von Neumann entropy and propose practical, kernel-45

based estimators for each component: aleatoric, epistemic, and total uncertainty. These46

estimators allow the theoretical framework to be applied in real-world LLM scenarios using47

embedding-based representations of model outputs.48

(c) We demonstrate through extensive empirical evaluation that Spectral Uncertainty achieves49

state-of-the-art performance in both ambiguity detection and correctness prediction tasks,50

outperforming strong semantic and decomposition-based baselines. This highlights its51

potential for improving the reliability and interpretability of LLM predictions in practice.52

2 Related Work53

Early approaches to estimating model uncertainty [11, 12] relied exclusively on output token proba-54

bilities, which rendered them infeasible in black-box scenarios. Moreover, such methods primarily55

measured lexical and syntactic confidence, failing to account for the semantic correctness of model56

responses. For instance, a model generating both “France’s capital is Paris” and “Paris is France’s57

capital” may appear uncertain under token-level measures despite conveying the same meaning.58

To overcome these limitations, semantic entropy [13, 14] defines entropy in a semantic rather than59

token-based space. This technique samples multiple responses and groups them into clusters of60

semantically equivalent responses, using a Natural Language Inference (NLI) model [15]. Subse-61

quently, entropy is computed from the resulting categorical distribution of clusters. While this method62

significantly improves over lexical measures, it treats semantic equivalence as binary, thus failing63

to capture finer semantic nuances—such as gradations between “extremely high,” “somewhat high,”64

and “moderate” temperatures.65

Kernel Language Entropy [16] provides a finer semantic representation by computing discrete66

similarity scores between generated responses using weighted NLI predictions. Although this67

improves granularity, it still discretizes the semantic space and does not fully leverage continuous68

embeddings.69

A further advancement, predictive kernel entropy [17], represents model outputs using sentence70

embeddings and computes similarity via kernel functions in a continuous semantic space. This71

method currently achieves state-of-the-art performance and offers the most refined representation of72

uncertainty.73
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Despite these advancements, existing methods focus solely on predictive (or total) uncertainty and do74

not disentangle its underlying components. Predictive uncertainty captures the overall confidence in75

a model’s response but offers no insight into the source of that uncertainty. In particular, two major76

types of uncertainty are well-recognized [18]:77

• Aleatoric uncertainty arises from inherent ambiguity or noise in the input (e.g., unclear78

queries or underspecified instructions) and cannot be reduced by improving the model.79

• Epistemic uncertainty, by contrast, reflects the model’s lack of knowledge, often due to80

gaps in training data, and can potentially be reduced through additional learning or data81

collection.82

Uncertainty decomposition aims to separate total predictive uncertainty into its constituent compo-83

nents: aleatoric and epistemic uncertainty. While this has been studied extensively in the context84

of classification tasks [19, 10], its application to LLMs remains relatively underexplored. A recent85

effort by Hou et al. [20] extends uncertainty decomposition to LLMs using a clustering-based method86

akin to semantic entropy.87

Conceptually, their approach draws on the standard information-theoretic decomposition of uncer-88

tainty [19]:89

H(q(Y | X)) = Eq(θ|D) [H(q(Y | X, θ))] + I(Y ; θ | X),

whereH denotes Shannon entropy [21] and I the mutual information. Here, q(Y | X) represents the90

model’s predictive distribution for output Y given input X , and θ is a latent variable representing91

different model configurations—typically instantiated via ensembling. In this decomposition, the92

mutual information term I(Y ; θ | X) captures the disagreement among ensemble members and is93

thus interpreted as epistemic uncertainty. The expected conditional entropy Eq(θ|D) [H(q(Y | X, θ))]94

quantifies the remaining irreducible uncertainty, attributed to aleatoric uncertainty.95

However, Hou et al. [20] diverge from this standard decomposition in two key ways to adapt it to96

LLMs. First, although uncertainty in classification or regression tasks can be estimated using Bayesian97

Neural Networks (BNNs) [22, 23] or Deep Ensembles [24], these approaches are computationally98

infeasible for LLMs. Even limiting such methods to the fine-tuning stage requires white-box access99

to the model, which is often impractical or unavailable for proprietary LLMs.100

To circumvent this limitation, Hou et al. [20] propose substituting model variability (θ) with input101

context variability. Specifically, they generate multiple clarifications C1, C2, . . . , Cn of the user’s102

input question, each representing an interpretation or reformulation of the question. The model is103

then conditioned on these clarifications, effectively creating an ensemble over input contexts rather104

than over models. This leads to a reformulated decomposition:105

H(q(Y | X)) = Eq(C|D) [H(q(Y | X,C))] + I(Y ;C | X),

where the mutual information term I(Y ;C | X) reflects disagreement between interpretations106

and is therefore attributed to aleatoric uncertainty. Conversely, the expected conditional entropy107

Eq(C|D) [H(q(Y | X,C))] is interpreted as epistemic uncertainty, as it captures residual uncertainty108

after conditioning on a particular interpretation.109

While this method achieves state-of-the-art performance, it inherits a key limitation from earlier110

clustering-based techniques: the reliance on discrete clusters to compute entropy reduces semantic111

similarity to a binary notion. As a result, the decomposition remains coarse and unable to fully112

capture fine-grained distinctions in meaning, which limits the accuracy and expressiveness of its113

uncertainty estimates.114

3 A Novel Uncertainty Decomposition115

In this section, we introduce a novel and general uncertainty decomposition of aleatoric and epistemic116

uncertainty given any total uncertainty represented by a concave function. This is followed by a117

discussion of the special case of von Neumann entropy, and an introduction of estimators useable in118

practice. A core definition, which we require for our contribution, is Bregman Information given as119

follows.120

Definition 3.1 (Gruber and Buettner [10]). For a random variable X with outcomes in an appropriate121

space X , and a convex function g : X → R, the (functional) Bregman Information of X generated122
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by g is defined by123

Bg (X) := E [g (X)]− g (E [X]) .

Further details about the Bregman Information are included in Appendix A. The Bregman Information124

arises naturally in our decomposition as follows.125

3.1 Decompositions: General and Special Cases126

Based on the above definition, we provide the following general uncertainty decomposition of a127

marginal distribution.128

Theorem 3.2. Let P be a set of probability distributions over a set Y and H : P → R a concave129

function. Let Y be a random variable with outcomes in Y , and marginal distribution PY . Further, let130

PY |W be a conditional distribution of Y given another random variable W . Then,131

H (PY ) = EW

[
H

(
PY |W

)]
+ B−H

(
PY |W

)
.

The proof of this general result is remarkably short:132

H (PY ) = H
(
EW

[
PY |W

])
+ EW

[
H

(
PY |W

)]
− EW

[
H

(
PY |W

)]
= EW

[
H

(
PY |W

)]
+ B−H

(
PY |W

)
.

