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ABSTRACT

Unsupervised graph domain adaptation (GDA) addresses the challenge of transfer-
ring knowledge from labeled source graphs to unlabeled target graphs. However,
existing methods primarily implement spatial message-passing operators, which
are limited by the neglect of the unique roles of spectral signals in unsupervised
GDA. In this paper, we initially conduct an experimental study and find that the
low-frequency topology signals signify the shared cross-domain features, while
the high-frequency information indicates domain-specific knowledge. However,
how to effectively leverage the above findings persists as a perplexing conundrum.
To tackle this issue, we propose an effective framework named Synergy Low-High
Frequency Cross-Domain Network (SnLH) for unsupervised GDA. Specifically,
we disentangle the low- and high-frequency components in the original graph,
extracting global structures and local details to capture more discriminative in-
formation and enhance the graph-level semantics. For the low-frequency com-
ponents, we design an optimization objective to maximize the mutual informa-
tion among low-frequency features, promoting the model to learn more general-
ized low-frequency information. To further mitigate domain discrepancy, we in-
troduce high-frequency information cross-domain contrastive learning to impose
constraints on the domains. By effectively leveraging both low and high-frequency
information, the learned features turn out to be both discriminative and domain-
invariant, thereby attaining effective cross-domain knowledge transfer. Extensive
experiments demonstrate the superiority and effectiveness of the proposed frame-
work across various state-of-the-art unsupervised GDA baselines.

1 INTRODUCTION

Graph data has been widely applied in various fields due to its ability to naturally express complex
relationships in the real world, such as social network analysis (Fan et al., 2019), drug discovery
(Abbasi et al., 2019; Bongini et al., 2021), and traffic flow prediction (Li & Zhu, 2021). In real-
world applications, graph data from different domains typically encounters the issue of domain shift
(Wu et al., 2022b). As a result, graph domain adaptation (GDA) methods have emerged (Ding
et al., 2018), aiming to transfer knowledge from the source domain to the target domain (Lin et al.,
2023; Liu et al., 2023). GDA effectively alleviates the challenges posed by differences in data
distribution during cross-domain learning of complex graph-structured data. However, traditional
graph domain adaptation methods (Qiao et al., 2023) typically rely on supervised learning and fail
when there is a severe lack of labeled data in the target domain. Data with rich labels is scarce
or difficult to obtain in real situations and it always takes a lot of effort and costs to have a little.
Therefore, unsupervised graph domain adaptation (UGDA) is proposed to address the above issue.
The advantage of unsupervised graph domain adaptation is that it can learn an effective cross-domain
transfer model without any labeled data from the target domain. UGDA addresses the limitation
of traditional GDA which relies on labeled data and enhances the model’s generalization ability
across different graph domains. Among existing UGDA works, adversarial learning-based methods
(Wu et al., 2020; Zeng et al., 2024) attempt to reduce distribution differences between domains
through adversarial training. However, this strategy is limited by cross-domain feature differences
and performs poorly on the target domain. Graph neural network-based methods (Yin et al., 2023)
aim to align the distribution of domain data within the generated representation space. As it is
difficult to learn a reliable representation, the alignment is not effective in some cases.
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Figure 1: Impact of different spectral signals (i.e. low-frequency, high-frequency, and fusion-
frequency) of domain information on Mutagenicity datasets. The experimental results show that
both low-frequency and high-frequency signals have corresponding effects on the unsupervised
cross-domain adaptation task.

Although these UGDA methods have made significant progress in their respective application sce-
narios, one limitation is that they typically use spatial domain operators to extract and align cross-
domain features, relying heavily on spatial information while overlooking the impact of cross-
domain features in the spectral domain. This results in the loss of specific information in the spectral
domain, making it difficult to effectively align cross-domain features, leading to poor model perfor-
mance in the target domain. An experimental analysis of the influence of spectral signal is shown
in Figure 1. The graphs from different domains exhibit astonishing similarity in the low-frequency
components of the same class of graphs in the spectral space while showing significant differences in
the high-frequency components. This discovery prompted us to reassess the critical role of low- and
high-frequency information in addressing cross-domain issues and to further explore the potential
of low- and high-frequency information in unsupervised graph domain adaptation.

Inspired by the interesting findings above, we propose a novel and effective UGDA framework,
named the synergy low-high frequency cross-domain network (SnLH). The framework concurrently
optimizes both low-frequency and high-frequency information to alleviate the negative influence of
domain dissimilarities in cross-domain circumstances. Specifically, we propose to use meticulously
designed low- and high-frequency filters to separately extract low- and high-frequency information
at the graph level for both the source and target domains, thereby enhancing the semantic repre-
sentation of the graphs. For cross-domain low-frequency components, we employ a cross-domain
mutual information constraint strategy to maximize the interaction between low-frequency infor-
mation across domains, improving the model’s ability to learn from cross-domain low-frequency
information. However, relying solely on optimizing low-frequency information is insufficient to
narrow and fully reduce domain differences. Therefore, for cross-domain high-frequency com-
ponents, we introduce a cross-domain contrastive learning mechanism, aimed at finely tuning the
differences in high-frequency components between positive and negative samples across domains,
thereby strengthening the model’s ability to distinguish cross-domain feature differences. Overall,
our model captures and jointly optimizes both low- and high-frequency information across different
domains, ensuring that the model learns representations that are both domain-invariant and discrimi-
native. Our method has achieved significant improvements on benchmark datasets for graph domain
adaptation through extensive experimental validation, outperforming existing methods. We summa-
rize the contribution points as follows:

• We conduct an experimental study and discover some distinctive advantages of spectral signals in
unsupervised graph domain adaptation tasks. Drawing inspiration from these findings, we have
devised corresponding filters to extract low- and high-frequency information at the graph level
from both the source and target domains. To the best of our knowledge, we are the first to study
the spectral signal on the graph-level UGDA task.

