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Abstract

Diffusion models have garnered considerable
interest in the field of text generation. Sev-
eral studies have explored text diffusion mod-
els with different structures and applied them to
various tasks, including named entity recogni-
tion and summarization. However, there exists
a notable disparity between the “easy-first” text
generation process of current diffusion models
and the “keyword-first” natural text generation
process of humans, which has received limited
attention. To bridge this gap, we propose In-
foDiffusion, a non-autoregressive text diffusion
model. Our approach introduces a “keyinfo-
first” generation strategy and incorporates a
noise schedule based on the amount of text
information. In addition, InfoDiffusion com-
bines self-conditioning with a newly proposed
partially noising model structure. Experimen-
tal results show that InfoDiffusion outperforms
the baseline model in terms of generation qual-
ity and diversity, as well as exhibiting higher
sampling efficiency.1

1 Introduction

Non-autoregressive (NAR) generation refers to a
method of generating sequences where each el-
ement is generated independently, without rely-
ing on previously generated elements, allowing for
faster parallel generation but potentially sacrificing
the generation accuracy (Xiao et al., 2022). Re-
cently, diffusion models have demonstrated pow-
erful generative capabilities in image generation
tasks, gradually becoming a new paradigm in gen-
erative models. The successful application of diffu-
sion models to continuous data such as images and
audio has motivated researchers to introduce them
to discrete data like text. Previous researches have
attempted to incorporate diffusion models into non-
autoregressive text generation, designing different
text diffusion model structures and applying them
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to various text generation tasks, such as named
entity recognition (Shen et al., 2023) and summa-
rization (Zhang et al., 2023). However, these works
have failed to recognize a fundamental difference
between the process of generating text with diffu-
sion models and the actual process of human text
generation, which may be a reason why text diffu-
sion models have consistently fallen short in terms
of generation efficiency and quality.

Previous research has found that the text diffu-
sion models seem to follow an “easy-first” principle
(Emelianenko et al., 2019; He et al., 2022) in the
decoding process. The “easy-first” principle means
the model tends to generate tokens that are most
frequently observed (and least surprising) in the
training corpus, in order to achieve a higher likeli-
hood. As the context becomes richer, more details
are incorporated into the sequence. Figure 1 illus-
trates the decoding process of some existing text
diffusion models, where it can be observed that the
model tends to prioritize generating simple, high-
frequency, and semantically poor words like “the”
and “of” before generating less frequent but more
informative and semantically rich words like “struc-
ture” and “remember”. This differs from the actual
order in which humans process or generate text.
People tend to prioritize the core parts of a sentence
or a paragraph, which contain crucial information
(Grice, 1975). For example, when asked:“What
are your upcoming plans?”, you would answer:“I
am going to finish a research paper.” In this pro-
cess, the words that come to your mind first are
most likely “paper” or “finish”, as they carry key
information or have higher information entropy,
rather than meaningless words like “a” or “the”.
It is difficult to imagine how someone whose first
reaction is “the” would answer the question men-
tioned above. Similarly, this is also disastrous for
a language model to which we expect to impart
language abilities and even thoughts.

This inconsistent decoding order in text diffu-
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Figure 1: Inference process of three text diffusion models: illustrating the “easy-first” generation order. Each row
represents one inference step.

sion models could lead to poor generation quality
and low efficiency. On one hand, due to the fact
that the core part of a sentence (key information)
is accurately generated in the later half of the sam-
pling process, the model lacks a comprehensive
understanding of the overall semantic meaning of
the sentence in the early stages, resulting in un-
satisfactory generation quality. On the other hand,
the lack of guidance from key information in the
initial half of the sampling process leads to the gen-
eration of many meaningless or irrelevant words
from the beginning. Due to the presence of these
meaningless or even erroneous sampling steps, the
efficiency of the model’s sampling process is low.

To address the aforementioned issues, we pro-
pose a new non-autoregressive text generation
model called InfoDiffusion. We devise a new noise
schedule based on the information entropy of the
text, enabling the model to aware the information
carried by each word in a sentence. This guidance
helps the model prioritize generating key informa-
tion during the sampling process, thereby enhanc-
ing the quality and speed of sampling. Furthermore,
we have integrated self-conditioning to further im-
prove the generated output’s quality and utilized
“partially noising and conditional denoising” tech-
nique to realise sequence-to-sequence tasks.

In summary, our contributions are as follows:
• We propose a new non-autoregressive text gen-

eration model called InfoDiffusion, and enables
the model to aware the information entropy con-
tained in the text to prioritize generating key in-
formation during the sampling process.

• We combine self-conditioning and “partially nois-
ing and conditional denoising” to achieve high-
quality sequence-to-sequence text generation.

• Experimental results demonstrate that InfoDif-
fusion, which follows a “keyinfo-first” genera-
tion order consistent with humans, achieves bet-
ter generation quality and higher efficiency than
baseline models across four text generation tasks.