A very common example of a concave function H of distributions is the Shannon entropy [21], defined133

as H(p) = −
∑n

i=1 pi log pi for a discrete probability distribution p = (p1, . . . , pn). Substituting H134

with the Shannon entropy in Theorem 3.2 recovers the classical information-theoretical decomposition135

of total uncertainty into aleatoric and epistemic uncertainty [19].136

Besides the classical Shannon entropy, the kernel-based von Neumann entropy [9, 25] is another137

case of a concave function, which is used in recent advances for detecting hallucinations of large138

language models [16]. Informally, the von Neumann entropy receives a covariance operator as139

its argument and is equal to the Shannon entropy of the eigenvalues of the respective covariance140

operator. For a rigorous definition, we require some fundamental concepts related to reproducing141

kernel Hilbert spaces (RKHS) [25]. Let X be a compact set and k : X × X → R be continuous142

positive semidefinite (p.s.d.) kernel function. Let H be the corresponding RKHS. The kernel is143

normalized if k(x, x) = 1 for all x ∈ X . Further, let Φ: X −→ H be the corresponding feature map,144

with k(x, y) = ⟨Φ(x),Φ(y)⟩H, for all x, y ∈ X . The respective tensor product ⊗H is defined for145

every f, g, h ∈ H by an operator (f ⊗H g) : H −→ H via (f ⊗H g)(h) = ⟨g, h⟩Hf. We can now146

introduce covariance operators, which act as arguments for the von Neumann entropy.147

Definition 3.3 (Bach [25]). The non-central covariance operator of the distribution P w.r.t the148

kernel k is defined by:149

ΣP := EX∼P [Φ(X)⊗H Φ(X)] ,

for a P−distributed random variable X with values in X .150

Note that ΣP is a self-adjoint and p.s.d. operator, and has unit trace [25].151

Definition 3.4 (Bach [25]). For a self-adjoint, p.s.d. operator A with a unit trace on the Hilbert space152

H, the von Neumann entropy (VNE) of A is defined as153

HV N (A) := −Tr[A logA].

It holds that HV N is concave. Further, HVN(A) = −
∑

λ∈Λ(A) λ log λ, with Λ(A) being the154

(possibly infinite) sequence of eigenvalues of A1. In that sense, the VNE of the operator A is the155

Shannon entropy of its eigenvalues. Based on its properties, we can use the covariance operator ΣP156

as the argument for HVN, yielding the following.157

Definition 3.5 (Kernel-based von Neumann entropy [25]). Let P be a probability distribution over X158

and ΣP be the respective covariance operator. The kernel-based VNE of P is defined as159

HV N (P) := HV N (ΣP) = −Tr [ΣP log ΣP] .

1We use the convention 0 log 0 = 0
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Since HVN is also concave with the distribution as argument, we can use it to generate a Bregman160

Information for the conditional distribution PY |W . This recovers the Holevo Information [26] given161

by162

H
(
PY |W

)
:= B−HV N

(
PY |W

)
.

Now, we apply Theorem 3.2 to obtain the following important special case.163

Corollary 3.6 (Spectral uncertainty decomposition). The following holds for given random variables164

Y and W :165

HV N (PY )︸ ︷︷ ︸
I

= EW

[
HV N

(
PY |W

)]︸ ︷︷ ︸
II

+H
(
PY |W

)︸ ︷︷ ︸
III

.

For Spectral Uncertainty, we follow [20]’s approach and condition on the input clarifications (inter-166

pretations), represented here by the random variable W . In this decomposition:167

• Term I denotes the total predictive uncertainty, expressed as the von Neumann entropy168

(VNE) of the marginal predictive distribution PY .169

• Term II corresponds to the expected conditional entropy, computed by marginalizing out the170

clarification variable W . This captures the model’s intrinsic uncertainty after conditioning171

on a specific interpretation of the input. As such, we interpret this term as measuring172

epistemic uncertainty, which reflects the model’s limitations in knowledge or training data,173

independent of input ambiguity.174

• Term III represents the functional Bregman information (here using VNE as the uncertainty175

functional), quantifying the variability in the conditional distributions PY |W as W varies. In176

our framework, following the intuition of [20], the variable W captures different plausible177

clarifications or interpretations of the user’s input.178

When aleatoric uncertainty is low (i.e., the input is unambiguous) there is little variation in W , and the179

conditional distribution PY |W remains stable. In the limiting case where W is almost surely constant,180

we have B−HV N
(PY |W ) = 0, indicating the absence of aleatoric uncertainty. In contrast, high181

aleatoric uncertainty manifests as greater variability in how the input can be interpreted, leading to182

greater variation in PY |W , and therefore, a larger Bregman information term. Based on this behavior,183

we attribute term III to aleatoric uncertainty.184

3.2 Finite-Sum Spectral Estimators185

Having established a novel uncertainty decomposition with a relevant special case, we now describe186

how to estimate the individual terms of the spectral uncertainty decomposition in Corollary 3.6.187

The estimation of HV N (PX) is based on [25]. Let X = X1, . . . , Xn ∼ PX be i.i.d. random variables188

with values in X . We can estimate ΣPX
via Σ̂PX

:= 1
n

∑n
i=1 Φ(Xi)⊗ Φ(Xi). This yields a plug-in189

estimator for HV N (PX):190

ĤV N (X) := −Tr
[
Σ̂PX

log Σ̂PX

]
. (1)

SinceH and Σ̂PX
are possibly infinite-dimensional, computing ĤV N (X) based on the above formula191

may be practically infeasible. In consequence, we use the following property.192

Proposition 3.7 ([25]). Let K ∈ Rn×n be the empirical kernel matrix defined by [K]ij := k(Xi, Xj)193

with i, j ∈ [n] := {1, . . . n}, and denote with λ̂1, . . . , λ̂n the eigenvalues of 1
nK. Then194

Tr
[
Σ̂PX

log Σ̂PX

]
=

n∑
i=1

λ̂i log λ̂i .

We restate the proof in Appendix B. Thus, we can express ĤV N (X) as a finite sum and compute it in195

practice.196

Building upon that, we propose an analogous plug-in estimator of the kernel-based Holevo Information197

H(PY |W ). Similarly to Theorem 3.2, we consider Y to be a random variable with values in X and198

PY |W its conditional distribution, conditioned on another random variable W . To estimate this199

quantity, we need a two-stage sampling procedure:200
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• First, an outer sample W1, . . .Wn
i.i.d.∼ PW .201

• Second, for each i ∈ [n], an inner sample Yi1, . . . , Yim
i.i.d.∼ PY |Wi

, yielding a sample matrix202

Y := (Yij)i∈[n],j∈[m].203

Similar to Proposition 3.7, we require the following eigenvalues. Define the inner kernel matrices204

Ki ∈ Rm×m with [Ki]j1j2 := k (Yij1 , Yij2) for each i ∈ [n] and j1, j2 ∈ [m]. Further, define the205

outer kernel matrix Kout ∈ Rnm×nm with206 [
Kout

]
(i1−1)m+j1,(i2−1)m+j2

:= k(Yi1j1 , Yi2j2)

for i1, i2 ∈ [n] and j1, j2 ∈ [m]. Denote with λ̂i1, . . . , λ̂im the eigenvalues of 1
mKi for every207

i ∈ [n] and with λ̂out
1 , . . . , λ̂out

nm the nm eigenvalues of 1
nmKout. Now, we propose for the aleatoric208

uncertainty H(PY |W ) the novel estimator209

Ĥ (Y) :=
1

n

n∑
i=1

m∑
j=1

λ̂ij log λ̂ij −
nm∑
i=1

λ̂out
i log λ̂out

i . (2)

In Appendix B, we show how this a plug-in estimator based on Proposition 3.7. Using Proposition210

3.7, we also derive the estimator for the epistemic uncertainty EW

[
HV N

(
PY |W

)]
as211

− 1

n

n∑
i=1

m∑
j=1

λ̂ij log λ̂ij . (3)

