
Exploring Loss Functions for Time-based Training
Strategy in Spiking Neural Networks

Yaoyu Zhu
School of Computer Science

Peking University
Beijing, China 100871

yaoyu.zhu@pku.edu.cn

Wei Fang
School of Computer Science

Peking University
Beijing, China 100871
fwei@pku.edu.cn

Tiejun Huang
School of Computer Science

Peking University
Beijing, China 100871
tjhuang@pku.edu.cn

Xiaodong Xie
School of Computer Science

Peking University
Beijing, China 100871
donxie@pku.edu.cn

Zhaofei Yu ∗

Institute for Artificial Intelligence
Peking University

Beijing, China 100871
yuzf12@pku.edu.cn

Abstract

Spiking Neural Networks (SNNs) are considered promising brain-inspired energy-
efficient models due to their event-driven computing paradigm. The spatiotemporal
spike patterns used to convey information in SNNs consist of both rate coding
and temporal coding, where the temporal coding is crucial to biological-plausible
learning rules such as spike-timing-dependent-plasticity. The time-based training
strategy is proposed to better utilize the temporal information in SNNs and learn
in an asynchronous fashion. However, some recent works train SNNs by the time-
based scheme with rate-coding-dominated loss functions. In this paper, we first
map rate-based loss functions to time-based counterparts and explain why they are
also applicable to the time-based training scheme. After that, we infer that loss
functions providing adequate positive overall gradients help training by theoretical
analysis. Based on this, we propose the enhanced counting loss to replace the
commonly used mean square counting loss. In addition, we transfer the training of
scale factor in weight standardization into thresholds. Experiments show that our
approach outperforms previous time-based training methods in most datasets. Our
work provides insights for training SNNs with time-based schemes and offers a
fresh perspective on the correlation between rate coding and temporal coding. Our
code is available at https://github.com/zhuyaoyu/SNN-temporal-training-losses.

1 Introduction

Artificial Neural Networks (ANNs) have achieved remarkable progress in various fields, such as
computer vision [23], natural language processing [58], and reinforcement learning [51]. Compared
with the conventional non-spiking ANNs, Spiking Neural Networks (SNNs) exhibit a greater level of
biological plausibility [65] and achieve significantly improved energy efficiency on neuromorphic
chips [9, 17, 37, 44, 49]. The benefit of SNNs on computation cost and power consumption originates
from their event-driven nature to a large extent [47].

ANNs use real values to encode the state of a neuron. This encoding scheme is similar to the firing
rate of a biological neuron. Inspired by this encoding scheme, researchers have applied ANN-SNN

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/zhuyaoyu/SNN-temporal-training-losses

conversion to obtain the parameters of SNNs [7, 22, 52]. Unlike firing rate coding, temporal coding
is a unique feature of SNNs (compared with ANNs), which utilizes the temporal information of
spikes in SNNs and encodes information by the absolute and relative firing times between spikes.
The most commonly used temporal coding in SNNs is time-to-first-spike (TTFS) coding [3, 39, 67],
which encodes the information by the firing time of the first spike emitted by a neuron. Although the
encoding schemes in SNNs are richer than ANNs, directly training SNNs is harder than ANNs due to
the binary nature of spikes and the non-differentiable membrane potential at spike time. Therefore,
SNNs has not reached the performance of their ANN counterparts in classification tasks [10, 63].

There are two major categories of supervised learning techniques to train SNNs: The first category
is activation-based learning, which treats SNNs as binary-output recurrent neural networks (RNNs)
and uses backpropagation-through-time (BPTT) to train SNNs [2, 16, 19, 59]. The main difference
between training SNNs and RNNs with these methods is that they apply continuous surrogate deriva-
tives to substitute the discontinuous spike firing process [40]. Although competitive performances are
achieved on the CIFAR-10/100, and even the ImageNet dataset [11, 14], these methods do not follow
the asynchronous nature of SNNs. Firing-rate-based coding is intensively used in these approaches.
In the output stage, the commonly used loss functions include spike-train-based ones [50, 64], spike-
count-based ones [59, 60], and those defined on discrete time steps [11, 15]. All these loss functions
behave in a rate coding scheme and have no direct relation to spike firing time (which indicates tem-
poral coding). The second category is spike-time-based learning, which considers spikes’ timing as
an information carrier for parameter update in SNNs [3, 8, 61]. They are more biologically plausible
since they keep the event-driven nature of biological learning rules [69]. Originated in SpikeProp [3],
researchers try to solve the discontinuity at spike firing time and gradient vanishing/explosion in
backpropagation. In the output stage, most of them use time-based loss functions [38, 66], which is
consistent with the temporal coding. However, loss functions not belonging to the temporal coding
family can also successfully train SNNs with time-based gradients [67, 69]. This phenomenon has
not yet been clearly explained.