2 Preliminaries

2.1 Diffusion Models
Diffusion models are a class of latent variable
models characterized by a forward and a reverse
Markov process (Sohl-Dickstein et al., 2015; Ho
et al., 2020). In this framework, given a sample
from the data distribution x0 ∼ q(x0), the forward
process generates a sequence of latent variables
x1, ..., xT by sampling from:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt ∈ (0, 1) is a noise schedule controlling
the step size of adding noise. Based on the repa-
rameterization trick, arbitrary intermediate latent
variable xt can be sampled in a closed form:

q(xt | x0) = N (xt;
√
ᾱtx0,

√
1− ᾱtI) (2)

where αt = 1−βt, ᾱt =
∐t

i=1 αi. Following a pre-
defined noise schedule, βt increases (αt decreases)
as the timestep grow and eventually corrupts x0
into a random noise. If βt is small enough, the re-
verse process q(xt−1|xt) is also a Gaussian, which
is learned by a parameterized model:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))
(3)

where µθ (xt, t) and Σθ (xt, t) can be implemented
by a denoising networks fθ (xt, t) like U-Net or
Transformer (Li et al., 2023). During inference, the
reverse process begins with sampling noise from
a Gaussian distribution p(xT ) = N (xT ; 0, I) and
iteratively denoise it by pθ (xt−1 | xt) until obtain-
ing x0. The learning objective of diffusion models
is derived from the variational lower bound of the
negative likelihood of input x0, denoted as:

Lvlb = Eq[DKL (q (xT | x0) ∥pθ (xT ))]

+

T∑
t=2

Eq[DKL (q (xt−1 | xt, x0) ∥pθ (xt−1 | xt))]

− Eq[log pθ (x0 | x1)]
(4)
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Figure 2: The overview of the proposed text diffusion model InfoDiffusion. Grey represents undecoded words, red
underline indicates words decoded at the current time step, and black represents words decoded in previous time
steps.

where Eq denotes the expectation over the joint dis-
tribution q(x0:T ). With additional condition on x0,
the posterior of the forward process q(xt−1|xt, x0)
becomes tractable using Bayes theorem, then the
simplified objective Lsimple can be expressed as:

Lsimple =
T∑
t=1

Eq[∥µt(xt, x0)− µθ(xt, x0)∥2]

(5)
where µt is the mean of posterior q(xt−1|xt, x0).
Through different parameterization strategies, the
prediction objective can also be the noise (Ho et al.,
2020) or original data x0 (Li et al., 2022).

2.2 Continuous Text Diffusion Model

To adapt diffusion models for discrete text data, a
straightforward approach is to employ word embed-
ding, mapping discrete tokens to continuous word
vector space before going through the continuous
diffusion process. The continuous text diffusion
model (Li et al., 2023), also known as the embed-
ding diffusion model, introduces an embedding
step qϕ(x0|w) = N (EMB(w), σ0I) in the forward
process, where EMB(w) represents a randomly
initialized embedding function or obtained from a
pre-trained model (such as BERT) that projects the
discrete token w into the continuous word vector
space. For the backward process, the text diffu-
sion model maps continuous word vectors back to
their corresponding actual words through the word
rounding module pθ(w|x0) =

∐n
i=1 pθ(wi|xi).

The inference process starts from random noise xT
and follows the typical continuous diffusion pro-
cess mentioned in Section 2.1 combined with word
rounding to reconstruct the target word from the
noise. To jointly learn the denoising network and
the word embedding, the continuous text diffusion
model extends the training objective in Equation 4

to a new end-to-end objective(Li et al., 2022):

Le2e
vlb = Eq[Lvlb + logqϕ(x0|w)− logpθ(w|x0)]

(6)
which can be further simplified as:

Le2e
simple =Eq[Lsimple + ∥EMB(w)− µθ(x1, x0)∥2

− logpθ(w|x0)]
(7)

3 InfoDiffusion

In this section, we introduce the detailed design of
InfoDiffusion. The overall model architecture of
InfoDiffusion is depicted in Figure 2. InfoDiffu-
sion incorporates an Information Entropy Aware
Noise Schedule, enabling the model to follow a
“keyinfo-first” generation strategy, thereby achiev-
ing text generation that aligns with human-like pro-
cesses. Additionally, InfoDiffusion combines self-
conditioning and partially noising to achieve faster
and superior text generation.

3.1 Information Entropy Aware Noise
Schedule

In diffusion models, the noise schedule is a crucial
component. The noise schedule directly determines
how the original data is gradually perturbed dur-
ing the forward process and how the model learns
to recover the target data from the noise during
the reverse process. This also leads to the signif-
icant influence of noise scheduling on the quality
and diversity of generated samples. Previously,
commonly used noise schedules, such as the linear
schedule (Ho et al., 2020) and the cosine schedule
(Nichol and Dhariwal, 2021), have shown promis-
ing results in image generation tasks. However,
these schedules assume all tokens carry the same
amount of information and does not consider the
linguistic differences among the tokens in a se-
quence. This directly leads to a “shortcut” taken by
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Figure 3: The noise schedule for each token in a se-
quence is determined based on the information entropy.

the model: it tends to generate tokens that are most
frequently appearing (and easiest) in the training
corpus to achieve a higher likelihood. However,
this generation order contradicts the behavioral pat-
tern of humans, who tend to prioritize thinking
about and generating the core parts of text, which
contain higher information content. We refer to
this human strategy of prioritizing the generation
of high-information content parts in text as “key-
information-first”, abbreviated as "keyinfo-first".