Finally, adding up both estimators yields the total uncertainty estimator.212

4 Methodology213

We consider a scenario in which a user provides a question or an instruction (e.g., “Who has won214

the most World Series championships in baseball?”) to a target LLM. Our method computes various215

uncertainty measures based on the Spectral Uncertainty decomposition presented in Equation 3.6. An216

overview of the proposed method is illustrated in Figure 1.217

To compute estimators corresponding to each component of the decomposition, we employ a two-stage218

sampling procedure for generating answers from the target LLM. First, following the methodology219

described by Hou et al. [20], we utilize a clarification LLM to generate n clarifications W1, . . . ,Wn220

of the user’s original input. For example, these clarifications could be “Which team has won the221

most World Series championships in baseball?” and “Which player has won the most World Series222

championships in baseball?”. The clarification LLM may either coincide with or differ from the223

target LLM. A more capable model, such as GPT-4o, naturally provides superior clarifications,224

thereby yielding improved uncertainty estimates, albeit with higher inference costs. Nonetheless,225

all n clarifications can be efficiently generated within a single prompt, significantly reducing the226

computational cost. Moreover, Hou et al. [20] demonstrate that supervised fine-tuning of a smaller227

model (e.g., Llama-3-8B) on clarification generation substantially improves performance, resulting in228

uncertainty estimation capabilities comparable to those of larger proprietary models.229

Second, for each clarification Wi, we generate m answers Xi1, . . . , Xim from the target LLM using230

multinomial sampling at a temperature t > 0.231

Next, we employ a pretrained sentence embedding model on all generated answers to obtain corre-232

sponding embeddings Yij for each sampled answer, indexed by i ∈ [n] and j ∈ [m].233

Finally, we apply the estimators introduced in Section 3 to compute the respective uncertainty234

measures. In our example, the generated answers to the “which team” clarification could be identically235

“The New York Yankees”, while answers to the “which player” clarification would be identically236

“Yogi Barra”. Spectral Uncertainty correctly attributes zero epistemic uncertainty and high aleatoric237

uncertainty in this case (which is equal to total uncertainty).238

The complete procedure is summarized in Algorithm 1.239
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Algorithm 1 Spectral Uncertainty
Input: Target LLM Mtarget, clarification LLM Mclarification, sentence embedding model femb,
kernel k, user task t
Output: Total, aleatoric, and epistemic uncertainty estimates

1: W1, . . . ,Wn ←Mclarification(t) ▷ Generate clarifications
2: for i← 1 to n do
3: Xi1, . . . Xim ←Mtarget(Wi) ▷ Sample model answers
4: for j ← 1 to m do
5: Yij ← femb(Xij) ▷ Compute answer embedings
6: end for
7: Ki ← pairwiseCompute(k, Yi,1:m) ▷ Compute pairwise kernel values
8: λ̂i1, . . . , λ̂im ← computeEigenvalues( 1

mKi)
9: end for

10: Kout ← pairwiseCompute(k, flatten(Y1:n,1:m))

11: λ̂out
1 , . . . , λ̂out

nm ← computeEigenvalues( 1
nmKout)

12: aleatoric← computeAleatoricEstimator(λ̂1:n,1:m, λ̂out
1:nm) ▷ Apply Eq. 2

13: epistemic← computeEpistemicEstimator(λ̂1:n,1:m) ▷ Apply Eq. 3
14: total← aleatoric + epistemic
15: return total, aleatoric, epistemic

5 Experiments240

We validate our proposed uncertainty decomposition framework through a comprehensive experimen-241

tal analysis. Specifically, we assess the effectiveness of our estimates of aleatoric and total uncertainty242

in tasks where each type of uncertainty is relevant.243

5.1 Metrics and Tasks244

To evaluate aleatoric uncertainty estimates, we follow prior work [27, 28] and treat label disagreement245

as ground truth. We use datasets in which samples with high annotator disagreement are labeled as246

“ambiguous” and measure how well an uncertainty estimator can discriminate between ambiguous247

and unambiguous inputs.248

To evaluate total predictive uncertainty, we adopt the correctness prediction task [28, 13], which249

measures an estimator’s ability to predict whether a model’s output is correct.250

In both tasks, we quantify performance using the Area Under the Receiver Operating Characteristic251

curve (AUROC), which reflects the quality of the uncertainty ranking. Additionally, we report the252

Area Under the Precision-Recall curve (AUPR) as a complementary metric.253

5.2 Baselines254

We focus on baselines that leverage semantic representations of model outputs, as methods based255

solely on token-level probabilities have shown limited performance [13, 14]. Our evaluation includes256

Semantic Entropy [13], Kernel Language Entropy [16], Predictive Kernel Entropy [17], and Input257

Clarification Ensembling [20]. The latter is the state-of-the-art decomposition method specifically258

targeting aleatoric uncertainty by generating multiple clarifications of the input.259

5.3 Datasets and Models260

For ambiguity detection, we use the AmbigQA dataset [29], which provides ambiguity annotations for261

questions. We conduct our evaluation on a randomly selected subset of 200 samples. Additionally,262

we include the synthetic AmbigInst dataset [20], which focuses on instruction-based tasks rather than263

general knowledge questions.264

For correctness prediction, we evaluate on two widely-used question answering benchmarks: TriviaQA265

[30] and Natural Questions [31], randomly sampling 300 questions from the development set of each.266
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Table 1: Comparison of aleatoric uncertainty estimation for different methods on the AmbigQA and
AmbigInst datasets using Phi-4 14B and LLaMA 4 Maverick. Metrics are reported as percentages.

Uncertainty Method Phi-4 14B LLaMA 4 Maverick
AUROC (%) AUPR (%) AUROC (%) AUPR (%)

AmbigQA
Semantic Entropy 53.29 51.85 46.14 49.36
Kernel Language Entropy 49.88 48.11 45.59 48.84
Predictive Kernel Entropy 48.37 48.94 45.10 49.12
Input Clarification Ensembling (aleatoric) 63.46 62.23 59.51 60.12
Spectral Uncertainty (aleatoric) 69.15 67.98 60.39 60.48

AmbigInst
Semantic Entropy 60.58 69.18 55.88 64.37
Kernel Language Entropy 60.60 69.35 55.80 61.83
Predictive Kernel Entropy 75.93 79.90 66.83 71.31
Input Clarification Ensembling (aleatoric) 71.70 80.62 69.66 79.04
Spectral Uncertainty (aleatoric) 86.37 90.10 85.95 89.46

To evaluate model performance across different scales, we utilize two large language models: the267

109B-parameter LLaMA 4 Maverick and the 14B-parameter Phi-4. Both models serve as the target268

LLM for generating responses across all methods. For clarification-based approaches — namely Input269

Clarification Ensembling as well as Spectral Uncertainty — we employ GPT-4o as the clarification270

LLM to generate high-quality input clarifications. All prompts used for generating model responses271

and clarifications are detailed in Appendix E. To compute semantic similarity, we use normalized272

sentence embeddings from the all-mpnet-base-v2 model. Further implementation details are included273

in Appendix C.274

5.4 Ambiguity Detection Task (Aleatoric Uncertainty)275

Table 1 presents AUROC and AUPR scores for aleatoric uncertainty estimation on the AmbigQA and276

AmbigInst datasets, evaluated using both the Phi-4 14B and LLaMA 4 Maverick models.277

Across both datasets and model scales, Spectral Uncertainty consistently achieves the best perfor-278

mance among all baselines. On AmbigQA, which contains real-world ambiguous questions, Spectral279

