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(a) Pipeline of a video SCI system (b) Latency-PSNR comparison

Figure 1: (a) Illustration of the video Snapshot Compressive Imaging (SCI) system: In the hardware encoding process, a high-
speed scene is modulated by different masks and then the modulated scene is captured by a low-speed 2D camera as snapshot
measurements. In the software decoding process, the captured measurements and the corresponding masks are fed into a
reconstruction algorithm to retrieve the desired high-speed video frames. (b) Comparison of the reconstruction quality and
running speed of different video SCI reconstruction methods on the mobile devices and the NVIDIA GPU platform. Our
proposed MobileSCI network can achieve state-of-the-art reconstruction quality with real-time performance.

ABSTRACT
Video Snapshot Compressive Imaging (SCI) uses a low-speed 2D
camera to capture high-speed scenes as snapshot compressed mea-
surements, followed by a reconstruction algorithm to retrieve the
high-speed video frames. The fast evolving mobile devices and
existing high-performance video SCI reconstruction algorithms
motivate us to develop mobile reconstruction methods for real-
world applications. Yet, it is still challenging to deploy previous
reconstruction algorithms on mobile devices due to the complex
inference process, let alone real-time mobile reconstruction. To
the best of our knowledge, there is no video SCI reconstruction
model designed to run on the mobile devices. Towards this end,
in this paper, we present an effective approach for video SCI re-
construction, dubbed MobileSCI, which can run at real-time speed
on mobile devices for the first time. Specifically, we first build a
U-shaped 2D convolution-based architecture, which is much more
efficient and mobile-friendly than previous state-of-the-art recon-
struction methods. Besides, an efficient feature mixing block, based
on the channel splitting and shuffling mechanisms, is introduced as
a novel bottleneck block of our proposed MobileSCI to alleviate the
computational burden. Finally, a customized knowledge distillation
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strategy is utilized to further improve the reconstruction quality.
Extensive results on both simulated and real data show that our
proposed MobileSCI can achieve superior reconstruction quality
with high efficiency on the mobile devices. Particularly, we can
reconstruct a 256×256×8 snapshot compressed measurement with
real-time performance (about 35 FPS) on an iPhone 15. Code of
this paper will be released.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Computational imaging, Snapshot compressive imaging, Mobile
system, Real-time reconstruction, Mobile network

1 INTRODUCTION
To record high-speed scenes, researchers usually rely on high-speed
cameras which suffer from high hardware cost and require large
transmission bandwidth. Inspired by compressed sensing [7], video
Snapshot Compressive Imaging (SCI) provides a promising solution
as it can capture high-speed scenes using a low-speed 2D camera
with low bandwidth. As shown in Fig. 1(a), there are two main
stages in a video SCI system: hardware encoding and software
decoding [35]. In the hardware encoding process, we first mod-
ulate the high-speed scene with different random binary masks,
and then the modulated scene is compressed into a series of snap-
shot measurements which are finally captured by a low-cost and
low-speed 2D camera. So far, many successful video SCI hardware
encoders [6, 9, 21, 39] have been built. In the software decoding
stage, the captured snapshot measurements and the modulation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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masks are fed into a reconstruction algorithm to retrieve the desired
high-speed video frames. In this aspect, numerous video SCI re-
construction algorithms [4, 5, 28, 30–32], mostly based on the deep
neural networks, have been proposed with superior reconstruction
quality. Therefore, it is time to consider the real-world applications
of the video SCI system.

Nowadays, mobile devices such as smartphones or embedded
devices are fast evolving, which inspires us to seek the possibility
of implementing a mobile video SCI system. When considering the
mobile deployment, the biggest challenge is the limited computa-
tional resources in the mobile platforms. However, the inference of
previous video SCI reconstruction algorithms such as BIRNAT [5],
RevSCI [4], STFormer [27], and EfficientSCI [26] is usually com-
plex. In other words, it is difficult to deploy previous video SCI
reconstruction algorithms on the low-end mobile devices. There-
fore, existing video SCI reconstruction methods run on server-side,
resulting in dependency on Internet connection, speed, and server
usage costs for the potential users of the video SCI system.