In order to address the differences in the gen-
eration process mentioned above and enable the
model to generate text more like human, we have
designed a new noise schedule that can aware
the informational entropy of words in a sentence.
That is, at the initial stage of the forward process,
low-information words are perturbed, and high-
information words are perturbed at the final stage,
thus guiding the model to prioritize generating key
information during the reverse process.

Specifically, we first linearly interpolating the
mutual information between the latent variables
xt and the original data x0 to 0, i.e. I(xt;x0) ≈
(1− t

T )H(x0), where H denotes the entropy, which
measures the amount of information of a random
variable. In this case, the noise function in the clas-
sical diffusion model becomes β = 1

T−t+1 (Equa-
tion 1) and ᾱt = 1− t

T (Equation 2) (Austin et al.,
2021). Furthermore, to prioritize perturbing words
with lower information before perturbing words
with higher information, we design noise weights
based on the information entropy of each word in a
sentence w. The specific details are as follows:

ᾱi
t = 1− t

T
+ λ(t)e(wi) ∈ [0, 1] (8)

λ(t) = λ sin(
t

T
π) (9)

e(wi) =
H(wi)− H̄(w)

max(H(wj))−min(H(wj))
(10)
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Figure 4: An illustration of reverse diffusion sampling
steps with Self-Conditioning, sampling directly based
on its previously generated samples.

where e(wi) represents the normalized value of the
information entropy of the i-th word in sentence w
and λ(t) control the effect of the informativeness
at time step t. To ensure that the latent variables
xt retains all information at the beginning process
(t = 0) and zero information at the end process
(t = T ), the noise schedule λ(t) is designed to
be sinusoidal, satisfying λ(0) = λ(T ) = 0, fol-
lowing (He et al., 2022). The H̄(w) represents
the mean entropy of sentence w and max(H(wj))
represents the maximum entropy in sentence w.

Figure 3 shows how ᾱt progresses during the for-
ward process. For example, consider the sentence
“The bus passes by the school”, the word“school”
carries higher information content. Therefore, we
encourage masking it at the later stage, allowing
our model to learn to restore it in the early place.

It is worth noting that such a noise schedule
does not alter the training objective since it does
not modify the conditional probability function
q(xt−1|xt, x0) in Equation 4.

3.2 Self-Conditioning

In the sampling process of classical diffusion mod-
els, at each time step t, the model generates the
current prediction x̃t0(xt, t, θ) through a denoising
network fθ(xt, t). However, this denoising net-
work only relies on the updated xt from the pre-
vious time step and discards the estimated result
x̃t+1
0 ,which means there is no connection between

the predicted results of adjacent sampling steps.
In the text generation process of the text diffusion
model, this implies that the semantic information
between the generated results of adjacent time steps
is inconsistent and incoherent, inevitably leading
to subpar text quality and low inference efficiency.

To address the issue of semantic incoherence
mentioned above, inspired by (Chen et al., 2022),
we employ the self-conditioning. As shown in Fig-
ure 4, this technique considers different denois-
ing functions x̃t0(xt, x̃

t+1
0 , t, θ), utilizes the previ-

ously estimated samples as auxiliary inputs. Self-



conditioning refine the denoising function based
on previous estimations instead of starting from
scratch with new estimations. By doing so, direct
connections and dependencies are established be-
tween the generation results of adjacent time steps,
achieving semantic consistency and coherence. For
more efficient model training, we adopt the same
training strategy as Analog-Bit (Chen et al., 2022):
with a 50% probability, we train x̃t0(xt, x̃

t+1
0 , t, θ)

by setting the input x̃t+1
0 to 0, which brings it back

to the model without self-conditioning. Otherwise,
we first estimate x̃t0 by x̃t0(xt, 0, t, θ) and then use
it for self-conditioning training. In the second case,
we do not back-propagate through the first esti-
mated x̃t0. Therefore, the increase in additional
training time is less than 25%.

3.3 Partially Noising and Conditional
Denoising

In the classical sequence-to-sequence task, given
a source text s = {ws

1, w
s
2, ..., w

s
n} with n to-

kens, it generates target text sequence y =
{wy

1 , w
y
2 , ..., w

y
n}. A sequence generation model

can achieve this by modeling the conditional
probability: p(y|s). To accomplish sequence-to-
sequence text generation tasks, we employ the Par-
tially Noising and Conditional Denoising (Gong
et al., 2022). This technique adds noise only to the
target text y during forward process and applies
denoising solely to y during the denoising process.

Specifically, given a pair of text: the source
text ws and the target text wy, we first perform
word embedding and concatenate the text pair as
EMB(ws

⊙
y). Then, we obtain the initial state x0

of the forward process through qϕ(x0|wx
⊙

y) =
N (EMB(ws

⊙
y), β0I). To simplify the notation,

we use st and yt to represent the parts of xt belong-
ing to ws and wy at diffusion time step t, following
(Gong et al., 2022). In forward process, we only
add noise to yt while keeping st unchanged. In the
reverse denoising process, st is still kept unchanged
and treated as the denoising condition, controlling
and guiding the model to generate the desired text
yt from the noise. The training objective at this
point can be simplified as (Gong et al., 2022):

Lsimple =

T∑
t=2

[∥y0 − fθ(xt, t)∥2]

+ ∥EMB(wy)− fθ(x1, 1)∥2

− logpθ(w
s
⊙

y|x0)

(11)

where fθ is the denoising network.