Uncertainty yields the highest AUROC (69.15% and 60.39%) and AUPR (67.98% and 60.48%)280

on Phi-4 and LLaMA 4, respectively. Notably, it provides almost a 9% higher AUROC for Phi-4,281

compared to Input Clarification Ensembling, the best-performing baseline.282

The performance gap becomes even more pronounced on AmbigInst. Here, Spectral Uncertainty283

reaches AUROC scores of 86.37% (Phi-4) and 85.95% (LLaMA 4), significantly outperforming all284

baselines. Compared to the next-best method—Predictive Kernel Entropy for Phi-4 and Input Clarifi-285

cation Ensembling for LLaMA 4—our method improves AUROC by over 13% and 23% , respectively.286

Similar trends are observed in AUPR scores. These results indicate that our decomposition-based287

method is particularly effective at capturing aleatoric uncertainty.288

These findings are supported by kernel density plots (Appendix F) showing the probability distribu-289

tions of uncertainty values for ambiguous vs. unambiguous samples across all considered methods.290

In particular, they visually highlight how Spectral Uncertainty provides substantially better separation291

of ambiguous samples from unambiguous ones compared to baselines.292

5.5 Correctness Prediction Task (Total Uncertainty)293

In the correctness prediction task, we aim to quantify the ability of an LLM to give a correct answer294

to a given question. To establish ground truth for correctness prediction, we follow the protocol of295

Farquhar et al. [14]: First, we sample the most likely answer from the model at temperature t = 0.1,296

treating this as the model’s best effort. Then, we prompt GPT-4.1, to compare this answer to the297

ground truth and determine whether it is correct (Appendix E).298
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Table 2: Comparison of predictive uncertainty estimation for different methods on the TriviaQA
and Natural Questions datasets using Phi-4 14B and LLaMA 4 Maverick. Metrics are reported as
percentages.

Uncertainty Method Phi-4 14B LLaMA 4 Maverick
AUROC (%) AUPR (%) AUROC (%) AUPR (%)

TriviaQA
Semantic Entropy 84.70 71.10 71.64 43.75
Kernel Language Entropy 86.20 76.64 71.95 45.72
Predictive Kernel Entropy 85.88 74.66 73.85 45.86
Input Clarification Ensembling (total) 89.45 74.54 82.76 55.95
Spectral Uncertainty (total) 91.92 80.79 84.82 60.84

Natural Questions (NQ)
Semantic Entropy 76.24 74.36 70.24 52.35
Kernel Language Entropy 82.77 81.84 71.60 60.79
Predictive Kernel Entropy 77.67 76.57 70.56 58.73
Input Clarification Ensembling (total) 81.91 81.04 74.93 60.72
Spectral Uncertainty (total) 81.63 81.98 75.02 62.87

Table 2 reports results for correctness prediction, measuring the effectiveness of total uncertainty299

estimates across the TriviaQA and Natural Questions datasets.300

On TriviaQA, Spectral Uncertainty achieves the best performance across both models. For Phi-4,301

it reaches 91.92% AUROC and 80.79% AUPR, outperforming Input Clarification Ensembling by302

2.5 and 6.2 percentage points, respectively. For LLaMA 4, Spectral Uncertainty again leads with an303

AUROC of 84.82% and AUPR of 60.84%.304

On Natural Questions, the differences among methods are more nuanced. While Kernel Language En-305

tropy achieves the highest AUROC on Phi-4 (82.77%), Spectral Uncertainty attains the highest AUPR306

(81.98%), indicating stronger precision-recall performance. On LLaMA 4, Spectral Uncertainty307

yields the best scores on both metrics.308

We also validate our approach via kernel density plots of correct vs. incorrect predictions across dif-309

ferent methods (see Appendix F). Once again, Spectral Uncertainty provides visibly better separation310

of uncertainty values than the baselines.311

Overall, these results demonstrate that Spectral Uncertainty outperforms state-of-the-art baselines312

in most scenarios, achieving robust performance regardless of model scale or dataset. Its consistent313

gains across evaluation setups suggest that our theoretically grounded decomposition framework314

provides more reliable and fine-grained uncertainty estimates than baselines.315

6 Discussion and Conclusion316

We introduced Spectral Uncertainty, a novel framework for decomposing predictive uncertainty317

in LLMs into aleatoric and epistemic components. Our approach is theoretically grounded in a318

general uncertainty decomposition based on functional Bregman information, and instantiated using319

von Neumann entropy in a kernel-induced semantic space. This yields fine-grained, theoretically320

motivated uncertainty estimates that outperform existing baselines across standard benchmarks.321

While effective, the method involves computational cost due to the number of generated responses322

(n×m), even though each clarification uses only a small number of samples. Reducing this cost via323

more efficient or adaptive sampling strategies is a promising direction for future work. Moreover,324

although the decomposition and estimators are derived from first principles, our evaluation remains325

empirical—consistent with the broader trend in LLM uncertainty research.326

Overall, Spectral Uncertainty offers a principled and practical decomposition framework for modeling327

uncertainty in language models, with potential applications in safety-critical and interactive AI328

settings, resulting in more reliable systems.329
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A Bregman Information418

The Bregman Information is a generalisation of the variance of a random variable, i.e., if X = R419

and gsq(x) = x2, then Bgsq (X) = Var (X). Additionally, for any g it holds that Bg (X) = 0 if X420

has only one outcome with non-zero probability. Further, if g is differentiable, then the Bregman421

Information is the expected Bregman divergence between X and its expectation E [X] [32].422

B Proofs423

B.1 Proof of Proposition 3.7424

In the following, we restate the proof of Proposition 3.7 from [25]:425

Proof. The non-zero eigenvectors of Σ̂p belong to the image space of Σ̂p and are thus linear combi-
nations f =

∑n
j=1 αjΦ(Xj) for α ∈ Rn. Then

Σ̂pf =
1

n

n∑
i=1

n∑
j=1

αj

[
Φ(Xi)⊗ Φ(Xi)

]
Φ(Xj)

=
1

n

n∑
i=1

n∑
j=1

αjk(Xi, Xj)Φ(Xi)

=
1

n

n∑
i=1

(Kα)iΦ(Xi).

Thus, if Kα = nλα, Σ̂pf = λf , and if Σ̂pf = λf with λ ̸= 0 and f ̸= 0 (which implies Kα ̸= 0),426

then
∑n

i=1

[
(Kα)i − nλαi

]
Φ(Xi) = 0, which implies K2 = nλKα and then Kα = nλα since427

Kα ̸= 0. Thus, the non-zero eigenvalues of Σ̂p are exactly the ones of 1
nK, and we thus get428

Tr
[
Σ̂p log Σ̂p

]
= Tr

[
1
nK log

(
1
nK

)]
.429

B.2 Estimators430

By definition

H
(
PY |W

)
= B−HV N

(
PY |W

)
= −EW [HV N (PY |W )] +HV N

(
EW [PY |W ]

)
= −EW [HV N (PY |W )] +HV N (PY ) .

