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1. Introduction

Open-universe probabilistic models (OUPMs) enable Bayesian inference about the existence
and attributes of latent objects underlying observed data, as well as their interconnections.
Prominent applications include seismic monitoring for global nuclear safety (Arora et al.,
2013; Arora, 2012); information extraction from natural language documents (Russell et al.,
2016); generating realistic 3D scenes with varying numbers of objects (Yeh et al., 2012); “in-
verse graphics” approaches to breaking CAPTCHAs (Mansinghka et al., 2013) and inferring
3D scenes from 2D data (Kulkarni et al., 2015; Zinberg et al., 2019); and simultaneous de-
duplication, cleaning, and record linkage from real-world databases with millions of records
(Lew et al., 2020). Because the state space in OUPMs has a priori unknown dimension,
popular black-box inference algorithms such as Hamiltonian Monte Carlo cannot be applied.
Instead, applications rely on custom MCMC kernels. These kernels use application-specific,
data-driven heuristics to intelligently delete, split, or merge hypothesized objects, “birth”
new objects, and modify the properties of and relationships between objects. Although these
proposals can be designed and justified in the reversible-jump MCMC framework, this is
often challenging. As Brooks et al. (2003) noted, “the application of reversible jump...has
predominantly remained within the domain of the MCMC expert,” due to the difficulty of
deriving and implementing effective RJMCMC kernels.

This abstract introduces a new framework for OUPM inference that makes it easier to de-
sign and implement custom, data-driven kernels. We adapt involutive MCMC (Cusumano-
Towner et al., 2020; Neklyudov et al., 2020), a generalization of reversible-jump MCMC, to
the setting of OUPMs. This enables software to automatically generate correct and scalable
implementations of complex, application-specific kernels from high-level user specifications.
Users design inference programs that propose incremental changes to possible worlds, creat-
ing, deleting, or modifying objects according to data-driven, application-specific heuristics;
these proposals are automatically converted into stationary MCMC kernels via an accep-
t/reject step. To automatically compute the acceptance probability, our approach leverages
program tracing and dependency tracking (for efficient computation of proposal and model
densities) and differentiable programming (for the Jacobian determinant). Preliminary ex-
periments on (1) an auditory scene analysis application (Cusimano et al., 2018) (Figure 3)
and (2) Gaussian mixture modeling with an unknown number of components (Richard-
son and Green, 1997) (Figure 4) show that our approach enables data-driven kernels that
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are faster than generic probabilistic programming language (PPL) inference and generic
birth/death RJMCMC kernels without application-speci�c customizations.

Related Work. We build on involutive MCMC, introduced by Cusumano-Towner et al.
(2020) as a framework supporting higher degrees of automation for application-speci�c
MCMC algorithms, and (independently) as a mathematical generalization of many classic
MCMC methods by Neklyudov et al. (2020). Our main theoretical contribution is a gener-
alization of involutive MCMC to OUPMs. We compare our approach to the generic ances-
tral resampling MH algorithm (Wingate et al., 2011) used by PPLs such as BLOG (Milch
et al., 2005a). Previous work has explored using application-speci�c kernels for BLOG mod-
els (Milch and Russell, 2012), but requires modifying the BLOG inference engine's source
code. The Gen (Cusumano-Towner et al., 2019) and Stochaskell (Roberts et al., 2019) PPLs
support forms of automated reversible-jump MCMC, but neither features high-level OUPM
inference constructs; custom kernels in both languages operate on low-level program traces,
not high-level world representations, which can compromise ease of use and asymptotic per-
formance. The automation technique proposed by Roberts et al. (2019) does not support
unrestricted use of auxiliary variables, and (e.g.) cannot handle the algorithms benchmarked
in Figure 3. Zhou et al. (2020) introduced an automated inference approach applicable to
OUPMs, which does not address the implementation of custom MCMC kernels.

2. Open Universe Probabilistic Models

Figure 1 shows an open-universe model for inferring the set of seismic events underlying
observed detections from seismic monitoring stations. A priori, it is unknown how many
events there are, and which detections correspond to the same event (or, in the case of
spurious false positives, to no event at all). Standard probabilistic graphical models are
ill-suited for encoding this sort of uncertainty about the number of objects re
ected in a
dataset and their causal relationships.Open-universe probabilistic modelsenable reasoning
about such problems, by de�ning generative processes over entire relational domains.