4 Experimental Setup

4.1 Tasks and Datasets

Following (Gong et al., 2022), we conduct exper-
iments on four typical and popular tasks: Open
domain dialogue, Question generation, Text simpli-
fication and Paraphrase. Open domain dialogue
requires models to generate informative and mean-
ingful responses given a dialogue context. We em-
ploy the widely used Commonsense Conversation
Dataset (Zhou et al., 2018), with over 3 million con-
versational pairs covering a wide range of everyday
topics. Question generation aims to generate ques-
tions which can be answered by the given contents.
We utilize the Quasar-T dataset (Dhingra et al.,
2017), processed by (Gong et al., 2022), containing
119K training samples of document-question pairs.
Text simplification aims to modify complex text
into simplified sequences by simplifying grammar
and word choice. We use the corpus constructed
by (Jiang et al., 2020) consisting of 666K complex-
simple sentences. Paraphrase involves rewriting
sentence with the same semantic meaning but a
different surface form. We adopt the widely used
Quora Question Pairs (QQP), sourced from the
community question-and-answer platform Quora,
which consists of 147K positive pairs.

4.2 Baseline Methods

Following (Gong et al., 2022), we compare InfoD-
iffusion to four groups of baselines:
• Encoder-decoder autoregressive model. We

choose two popular models: GRU (Chung et al.,
2014) with attention and Transformer (Vaswani
et al., 2017).

• Fine-tuned large pre-trained language model.
We choose GPT-2 (Radford et al., 2019) and GP-
VAE (Du et al., 2022). GPT-2 is trained with
language modeling and GPVAE augments T5
(Raffel et al., 2020) with VAE.

• Non-autoregressive model. we consider LevT
(Cortes et al., 2015), a widely used, strong itera-
tive NAR model. It adopts insertion and deletion
to generate and refine sequences iteratively.

• Text diffusion model. We choose DiffuSeq
(Gong et al., 2022). It is a recent text diffusion
model, and the performance of other text diffu-
sion models is similar to it.
We implement these models following their orig-

inal papers.



Table 1: Evaluation results on four conditional text generation tasks. The best results are denoted by bold fonts, and
the best results without pretrained language models are denoted by underline fonts.

Dataset Model Quality Diversity Length
BLEU↑ ROUGE-L↑ BERTScore↑ Dist-1↑ Self-BLEU↓ Diverse-4↑

Open
Domain
Dialogue

GRU-attention 0.0068 0.1054 0.4128 0.8998 0.8008 0.1824 4.46
Transformer-base 0.0189 0.1039 0.4781 0.7493 0.3698 0.6472 19.5

GPT2-base FT 0.0108 0.1508 0.5279 0.9194 0.0182 0.9919 16.8
GPT2-large FT 0.0125 0.1002 0.5293 0.9244 0.0213 0.9938 16.8
GPVAE-T5 0.0110 0.1009 0.4317 0.5625 0.3560 0.5551 20.1

NAR-LevT 0.0138 0.0550 0.4760 0.9726 0.7103 0.1416 4.11
DiffuSeq 0.0139 0.1056 0.5131 0.9467 0.0144 0.9971 13.6
InfoDiffusion 0.0152 0.1272 0.5314 0.9497 0.0152 0.9810 15.3

Question
Generation

GRU-attention 0.0651 0.2617 0.5222 0.7930 0.9999 0.3178 10.1
Transformer-base 0.0364 0.1994 0.5334 0.8236 0.8767 0.4055 12.1

GPT2-base FT 0.0741 0.2714 0.6052 0.9602 0.1403 0.9216 10.0
GPT2-large FT 0.1110 0.3215 0.6346 0.9670 0.2910 0.8086 9.96
GPVAE-T5 0.1251 0.3390 0.6308 0.9381 0.3567 0.7286 11.4

NAR-LevT 0.0930 0.2893 0.5491 0.8914 0.9830 0.4776 6.93
DiffuSeq 0.1731 0.3665 0.6123 0.9056 0.2789 0.8103 11.5
InfoDiffusion 0.1924 0.3892 0.6310 0.9142 0.2625 0.8021 12.7

Text
Simplification

GRU-attention 0.3256 0.5602 0.7871 0.8883 0.9998 0.3313 18.9
Transformer-base 0.2445 0.5058 0.7590 0.8886 0.8632 0.4028 18.5

GPT2-base FT 0.3085 0.5461 0.8021 0.9439 0.5444 0.6047 16.1
GPT2-large FT 0.2693 0.5111 0.7882 0.9464 0.6042 0.5876 15.4
GPVAE-T5 0.3392 0.5828 0.8166 0.9308 0.8147 0.4355 18.5

NAR-LevT 0.2052 0.4402 0.7254 0.9715 0.9907 0.3271 8.31
DiffuSeq 0.3622 0.5849 0.8126 0.9264 0.4642 0.6604 17.7
InfoDiffusion 0.3941 0.5997 0.8437 0.9323 0.4515 0.6741 15.3

Paraphrase

GRU-attention 0.1894 0.5129 0.7763 0.9423 0.9958 0.3287 8.30
Transformer-base 0.0580 0.2489 0.5392 0.7889 0.7717 0.4312 5.52