To the best of our knowledge, mobile video SCI reconstruction
has never been explored within the research community. In this
paper, we propose the first video SCI reconstruction network to be
deployed on the mobile devices, dubbed MobileSCI which is compu-
tationally more efficient than previous state-of-the-art (SOTA) deep
learning-based reconstruction methods. Specifically, we first revisit
the network design of previous video SCI reconstruction methods
to identify the unfriendly operations when deploying on the mo-
bile devices. Particularly, we find that complex operations such
as deep unfolding inference and 3D convolutional layers are the
primary computational bottlenecks hindering the mobile deploy-
ment of previous video SCI reconstruction methods. Bearing these
in mind, we build a U-shaped 2D convolution-based architecture
which is much more efficient and mobile-friendly than previous
SOTA reconstruction methods. Besides, to reduce model size and
computational complexity and improve network capability of our
proposed MobileSCI model, we introduce the channel splitting and
shuffling mechanisms to build an efficient feature mixing block as a
novel bottleneck block. Finally, knowledge distillation by a stronger
teacher network also improves the reconstruction quality of the
proposed MobileSCI. As shown in Fig. 1(b), our MobileSCI-KD net-
work can achieve comparable reconstruction quality with much
faster inference speed than previous SOTA reconstruction methods
on the mobile devices as well as the NVIDIA GPU platform. In par-
ticular, our MobileSCI-KD runs 45× and 10× faster than previous
SOTA BIRNAT on an iPhone 15 and a NVIDIA Jetson Orin Nano
platform, respectively.

Our contributions can be summarized as follows:
• We proposeMobileSCI, to the best of our knowledge, the first
mobile video SCI reconstruction network.

• A U-shaped architecture is built with computational efficient
and mobile-friendly 2D convolutional layers. Following this,
an efficient feature mixing block, based on the channel split-
ting and shuffling mechanisms, is introduced as a novel bot-
tleneck block of our proposed MobileSCI to further alleviate
the computational burden.

• We implement a customized knowledge distillation strategy
which further improves the reconstruction quality.

• Comprehensive experimental results show that ourMobileSCI
network can achieve superior performance with much better
real-time performance than previous SOTA methods, espe-
cially on the mobile devices.

2 RELATEDWORK
2.1 Video SCI Reconstruction Methods
Current video SCI reconstruction methods can be divided into tra-
ditional iteration-based methods and deep learning-based ones. The
traditional iteration-based methods formulate the video SCI recon-
struction process as an optimization problem with regularization
terms such as total variation [34] and Gaussian mixture model [33],
and solve it via iterative algorithms. The major drawback of these
iteration-based methods is their time-consuming iterative optimiza-
tion process. To improve the running speed, Yuan et al. propose
to plug a pre-trained denoising model into each iteration of the
optimization process [36, 37]. However, it still take a long time to
reconstruct large-scale scenes.

Recently, researchers begin to utilize deep neural networks in
the video SCI reconstruction task. For example, BIRNAT [5] uses a
bidirectional recurrent neural network to exploit the temporal cor-
relation. MetaSCI [30] is designed to solve the fast adaptation prob-
lem of video SCI by introducing a meta modulated convolutional
network. RevSCI [4] builds the first end-to-end 3D convolutional
neural network, and adopt the reversible structure to save model
training memory. Wang et al. build the first Transformer-based
video SCI reconstruction method [27] with space-time factoriza-
tion and local self-attention mechanism. After that, Wang et al.
develop an efficient reconstruction network [26] based on dense
connections and space-time factorization. Combining the idea of
iteration-based methods and deep learning-based ones, several deep
unfolding networks [31, 32, 40] are proposed.

Due to their superior performance, we favor the deep learning-
based reconstruction methods. However, it is challenging to deploy
them on the mobile devices due to the existence of the complex
operations. Therefore, in this paper, we mainly focus on develop-
ing mobile-friendly video SCI reconstruction algorithm with careful
network design.

2.2 Mobile Networks
So far, a variety of computational efficient architectures have been
proposed which are more suitable for mobile deployment. The
first well-known architectures are the MobileNet family. Among
them, MobileNet V1 [11] first introduces the depth-wise separa-
ble convolutional layers as a basic unit to build lightweight deep
neural networks. Following this, MobileNet V2 [22] proposes the
inverted residual structure which is more memory efficient. Finally,
MobileNetV3 [10] is tuned to mobile devices through a combina-
tion of hardware-aware network architecture search complemented
by the NetAdapt algorithm. After that, numerous MobileNet Vari-
ants [2, 8, 24, 25] have been proposed with superior performance.
Another emerging branch is the mobile Transformer design. For
example, EdgeViTs [18] introduces a highly cost-effective local-
global-local information exchange bottleneck, for the first time,
enable attention based vision models to compete with the SOTA
light-weight CNNs. Chen et al. leverage the advantages of both
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Figure 2: (a) Overall pipeline of the proposed MobileSCI network. It is a 2D convolution-based encoder-decoder architecture.
The encoder consists of two convolutional blocks and two downsample modules. The bottleneck is a convolutional block or an
efficient feature mixing block. The decoder contains two convolutional blocks and two upsample modules. Each convolutional
block contains several convolutional units. (b) The convolutional unit contains two 3 × 3 convolutional layers followed by
a LeakyReLU function. (c) The feature mixing block is composed of two feature mixer layers. (d) The feature mixer layer
composes of a channel projection layer and a 3 × 3 depth-wise convolutional layer. (e) In the channel projection layer, we first
split the input feature X𝑖𝑛 along the channel dimension as X1 and X2. Then, X1 undergoes two 1× 1 convolutional layer followed
by a LeakyReLU function to get the output feature X𝑐1. Next, we concatenate X𝑐1 and X2 to obtain the output feature. Finally,
a channel shuffling operation is implemented. Note that, to better propagate the extracted features, we add some shortcut
connections in the proposed MobileSCI network.