In this work, we investigate the relationship between rate coding and temporal coding by analyzing
the loss functions that correspond to both coding schemes applied in time-based training algorithms.
Besides, we study how to improve the performance of time-based training methods with appropriate
loss functions (as well as other mechanisms). Our main contributions can be summarized as follows:

1. We prove that rate-based loss functions, extensively used in activation-based SNN training,
suit the more biologically plausible time-based training scheme. This result implies that
there are implicit relations between rate coding and temporal coding in SNNs.

2. We find that loss functions providing adequate positive overall gradients are more suitable
for time-based training schemes in SNN training. Based on this, we propose the enhanced
counting loss to improve the previously used mean square counting loss.

3. We transfer the training of scale factor used by weight standardization into thresholds.
Experiments have shown that this action improves network performance.

4. We test our method on MNIST, Fashion-MNIST, NMNIST, CIFAR10, CIFAR100, DVS-
Gesture, and CIFAR10-DVS datasets. The proposed method achieves SOTA performance
around time-based SNN training methods on most datasets.

2 Related Work

Neuron coding scheme. Spike timing information provides SNNs with richer coding schemes
than non-spiking ANNs, which can be grouped into three main types: rate, temporal, and burst.
Rate coding encodes information by firing rates of neurons [57], which is widely used in SNN
training [7, 40]. Temporal coding is shown to convey richer and more precise information than rate
coding [35, 53, 54], which can be classified into time-to-first-spike (TTFS) [55], rank-order [56], and
phase coding [26]. Among them, the most commonly used scheme is the TTFS coding [3, 39, 43, 67],
which can be applied to both the network input and neuron output. When applied to network input,
it converts static pixel intensity into spike firing time (higher intensity corresponds to earlier input
spike time) [66, 68]. When encoding the neuron outputs, it takes the timing of the first spike a neuron
fires as the feature of a neuron [3, 68]. Besides, several recent works explore burst coding, a group of
short inter-spike interval spikes, to improve the efficiency of information transmission and enhance
the performance of SNNs [42]. Some works also extend the temporal-based rank-order coding into
ANNs [25], bringing forward the time of decisions of ANNs without trading off accuracy.

2

Training methods of SNNs. SNN learning methods mainly include ANN-SNN conversion and
direct training. ANN-SNN conversion assists SNN training with ANNs, which trains an ANN and
replaces its activation functions by spiking neurons with transformed weights to get an SNN [7].
The converted SNN can achieve comparable performance as the source ANN when simulated long
enough [5, 12, 21, 33, 48], whereas degrading seriously when the number of time steps is small [6].
Direct training mainly falls into two categories. The first category is activation-based training,
which regards SNNs as RNNs and trains them with the Backpropagation Through Time (BPTT)
method [11, 13–16, 20, 34, 36, 59, 60, 64]. Surrogate gradients [40] are used in this scheme to
handle the discontinuity when neurons emit spikes. SNNs trained in this fashion can be scaled
to large datasets like ImageNet [14] with low latency. They can deal with temporal tasks such as
classifying neuromorphic datasets [11] while relying on rate coding: The loss function and gradient
propagation scheme modify synaptic weights by modifying the firing rate of neurons. Specifically, the
loss functions they use includes spike-train-based losses [50, 64], spike-count-based losses [59, 60],
and those defined on discrete time steps [11, 15], among which losses defined on discrete time
steps empirically perform better. The second category is time-based training, which takes the
spike firing times as the intermediate variable to update synaptic weights [3]. Most algorithms in
this track approximate the derivative of output spike timing to membrane potential dtout

du as the
negative inverse of membrane potential’s time derivative −1

du/dt [3, 4, 38, 66, 67, 69]. Some works
use other approximations [27], while others directly derive the relation between output spike firing
times and input spike firing times [8, 39]. Although this training scheme has not yet trained SNNs
with comparable performance as BPTT-based approaches, they satisfy the asynchronous nature of
SNNs [69] and better utilize temporal coding in SNNs. In addition to the spike timing of neurons
used in the backward calculation, the loss functions adopted in this scheme are typically time-based
losses [3, 38, 39, 66]. However, other loss functions can also successfully train SNNs with time-based
gradients [67, 69]. This leaves a question: Why can rate-coding-based losses successfully be applied
in the time-based training scheme? We will analyze this question in the following content.