GPT2-base FT 0.1980 0.5212 0.8246 0.9798 0.5480 0.6245 9.67
GPT2-large FT 0.2059 0.5415 0.8363 0.9819 0.7325 0.5020 9.53
GPVAE-T5 0.2409 0.5886 0.8466 0.9688 0.5604 0.6169 9.60

NAR-LevT 0.2268 0.5795 0.8344 0.9790 0.9995 0.3329 885
DiffuSeq 0.2413 0.5880 0.8365 0.9807 0.2732 0.8641 11.2
InfoDiffusion 0.2656 0.5928 0.8576 0.9815 0.2873 0.8972 11.4

4.3 Evaluation Metrics

When evaluating the generated sequences, both
quality and diversity play vital roles. To assess
quality, we employ BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) as standard metrics, mea-
suring the overlapping n-grams between the gener-
ated and gold texts. However, since string matching
alone may not suffice for open-ended generation,
we also utilize BERTScore (Zhang et al., 2020)
to evaluate the semantic similarity at the embed-
ding level. Greater scores in BLEU, ROUGE, and
BERTScore indicate superior performance in text
generation. In terms of diversity, we consider eval-
uating distinct n-grams using Distinct (Li et al.,
2016) and the ratio of distinct n-grams to total
words using Diverse (Deshpande et al., 2019). Fur-

thermore, we incorporate self-BLEU (Zhu et al.,
2018), a sentence-level metric that assesses over-
lapping n-grams among generated texts. A lower
self-BLEU score and a higher diverse-4 value indi-
cate a greater degree of diversity in the generated
outputs. Following (Gong et al., 2022), we gener-
ate three samples per text condition to calculate the
diversity metrics for each method.

4.4 Implementation Details

InfoDiffusion is built upon the 12 layers of Trans-
former with 12 attention heads and has approxi-
mately 91M parameters. The maximum sequence
length is set to 128, with an embedding dimen-
sion of d = 128. We perform diffusion steps
T = 2, 000. To address out-of-vocabulary genera-



tion, we utilize Byte Pair Encoding (Sennrich et al.,
2016) to construct the vocabulary. The accuracy
metrics of InfoDiffusion are evaluated using MBR
(Minimum Bayes Risk) with a candidate sample
size of |S| = 10. The experiment is deployed on
NVIDIA RTX 3090 Tensor Core GPUs, and we use
4 GPUs on training and single GPU on sampling.

5 Results and Analysis

5.1 Text Generation Evaluation

As shown in Table 1, we conclude that InfoDiffu-
sion achieves comparable or even higher generation
quality compared with strong baselines.

First, compared to encoder-decoder autoregres-
sive models and Non-Autoregressive models, In-
foDiffusion exhibits an absolute advantage in terms
of quality and diversity. For instance, in question
generation tasks, the quality metric BLEU has im-
proved by more than threefold, while distinct has
increased by +0.12. The improvement in diver-
sity metrics is equally significant. For example,
the value of diverse-4 increased from 0.64 to 0.98,
representing an improvement of over 50%.

Second, compared to pre-trained models like
GPT2, InfoDiffusion outperforms the base vari-
ant and performs comparably to the large variant,
which has 8 times more parameters than InfoDiffu-
sion. In terms of diversity, InfoDiffusion leads in
seven out of the twelve comparative scenarios, in-
dicating a slight advantage over pre-trained models
in generating diverse texts.

Last, compared to the well-performing diffusion
model DiffuSeq, InfoDiffusion demonstrates supe-
rior text generation quality across all datasets. All
quality metrics show an improvement of +0.01 to
+0.03. On the other hand, although the score of
self-BLEU lags behind DiffuSeq in text simplifi-
cation tasks, there is a slight improvement in text
diversity across the remaining datasets.

5.2 Inference Efficiency Comparison

One of the major concerns of diffusion models is
the efficiency of Inference. We compare our In-
foDiffusion with DiffuSeq in terms of inference
efficiency. We conduct experiments on Text Sim-
plification and set the inference batch size to 50
and diffusion time step to 2000 for both models.
The quality (i.e., BLEU) and diversity (i.e., div-
4) curves during the model generation process are
shown in the Figure 5. The quality and diversity
of the text generated by DiffuSeq gradually im-
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Figure 5: The curve of BLEU/div-4 score along with
generation process.

Table 2: Ablation studies on QQP.

Model BLEU↑ ROUGE-L↑ BERTScore↑ Dist-1↑

InfoDiffusion 0.2656 0.5928 0.8576 0.9815
- Self-Conditioning 0.2531 0.5884 0.8462 0.9816
- Noise Schedule 0.2480 0.5870 0.8413 0.9798

prove in the later stages of sampling (The decreas-
ing trend in diversity metrics is due to the sam-
pling process gradually generating the target text
from noise and noise has a high level of diversity).
But InfoDiffusion exhibits the opposite behavior,
generating high-quality text in the early and mid-
dle stages of sampling. Approximately halfway
through the sampling process, the quality of the
text generated by InfoDiffusion surpasses the final
results of DiffuSeq. This indicates that InfoDif-
fusion can converge to the target sentence more
quickly and shorten the sampling time by half com-
pared to DiffuSeq while maintaining almost the
same generation performance.