As mentioned in Section 3, we perform a two-stage sampling procedure:431

• First, an outer sample W1, . . .Wn
i.i.d.∼ PW .432

• Second, for each i ∈ [n], an inner sample Yi1, . . . , Yim
i.i.d.∼ PY |Wi

, yielding a sample matrix433

Y := (Yij)i∈[n],j∈[m]. Here, the nm elements of Y are then samples from the marginal434

distribution PY .435

Let the inner kernel matrices Ki ∈ Rm×m be such that [Ki]j1j2 := k (Yij1 , Yij2) for each i ∈ [n]436

and j1, j2 ∈ [m]. Further, let the outer kernel matrix Kout ∈ Rnm×nm be defined with437 [
Kout

]
(i1−1)m+j1,(i2−1)m+j2

:= k(Yi1j1 , Yi2j2)

for i1, i2 ∈ [n] and j1, j2 ∈ [m]. Denote with λ̂i1, . . . , λ̂im the eigenvalues of 1
mKi for every i ∈ [n]438

and with λ̂out
1 , . . . , λ̂out

nm the nm eigenvalues of 1
nmKout. Applying the estimator in Equation 1 and439

Proposition 3.7 yields the following estimator for HV N (PY |Wi
):440

−
m∑
j=1

λ̂ij log λ̂ij .
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Similarly, we get the following estimator for the kernel-based VNE of the marginal distribution441

HV N (PY ):442

−
nm∑
i=1

λ̂out
i log λ̂out

i .

Combining both estimators together and averaging over Wi yields the following estimator for the443

Holevo Information:444

Ĥ (Y) :=
1

n

n∑
i=1

m∑
j=1

λ̂ij log λ̂ij −
nm∑
i=1

λ̂out
i log λ̂out

i .

C Implementation Details445

To generate multiple model outputs required by our method and the selected baselines, we use446

multinomial sampling from the LLM with a temperature setting of t = 0.5, following prior work by447

Kuhn et al. [13], Gruber and Buettner [17]. In line with the recommendations of Farquhar et al. [14],448

we sample m = 10 model answers per question for the Semantic Entropy, Kernel Language Entropy,449

and Predictive Kernel Entropy baselines. Similarly, for clarification-based methods — including450

our Spectral Uncertainty approach and Input Clarification Ensembling— we sample m = 10 model451

answers for each generated clarification.452

For both clarification-based approaches, the number of clarifications per input is determined dynami-453

cally by the clarification LLM. To ensure computational tractability, we impose an upper bound of 10454

clarifications per input.455

For kernel choice, we follow common practice [17] and employ the Radial Basis Function (RBF)456

kernel in our experiments. The choice of the kernel scale parameter γ is detailed in Appendix D.457

Finally, as compute infrastructure, we use NVIDIA Quadro RTX 5000 GPUs to compute sentence458

embeddings and run Phi-4 experiments. GPT models and LLaMA 4 are accessed via OpenAI and459

Groq API calls, respectively.460

D Kernel Scale Choice461

Figure 2: Cumulative distribution function of pairwise L2 distances between answer embeddings for
AmbigInst. Answers are generated using Phi 4.
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Figure 3: Cumulative distribution function of pairwise L2 distances between answer embeddings for
AmbigQA. Answers are generated using Phi 4.

Since we operate on normalized sentence embeddings, we adopt the default kernel scale parameter462

of γ = 1.0 across all datasets, with the exception of AmbigInst. For this dataset, we use a larger463

scale parameter of γ = 100.0 to account for its distinct distributional characteristics. As illustrated in464

Figure 2, approximately 60% of pairwise ℓ2 distances between answer embeddings in AmbigInst fall465

below 0.4, whereas in AmbigQA, the 60th percentile corresponds to a distance close to 1.0. This466

indicates that the embedding space for AmbigInst is more compact, with generally smaller distances467

between answers.468

This phenomenon is attributable to the nature of the task: nearly half of the questions in AmbigInst469

involve sorting a set of objects, where ambiguity arises from differing sorting criteria. For instance, a470

question might elicit "Apple, Book, Pen" under an alphabetical sort, and "Pen, Book, Apple" under a471

sort by word length. While these sequences represent distinct clarifications and thus receive different472

embeddings, their embeddings remain relatively close in vector space. Consequently, a larger kernel473

scale parameter γ is necessary to place greater emphasis on small distances, enabling the kernel to474

better distinguish between subtly different answer embeddings.475

E Prompts476

Figures 4, 6, and 8 present the prompt templates provided to the clarification LLM for generating task477

clarifications. Figures 5, 7, and 9 display the prompt templates used by the target LLM to generate478

answers to the user’s original questions and/or their clarifications. For the predictive uncertainty setup,479

the prompt shown in Figure 10 is used to elicit judgments from an LLM regarding the correctness of480

model-generated answers. These judgments serve as ground truth labels for the correctness prediction481

task.482

F Kernel Density Plots483

The kernel density plots shown in Figures 11,12,13, and 14 are based on model outputs generated484

by Phi 4. Figures 11 and 12 depict the distributions of uncertainty values for ambiguous versus non-485

ambiguous instances, while Figures 13 and 14 compare uncertainty distributions between correctly486

and incorrectly predicted answers.487

In both settings, an effective uncertainty measure should yield a clear separation between the488

respective distributions. Empirically, Spectral Uncertainty consistently demonstrates substantially489

better separation compared to baseline methods, with Input Clarification Ensembling also showing490

competitive performance. These results further underscore the effectiveness of our proposed approach.491

492
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Objective
Analyze the given question for ambiguities. If the question is ambiguous, your task is to
clarify it by interpreting the ambiguous concepts, specifying necessary conditions, or using
other methods. Provide as much different clarifications as possible. An ambiguous question
is a question that has different correct answers, depending on individual interpretations. Your
clarifications are supposed to remove any ambiguity in the question so every clarified question
will have a single possible correct answer. These ambiguities can arise from various factors,
including but not limited to:
1. Ambiguous references to entities in the question.
2. Multiple properties of objects/entities in the question leading to different interpretations.
3. Ambiguities due to unclear timestamps.
4. Ambiguities stemming from unclear locations.
5. Multiple valid answer types based on the question.
6. References to undefined or underspecified entities in the question.

Important Rules
1. Perform detailed analyses before concluding whether the question is clear or ambiguous. In
the analyses, you can rely on your general knowledge to anticipate possible correct answers and
interpretations of the question.
2. Output clarifications in the specified format. Do not include possible answers in the
clarifications. The clarifications should be only more precise rephrasings of the same question.
3. For each ambiguous question, you are to provide at least two distinct rephrasings that resolve
these ambiguities. By "rephrasing," we mean you should reformulate the question to be clear
and direct, eliminating any possible ambiguity without altering the original intent of the question.
You should not seek further information or produce a binary (yes-no) question as a result of
the clarification. Instead, you must create a direct question (wh-question) that aims to obtain a
specific answer.
4. Do not provide more than 10 clarifications for an ambiguous question.
5. Do not provide placeholders in your clarifications. They must be fully contained explicit
questions. If the question refers to an undefined entity, provide possible values and definitions
for the entity in different clarifications.
6. Do not add explainations within the clarifications of the questions. All your reasoning,
analyses and explaination should be contained in the Analyses section only.

Output Format
Your output should follow this format:
—Analyses:
[Think step-by-step to reason on the clarity of the question, possible answers and interpretations.
After that, output your judgement on whether the question is ambiguous or not]

—Clarifications:
-1 [First rephrased question]
-2 [Second rephrased question]
-3 [Third rephrased question]
...

If the question is clear and unambiguous, simply output:
—Clarifications:
-1 No clarification needed.