3 Preliminaries

Spike response model. In this work, we use the spike response model for the neurons in the Spiking
Neural Network. The state of neurons can be described by the following equations [3, 18, 67]:

u
(n)
i (t) =

∫ t

t
(n)
i,last

∑
j

w
(n)
ij · s

(n−1)
j (τ)

 · ϵ(t− τ)dτ, (1)

s
(n)
i (t) = δ(u

(n)
i (t)− θ), (2)

where u(n)
i (t) denotes the membrane potential of neuron i in layer n at time t, w(n)

ij denotes the weight

between neuron j in layer n− 1 and neuron i in layer n. t(n)i,last is the time of last spike of neuron i in

layer n, and s
(n)
i (t) represents the spike emitted from neuron i at time t. The function δ(·) is the Dirac

Delta function and θ is the firing threshold. The spike response kernel is ϵ(t) = τm
τm−τs

(e−
t

τm −e− t
τs),

where τm and τs are membrane and synapse time constants, respectively. Following [67, 69], we
eliminate the influence of input spikes prior to the last output spike on membrane potentials.

Backpropagation based on spike timing. The backpropagation formulas in the time-based training
scheme are given by [69]:

∂L

∂w
(n)
ij

=
∑

i,tk(s
(n)
i)

∂L

∂tk(s
(n)
i)

∂tk(s
(n)
i)

∂u
(n)
i (tk)

∂u
(n)
i (tk)

∂w
(n)
ij

, (3)

∂L

∂tm(s
(n−1)
j)

=
∑

i,tk(s
(n)
i)

∂L

∂tk(s
(n)
i)

∂tk(s
(n)
i)

∂u
(n)
i (tk)

∂u
(n)
i (tk)

∂tm(s
(n−1)
j)

, (4)

where L is the loss function, tk(s
(n)
i) and tm(s

(n−1)
j) are timings of spikes s(n)i (by neuron i in layer

n) and s
(n−1)
j (by neuron j in layer n− 1), u(n)

i (tk) is the membrane potential of neuron i in layer n

at time tk, and w
(n)
ij is the synaptic weight between neuron i in layer n and neuron j in layer n− 1.

3

Time Time Time

Loss

Time

Loss

Spike No Spike Gradient directionGradient direction

a b c d

Figure 1: Forward and backward processes in activation-based training schemes and time-based
training schemes. (a) Forward and (b) backward propagation in activation-based schemes: In the
backward stage, the loss function updates parameters to adjust the firing rate. (c) Forward and (d)
backward propagation in time-based schemes: In both forward and backward stages, information
is delivered by spikes, which accords with the asynchronous nature of SNNs. The parameters are
updated to adjust the firing times in the backward stage.

Figure 1(c)(d) shows the gradient propagation path in Eq. (3) and (4). It starts from the loss function
and propagates to spike firing times tk(si) of neurons, neuron membrane potentials at spike times
ui(tk), and synaptic weights wij in each layer. There are three major derivatives: output spike timing
to membrane potential ∂tk(s

n
i)

∂un
i (tk)

, membrane potential to input spike timing ∂un
i (tk)

∂tk(s
n−1
j)

, and membrane

potential to weight ∂un
i (tk)

∂wij
. The latter two can be directly derived since the original function (Eq. (1))

is continuous. The first derivative needs to take an approximation due to discontinuity at spike time:

∂tk(s
n
i)

∂un
i (tk)

=
−1

dun
i (tk)/dt

, (5)

which is first proposed by Spikeprop [3] and followed by many other works [38, 67, 69]. It has been
proved that the sum of time-based gradients does not change between layers during backpropagation
based on the above gradient calculation approach [69]:∑

i

∑
tk

∂L

∂tk(s
(n)
i)

=
∑
j

∑
tm

∂L

∂tm(s
(n−1)
j)

. (6)

Therefore, for time-based gradients, the derivative of spike firing time with respect to the loss function
is equipped with more useful properties than the loss function itself. In other words, it is natural to
view the loss function from the aspect of the gradients on spike firing times.

4 Methods

Here we first establish a framework to relate the gradients of the spike train to spike firing time
for the output layer in Sect. 4.1 and 4.2. Starting with this framework, we will show how to view
rate-based losses (defined on spike trains) as time-based losses (defined on spike firing times) with
two examples, the rate-based counting loss used by [69] and spike train loss used by [67]. Sect. 4.3
analyzes the influence of overall gradients on spike timing on the SNN performance. Based on our
analysis, we infer that loss functions providing adequate positive overall gradients are more suitable
for time-based training schemes. Formulated by this inference, we propose the enhanced counting
loss in Sect. 4.4. In Sect. 4.5, we propose to transfer the training of scale factor used by weight
standardization into thresholds since threshold values do not appear in backpropagation formulas. At
last, we will provide an overall algorithm description in Sect. 4.6.