5.3 Ablation Analysis
To demonstrate the effectiveness of the proposed
techniques in InfoDiffusion, we conducted ablation
studies on the QQP dataset. As shown in Table 2,
when we removed the self-conditioning, the BLEU
score decreased by 0.0126, while Dist-1 remained
almost the same. Furthermore, when we addition-
ally removed the proposed noise schedule from
InfoDiffusion and used the sqrt schedule proposed
in DiffusionLM (Li et al., 2022) instead, the BLEU
score dropped by 0.0051 and Dist-1 dropped by
0.0018. This indicates that the proposed noise
schedule and self-conditioning contribute to im-
proving the quality of generated text, while the
impact of self-conditioning on the diversity of gen-
erated text is minimal.



Table 3: A sampling case from QQP dataset. We truncate the selected samples to the first 10 tokens and mark the
generation process of each word with different colors.

Diffusion Step t Generation Results of Intermediate Processes x̃t
0

Input Text What should i do to be a great geologist?
t = 100 athan backlash swiped i regentlated patrollingnine jennie ? chill [PAD]
t = 130 athan backlash swiped i regentlated spotting geologist ? chilean [PAD]
t = 200 clan patrice swiped i regent carmelgrowth geologist? [unused288] [PAD]
t = 230 glancing patrice can i heringlated growth geologist ? navigable [PAD]
t = 300 glance patrice can i moscowgrowth geologist ? corporal [PAD] [PAD]
t = 340 [CLS] how can i 1859 a 1765 geologist? mcqueen [PAD] [PAD] [PAD]
t = 400 [CLS] how can i [unused252] a sculpted geologist? [SEP] [PAD] [PAD]
t = 490 [CLS] how can i 35th a nueva geologist? [SEP] [PAD] [PAD]
t = 600 [CLS] how can i 35th a sculpted geologist? [SEP] [PAD] [PAD]
t = 840 [CLS] how can i become a good geologist? [SEP]
t = 950 [CLS] how can i become a good geologist? [SEP]
t = 1000 [CLS] how can i become a good geologist? [SEP]
t = 1600 [CLS] how can i become a good geologist? [SEP]
t = 2000 [CLS] how can i become a good geologist ? [SEP]
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Figure 6: Comparison of distributions of different types of words relative generation order. The x-axis represents
the diffusion step t, while the y-axis represents the number of words of a certain type that are first decoded in that
diffusion step.

5.4 Case Study

We select an illustrative cases and investigate the
generation process of InfoDiffusion. There are
more cases in the Appendix C. As shown in Table 3,
the generation process reveals that the InfoDiffu-
sion model follows the “keyinfo-first” generation
order: it prioritizes generating nouns with higher in-
formation content, such as “i” and “geologist”, and
then sequentially generates words with lower infor-
mation content, such as “can”, “how”, “become”,
and “good” to complement the sentence.

In order to illustrate more clearly the model’s
preference for generating key information, we se-
lected four categories of words that generally have
key information or higher information content:
nouns, verbs, adverbs, and adjectives (Clark and
Weir, 2002; Emelianenko et al., 2019). We com-
pared the decoding order of these words in InfoD-
iffusion and DiffuSeq during the decoding process.
As shown in Figure 6, it is evident that InfoDiffu-

sion decodes these high-information words much
more earlier compared to DiffuSeq.

6 Conclusion

This paper, we propose InfoDiffusion, a novel non-
autoregressive text diffusion model. By designing
an Information Entropy Aware Noise Schedule, we
enable the diffusion model to follow a “keyinfo-
first” text generation process that is more aligned
with human text generation, thereby achieving im-
proved effectiveness and efficiency in text gener-
ation. Experimental results on four benchmark
datasets confirm the effectiveness of InfoDiffusion.
This study is the first research on the decoding or-
der of diffusion models and the first attempt to alter
the decoding order of diffusion text models. Future
work could explore the use of the proposed noise
schedule to replace the existing noise in related
tasks based on diffusion models, in order to further
enhance the model’s performance.



Limitations

Despite the strong performance of InfoDiffusion,
it still has the following limitations. First, due
to the strong preference of language for simple
words, simple words may still appear early in the
decoding process. Second, our evaluation relied
solely on automatic metrics like BLEU, without
assessing potential issues like hallucinations in the
generated text. Future work could utilize both au-
tomatic metrics and human evaluation to compre-
hensively assess text quality across dimensions in-
cluding grammar, semantics, and more. This mul-
tifaceted approach will facilitate the generation of
truthful, logical, and reliable text.
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A Related Works

A.1 Text Diffusion Models
Adapting diffusion models to non-autoregressive
(NAR) text generation poses a challenge due to
the discrete nature of text. Discrete tokens cannot
be directly corrupted by continuous noise, neces-
sitating the redesign of typical diffusion models
for text data. In this section, we focus on diffu-
sion models customized for text, which can either
perform diffusion in discrete space or incorporate
an additional step of mapping discrete tokens to
latent space of token embeddings before applying
continuous diffusion.

Discrete Text Diffusion Models. These text
diffusion models extend diffusion models to dis-
crete state spaces by corrupting and refining the
sentences at the token level. D3PM (Austin et al.,
2021) employs Markov transition matrices instead
of Gaussian noise to diffuse real-world distribu-
tions. DiffusER (Reid et al., 2022) generates a
sequence of edits that effectively transforms a ran-
dom noise into output. DiffusionBERT (He et al.,
2022) combines diffusion models with pre-trained
Language Models to enhance their performance.
Diffusion-NAT (Zhou et al., 2023) proposes an iter-
ative self-prompting strategy for denoising process.