• We propose a synergistic low-high frequency network (SnLH) that leverages cross-domain low
and high-frequency information. By imposing constraints on low- and high-frequency informa-
tion, SnLH effectively mitigates the impact of domain discrepancies on the model, enhancing its
generalization capability on the target domain.

• Extensive experiments demonstrate that spectral domain information plays an important role in
unsupervised graph domain adaptive tasks, our model achieves significant improvement on bench-
mark datasets and outperforms state-of-the-art baselines.
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2 RELATED WORK

2.1 TYPICAL DOMAIN ADAPTION

Domain adaptation (DA), as a technique of transfer learning, is to improve the model’s ability to
generalize in scenarios with a different data distribution or label scarcity (Ben-David et al., 2006).
However, real-world datasets often lack reliable labels (Achituve et al., 2021), making unsupervised
domain adaptation a hot research topic. Current UDA methods are mainly divided into the following
categories: The maximum mean discrepancy (MMD) method (Sun & Saenko, 2016) aligns the
distributions by minimizing the MMD distance between the source and target features in a specific
kernel space, but it fails to align the high-order distribution differences; adversarial-based methods
(Ganin et al., 2016) distinguish the features of the source domain and the target domain through
the domain discriminator. However the training process is unstable, which requires careful tuning
of the discriminator and generator; the pseudo-label-based method (French et al., 2017) generates
pseudo-labels for supervised learning of the target domain, while the quality of the pseudo-labels is
difficult to guarantee, resulting in excessive deviation of the model training. These methods have
undoubtedly achieved outstanding accomplishments in their respective fields, but there are still some
unsolved challenges in these methods.

2.2 UNSUPERVISED GRAPH DOMAIN ADAPTATION

In practice, while existing unsupervised domain adaptation methods (Sun et al., 2017; Long et al.,
2018) have achieved remarkable success in computer vision and natural language processing, there
is a lack of unsupervised domain adaptation methods specifically designed for graph structure data
because of the unique nature of graph structure data. Current unsupervised GDA approaches (Lin
et al., 2023; Wu et al., 2022a) primarily focus on transferring information (Yin et al., 2022) from the
source domain to the target domain using spatial operators of graph neural networks combined with
domain alignment techniques (Luo et al., 2023). However, most of these methods (Guo et al., 2022;
Zeng et al., 2024) overlook the significance of frequency domain information in graph domain adap-
tation (Yin et al., 2023). Therefore, in this paper we first explore the influence of frequency domain
information and effectively leverage this knowledge to mitigate domain discrepancies, resulting in a
significant improvement in the accuracy of the graph classification task.

3 PROBLEM DEFINITION AND PRELIMINARY

3.1 PROBLEM DEFINITION

Consider a graph G = {V, E ,X} with the node set V , the edge set E and X ∈ RN×F represents the
feature matrix of the graph, where F represents the feature dimension of each node. Let A ∈ RN×N

be the adjacency matrix, Ã = D− 1
2AD− 1

2 is the normalized adjacency matrix, where N denotes
the number of nodes, D represents the degree matrix. For unsupervised graph domain adaptation,
we initially define Ds = {(Gs

i ,Ys
i )}

Ns

i=1 as the set of labeled source domain, where Ys
i represents

the graph labels of source domain and Ns represents the number of graph in the source domain.
Similarly, the target domain defined as Dt =

{
Gt
j

}Nt

j=1
contains Nt unlabeled examples.

3.2 SPECTRAL DECOMPOSITION

Spectral Decomposition refers to the Eigenvalue Decomposition of a matrix as the product of its
eigenvalues and eigenvectors. For the Laplacian matrix L or adjacency matrix A of a graph, their
spectral decomposition can be used to understand the topological properties of the graph. The
spectral decomposition is as follows for the normalized graph Laplacian matrix Lsym.

Lsym = UΛUT (1)

Here, U is the eigenvector matrix of the Laplacian matrix, Λ = diag(σ1, σ2, . . . , σN ) is the diagonal
matrix, and the diagonal elements are the eigenvalues of the Laplacian matrix.
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Figure 2: There are three modules in SnLH. Firstly, the low- and high-frequency information of
the graph is extracted using the designed filter. Secondly, mutual information maximization of low-
frequency information across different domains is processed and constrained. Lastly, high-frequency
information from different domains undergoes cross-domain contrastive learning.

3.3 GRAPH SIGNAL PROCESSING

In graph signal processing (Shuman et al., 2013), the eigenvectors of the normalized Laplacian
matrix can be regarded as a basis in the graph Fourier transform. For a given signal x ∈ RN , the
graph Fourier transform and its inverse, denoted x̂ = UTx and x = Ux̂ respectively, are defined for
a given signal x. Therefore, the convolution ▽G between the signal x and the convolution kernel S
is expressed as follows.