CNN and Transformer with a parallel design of MobileNet and
Transformer with a two-way bridge in between [3]. By rethinking
the mobile block design for efficient attention-based networks, [14]
and [38] present two novel lightweight vision Transformer archi-
tectures: EfficientFormer and EMO.

The success of the above-mentioned mobile architectures and
the fast evolving mobile devices motivate us to deploy the video
SCI reconstruction algorithms on the mobile devices. Therefore, in
this paper, we are the first to explore the mobile-friendly network
design for video SCI reconstruction.

3 PRELIMINARY: VIDEO SCI SYSTEM
Here, we describe the forward model of the video SCI system.
Let {X𝑡 }𝑇𝑡=1 ∈ R𝑛𝑥×𝑛𝑦 denotes a 𝑇 -frame high-speed scene to
be captured in a single exposure time, where 𝑛𝑥 , 𝑛𝑦 represent the
spatial resolution of each frame and 𝑇 is the compression ratio
(Cr) of the video SCI system. Following this, the modulation pro-
cess can be modeled as multiplying {X𝑡 }𝑇𝑡=1 by pre-defined masks
{M𝑡 }𝑇𝑡=1 ∈ R𝑛𝑥×𝑛𝑦 , that is Y𝑡 = X𝑡 ⊙M𝑡 , where {Y𝑡 }𝑇𝑡=1 ∈ R𝑛𝑥×𝑛𝑦
and ⊙ denote the modulated frames and Hadamard (element-wise)
multiplication, respectively. Finally, a low-speed 2D camera is used
to capture the modulated high-speed scene as a snapshot com-
pressed measurement Y ∈ R𝑛𝑥×𝑛𝑦 . Thus, the forward process of

the video SCI system can be fomulated as,

Y =
∑𝑇
𝑡=1 X𝑡 ⊙ M𝑡 + N, (1)

where N ∈ R𝑛𝑥×𝑛𝑦 denotes the noise.
In the decoding stage of the video SCI system, we can get the

desired video frames {X̂𝑡 }𝑇𝑡=1 by feeding the compressed measure-
ment Y and the modulation masks {M𝑡 }𝑇𝑡=1 into a video SCI recon-
struction network.

4 OUR PROPOSED METHODS
4.1 Motivation
In this section, we rethink previous video SCI reconstruction al-
gorithm designs from a mobile efficiency perspective. First of all,
iteration-based reconstruction methods are not applicable for mo-
bile deployment due to their time-consuming property. Secondly,
the deep unfolding framework is not feasible for the mobile de-
vices due to the complex deep unfolding inference procedure. Fi-
nally, we turn our attention to the end-to-end (E2E) deep neu-
ral network-based reconstruction methods. On the one hand, sev-
eral 2D convolution-based methods including MetaSCI [30] and
U-net [20] enjoy high efficiency. However, the reconstruction qual-
ity is unsatisfactory (lower than 32𝑑𝐵). On the other hand, the
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E2E video SCI reconstruction methods such as RevSCI [4] and Eff-
cientSCI [26], can achieve superior reconstruction quality (higher
than 33𝑑𝐵). However, they are build upon 3D convolutional layers
or the non-local self-attention modules which are computational
heavy and thus not friendly for the mobile devices. Now, we take
EfficientSCI [26] as an example. It can present the best efficiency
performance along with high reconstruction quality when testing
on the NVIDIA GPU platform. However, due to the memory con-
strain, we cannot deploy EfficientSCI on the mobile devices. Base
on the above analysis, we believe that an E2E deep neural network
with 2D convolutional layers shall be a mobile-friendly and efficient
video SCI reconstruction algorithm design.