4.1 Relate Gradients of Spike Train to Spike Firing Time

Unlike time-based losses defined on spike firing times, a rate-based loss L is defined on the output
spike train s instead of the firing times of the output spike train t(s). As a result, the spike train itself

4

should be an intermediate variable to pass the gradients, and a derivative from s to t(s) should be
defined in the backpropagation stage:

∂L

∂t(s)
=

∂L

∂s
· ∂s

∂t(s)
. (7)

Note that ∂L
∂s is defined by the loss function itself, but ∂s

∂t(s) is somewhat custom. Hence we add
limitations on the derivative ∂s

∂t(s) : First, gradients should not propagate from one spike to the timing

of another spike, which means ∂
∫
si(t)

∂t′(si′)
̸= 0 only if i = i′ and t = t′. Here

∫
si(t) means converting

an infinite Dirac delta spike si(t) to a finite value 1. Hence the derivative of the timing of one spike is
∂L

∂tk(si)
=

∂L

∂
∫
si(tk)

· ∂
∫
si(tk)

∂tk(si)
. (8)

Second, noticing there are still two degrees of freedom (∂L
∂
∫
si(tk)

and ∂
∫
si(tk)

∂tk(si)
) when calculating the

gradient, we can control one of them to set ∂
∫
si(tk)

∂tk(si)
= 1.

However, for ease of understanding, we will allow ∂
∫
si(tk)

∂tk(si)
to take value −1 in Sect. 4.2 and 4.4.

4.2 Why Can Rate-coded Losses be Applied in The Time-based Training Scheme?

Actually, rate-based loss functions have their time-based counterparts. For rate-based loss L, there is
a time-based loss L that has the same derivation, that is, ∂L

∂tk(si)
= ∂L

∂tk(si)
. We first consider the case

when loss functions do not involve spike timing in their expressions and have the following theorem:
Theorem 4.1. For a rate-based loss function L(s) which does not involve spike timing, with a
spike-to-timing derivative ∂s

∂t(s) = diag(
∂
∫
si(tk)

∂tk(si)
) = I where (si, tk) takes all neurons and spikes,

it has an equivalent form L(t(s)) =∑i

∑
tk(si)

∂L
∂si(tk)

· tk(si) defined on the timing of spikes.

The detailed proof is provided in the Appendix. With Theorem 4.1, we can analyze why rate-based
losses can be applied in the time-based training scheme.

Counting loss. The counting loss is commonly used for activation-based gradients [59, 60] satisfies
the condition in Theorem 4.1. It has the form:

L(s, target) = λ

C∑
i=1

(∫ T

0

si(t)dt− targeti

)2

. (9)

Here λ is a scaling constant, and C is the number of classes (which equals the number of output
neurons). Besides, target is the target spike count sequence, and targeti is the target spike number
fired by neuron i. Typically, targeti is bigger when i corresponds to the label. According to Theorem
4.1, the equivalent time-based loss function of the counting loss (when all ∂

∫
si(tk)

∂tk(si)
= 1) is

L(t(s)) =
∑
i

∑
tk(si)

∂L

∂
∫
si(tk)

· tk(si) =
∑
i

∑
tk(si)

2λ

(∫ T

0

si(t)dt− targeti

)
· tk(si). (10)

The detailed deduction is provided in the Appendix. The equivalent temporal-coded loss L is linear
for each spike firing time tk(si). It encourages a spike to fire earlier when the number of fired spikes
of the corresponding neuron exceeds the target (∂L

∂tk(si)
> 0 when

∫ T

0
si(t)dt− targeti > 0) and fire

later when the spike count is below the target. This is actually contrary to our expectations. The
simplest way to fix it is modifying ∂

∫
si(tk)

∂tk(si)
= 1 to ∂

∫
si(tk)

∂tk(si)
= −1, which is adopted by [69]. As a

result, our analysis framework not only explains why counting losses works for time-based training
but also shows why ∂

∫
si(tk)

∂tk(si)
= −1 is necessary.

Spike train difference loss. The difference between spike trains [46] is also widely used in activation-
based SNNs [29, 50, 64]. It can be described by the following formula:

L(s, starget) = λ

C∑
i=1

∫ T

0

(
κ ∗ (si − starget

i)(t)
)2

dt. (11)

5

Desired

Output

𝑡

Desired

Output

𝑡

Desired

Output

𝑡

Desired

Output

𝑡

a b c d

Figure 2: The spike train difference loss. It aims to minimize the difference (purple area) between the
(filtered) output spike train (red curve) and the target spike train (dashed curve). The kernel here is
κ(t) = α · e−αt. (a)(b)(c)(d) are four different situations, where the output is pushed upward in (a)(c)
and downward in (b)(d) by the loss. Note that the desired output spike train is empty in (d).