S▽Gx = U
(
(UTS)⊗ (UTx)

)
= UsθU

Tx, (2)

where U represents the orthogonal matrix of the symmetric normalized graph Laplacian matrix
Lsym = In − D− 1

2AD− 1
2 = In − Ã after spectral decomposition, ⊗ denotes the operation of

element-wise multiplication of vectors and sθ is the convolution kernel in the spectral domain.

4 METHODOLOGY

In this section, we explore the problem of UGDA from a spectral domain perspective and propose a
novel model called synergy low-high frequency cross-domain network. Specifically, inspired by the
characteristics of low- and high-frequency graph information in cross-domain tasks, we designed
a low and high-frequency filter that disentangles the semantic information of the graph into low
and high-frequency components. To fully exploit these information, we imposed a mutual informa-
tion maximization constraint on cross-domain low-frequency information and enhanced the model’s
ability to distinguish cross-domain feature differences through a cross-domain high-frequency con-
trastive learning mechanism. In the following, we will introduce each module in detail.

4.1 LOW-HIGH FREQUENCY SIGNAL DISENTANGLEMENT

Inspired by the significance of both low-frequency and high-frequency information for cross-domain
adaptation tasks which is found in previous experimental study, we design a low-pass filter Slow and
a high-pass filter Shigh respectively. These filters serve to disentangle low-frequency and high-
frequency information from the node features in graphs. By doing so, we aim to leverage these

4
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distinct spectral components more effectively, which is crucial for enhancing the model’s adaptabil-
ity and performance when dealing with data from different domains:

Slow = µIn + Ã = (µ+ 1)In − Lsym, (3)

Shigh = µIn − Ã = (µ− 1)In + Lsym, (4)

where µ is a scaling ratio hyper-parameter constrained within the range of [0, 1] and In is the identity
matrix. Furthermore, we utilize Slow and Shigh as low- and high-frequency information extractors.
The signal x of each graph is then disentangled into two parts by the filter:

Slow▽Gx = UflowU
Tx, Shigh▽G

x = UfhighU
Tx, (5)

From the above equation, we can derive that the convolution kernel for the low-pass filter is denoted
as Slow, and the high-pass filter is denoted as Shigh, the convolution kernels in the spectral domain
for the low- and high-frequency filters are flow = (µ + 1)In − Λ and fhigh = (µ − 1)In + Λ,
respectively. To obtain more valuable low- and high-frequency information, we naturally set µ = 1,
which can effectively capture the low- and high-frequency information from the source domain and
the target domain. Furthermore, we can find from Equations 3 and 4 that the specific meaning of low-
frequency information is the sum of node features and neighborhood features in the spatial domain,
while high-frequency information represents the difference between node features and neighborhood
features in the spatial domain.

According to the previous theoretical analysis, we can convert the convolution kernel in the spectral
domain to the spatial domain to extract the graph information. Specifically, for the node features of
each graph X = {x0, x1, . . . , xN}, We disentangle their features using filters:

l(k)v = ReLU
(
W

(k−1)
low · (Slow · l(k−1)

v )
)
, v ∈ V, (6)

h(k)
v = ReLU

(
W

(k−1)
high · (Shigh · h(k−1)

v )
)
, v ∈ V, (7)

where l
(k)
v and h

(k)
v represent low-frequency and high-frequency information of the k layer, respec-

tively, when k = 0, then l
(0)
v = h

(0)
v = x0. To further obtain the graph-level feature representation,

we pass the low- and high-frequency information through the readout function:

li = Readout({l(K)
v }v∈Vi), hi = Readout({h(K)

v }v∈Vi), (8)

Here, li denotes the low-frequency representation of the i-th graph, hi denotes the high-frequency
representation of the i-th graph, and Vi denotes the set of nodes of the i-th graph. To ensure the gen-
eralization performance of the model on the target domain, we use the disentangled graph semantics
to impose constraints Lce on the model and optimize the model to improve its performance.

4.2 LOW-FREQUENCY INTRA-CLASS CONSISTENCY

Within the framework of cross-domain learning, our previous experiment has revealed a remark-
able phenomenon: instances that share the same semantics exhibit an inherent consistency in their
low-frequency feature space, while high-frequency features tend to carry more domain-specific in-
formation. This discovery has guided us in developing a model that can both capture cross-domain
commonalities and flexibly adapt to within-domain differences. To effectively apply this charac-
teristic to cross-domain tasks, we aim to let our model be predominantly guided by cross-domain
low-frequency information, ensuring that the learning process of these common features remains
unaffected by domain-specific variations.

Source Low-Frequency Consistency. Specifically, we leverage the abundant low-frequency su-
pervision signals in the source domain to guide the model in learning the global consistency of
cross-domain low-frequency information. To achieve this, we constrain the model by maximizing
mutual information, ensuring that it learns a certain degree of global domain invariance.

DKL

(
Ps(l

s) ∥ Pt(l
s)
)
=

∑
i

Pt(l
s
i ) log

Pt(l
s
i )

Ps(lsi )
, (9)

Ls
low = τ2kd ·DKL

(
Ps(l

s) ∥ Pt(l
s)
)
, (10)
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Here, DKL(·) represents the calculation of the divergence of two probability distributions. Ps and Pt

represent the probability distributions of data in the source domain and target domain, respectively.
The parameter τkd represents the temperature coefficient to soften the probability distribution of the
model.