Continues Text Diffusion Models. Continu-
ous text diffusion models introduce an additional
step where discrete tokens are mapped to the la-
tent space of token embeddings, followed by the
adoption of continuous diffusion. Diffusion-LM
(Li et al., 2022) is the first to proposes constructing
diffusion models on continuous word embedding
space. DiffuSeq (Gong et al., 2022) focuses on
sequence-to-sequence generation using encoder-
only Transformers and utilizes partial noising to
define the diffusion process and learn the denoising
function. SeqDiffuSeq (Yuan et al., 2022) proposes
an encoder-decoder diffusion model architecture
for conditional generation and uses adaptive noise
schedule technique to improve generation quality.
DiNoiSer (Ye et al., 2023) proposes an adaptive
method to determine the range of noise scales sam-
pled for counter-discreteness training allowing the
model to leverage amplified noise scales from the
source conditions during inference. Masked Dif-
fuse LM (Chen et al., 2023) follows easy first gen-
eration and designs a soft masking strategy based
on tf-idf. Additionally, DiffuSum (Zhang et al.,
2023) applies diffusion models to enhance extrac-
tive summarization.
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Table 4: Examples of sampling process of InfoDiffusion.

Input Text How do I read and find my YouTube comments?
t = 400 [CLS] how can i aground dismissing youtube johnstone? hammond [PAD] [PAD]
t = 800 [CLS] how can i increase [unused336] youtube 1855? [SEP]
t = 1200 [CLS] how can i read my youtube comments? [SEP]
t = 1600 [CLS] how can i read my youtube comments? [SEP]
t = 2000 [CLS] how can i read my youtube comments? [SEP]

Input Text How do i make friends?
t = 400 [CLS] how bassett iseibner anthropologist casino? [SEP] [PAD]
t = 800 [CLS] how do i the my friends iidae? [SEP][PAD][PAD]
t = 1200 [CLS] how do i make my friends? [SEP]
t = 1600 [CLS] how do i make my friends? [SEP]
t = 2000 [CLS] how do i make my friends? [SEP]

Input Text How i can speak english fluently?
t = 400 [CLS] how can i campos susceptible pauline and brien gunfire? [SEP] sarawak forts [PAD] [PAD]
t = 800 [CLS] how can i campos robyn english outlaws scrambled forts? [SEP]
t = 1200 [CLS] how can i speak fluent english and get tammy? [SEP]
t = 1600 [CLS] how can i speak fluent english and get confident? [SEP]
t = 2000 [CLS] how can i speak fluent english and get confident? [SEP]

Table 5: Examples of sampling process of DiffuSeq.

Input Text How do I read and find my YouTube comments?
t = 400 [CLS] docks i doo blessed [unused305] snoop sentencing creators [PAD] [PAD] nall [PAD]wangains [unused781]
t = 800 [CLS] how nods i belgrade 139 ratios 2 ? [SEP] [PAD] [PAD] [PAD] [PAD] heresy [PAD]
t = 1200 [CLS] how gymnasium i laguna [unused730] youtube lobbied? [SEP]]
t = 1600 [CLS] how do i 275 my [unused730] comments? [SEP]
t = 2000 [CLS] how do i read my youtube comments? [SEP]

Input Text How do i make friends?
t = 400 stamp trinidad i glint labyrinth [unused347] admiral [PAD] [unused481] joo rochester governors examines [PAD] [PAD]
t = 800 [CLS] blackout charlton i ames labyrinth? [SEP] [PAD]
t = 1200 [CLS] howł i engraving guinness? [SEP]
t = 1600 [CLS] how bonnet i engraving guinness? [SEP]
t = 2000 [CLS] how do i make my friends? [SEP]

Input Text How i can speak english fluently?
t = 400 [CLS] tehran dispatched northernmost oswald lansing jennie fivb whistling routing [PAD]ikh [PAD] [PAD] sheds
t = 800 [CLS] ton i efficacy battled city and? [SEP] [PAD] [PAD]ikh [PAD] [PAD]
t = 1200 [CLS] how [unused293] i discovers dario madden english? [SEP]
t = 1600 [CLS] how can i oswald fluent [unused490] english? [SEP]
t = 2000 [CLS] how can i speak fluent like english? [SEP]

A.2 Noise schedule

Various noise schedules have been proposed to con-
trol the frequency of different input data in the
denoising network. Existing methods either adopt
popular noise schedules from vision tasks or design
new schedules specifically tailored to text data.

Linear Schedule. The linear schedule (Ho et al.,
2020) involves varying βt from 10−4 to 0.02 in a
linear manner. This schedule is designed to main-
tain a relatively low noise scale at the start.

Cosine Schedule. This schedule defines ᾱt =
f(t)
f(0) , where f(t) = cos( t/T+s

1+s · π2 )
2 to slows down

the growing speed of the noise scale.