Figure 4: Clarification prompt template for AmbigQA.
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Objective
In the following, I will provide a question and you need to provide a corresponding answer.
Your answer has to be short and precise. Do not write extra text or explanation, just give
the answer directly. If the question is unclear or you do not know the answer, do not
answer with phrases like "I’m sorry.." or "The question is unclear". Instead, you need to
give a random guess for the answer. Do not ask follow-up questions or indicate that you
do not know the answer. You should always provide a short and precise answer; either
the true answer if you know it or your random guess if you are unsure. It should not be
recognizable in your output whether your answer is the true answer or the random guess.
Your output should follow the format specified below in the Output Format and Example sections.

Output Format
Answer: [Your short and precise answer or random guess. Do not include any additional
information.]

Examples
Question: When did the british army got final defeat against the united state of america?
Answer: February, 1815

Question: What kind of dog in little rascals movie?
Answer: doberman pinscher

Question: Where does the last name carson come from?
Answer: Scottish and Irish origin

Question: Who wrote the music for game of thrones?
Answer: Ramin Djawadi

Task
Question: ..

Figure 5: Answer generation prompt template for AmbigQA.
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Objective
Analyze the given task description for ambiguities based on the description itself and the
provided task input. If the task description is ambiguous, your task is to clarify it by interpreting
the ambiguous concepts, specifying necessary conditions, or using other methods. Provide all
possible clarifications.
An ambiguous task is a task that has different correct answers, given the provided input. Your
clarifications are supposed to remove any ambiguity in the task so every clarified task will have
a single possible correct answer, given the provided input.

Important Rules
1. Perform detailed analyses before concluding whether the task description is clear or
ambiguous.
2. Output clarifications in the specified format.
3. Some seemingly unambiguous task descriptions are actually ambiguous given that particular
input. So, do not forget to leverage the input to analyze whether the task description is
underspecified.
4. You can only clarify the task description. The input should remain the same. Please
provide only your reasoning (Analyses) and then the clarified versions of the task description
(Clarifications).

Output Format Your output should follow this format:
—Analyses:
[Think step-by-step to reason on the clarity of the task description. After that, output your
judgement on whether the task description is ambiguous or not]

—Clarifications:
-1 [One disambiguated task description]
-2 [Another disambiguated task description]
-3 [Yet another disambiguated task description]
...

If the task description is clear and unambiguous, simply output:
—Clarifications:
-1 No clarification needed.

Figure 6: Clarification prompt template for AmbigInst.
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Objective
In the following, I will provide a task description and an input and you need to provide a
corresponding answer that solves the task for the given input. Your answer has to be short and
precise.
First think step-by-step explaining how you want to solve the task, then give a final concise and
precise answer.
If the task is unclear, provide an interpretation that clarifies the task in the reasoning step, then
give your final precise answer based on your interpretation.
Your output should follow the format specified below in the Output Format and Example sections.

Output Format
Reasoning: [Provide a description of how you understand and interpret the task and how you are
planning to solve it, thinking step-by-step.]
Answer: [Your short and precise solution for the task.]

Example
Task description: Determine the length of a sentence.
Input: "To be or not to be, that is the question."
Reasoning: The task asks for the length of the sentence, which I interpret as the total count of
characters, including letters, spaces, punctuation, and any other symbols. Counting all characters
in the given input string will yield the correct length of the sentence. Quotation marks will not
be included since they are considered as delimiters and not part of the sentence.
Answer: 41

Your Task
...

Figure 7: Answer generation prompt template for AmbigInst.

Objective
In this task, you will receive a question. Your goal is to generate multiple versions of the
question that convey the same meaning as the original one.

Important Rules
1. Ensure that each rephrasing of the question is distinct from the others.
2. Ensure that all rephrasings of the question are semantically equivalent to the original question.
3. Provide 5 different rephrasings of the question.

Output Format
Your output should follow this format:
—Rephrasings:
-1 [Your rephrased question]
-2 [Another rephrased question]
-3 [Yet another rephrased question]
-4 [A fourth rephrasing of the question]
-5 [A fifth rephrasing of the question]

Figure 8: Clarification prompt template for Natural Questions and TriviaQA.
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Objective
In the following, I will provide a question and you need to provide an answer to the question.
Your answer has to be short and precise. Do not write extra text or explanation, just give the
answer directly. If the question is unclear or you do not know the answer, do not answer with
phrases like "I’m sorry.." or "The question is unclear". Instead, you need to give a random guess
for the answer. Do not ask follow-up questions or indicate that you do not know the answer.
You should always provide a short and precise answer; either the true answer if you know it or
your random guess if you are unsure. It should not be recognizable in your output whether your
answer is the true answer or the random guess.
Your output should follow the format specified below in the Output Format section.

Output Format
A: [Your short and precise answer or random guess to the question. Do not include any
additional information.]

Task
...

Figure 9: Answer generation prompt template for Natural Questions and TriviaQA.

Objective
In this task, you will receive a question. You will also receive a ground truth answer to the
question and a model generated answer. Your goal is to compare the ground truth answer and the
model generated answer in order to decide whether the model generated answer is correct or not.

Important Rules
1. The model generated answer is correct, when it is a valid answer to the question, and
semantically equivalent to the ground truth answer. It does not necessarily need to overlap with
the ground truth answer lexically.
2. If the model generated answer contains more information (more specific) or less information
(less specific) than the ground truth answer, but still correctly answers the question, then you
should consider it correct.
3. If you decide that the model generated answer is correct, say yes, otherwise say no.
4. Your output should only contain your decision (yes or no). It should not contain any other
text, explanation or reasoning.

Figure 10: Correctness judge prompt template for Natural Questions and TriviaQA.
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Figure 11: Kernel density plots of uncertainty values for ambiguous vs. non-ambiguous AmbigQA
questions across different uncertainty baselines.

Figure 12: Kernel density plots of uncertainty values for ambiguous vs. non-ambiguous AmbigInst
tasks across different uncertainty baselines.
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Figure 13: Kernel density plots of uncertainty values for correctly predicted vs. incorrectly predicted
TriviaQA questions across different uncertainty baselines.

Figure 14: Kernel density plots of uncertainty values for correctly predicted vs. incorrectly predicted
Natural Questions (NQ) questions across different uncertainty baselines.
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NeurIPS Paper Checklist493

1. Claims494

Question: Do the main claims made in the abstract and introduction accurately reflect the495

paper’s contributions and scope?496

Answer: [Yes]497

Justification: The abstract and Section 1 clearly state the theoretical framework (Spectral498

Uncertainty), its instantiation through the Von Neumann Entropy, and overall empirical499

results.500

Guidelines:501

• The answer NA means that the abstract and introduction do not include the claims502

made in the paper.503

• The abstract and/or introduction should clearly state the claims made, including the504

contributions made in the paper and important assumptions and limitations. A No or505

NA answer to this question will not be perceived well by the reviewers.506

• The claims made should match theoretical and experimental results, and reflect how507

much the results can be expected to generalize to other settings.508

• It is fine to include aspirational goals as motivation as long as it is clear that these goals509

are not attained by the paper.510

2. Limitations511

Question: Does the paper discuss the limitations of the work performed by the authors?512

Answer: [Yes]513

Justification: Section 6 discusses computational cost from generating n×m samples and514

notes that evidence is empirical, outlining increasing computational efficiency as future515

work.516

Guidelines:517

• The answer NA means that the paper has no limitation while the answer No means that518

the paper has limitations, but those are not discussed in the paper.519

• The authors are encouraged to create a separate "Limitations" section in their paper.520