4.2 Overall MobileSCI Architecture
The overall architecture of our MobileSCI is shown in Fig. 2(a). In
the initialization stage, inspired by [5, 27], we use the estimation
module to pre-process measurement (Y) and masks (M) as follows,

Y = Y ⊘
𝑇∑︁
𝑡=1

M𝑡 , X𝑒 = Y ⊙ M + Y, (2)

where ⊘ represents Hadamard (element-wise) division,Y ∈ R𝑛𝑥×𝑛𝑦
is the normalized measurement, which preserves a certain degree
of the background and motion trajectory information, and X𝑒 ∈
R𝑛𝑥×𝑛𝑦×𝑇 represents the coarse estimate of the desired video. We
then take X𝑒 as the input of the proposed network to get the final
reconstruction result.

Our proposed MobileSCI network is mainly composed of three
parts: 𝑖) feature extraction module, 𝑖𝑖) feature enhancement module,
and 𝑖𝑖𝑖) video reconstruction module. Firstly, the feature extraction
module is composed of a 2D convolutional layers with a kernel size
of 3 × 3, followed by a LeakyReLU activation function [17]. With
the proposed feature extraction module, we can effectively project
the input video frames into the high-dimensional feature space
and produce the shallow features. After that, inspired by CST [1]
which has been successfully applied on the hyperspectral SCI re-
construction task [13], we adopt a U-shaped structure in the feature
enhancement module of the MobileSCI model to generate the deep
features. Finally, the video reconstruction module, composed of a
2D convolutional layer with a kernel size of 3× 3, is able to conduct
video reconstruction on the deep features output by the feature
enhancement module.

4.3 U-shaped Feature Enhancement Module
The proposed U-shaped feature enhancement module consists of
an encoder E, a bottleneck B and a decoder D. Among them, E
consists of two convolutional blocks and two downsample modules.
The downsample module is a strided 3×3 convolutional layer which
can downscale the feature maps and double the channel dimension.
B is a convolutional block or an efficient feature mixing block.
D contains two convolutional blocks and two upsample modules.
The upsample module is a 1 × 1 convolutional layer followed by a
PixelShuffle operation [23]. In each convolutional block, we stack
several convolutional units. As shown in Fig. 2(b), the convolutional
unit is a residual style module which is composed of two 3 × 3
convolutional layers followed by a LeakyReLU activation function.
Note that, the channel number of the features keeps consistent in

the convolutional unit. Finally, to alleviate the information loss
during rescaling, we add some shortcut connections between the
encoder E and the decoder D.

4.4 Efficient Feature Mixing Block
To further enhance our MobileSCI, we aim to reduce its model
size and alleviate its computational burden. The key challenges
are two-folds: 𝑖) Mobile attention modules [14, 38] have achieved
superior performance on multiple vision tasks. However, when
applying attention modules on the extracted features with large
spatial size, the real-time performance will be largely worsen. 𝑖𝑖)
The inverted residual structure [22] is not feasible for the U-shaped
architecture because channel number of the bottleneck layers is
not the constrain for improving the reconstruction quality. Bearing
the above in mind, we propose an efficient feature mixing block,
based on the channel splitting and shuffling mechanisms [16], as a
novel bottleneck structure of the proposed MobileSCI. As shown
in Fig. 2(c), our proposed feature mixing block is composed of two
feature mixer layers with a shortcut connection.
Feature Mixer Layer: As shown Fig. 2(d),The feature mixer layer
contains a channel projection layers and a 3 × 3 depth-wise convo-
lutional layer. To mix features at the channel locations, we adopt
point-wise MLPs to perform channel projection. Besides, we in-
troduce the channel splitting and shuffling mechanisms to reduce
computational cost in the channel projection layer. Specifically, as
shown Fig. 2(e), in each channel projection layer, we first split the
input feature X𝑖𝑛 along the channel dimension as X1 and X2. Then,
X1 undergoes two point-wise MLPs followed by a LeakyReLU func-
tion to generate the output feature X𝑐1. Among them, the first MLP
expands the channel number twice, and the second MLP reduces
the channel number by half. Next, we concatenate X𝑐1 and X2 to
obtain the output feature. Finally, a channel shuffling operation is
employed to enable the information exchange on the concatenated
feature. The above procedure of the channel projection layer can
be expressed as follows,

[X1,X2] = Split(X𝑖𝑛),
X𝑐1 = W2 (𝜎 (W1 (X1))),
X𝑜𝑢𝑡 = Shuffle(Concat(X𝑐1,X2)) + X𝑖𝑛,

(3)

where Split(·) and Shuffle(·) denote the splitting and shuffling
of features in the channel dimension. W1 and W2 are the point-
wise convolutional layers. 𝜎 represents the LeakyReLU function.
Concat(·) is the concatenation operation.