Target Low-Frequency Consistency. However, since our primary task is to ensure accurate clas-
sification in the target domain, constraining only the source domain information is insufficient. To
achieve this goal, we need to constrain the target domain similar to the source domain low-frequency
information Lt

low, ensuring that the model not only performs well in the source domain, but also can
effectively capture the cross-domain commonality, and promote the transfer between cross-domain
low-frequency information. By doing so, we can enhance the model’s adaptability in the target do-
main, leading to improved performance and robustness in downstream tasks, ultimately boosting
overall generalization and prediction accuracy. The way of constraint is similar to that of constrain-
ing low-frequency information in the source domain.

Overall, our model not only focuses on information within the source domain but also effectively
captures the critical information that exists in the target domain. Through this approach, we suc-
cessfully bridge the gap between the source and target domains, allowing the model to transcend
the limitations of a single-domain perspective. This process not only enhances the model’s ability
to generalize low-frequency knowledge across domains but also improves its performance in target
domain tasks, enabling the smooth transfer of cross-domain low-frequency knowledge.

Lkd
low = Ls

low + Lt
low, (11)

4.3 HIGH-FREQUENCY CONTRASTIVE LEARNING

To further mitigate the impact of domain shift, relying solely on constraints on low-frequency fea-
tures is far from sufficient. When dealing with cross-domain graph data, significant domain dif-
ferences often lead to biased graph representations based on low-frequency information, directly
affecting the model’s performance on classification tasks in the target domain. Therefore, we em-
ploy contrastive learning on cross-domain high-frequency information to finely adjust the relative
distances between positive and negative samples of high-frequency information across different do-
mains, thereby enhancing the model’s ability to recognize and handle cross-domain details. To
achieve this goal, we benefit from constraining the cross-domain low-frequency information, allow-
ing us to identify positive samples in the target domain that share the same semantics as those in
the source domain. On this basis, we perform cross-domain contrastive learning, minimizing the
relative distances between positive samples of high-frequency information with the same semantics
across domains.

Lcl
high =

Ns∑
i=1

log
s(hs

i , h
t
i)∑Nt

j=1 s(h
s
i , h

t
j)

+

Nt∑
i=1

log
s(ht

i, h
s
i )∑Ns

j=1 s(h
t
i, h

s
j)
, (12)

where s(·, ·) = exp(cos(·, ·)/τcl) and ht
i and hs

i are the positive of each other. Overall, for handling
cross-domain high-frequency information, we employed a contrastive learning strategy that signifi-
cantly enhances the model’s sensitivity to and learning of domain differences. Through a carefully
designed contrastive loss function, we strengthened the model’s ability to recognize and encode
domain-invariant features, deepened its understanding of domain diversity, and thereby achieved
domain-invariant graph representations. We combine the classification loss of source domain with
Lce knowledge distillation of low-frequency information and contrastive learning of high-frequency
information, resulting in the following overall loss function:

L = Lce + Lcl
high + Lkd

low. (13)

Overall, based on the discovery of the unique roles that low- and high-frequency information play
in cross-domain tasks, we have ingeniously leveraged these information types to jointly optimize
our model. Compared to existing methods, our approach sheds light on the significance of spectral
signals in UGDA.
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Table 1: Cross-domain graph classification result on Mutagenicity (source → target).

Method 0→1 1→0 0→2 2→0 0→3 3→0 1→2 2→1 1→3 3→1 2→3 3→2 AVG.

WL subtree 74.9 74.8 67.3 69.9 57.8 57.9 73.7 80.2 60.0 57.9 70.2 73.1 68.1
GCN 71.1 70.4 62.7 69.0 57.7 59.6 68.8 74.2 53.6 63.3 65.8 74.5 65.9
GIN 72.3 68.5 64.1 72.1 56.6 61.1 67.4 74.4 55.9 67.3 62.8 73.0 66.3
GMT 73.6 75.8 65.6 73.0 56.7 54.4 72.8 77.8 62.0 50.6 64.0 63.3 65.8
CIN 66.8 69.4 66.8 60.5 53.5 54.2 57.8 69.8 55.3 74.0 58.9 59.5 62.2

CDAN 73.8 74.1 68.9 71.4 57.9 59.6 70.0 74.1 60.4 67.1 59.2 63.6 66.7
ToAlign 74.0 72.7 69.1 65.2 54.7 73.1 71.7 77.2 58.7 73.1 61.5 62.2 67.8
MetaAlign 66.7 51.4 57.0 51.4 46.4 51.4 57.0 66.7 46.4 66.7 46.4 57.0 55.4
DUA 70.2 56.5 64.0 63.7 53.6 68.5 57.7 76.0 65.1 59.8 57.9 67.7 63.4

DEAL 76.3 72.6 69.8 73.3 58.3 71.2 77.9 80.8 64.1 74.1 70.6 74.9 72.0
CoCo 77.7 76.6 73.3 74.5 66.6 74.3 77.3 80.8 67.4 74.1 68.9 77.5 74.1
To-UGDA 78.6 75.7 73.1 75.7 61.2 62.3 80.3 83.5 79.7 73.3 72.7 75.6 74.3
A2GNN 57.3 54.2 58.6 54.5 55.5 55.5 54.7 54.4 57.3 55.4 57.3 54.7 55.8
GALA 76.4 69.6 70.0 63.2 58.4 60.6 76.9 80.1 65.7 66.5 65.6 70.6 68.6

SnLH 81.3 78.2 73.1 77.6 67.8 74.3 80.8 84.2 69.9 78.0 73.9 78.9 76.5
(±0.2) (±0.4) (±0.9) (±0.2) (±0.6) (±0.8) (±0.4) (±0.3) (±0.3) (±0.5) (±1.0) (±0.5) (±0.5)

Table 2: Cross-domain graph classification result on NCI1 (source → target).