Model speci�cation. An OUPM is fully speci�ed by: (1) a �nite set T of object types
(in Figure 1, Event, Station , and Detection ); (2) a �nite set N � of possible origins for
each object type� (in Figure 1, a Detection may originate from a (Station ; Event) pair,
or from a single (Station ) that records a false positive); (3) a countable setP of typed
object propertiesP(� 1; : : : ; � n ) (such asmagnitude(Event) and reading(Detection) ); and
(4) a contingent Bayesian networkC over a set of random variables that encode the number
of objects that exist, as well as their properties and relationships (Milch et al., 2005b).

Contingent Bayesian networks. The probabilistic structure of an OUPM is given by a
contingent Bayesian networkC over an in�nite set V of possible variables. These variables
are de�ned in terms of objects: we write � ((o1; : : : ; on ); i ) to refer to the i th object of type
� with origin ( o1; : : : ; on ). Then each nodev 2 V of the contingent Bayesian network corre-
sponds to either anumber variableN � (o1; : : : ; on ), which represents the number of objects of
type � with origin ( o1; : : : ; on ), or to a property variable P(o1; : : : ; on ), which represents the
value of the property P for the given tuple of objects. Like an ordinary Bayesian network,
a contingent Bayesian network uses a directed graph to describe the probabilistic depen-
dencies among variables. However, the edges in a CBN's graph are contingent: they are
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Figure 1: An OUPM for seismic monitoring, inspired by Arora et al. (2013), in which Detection s
are received at seismic monitoringStation s. Each Station receives some number of false-positive
Detection s, and for eachEvent, eachStation has probability 0.8 of detecting it. Each Event has
an amplitude , and a reading of a Richter-scalemagnitude is recorded for eachDetection , which is
distributed around the underlying Event's magnitude when the Detection is not a false-positive.

Algorithm 1 Automated Involutive MCMC for OUPMs
procedure OUPM-IMCMC (p; q; f; x )

(y; qx (y))  SampleAndScore (q; x)
(U; M; y 0; J )  ProcessInvolution (f; (x; y ))
(x0; p( x 0)

p( x ) )  UpdateWorld (x; U; M )
qx 0(y0)  Score (q; x0; y0)
with probability p( x 0)

p( x ) � qx 0(y0) � 1
qx ( y ) � J return x0 else return x

end procedure
procedure ProcessInvolution (f; (x; y ))

. Track continuous reads and writes, manipulation moves M , and property updates U
(Rd; Wr ; M; U; y 0)  fg ; fg ; [ ]; fg ; fg
Execute f , but with

each manipulation command m (create , delete , change, split , merge) � (M  M [ f mg)
"proposed [k]" � (if y[k] is continuous: Rd  Rd [ f y[k]g; y[k])
"set backward [k] = v" � (if v is continuous: Wr  Wr [ f y[k]g; y0  y0 [ f k 7! vg)
"get (P (o1 ; : : : ; on )) " � (v  x[P (o1 ; : : : ; on )]; if v is continuous: Rd  Rd [ f vg; v)
"set P (o1 ; : : : ; on ) = v" � (if v is continuous: Wr  Wr [ f vg; U[P (o1 ; : : : ; on )]  v)

J  uninitialized jRdj � j Rdj matrix
for i in f 1; : : : ; jWr jg:

. Execute f with reverse-mode AD to compute @Wr[ i ]
@Rd[ j ] for each j 2 f 1; : : : ; jRdjg

J [:; i ]  r Rd (Wr[ i ])
return (U; M; y 0; jdet J j)

end procedure

labeled with predicates, involving the other possible variables, determining the conditions
under which they areactive. The conditional distribution for a variable v, pv(! [v] j ! P a! (v) ),
may depend only onv's active parents Pa! (v) in a particular possible world ! .

Induced probability distribution over minimal self-supporting instantiations.
Fixing a set U � V of observedvariables (in Figure 1, f detections() g), the CBN C can be
used to de�ne a probability distribution over minimal self-supporting instantiations (MSSIs)
for U: �nite assignmentsw to a subsetof variables vars(w) � V , where U � vars(w), such
that (1) w is self-supporting|if v 2 vars(w) and u 2 Paw(v) then u 2 vars(w); and (2) w is
minimal |if any variable v 62U were removed fromw it would no longer be self-supporting.
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