4.5 Loss Function
As established in Sec. 3, our proposed method takes the measure-
ment (Y) and the corresponding masks ({M𝑡 }𝑇𝑡=1) as inputs, and
then generates the dynamic video frames ({X̂𝑡 }𝑇𝑡=1 ∈ R𝑛𝑥×𝑛𝑦 ).
Given the ground truth ({X𝑡 }𝑇𝑡=1 ∈ R𝑛𝑥×𝑛𝑦 ), we choose the mean
square error (MSE) as our loss function, which can be expressed as,

L𝑀𝑆𝐸 =
1

𝑇𝑛𝑥𝑛𝑦

𝑇∑︁
𝑡=1

∥X̂𝑡 − X𝑡 ∥22 . (4)

For the knowledge distillation process, we choose a deeper Mo-
bileSCI model as the teacher network due to its strong representa-
tion ability. Then we put a knowledge-distillation loss between the
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teacher output {X̂𝑘 }𝑇𝑘=1 ∈ R𝑛𝑥×𝑛𝑦 and student output X̂𝑡 as,

L𝐾𝐷 =
1

𝑇𝑛𝑥𝑛𝑦

𝑇∑︁
𝑡=1

∥X̂𝑘 − X̂𝑡 ∥22 . (5)

Therefore, the final loss function for our MobileSCI network will
be a weighted combination:

L = 𝜆1L𝑀𝑆𝐸 + 𝜆2L𝐾𝐷 , (6)

where 𝜆1 = 1, 𝜆2 = 1 in our experimental settings.

1st Relay Lens

DMD

2nd Relay Lens

2D Camera

Camera Lens

Figure 3: Illustration of the real built video SCI system.

5 EXPERIMENTS
Hardware Implementation: The optical setup of the real video
SCI system is shown in Fig. 3. The encoding process can be sum-
marized as follows: First, the reflected light from the target scene is
imaged onto the surface of the digital micromirror device (DMD) (TI,
2560 × 1600 pixels, 7.6𝜇𝑚 pixel pitch) via a camera lens (Sigma, 17-
50/2.8, EX DC OS HSM) and the first relay lens (Coolens, WWK10-
110-111). Then, the projected dynamic scene is modulated by the
random binary masks loaded in the DMD. Finally, the encoded
scene is projected onto a low-speed 2D camera (Basler acA1920,
1920 × 1200 pixels, 4.8𝜇𝑚 pixel pitch) with the second relay lens
(Coolens, WWK066-110-110), which is captured in a snapshot man-
ner. In our experiments, the camera works at 50 FPS, thus the
equivalent sampling rate of the real built video SCI system is 50 ×
Cr FPS.
Real Data Acquisition Procedure: The first essential step of the
real data acquisition process is to record the modulated masks in
a right way. Specifically, we first place a Lambertian white board
at the objective plane of the camera lens. Then, each mask pattern
(M0) which is projected on the surface of DMD, will be recorded
sequentially. Moreover, to eliminate the influence of background
noise and nonuniform light distribution, we need to capture two
extra images corresponding to a pure white (O with all ‘1’s) and
black mask (Z with all ‘0’s), respectively. Finally, we can get the
actual mask (M) with (7).

M = (M0 − Z) ⊘ (O − Z), (7)

where ⊘ stands for Hadamard (element-wise) division.
Training and TestingDatasets: Following BIRNAT [5], we choose
DAVIS2017 [19] with resolution 480 × 894 as the training dataset.
For the testing dataset, we first test our MobileSCI network on six
simulated testing data (including Kobe, Traffic, Runner, Drop,
Crash and Aerial with a size of 256 × 256 × 8) to verify the model

performance. After that, we test our MobileSCI model on the real
testing data (including Water Balloon and Domino with a size of
512 × 512 × 10) captured by the real video SCI system described in
the “Hardware Implementation” section.
Training Details: Following DeSCI [15], eight sequential frames
are modulated by a set of eight random binary masks and then
summed up to get a series of snapshot compressed measurements
as described in Sec. 3. We randomly crop patch cubes (256 × 256 ×
8) from original scenes in DAVIS2017 and obtain 26,000 training
data pairs with data augmentation operations including random
scaling and random flipping. Following this, we adopt Adam [12]
to optimize the model with an initial learning rate of 0.0001. After
iterating for 100 epochs on the training data with a 128 × 128
resolution and 20 epochs on the training data with a 256 × 256
resolution, we adjust the learning rate to 0.00001 and continue to
iterate for 20 epochs on the training data with a 256×256 resolution
to obtain the final model parameters. The whole training process is
conducted on 4 NVIDIA RTX 3090 GPUs based on PyTorch 1.13.1.