Method 0→1 1→0 0→2 2→0 0→3 3→0 1→2 2→1 1→3 3→1 2→3 3→2 AVG.

WL subtree 72.6 80.3 62.7 75.5 52.0 63.6 69.1 69.8 70.7 59.4 80.0 70.6 68.9
GCN 49.5 71.1 46.8 33.7 32.7 27.4 56.2 55.3 58.2 51.0 60.7 53.2 49.6
GIN 67.3 67.9 61.5 65.4 58.9 61.0 62.5 66.2 69.7 56.8 72.4 64.0 64.5
GMT 50.3 42.5 51.1 42.5 56.1 42.5 53.2 51.0 68.2 51.0 68.2 53.2 52.5
CIN 51.1 72.6 54.0 72.6 68.2 71.5 55.0 53.5 68.2 52.0 68.3 53.6 61.7

CDAN 59.6 73.8 56.7 73.7 71.2 73.2 55.5 57.3 69.9 54.6 69.8 56.6 64.3
ToAlign 51.0 27.4 53.2 27.4 68.2 27.4 53.2 51.0 68.2 51.0 68.2 53.2 50.0
MetaAlign 65.0 77.6 62.0 77.1 68.2 74.5 64.2 65.4 68.0 56.1 68.2 66.2 67.7

DEAL 65.6 73.0 58.0 71.6 60.1 73.1 62.8 65.0 65.8 53.9 57.6 56.7 63.6
CoCo 70.4 80.4 62.4 75.8 65.7 73.7 67.0 70.4 69.7 62.7 74.4 63.7 69.7
To-UGDA 55.9 73.5 55.0 72.4 67.9 73.0 55.0 56.5 63.5 53.4 66.2 56.1 62.4
A2GNN 60.5 - - - 39.3 - - 39.5 39.3 39.5 60.7 - -
MTDF 67.5 76.7 70.9 77.2 71.8 75.9 65.0 62.5 73.1 61.0 74.3 57.8 69.5

SnLH 73.3 81.4 65.6 77.1 67.5 74.8 70.3 71.9 70.4 63.6 76.4 70.4 71.9
(± 0.8) (± 0.3) (± 0.9) (± 0.9) (± 1.2) (± 1.2) (± 0.7) (± 0.9) (± 0.9) (± 1.3) (± 0.4) (± 1.3) (± 0.9)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Our experiments are conducted experiments on several benchmark datasets from TU-
Dataset, including Mutagenicity(M), NCI1(N), NCI109(N109), PROTEINS(P), DD(D), COX2(C),
COX2 MD(CM), BZR(B), BZR MD(BM). Following the partitioning method of (Yin et al., 2023),
we divided Mutagenicity and NCI1 into four domains based on edge density: M0, M1, M2, M3 and
N0, N1, N2, N3. The specific descriptions are as follows:

• Mutagenicity: This dataset focuses on the mutagenic properties of chemical molecules, with each
graph representing a compound and a total of 4337 graphs.

• NCI1 and NCI109: These two datasets focus on screening for antitumor activity in different cell
lines. NCI1 targets non-small lung cancer cell lines, while NCI109 targets ovarian cancer cell
lines.

• PROTEINS and DD: These two datasets are related to protein structures. In PROTEINS, each
graph is labeled to indicate whether the protein is an enzyme, intending to identify the protein’s
function. In DD, each graph is labeled to indicate whether the proteins form a stable dimer, to
study interactions between proteins.
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Table 3: Cross-domain graph classification result on PROTEINS, DD, COX2, COX2 MD, BZR,
BZR MD, NCI1, NCI109 (source → target).

Method P→D D→P C→CM CM→C B→BM BM→B N→N109 N109→N AVG.

WL subtree 72.9 41.1 48.8 78.2 51.3 78.8 - - -
GCN 58.7 59.6 51.1 78.2 51.3 71.2 64.7 63.8 62.3
GIN 61.3 56.8 51.2 78.2 48.7 78.8 66.0 64.9 63.2
GMT 62.7 59.6 51.2 72.2 52.8 71.3 - - -
CIN 62.1 59.7 57.4 61.5 54.2 72.6 - - -

CDAN 59.7 64.5 59.4 78.2 57.2 78.8 69.5 61.3 66.1
ToAlign 62.6 64.7 51.2 78.2 58.4 78.7 67.6 65.2 65.8
MetaAlign 60.3 64.7 51.0 77.5 53.6 78.5 69.4 64.1 64.9
DUA 61.3 56.9 51.3 69.5 56.4 70.2 - - -

DEAL 76.2 63.6 62.0 78.2 58.5 78.8 71.3 65.8 69.3
CoCo 74.6 67.0 61.1 79.0 62.7 78.8 73.3 65.8 70.3
To-UGDA 59.3 66.7 51.2 75.6 61.9 79.2 75.7 69.9 67.4

SnLH 66.2 70.1 61.1 79.0 66.5 80.4 75.8 76.9 72.0
(± 0.8) (± 0.9) (± 1.6) (± 0.4) (± 2.4) (± 1.1) (± 0.9) (± 0.5) (± 1.1)

Figure 3: Influence of different low- and high-frequency information (i.e. L-F, L-H, F-L, F-H, H-L,
and H-F) processing on Mutagenicity and NCI1.