Mutual Information Schedule. D3PM (Austin
et al., 2021) designs the mutual information sched-
ule for discrete diffusion models with absorbing
states. This schedule reduces to βt =

1
T−t+1 , as

same as in (Sohl-Dickstein et al., 2015).
Sqrt Schedule. Diffusion-LM (Li et al., 2022)

presents the sqrt schedule, which is defined asᾱt =
1−

√
t/T + s. This noise schedule is also adopted

by DiffuSeq (Gong et al., 2022).
Adaptive Schedule. SeqDiffuSeq (Yuan et al.,

2022) proposes an approach to increase the dif-
ficulty of predicting x0 in correlation with the
timestep. This schedule involves learning the rela-
tionship between the noise scale and the loss using



Table 6: Examples of sampling process on LM1B.

Model Sampling Process

DiffusionBERT

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
[MASK] , [MASK] [MASK] [MASK] [MASK] [MASK] that [MASK] .
today , [MASK] will be [MASK] [MASK] that [MASK] .
today , [MASK] will be remembered for that mistake .
today , he will be remembered for that mistake .

InfoDiffusion-discrete

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
I [MASK] [MASK] [MASK] [MASK] [MASK] mistakes [MASK]
I [MASK] [MASK] [MASK] their [MASK] mistakes .
I make up for their [MASK] mistakes .
I make up for their recent mistakes .

Table 7: The comparison for different models.

Model Parameters Learning Paradigm Diversity Source

GRU-attention 65M encoder-decoder -
Transformer-base 80M encoder-decoder Temperature

GPT2-base FT 117M pretrain-finetune Hybrid strategy
GPT2-large FT 117M pretrain-finetune Hybrid strategy
GPVAE-T5 117M pretrain-finetune Gaussian sampling

NAR-LevT 117M pretrain+VAE -
DiffuSeq 91M non-autoregressive Gaussian sampling
InfoDiffusion 92M non-autoregressive Gaussian sampling

Table 8: Experimental results on LM1B.

Model PPL↓ BLEU↑ Self-BLEU↓

D3PM (Austin et al., 2021) 77.50 0.4241 0.2288
Diffusion-LM (Li et al., 2022) 118.62 0.3553 0.2668
DiffusionBERT (He et al., 2022) 63.87 0.4358 0.2151
InfoDiffusion-discrete 68.46 0.4529 0.2084

an existing schedule (such as the sqrt schedule).

B Baselines Settings

We follow the same baseline settings as (Gong et al.,
2022) and the results are also collected from their
work. The settings are listed in Table 7. The GRU-
attention encoder-decoder model lacks diversity
search algorithms, resulting in limited sentence-
level diversity. In the case of NAR-LevT, we ad-
here to the original paper’s methodology by setting
the maximum iteration to 9 and applying the speci-
fied termination condition. As for GPVAE-T5, we
assign a scalar value of 2 to all tasks.

C Inference Cases

In this section, we provide more sampling exam-
ples of InfoDiffusion and DiffuSeq to illustrate dif-
ferent sampling processes of text diffusion models.

From the Table 4 and Table 5, we can visually
observe that InfoDiffusion has the ability to priori-
tize the generation of high-information words and

Table 9: Experimental results on Quasar-T and QQP.

Dataset Model BLEU↑ Rouge-L↑

Quasar-T
DiffuSeq (Gong et al., 2022) 0.1731 0.3665
DiffusionBERT (He et al., 2022) 0.0971 0.3420
InfoDiffusion 0.1924 0.3892

QQP
DiffuSeq (Gong et al., 2022) 0.2431 0.5880
DiffusionBERT (He et al., 2022) 0.2420 0.5845
InfoDiffusion 0.2656 0.5928

Table 10: Experimental results on PersonaChat, XSUM
and SQuAD.

Model PersonaChat XSUM SQuAD

BLEU-1↑ BLEU-2↑ Rouge-L↓ Rouge-L↓

DiffuSeq 37.79 32.50 20.29 29.29
InfoDiffusion 40.13 36.47 24.96 35.70

converge to the target sentence more quickly.

D Additional Experiments

Following the reviewers’ advice and (Ni et al.,
2023; Ni and Li, 2023; Yin et al., 2023), in this
section, we conduct some additional experiments
to further demonstrate the effectiveness and gener-
alization of the proposed method.

We validate the efficacy of the proposed method
on discrete text diffusion models. To implement
our method on discrete diffusion models, we adopte
some settings from DiffusionBERT and adjust the
noise schedule and the decoding schemes. On one
hand, we train our model on LM1B (Chelba et al.,
2014) which was used by DiffusionBERT, and the
experimental results are shown in Table 6 and Ta-
ble 8. On the other hand, we also compare the per-
formance of DiffusionBERT on Quasar-T (Dhin-
gra et al., 2017) and QQP datasets used in our
paper, and the results are shown in Table 9. The
experimental results show that the method we pro-
posed is also effective in the discrete domain. The



model can follow the "keyinfo-first" generation or-
der while maintaining high quality, showing the
general applicability of our approach.

Meanwhile, we conduct experiments on another
3 datasets: PersonaChat (Zhang et al., 2018),
XSUM (Narayan et al., 2018) and SQuAD (Ra-
jpurkar et al., 2016). PersonaChat is a dataset for
dialogue generation, with the goal of predicting re-
sponses according to the dialog history. XSUM is
a dataset for summarization, with the goal of sum-
marizing the document into a sentence. SQuAD
is a dataset for question generation, with the goal
of generating questions based on given passages
and answers. The results in Table 10 demonstrate
that InfoDiffusion still achieves strong performance
across these datasets.