5.1 Results on Simulated Data
We compare our proposed MobileSCI network with the traditional
iteration-based methods (GAP-TV [34], PnP-FFDNet [36], PnP-
FastDVDnet [37], and DeSCI [15]) and the deep learning-based ones
(U-net [20], MetaSCI [30], BIRNAT [5], RevSCI [4], GAP-CCoT [28],
STFormer-S [27], and EfficientSCI-T [26]) on the simulated testing
datasets. In this section, the peak-signal-to-noise-ratio (PSNR) and
structured similarity index metrics (SSIM) [29] are used as the eval-
uation metrics of the reconstruction quality. Running time on the
GPU platform is adopted as the evaluation metrics of the algorithm
efficiency. Moreover, for a fair comparison, we test all the deep
learning-based reconstruction methods on the same NVIDIA RTX
3090 GPU. We customize the MobileSCI model by setting the chan-
nel number of the embedding output feature, the number of the
convolutional unit in each convolutional block and the number of
the feature mixing block in the bottleneck block as 64, 6, and 1, re-
spectively. Additionally, the final MobileSCI-KD model is obtained
by distilling from a stronger network.

We can observe from Tab. 1 that our proposed MobileSCI-KD
can achieve much better real-time performance with comparable re-
construction quality than previous SOTA methods. In particular, i)
The PSNR value of our MobileSCI-KD surpasses U-net and MetaSCI
by a large margin on average (4.47𝑑𝐵 and 2.20𝑑𝐵, respectively),
while reducing the testing time by more than 2.0×. ii) The PSNR
value of our MobileSCI-KD model surpasses BIRNAT and GAP-
CCoT by 0.61𝑑𝐵 and 0.39𝑑𝐵 on average, while reducing the testing
time by about 6.7× and 5.3×, respectively. iii) Our MobileSCI-KD
can achieve comparable reconstruction quality with RevSCI and
STFormer-S, while the testing time is reduced by more than 12.7×
and 9.3×, respectively. iv) Although EfficientSCI-T outperforms our
MobileSCI-KD by about 0.3𝑑𝐵, it required more than 4.7× longer in-
ference time on the NVIDIA RTX 3090 GPU. Besides, EfficientSCI-T
cannot be deployed on the mobile devices.

For visualization purposes, we plot several reconstructed video
frames in Fig. 4, where we can see from the zooming areas in each se-
lected video frame that our MobileSCI-KD can provide comparable
high-quality reconstructed images with previous SOTA STFormer-
S, and EfficientSCI-T. Especially for the complex Traffic, Crash
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Table 1: The average PSNR in dB (left entry), SSIM (right entry) and running time per measurement of different video SCI
reconstruction algorithms on 6 simulated testing datasets. Note that, for a fair comparison, all the experiments are conducted
on the same NVIDIA GPU.

Method Kobe Traffic Runner Drop Crash Aerial Average Latency (s)

GAP-TV [34] 26.46, 0.885 20.89, 0.715 28.52, 0.909 34.63, 0.970 24.82, 0.838 25.05, 0.828 26.73, 0.858 4.20 (CPU)
PnP-FFDNet [36] 30.50, 0.926 24.18, 0.828 32.15, 0.933 40.70, 0.989 25.42, 0.849 25.27, 0.829 29.70, 0.892 3.00 (GPU)
PnP-FastDVDnet [37] 32.73, 0.947 27.95, 0.932 36.29, 0.962 41.82, 0.989 27.32, 0.925 27.98, 0.897 32.35, 0.942 6.00 (GPU)
DeSCI [15] 33.25, 0.952 28.71, 0.925 38.48, 0.969 43.10, 0.993 27.04, 0.909 25.33, 0.860 32.65, 0.935 6180.00 (CPU)