• COX2 and COX2 MD: These two datasets are related to drug discovery, where each graph repre-
sents whether a compound has inhibitory activity against COX2 enzyme and COX2 MD enzyme
activity.

• BZR and BZR MD: These two datasets involve compounds’ activity against the benzodiazepine
receptor. In BZR and BZR MD, each compound is labeled according to its activity against the
benzodiazepine receptor.

Baselines. We compare the proposed model framework SnLH with multiple state-of-the-art meth-
ods, which include kernel-based approach: WL subtree (Shervashidze et al., 2011); graph neural
network (GNN) based approaches: GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018), CIN
(Bodnar et al., 2021), GMT (Baek et al., 2021); domain adaptation approaches: CDAN (Long
et al., 2018), ToAlign (Wei et al., 2021b), MetaAlign (Wei et al., 2021a); unsupervised graph do-
main adaptation approaches: DEAL (Yin et al., 2022), CoCo (Yin et al., 2023), To-UGDA (Zeng
et al., 2024), A2GNN (Liu et al., 2024). The details of these methods are in Appendix B.

Implementation details. The number of layers of low- and high-frequency filters is set to 4. The
learning rate is set to 2e-3, the embedding dimension of the hidden layer is set to 64, the temperature
coefficient of distillation τkd is set to 2.0, and the temperature coefficient of cross-domain contrastive
learning τcl is set to 0.2, and the ratio of mixed low- and high-frequency information λ is set to 0.8.
More details of the experiment can be found in Appendix C.

5.2 MAIN RESULTS

To validate the superiority and effectiveness of our proposed model, extensive experiments are con-
ducted on the task of cross-domain graph classification. As seen from Table 1, 2, and 3, our method
generally outperforms the current methods in the domain adaptation task under unsupervised con-
ditions, and the average improvement across all these datasets is about 3 % compared to the best
results in comparison algorithms. Specifically, our model gets the best performance in 10 tasks out
of 12 on dataset Mutagenicity, 8 tasks out of 12 on dataset NCI1 and 6 tasks out of 8 on the other
datasets.Accordingly, we can draw the following conclusions: (1) Most existing methods overlook
the impact of spectral domain information, leading to a decline in model performance. Therefore,
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Table 4: The results of ablation studies on Mutagenicity (source → target).

Method M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0

SnLH 81.3 ± 0.2 78.2 ± 0.4 73.1 ± 0.9 77.6 ± 0.2 67.8 ± 0.6 74.3 ± 0.8

w/o CL 79.9 ± 0.5 76.7 ± 1.1 73.6 ± 1.3 76.5 ± 0.7 67.1 ± 0.9 73.6 ± 1.3
w/o KDs 79.6 ± 1.2 75.8 ± 1.4 72.6 ± 0.5 76.0 ± 0.8 68.4 ± 1.2 71.7 ± 0.8
w/o KDt 79.7 ± 0.7 75.9 ± 0.8 72.7 ± 0.4 76.8 ± 0.7 68.1 ± 1.1 73.4 ± 0.9
w/o low 79.1 ± 0.7 75.7 ± 0.6 72.4 ± 0.6 75.9 ± 0.3 67.6 ± 1.0 72.3 ± 0.7
w/o high 79.0 ± 0.7 73.8 ± 0.4 69.4 ± 0.6 74.3 ± 1.1 64.7 ± 1.2 66.9 ± 1.6
repl. GCN 77.4 ± 0.4 74.5 ± 0.3 71.9 ± 0.6 73.4 ± 0.5 65.9 ± 0.7 65.7 ± 2.8

Table 5: The results of ablation studies on Mutagenicity (source → target).

Method M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2

SnLH 80.8 ± 0.4 84.2 ± 0.3 69.9 ± 0.3 78.0 ± 0.5 73.9 ± 1.0 78.9 ± 0.5

w/o CL 79.8 ± 0.7 83.1 ± 0.6 68.2 ± 0.7 76.6 ± 0.7 72.8 ± 0.4 78.8 ± 0.5
w/o KDs 80.5 ± 0.4 83.4 ± 0.4 67.8 ± 0.5 75.4 ± 0.8 71.8 ± 0.5 78.5 ± 1.0
w/o KDt 80.7 ± 0.3 83.3 ± 0.8 68.7 ± 0.7 76.8 ± 1.4 72.4 ± 1.0 77.6 ± 0.3
w/o low 79.7 ± 0.5 81.6 ± 0.6 67.4 ± 0.7 74.8 ± 0.5 72.5 ± 0.7 77.6 ± 0.5
w/o high 76.5 ± 0.4 81.2 ± 0.4 66.8 ± 0.4 70.8 ± 1.9 71.0 ± 0.3 75.7 ± 0.4
repl. GCN 77.1 ± 0.3 80.0 ± 0.3 64.9 ± 0.8 67.9 ± 2.4 69.5 ± 0.6 74.4 ± 0.5

Figure 4: Sensitivity analysis on Mutagenicity and NCI1. We select eight predefined transfer tasks.

exploring the role of spectral domain information in cross-domain adaptation tasks is of significant
importance. (2) Our method has better overall performance than the current GNN-based and adver-
sarial methods, which not only confirms the positive influence of spectral domain information on
cross-domain tasks but also shows that the use of low- and high-frequency information can further
eliminate the domain shift on the model.