• The paper should point out any strong assumptions and how robust the results are to521

violations of these assumptions (e.g., independence assumptions, noiseless settings,522

model well-specification, asymptotic approximations only holding locally). The authors523

should reflect on how these assumptions might be violated in practice and what the524

implications would be.525

• The authors should reflect on the scope of the claims made, e.g., if the approach was526

only tested on a few datasets or with a few runs. In general, empirical results often527

depend on implicit assumptions, which should be articulated.528

• The authors should reflect on the factors that influence the performance of the approach.529

For example, a facial recognition algorithm may perform poorly when image resolution530

is low or images are taken in low lighting. Or a speech-to-text system might not be531

used reliably to provide closed captions for online lectures because it fails to handle532

technical jargon.533

• The authors should discuss the computational efficiency of the proposed algorithms534

and how they scale with dataset size.535

• If applicable, the authors should discuss possible limitations of their approach to536

address problems of privacy and fairness.537

• While the authors might fear that complete honesty about limitations might be used by538

reviewers as grounds for rejection, a worse outcome might be that reviewers discover539

limitations that aren’t acknowledged in the paper. The authors should use their best540

judgment and recognize that individual actions in favor of transparency play an impor-541

tant role in developing norms that preserve the integrity of the community. Reviewers542

will be specifically instructed to not penalize honesty concerning limitations.543

3. Theory assumptions and proofs544
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Question: For each theoretical result, does the paper provide the full set of assumptions and545

a complete (and correct) proof?546

Answer: [Yes]547

Justification: Section 3 presents the formal setup and estimators, with remaining proofs and548

derivations included in Appendix B.549

Guidelines:550

• The answer NA means that the paper does not include theoretical results.551

• All the theorems, formulas, and proofs in the paper should be numbered and cross-552

referenced.553

• All assumptions should be clearly stated or referenced in the statement of any theorems.554

• The proofs can either appear in the main paper or the supplemental material, but if555

they appear in the supplemental material, the authors are encouraged to provide a short556

proof sketch to provide intuition.557

• Inversely, any informal proof provided in the core of the paper should be complemented558

by formal proofs provided in appendix or supplemental material.559

• Theorems and Lemmas that the proof relies upon should be properly referenced.560

4. Experimental result reproducibility561

Question: Does the paper fully disclose all the information needed to reproduce the main ex-562

perimental results of the paper to the extent that it affects the main claims and/or conclusions563

of the paper (regardless of whether the code and data are provided or not)?564

Answer: [Yes]565

Justification: Section 4, Algorithm 1, sampling/temperature settings, kernel choices, datasets,566

and full prompt templates (Appendix C, D, and E) are provided to reproduce the main results.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• If the paper includes experiments, a No answer to this question will not be perceived570

well by the reviewers: Making the paper reproducible is important, regardless of571

whether the code and data are provided or not.572

• If the contribution is a dataset and/or model, the authors should describe the steps taken573

to make their results reproducible or verifiable.574

• Depending on the contribution, reproducibility can be accomplished in various ways.575

For example, if the contribution is a novel architecture, describing the architecture fully576

might suffice, or if the contribution is a specific model and empirical evaluation, it may577

be necessary to either make it possible for others to replicate the model with the same578

dataset, or provide access to the model. In general. releasing code and data is often579

one good way to accomplish this, but reproducibility can also be provided via detailed580

instructions for how to replicate the results, access to a hosted model (e.g., in the case581

of a large language model), releasing of a model checkpoint, or other means that are582

appropriate to the research performed.583

• While NeurIPS does not require releasing code, the conference does require all submis-584

sions to provide some reasonable avenue for reproducibility, which may depend on the585

nature of the contribution. For example586

(a) If the contribution is primarily a new algorithm, the paper should make it clear how587

to reproduce that algorithm.588

(b) If the contribution is primarily a new model architecture, the paper should describe589

the architecture clearly and fully.590

(c) If the contribution is a new model (e.g., a large language model), then there should591

either be a way to access this model for reproducing the results or a way to reproduce592

the model (e.g., with an open-source dataset or instructions for how to construct593

the dataset).594

(d) We recognize that reproducibility may be tricky in some cases, in which case595

authors are welcome to describe the particular way they provide for reproducibility.596

In the case of closed-source models, it may be that access to the model is limited in597

some way (e.g., to registered users), but it should be possible for other researchers598

to have some path to reproducing or verifying the results.599
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5. Open access to data and code600

Question: Does the paper provide open access to the data and code, with sufficient instruc-601

tions to faithfully reproduce the main experimental results, as described in supplemental602

material?603

Answer: [No]604

Justification: There is no field in the OpenReview form of the workshop to submit a .zip605

file for code. To preserve anonymity, we refrain from including a public repository link.606

However, all implementation details are included so readers can easily re-implement our607

experiments. Moreover, we will make the code publicly available upon paper acceptance.608

Guidelines:609

• The answer NA means that paper does not include experiments requiring code.610

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/611

public/guides/CodeSubmissionPolicy) for more details.612

• While we encourage the release of code and data, we understand that this might not be613

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not614

including code, unless this is central to the contribution (e.g., for a new open-source615

benchmark).616

• The instructions should contain the exact command and environment needed to run to617

reproduce the results. See the NeurIPS code and data submission guidelines (https:618

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.619

• The authors should provide instructions on data access and preparation, including how620

to access the raw data, preprocessed data, intermediate data, and generated data, etc.621

• The authors should provide scripts to reproduce all experimental results for the new622

proposed method and baselines. If only a subset of experiments are reproducible, they623

should state which ones are omitted from the script and why.624

• At submission time, to preserve anonymity, the authors should release anonymized625

versions (if applicable).626

• Providing as much information as possible in supplemental material (appended to the627

paper) is recommended, but including URLs to data and code is permitted.628

6. Experimental setting/details629

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-630

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the631

results?632

Answer: [Yes]633

Justification: Section 5 details tasks, metrics, datasets/models, and settings. Appendix D634

documents the kernel scale choice and Appendix C covers implementation specifics.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The experimental setting should be presented in the core of the paper to a level of detail638

that is necessary to appreciate the results and make sense of them.639

• The full details can be provided either with the code, in appendix, or as supplemental640

material.641

7. Experiment statistical significance642

Question: Does the paper report error bars suitably and correctly defined or other appropriate643

information about the statistical significance of the experiments?644

Answer: [No]645

Justification: Running all experiments multiple times to generate confidence intervals or error646

bars would bring very high computational costs (repeated calls to target and clarification647

LLMs).648

Guidelines:649

• The answer NA means that the paper does not include experiments.650
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-651

dence intervals, or statistical significance tests, at least for the experiments that support652

the main claims of the paper.653

• The factors of variability that the error bars are capturing should be clearly stated (for654

example, train/test split, initialization, random drawing of some parameter, or overall655

run with given experimental conditions).656

• The method for calculating the error bars should be explained (closed form formula,657

call to a library function, bootstrap, etc.)658

• The assumptions made should be given (e.g., Normally distributed errors).659

• It should be clear whether the error bar is the standard deviation or the standard error660

of the mean.661

• It is OK to report 1-sigma error bars, but one should state it. The authors should662

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis663

of Normality of errors is not verified.664

• For asymmetric distributions, the authors should be careful not to show in tables or665

figures symmetric error bars that would yield results that are out of range (e.g. negative666

error rates).667

• If error bars are reported in tables or plots, The authors should explain in the text how668

they were calculated and reference the corresponding figures or tables in the text.669