U-net [20] 27.79, 0.807 24.62, 0.840 34.12, 0.947 36.56, 0.949 26.43, 0.882 27.18, 0.869 29.45, 0.882 0.03 (GPU)
MetaSCI [30] 30.12, 0.907 26.95, 0.888 37.02, 0.967 40.61, 0.985 27.33, 0.906 28.31, 0.904 31.72, 0.926 0.03 (GPU)
BIRNAT [5] 32.71, 0.950 29.33, 0.942 38.70, 0.976 42.28, 0.992 27.84, 0.927 28.99, 0.917 33.31, 0.951 0.10 (GPU)
RevSCI [4] 33.72, 0.957 30.02, 0.949 39.40, 0.977 42.93, 0.992 28.12, 0.937 29.35, 0.924 33.92, 0.956 0.19 (GPU)
GAP-CCoT [28] 32.58, 0.949 29.03, 0.938 39.12, 0.980 42.54, 0.992 28.52, 0.941 29.40, 0.923 33.53, 0.958 0.08 (GPU)
STFormer-S [27] 33.19, 0.955 29.19, 0.941 39.00, 0.979 42.84, 0.992 29.26, 0.950 30.13, 0.934 33.94, 0.958 0.14 (GPU)
EfficientSCI-T [26] 33.45, 0.960 29.20, 0.942 39.51, 0.981 43.56, 0.993 29.27, 0.954 30.32, 0.937 34.22, 0.961 0.07 (GPU)

MobileSCI-KD (Ours) 32.28, 0.946 28.91, 0.936 39.51, 0.981 43.13, 0.992 29.39, 0.953 30.32, 0.936 33.92, 0.957 0.015 (GPU)

Kobe #6

Traffic #8

Runner #1

Drop #6

Crash #8

Aerial #1

Ground Truth MetaSCI BIRNAT RevSCI STFormer-S EffcientSCI-T Ours 

Figure 4: Selected reconstruction video frames of the simulated testing datasets. For a better view, we zoom in on a local area as
shown in the small red boxes of each ground truth image, and do not show the small red boxes again for simplicity.
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Figure 5: Selected reconstruction video frames of the real data. For a better view, we zoom in on two local areas as shown in the
small red and green boxes of the first and second image.

and Aerial scenes, we can observe sharp edges and more details
in the reconstructed frames of our proposed MobileSCI-KD.

Table 2: The actual speed of our MobileSCI-KD model and
BIRNAT deployed on various mobile devices. The actual
speed is measured in seconds. Some numbers are missing,
since BIRNAT was providing an out of memory error.

Mobile Device MobileSCI-KD Latency (s) BIRNAT Latency (s)

iPhone 15 0.028 1.26
iPad Pro (2nd gen) 0.080 3.49
OnePlus 11 1.31 -
Xiaomi 14Ultra 1.19 -
NVIDIA Jetson Orin Nano 0.17 1.68

We also measure the actual inference speed of our MobileSCI
model on real mobile devices with input resolution as 256 × 256 × 8.
Due to the extensive use of 3D convolutional layers or Transformer
modules, which consume a large amount of memory, some of the
previous SOTA methods including RevSCI, GAP-CCoT, STFormer-
S, and EfficientSCI-T cannot be deployed to resource-limited mobile

devices such as mobile phones and embedded devices. Thus, we
compare our MobileSCI model with previous SOTA BIRNAT in
this section. As shown in Tab. 2, our MobileSCI is more than 40×
and 10× faster than BIRNAT on the mobile phones and NVIDIA
embedded device, respectively. Particularly, our MobileSCI can
achieve real-time (35 FPS) reconstruction on an iPhone 15.

5.2 Results on Real Data
We further test our proposed MobileSCI on the real data captured
by the video SCI system. Here, it is worth mentioning that due
to the mismatch between the camera and DMD, the real captured
masks cannot meet the binary distribution as that of the simulated
random binary masks. Thus, we need to finetune the model which
is pretrained on the simulated training data. The training data pairs
for finetuning are generated with the original scenes in DAVIS2017
and the real captured masks. In the finetuning process, we first set
the learning rate as 0.0001. Then we can finetune for 20 epochs on
the training data with a 128× 128 resolution, followed by 10 epochs
on the training data with a 256 × 256 resolution.
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We can see from Fig. 5 that our proposed MobileSCI-KD can
achieve comparable reconstruction quality with previous SOTA
STFormer-S, and EfficientSCI-T. Specifically, our proposedMobileSCI-
KD model can provide clearly reconstructed letters on the Domino
data and sharp edges on the Water Balloon data.

5.3 Ablation Study
Effect of the feature mixing block: To evaluate the effectiveness
of various efficient modules in our MobileSCI model, we conduct
experiments on the efficient modules including the mobile attention
module proposed in EfficientFormer V2 [14], the inverted residual
structure shown in MobileNet V2 [22] and our proposed feature
mixing block. In the baseline model, we adopt the convolutional
unit (shown in Fig. 2(b)) in the whole U-shaped architecture. Then,
we replace the convolutional unit in the bottleneck block with the
proposed feature mixing block to get our MobileSCI-Base model.