5.3 ABLATION STUDY

To evaluate the effectiveness of each crucial module, we introduce several variants of the model,
which are represented as follows: (1) w/o CL: removing the cross-domain high-frequency informa-
tion contrast module; (2) w/o KDs: removing source domain mutual information module; (3) w/o
KDt: removing target domain mutual information module; (4) w/o low: removing low-frequency
information extraction module; (5) w/o high: removing high-frequency information extraction mod-
ule; (6) repl. GCN: using GCN for feature extraction instead of low- and high-frequency informa-
tion. All parameter settings are the same as in the above experiments. The results of the ablation
study are shown in Table 4, 5, and the following conclusions can be drawn: (1) The complete model
SnLH outperforms all its variants, further verifying the importance of each module in unsuper-
vised graph domain adaptation tasks. (2) Removing the mutual information maximization module
of the source domain and the target domain separately, the performance decreases, indicating that
the interaction between the cross-domain low-frequency information has a positive influence on the
model. (3) When the cross-domain high-frequency contrastive learning module is removed, the per-
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formance of the model decreases, indicating that cross-domain high-frequency information can help
to improve classification accuracy. (4) Removing the extraction of low- or high-frequency informa-
tion results in a significant performance drop, highlighting the importance of both low- and high-
frequency information in cross-domain tasks. (5) Replacing low- and high-frequency information
with features extracted by GCN leads to a notable performance decline, indicating that traditional
low-frequency features cannot be effectively applied to cross-domain tasks.

5.4 INFLUENCE OF LOW- AND HIGH-FREQUENCY COMPONENT

In this subsection, to further illustrate the influence of low- and high-frequency information on the
cross-domain task, we replace the input of the cross-domain mutual information maximization mod-
ule and the cross-domain contrastive learning module with different signals, respectively. (1) L-F:
Cross-domain low-frequency information is used for mutual information maximization constraint,
and cross-domain mixed information is used for contrastive learning; (2) L-H: Cross-domain low-
frequency information is used for mutual information maximization constraint, and cross-domain
high-frequency information is used for contrastive learning; (3) F-L: Cross-domain mixed infor-
mation is used for mutual information maximization constraint, and cross-domain low-frequency
information is used for contrastive learning; (4) F-H: Cross-domain mixed information is used for
mutual information maximization constraint, and cross-domain high-frequency information is used
for contrastive learning; (5) H-L: Cross-domain high-frequency information is used for mutual in-
formation maximization constraint, and cross-domain low-frequency information is used for con-
trastive learning; (6) H-F: Cross-domain high-frequency information is used for mutual information
maximization constraint, and cross-domain mixed information is used for contrastive learning. We
tested and analyzed them on the datasets of Mutagenicity and NCI1. The experimental results are
shown in Figure 3. The results show that low- and high-frequency information play different roles in
the cross-domain task. Just as previous experimental study found for graph datasets from different
domains, the low-frequency components of the same category of graphs in the spectral space show
apparent similarities, while the high-frequency components show significant differences. This may
be the core reason for the model to perform well in cross-domain tasks.

5.5 HYPERPARAMETER SENSITIVITY

In this subsection, to evaluate the influence of hyperparameter low- and high-frequency ratio λ on
model performance, we conduct experiments on Mutagenicity and NCI1 as shown in Figure 4. We
limit the range of the hyperparameter λ to [0-1] and fine-tune the hyperparameter with a span of 0.1.
The experimental results show that when the parameter is gradually increased from 0.0 to 1.0, the
overall accuracy of the model gradually increases and tends to be stable. When the proportion is
small, high-frequency information accounts for the main part. According to our analysis, the reason
is that high-frequency information cannot capture the global information between cross-domains
well, which leads to the degradation of model performance. It shows that with the fusion ratio
of low- and high-frequency information, and λ is 0.8 (the low-frequency ratio is 0.8 and the high-
frequency ratio is 0.2), the performance of the model reaches the best. At this time, the model can not
only capture more valuable global information by virtue of cross-domain low-frequency information
but also capture rich cross-domain local high-frequency information. Then, the contrastive learning
module is used to eliminate the difference of cross-domain high frequency.

6 CONCLUSION

In this paper, we first conduct an experimental study and obtain interesting findings that low-
frequency signals and high-frequency signals play different roles in cross-domain tasks and they
both help to extract richer graph semantic information in cross-domain tasks. On this basis, we first
design a low-frequency filter and a high-frequency filter to extract the low- and high-frequency in-
formation. To further use the low- and high-frequency information, we use the cross-domain mutual
information constraint strategy to maximize the interaction between the cross-domain low-frequency
information and perform contrastive learning on the cross-domain high-frequency information to
fine-tune the high-frequency difference of the cross-domain information. Finally, we conduct ex-
tensive experiments on different benchmark datasets and compare them with various methods, our
model outperforms the state-of-the-art methods. In future work, we will further explore the signifi-
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cance of spectral signals on more complex graph-based tasks with the assistance of a large language
model.
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Appendix

A COMPLEXITY ANALYSIS

We represent the overall algorithmic flow of the model as follows. Furthermore, the time complexity
of our model is analyzed.