8. Experiments compute resources670

Question: For each experiment, does the paper provide sufficient information on the com-671

puter resources (type of compute workers, memory, time of execution) needed to reproduce672

the experiments?673

Answer: [Yes]674

Justification: Compute resources are specified in Appendix C.675

Guidelines:676

• The answer NA means that the paper does not include experiments.677

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,678

or cloud provider, including relevant memory and storage.679

• The paper should provide the amount of compute required for each of the individual680

experimental runs as well as estimate the total compute.681

• The paper should disclose whether the full research project required more compute682

than the experiments reported in the paper (e.g., preliminary or failed experiments that683

didn’t make it into the paper).684

9. Code of ethics685

Question: Does the research conducted in the paper conform, in every respect, with the686

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?687

Answer: [Yes]688

Justification: The work uses established public datasets and off-the-shelf models and APIs689

without collecting sensitive human data, and preserves anonymity.690

Guidelines:691

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.692

• If the authors answer No, they should explain the special circumstances that require a693

deviation from the Code of Ethics.694

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-695

eration due to laws or regulations in their jurisdiction).696

10. Broader impacts697

Question: Does the paper discuss both potential positive societal impacts and negative698

societal impacts of the work performed?699

Answer: [NA]700

Justification: There is no societal impact of the work performed.701
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Guidelines:702

• The answer NA means that there is no societal impact of the work performed.703

• If the authors answer NA or No, they should explain why their work has no societal704

impact or why the paper does not address societal impact.705

• Examples of negative societal impacts include potential malicious or unintended uses706

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations707

(e.g., deployment of technologies that could make decisions that unfairly impact specific708

groups), privacy considerations, and security considerations.709

• The conference expects that many papers will be foundational research and not tied710

to particular applications, let alone deployments. However, if there is a direct path to711

any negative applications, the authors should point it out. For example, it is legitimate712

to point out that an improvement in the quality of generative models could be used to713

generate deepfakes for disinformation. On the other hand, it is not needed to point out714

that a generic algorithm for optimizing neural networks could enable people to train715

models that generate Deepfakes faster.716

• The authors should consider possible harms that could arise when the technology is717

being used as intended and functioning correctly, harms that could arise when the718

technology is being used as intended but gives incorrect results, and harms following719

from (intentional or unintentional) misuse of the technology.720

• If there are negative societal impacts, the authors could also discuss possible mitigation721

strategies (e.g., gated release of models, providing defenses in addition to attacks,722

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from723

feedback over time, improving the efficiency and accessibility of ML).724

11. Safeguards725

Question: Does the paper describe safeguards that have been put in place for responsible726

release of data or models that have a high risk for misuse (e.g., pretrained language models,727

image generators, or scraped datasets)?728

Answer: [NA]729

Justification: The paper poses no such risks.730

Guidelines:731

• The answer NA means that the paper poses no such risks.732

• Released models that have a high risk for misuse or dual-use should be released with733

necessary safeguards to allow for controlled use of the model, for example by requiring734

that users adhere to usage guidelines or restrictions to access the model or implementing735

safety filters.736

• Datasets that have been scraped from the Internet could pose safety risks. The authors737

should describe how they avoided releasing unsafe images.738

• We recognize that providing effective safeguards is challenging, and many papers do739

not require this, but we encourage authors to take this into account and make a best740

faith effort.741

12. Licenses for existing assets742

Question: Are the creators or original owners of assets (e.g., code, data, models), used in743

the paper, properly credited and are the license and terms of use explicitly mentioned and744

properly respected?745

Answer: [Yes]746

Justification: All used sources are cited to the best of our knowledge.747

Guidelines:748

• The answer NA means that the paper does not use existing assets.749

• The authors should cite the original paper that produced the code package or dataset.750

• The authors should state which version of the asset is used and, if possible, include a751

URL.752

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.753
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• For scraped data from a particular source (e.g., website), the copyright and terms of754

service of that source should be provided.755

• If assets are released, the license, copyright information, and terms of use in the756

package should be provided. For popular datasets, paperswithcode.com/datasets757

has curated licenses for some datasets. Their licensing guide can help determine the758

license of a dataset.759

• For existing datasets that are re-packaged, both the original license and the license of760

the derived asset (if it has changed) should be provided.761

• If this information is not available online, the authors are encouraged to reach out to762

the asset’s creators.763

13. New assets764

Question: Are new assets introduced in the paper well documented and is the documentation765

provided alongside the assets?766

Answer: [NA]767

Justification: The paper introduces a method but does not release a new dataset/model asset768

requiring documentation.769

Guidelines:770

• The answer NA means that the paper does not release new assets.771

• Researchers should communicate the details of the dataset/code/model as part of their772

submissions via structured templates. This includes details about training, license,773

limitations, etc.774

• The paper should discuss whether and how consent was obtained from people whose775

asset is used.776

• At submission time, remember to anonymize your assets (if applicable). You can either777

create an anonymized URL or include an anonymized zip file.778

14. Crowdsourcing and research with human subjects779

Question: For crowdsourcing experiments and research with human subjects, does the paper780

include the full text of instructions given to participants and screenshots, if applicable, as781

well as details about compensation (if any)?782

Answer: [NA]783

Justification: No crowdsourcing or human-subjects study is conducted; experiments use784

public datasets and model outputs.785

Guidelines:786

• The answer NA means that the paper does not involve crowdsourcing nor research with787

human subjects.788

• Including this information in the supplemental material is fine, but if the main contribu-789

tion of the paper involves human subjects, then as much detail as possible should be790

included in the main paper.791

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,792

or other labor should be paid at least the minimum wage in the country of the data793

collector.794

15. Institutional review board (IRB) approvals or equivalent for research with human795

subjects796

Question: Does the paper describe potential risks incurred by study participants, whether797

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)798

approvals (or an equivalent approval/review based on the requirements of your country or799

institution) were obtained?800

Answer: [NA]801

Justification: No human-subjects research is performed, so IRB approval does not apply.802

Guidelines:803

• The answer NA means that the paper does not involve crowdsourcing nor research with804

human subjects.805
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• Depending on the country in which research is conducted, IRB approval (or equivalent)806

may be required for any human subjects research. If you obtained IRB approval, you807

should clearly state this in the paper.808

• We recognize that the procedures for this may vary significantly between institutions809

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the810

guidelines for their institution.811

• For initial submissions, do not include any information that would break anonymity (if812

applicable), such as the institution conducting the review.813

16. Declaration of LLM usage814

Question: Does the paper describe the usage of LLMs if it is an important, original, or815

non-standard component of the core methods in this research? Note that if the LLM is used816

only for writing, editing, or formatting purposes and does not impact the core methodology,817

scientific rigorousness, or originality of the research, declaration is not required.818

Answer: [Yes]819

Justification: LLMs are central to the method: GPT-4o is used for clarifications, Phi-4 and820

LLaMA-4 as targets, and prompts are included in Appendix E.821

Guidelines:822

• The answer NA means that the core method development in this research does not823

involve LLMs as any important, original, or non-standard components.824

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)825

for what should or should not be described.826

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	A Novel Uncertainty Decomposition
	Decompositions: General and Special Cases
	Finite-Sum Spectral Estimators

	Methodology
	Experiments
	Metrics and Tasks
	Baselines
	Datasets and Models
	Ambiguity Detection Task (Aleatoric Uncertainty)
	Correctness Prediction Task (Total Uncertainty)

	Discussion and Conclusion
	Bregman Information
	Proofs
	Proof of Proposition 3.7
	Estimators

	Implementation Details
	Kernel Scale Choice
	Prompts
	Kernel Density Plots