We can get the following observations from Tab. 3 that: i) Ef-
ficientFormer V2 outperforms the baseline model with slightly
0.04𝑑𝐵, while the inference time increases by about 2×. ii) Mo-
bileNet V2 can help reduce the model size and slightly alleviate
the computational burden. However, the reconstruction quality
drops by more than 0.17𝑑𝐵 with no improvement on the real-time
performance. iii) Our proposed feature mixing block is extremely
lightweight and more efficient. Specifically, compared with the
baseline model, the model size and computational complexity of
our MobileSCI-Base model reduce by 2.14×, 18%, along with a 7.4%
improvement on the inference speed. Moreover, the reconstruction
quality is guaranteed. Thus, our proposed feature mixing block can
achieve the best trade-off between accuracy and efficiency.

Table 3: Ablation study on the feature mixing block. The
latency on an iPhone 15 is reported.

Method PSNR SSIM Params (M) FLOPs (G) Latency (ms)

Baseline 33.78 0.956 12.052 149.05 30.25
EfficientFormer V2 [14] 33.82 0.956 12.207 142.38 60.15
MobileNet V2 [22] 33.61 0.955 8.186 133.17 30.50

MobileSCI-Base (Ours) 33.77 0.956 5.632 122.76 28.23

Then, we replace the convolutional units at different parts of
the U-shaped architecture with the proposed feature mixing block.
Keeping the same testing time on the same NVIDIA RTX 3090 GPU,
we sequentially replace the convolutional units at the bottleneck
block (“Case 1”), Conv Block 2&3 (“Case 2”) and Conv Block 1&4
(“Case 3”) of our MobileSCI model. As shown in Tab. 4, “Case 1”
outperforms “Case 2” and “Case 3” by about 0.23𝑑𝐵 and 1.04𝑑𝐵,
respectively. Therefore, replacing the convolutional units only at
the bottleneck block can better ensure the reconstruction quality.
Effect of knowledge distillation: In this section, we study dif-
ferent knowledge distillation strategies. The teacher MobileSCI
network is obtained by setting the channel number of the embed-
ding output feature, the number of the convolutional unit in each
convolutional block and the number of the feature mixing block in
the bottleneck block as 64, 24 and 4, respectively.We first implement
knowledge distillation on the randomly initialized student model
(“Strategy 1”). However, we can see from Fig. 6 that this brings
no performance improvement on the proposed MobileSCI-Base.

Table 4: Ablation study on replacing the convolutional unit
at different parts of our mobileSCI network. We sequentially
replace the convolutional units at the Bottleneck Block (BB),
Conv Block 2&3 (CB23) and Conv Block 1&4 (CB14) of our
MobileSCI model.

Replacing Blocks PSNR SSIM Params (M) FLOPs (G)

BB 33.77 0.956 5.632 122.76
BB + CB23 33.54 0.954 3.758 92.00
BB + CB23 + CB14 32.73 0.944 4.200 56.06

Therefore, we customize a novel knowledge distillation strategy
(“Strategy 2”). Specifically, we select one layer every four layers
from the teacher model to initialize the student model. Following
this, we conduct knowledge distillation on the initialized student
model. As shown in Fig. 6, “Strategy 2” brings 0.15𝑑𝐵 PSNR improve-
ment of the reconstruction quality with much faster convergence
speed than “Strategy 1”.

T
ra

in
in

g 
L

os
s

Figure 6: Loss curve and PSNR value of different knowledge
distillation strategies. In “Strategy 1”, we implement knowl-
edge distillation on the randomly initialized student model.
In “Strategy 2”, we first initialize the student model with
selective layers from the teacher model. Then, we conduct
knowledge distillation on the initialized student model.

6 CONCLUSION
In this paper, we propose the first real-time mobile video SCI recon-
struction method, dubbedMobileSCI, with effective network design.
Specifically, a U-shaped architecture with 2D convolutional layers
is built as the baseline. Following this, an efficient feature mixing
block based on the channel splitting and shuffling mechanisms, is
proposed to reduce computational cost and improve network capa-
bility of our proposed MobileSCI. Finally, a customized knowledge
distillation strategy is introduced to further improve the recon-
struction quality. Extensive experiments on both simulated and
real testing data show that our proposed MobileSCI can achieve a
good trade-off between accuracy and efficiency. More importantly,
combining the proposed optical setup with our MobileSCI network,
we contribute a promising way to build a whole mobile video SCI
system with real-time performance.
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