A.1 TIME COMPLEXITY OF LOW-HIGH FREQUENCY SIGNAL DISENTANGLEMENT

For the low- and high-frequency filter module, the number of nodes N , the number of edges |E|, the
feature dimension F of each graph, and the operation of each layer are considered when calculating
the time complexity. For the operation of each layer, the time complexity is O(|E|+N ×F 2)

)
, and

the model has L layers, so the overall time complexity is O
(
L × (|E| + N × F 2)

)
. It can be seen

that the overall time complexity of the low- and high-frequency filter module is mainly related to
the structure of the graph, that is, it is positively correlated with the number of nodes and the feature
dimension.

A.2 TIME COMPLEXITY OF LOW-FREQUENCY INTRA-CLASS CONSISTENCY

For the part of low-frequency intra-class consistency, the calculation of time complexity mainly
involves the number of samples Ns and Nt of the source domain and the target domain, and the
number of classification classes C of the task, and the overall time complexity is O(Ns×C+Nt×C).

A.3 TIME COMPLEXITY OF HIGH-FREQUENCY CONTRASTIVE LEARNING

For high-frequency contrastive learning, the computational time complexity mainly involves calcu-
lating the similarity matrix and the cyclic traversal to find positive and negative samples. For the
number of source domain and target domain graphs are Ns and Nt respectively, the time complexity
of computing the similarity matrix is O(Ns ×Nt × F ), and the time complexity of cyclic traversal
of positive and negative samples is O

(
(Ns +Nt)×max(Ns, Nt)

)
.

Algorithm 1 The training process of SnLH model
Input: The labeled graph in the source domain Ds; Unlabeled graph in the target domain Dt.
Output: All the predicted values of the target domain graph along with the accuracy.

1: Initialize the parameters of the model randomly.
2: while the model is not convergence do
3: Sample batches of data from Ds and Dt, respectively;
4: The sampled data is fed into a low- and high-frequency filter and a graph-level representation

is obtained by a readout function;
5: Maximizing cross-domain low-frequency mutual information and contrastive learning of

cross-domain high-frequency Information;
6: Calculate the overall loss function L = Lce+Lcl

high+Lkd
low, and backpropagation, and update

the model parameters.
7: end while

B BASELINES

The baseline models for all comparisons are introduced as follows:

• WL subtree: The method is based on the Weisfeiler-Lehman algorithm, and the main idea is to
construct the feature representation of a node by recursively aggregating the information of the
node and its neighbors.

• GCN: The GCN model continuously updates the node information by aggregating the informa-
tion of neighbors and uses an iterative way to generate coding vectors to capture cross-domain
information.
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• GIN: GIN is an architecture for graph neural networks that enhances graph representation by de-
signing a specific aggregation mechanism that enables it to capture more complex graph structural
information.

• GMT: GMT is a deep learning method for graph learning that combines the advantages of graph
neural networks and Transformer architectures to enhance graph representation and matching ac-
curacy.

• CIN: CIN aims to mitigate cross-domain differences by extending the traditional Weisfeiler-
Lehman algorithm to handle fine-grained graph structures.

• CDAN: CDAN is a method for cross-domain learning, and its core idea is to reduce the distribu-
tion difference between the source domain and the target domain through conditional adversarial
training.

• ToAlign: ToAlign is a deep learning method for cross-domain alignment, which aims to solve the
feature distribution mismatch problem in the domain adaptation task.

• MetaAlign: MetaAlign is a meta-learning method for cross-domain adversarial learning, which
aims to solve the feature alignment problem in domain adaptation.

• DUA: DUA is a cross-domain learning algorithm that improves the generalization ability of the
model by considering the information of the source domain and the target domain at the same time,
which aims to solve the problem of effective learning in the case of mismatched data distribution
of the source domain and the target domain.

• DEAL: DEAL is an algorithm suitable for cross-domain learning, which uses adaptive pertur-
bation and performs adversarial training with the domain discriminator to solve the problem of
domain difference.

• CoCo: The CoCo method uses coupled branches and ensemble contrastive learning techniques to
reduce the inter-domain differences and improve the performance of the model on cross-domain
problems.

• To-UGDA: The TO-UGDA method aims to solve the problem of insufficient labeled data in the
target graph domain by combining domain invariant features, adversarial alignment, and meta-
pseudo-label techniques.

• A2GNN: The A2GNN model derives the generalization bound of multi-layer GNN and com-
bines the constraint of maximizing the Mean difference (MMD) to reduce the difference between
domains.

C EXPERIMENT DETAILS

In this part, we will further describe some experiment-related details as follows.

C.1 MAIN RESULT DETAILS

In the main experiment, our hyperparameter settings are as follows: the ratio of low- and high-
frequency information λ is 0.8, the number of layers is 4, the dimension of the hidden layer is 64,
the temperature coefficient of the cross-domain low-frequency mutual information maximization
module τkd is 2.0, the temperature coefficient of the cross-domain high-frequency information con-
trast learning module τcl is 0.2, and the learning rate is 2e-3. Furthermore, we conducted several
random experiments to obtain the mean and standard deviation of the output results as the final re-
sults. In the comparison experiment with the performance of the latest methods, the A2GNN model
is mainly applied to the node classification task. To make a fair comparison, we processed the node
feature output of A2GNN with the same processing as our model through the readout function, but
the result is not ideal and cannot extract good graph representations.

C.2 ADDITIONAL EXPERIMENTAL DETAILS

For the experimental study and the experiment of low- and high-frequency information influence,
we conduct multiple experiments and record the average of the results as the final result. For the
sensitivity analysis of the ratio parameter λ of low- and high-frequency information, we make several
experiments and record the mean and standard deviation as our final results.
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