Here, starget is the target spike train for output neurons, and starget
i is the target spike train of neuron

i. Typically the target spike train of the neuron corresponding to the label contains more spikes
than other neurons. κ is a 1-d convolution kernel to smooth the spike trains. Theorem 4.1 can’t
directly apply due to spike timings being involved in the loss function, making it difficult to find its
corresponding temporal-coded function. Instead, we apply qualitative analysis to it.

The spike train difference loss measures the height difference between two filtered spike trains, as
shown in Figure 2. Sometimes we can find inconsistencies for it in the time-based training scheme:
In both Figure 2 (a)(b), the spike should be moved earlier on the time axis. However, spikes will be
moved in different directions (minimizing the purple area by moving up or down since it acts on spike
scale si(tk)) in two cases under this loss. This spike direction inconsistency will impede training. On
the other hand, if the target spike train is dense enough and covers all time ranges (Figure 2 (c)), the
spike will always be pushed upward when the output spike train is sparse. Meanwhile, it is clear that
output spikes of a neuron will be pushed down when the target spike train is empty (Figure 2 (d)). In
both cases (c)(d), there are no inconsistencies. As a result, we can also correspond turning spike scale
up with moving spike time earlier and let ∂

∫
si(tk)

∂tk(si)
= −1 in this case. Our analysis explains why

spike train difference loss works for time-based training and why ∂
∫
si(tk)

∂tk(si)
= −1 is adopted in [67].

4.3 Balance Positive and Negative Time-based Gradient

According to Eq. (6), the positive part and the negative part of time-based gradients should be
balanced to control the sum of gradients since they keep unchanged among layers.

Deficiencies of counting loss. The derivative ∂
∫
si(tk)

∂tk(si)
= −1 will cause the sum of gradients on

spike timing to comprise too much positive portion near convergence, especially when the target
number of spikes for label neurons is large. To see this, according to Eq. (8), supposing a label output
neuron emits m spikes, then the total gradients on these spikes are:∑

si(tk)|i=label

∂L

∂tk(si)
= m

∂L

∂tk0
(si)

= 2λm(targetlabel −m). (12)

Here ’label’ is the index of the labeled neuron, and tk0(si) is a representative spike timing since all
∂L

∂tk(si)
are equal. The detailed proof is provided in the Appendix. This gradient sum on label output

neurons is a quadratic function of the number of output spikes m, which provides too much positive
gradient on spike timing when m is large.

Positive sum of gradients on spike timing. When the network is nearly converged, output neurons
corresponding to the labels often emit much more spikes than other neurons, which implies that
the slope of membrane potential du

dt for these neurons at spike time is usually more significant than
others. As a result, the ∂t

∂u part on the gradient propagation path (refer to Figure 1) for label neurons
is smaller than others in scale (but their signs are both negative). If the sum of gradients is exactly
zero, the weights in the last layer will receive more positive gradients than negative ones, leading to
decreasing weights in the last layer. This effect will inhibit output neurons from emitting spikes.

6

4.4 Enhanced Counting Loss

Based on the analysis in Section 4.3, we infer that loss functions providing adequate positive overall
gradients are more suitable for time-based training schemes. Building upon this conclusion, we
introduce a novel loss function to optimize network training. Since the counting loss (used in [69])
provides too much positive gradient on spike timing when the label output neuron emits many spikes,
it is more adequate to let

∑
si(tk)

∂L
∂tk(si)

be a linear function 2λ(targeti −m) instead of a quadratic
function 2λm(targeti−m) in Eq. (12). To do this, suppose a neuron fires m spikes, we can substitute
∂L(m)
∂m = 2(m− targeti) with ∂L(m)

∂m =
2(m−targeti)

m . The form of this modified loss function is

L(s, target) = 2λ

C∑
i=1

f

(∫ T

0

si(t)dt, targeti

)
. (13)

where f(x, target) =

{
x− target ln(x), x > 0

0, x ≤ 0
(14)

with derivative ∂
∫
si(tk)

∂tk(si)
= −1. We name the loss as enhanced counting loss. The detailed

equation-deducing procedure is provided in the Appendix.

4.5 Moving Scaling on Weights to Thresholds

In previous works, weight standardization [45] is used [69] to stabilize training since common
normalization schemes [24] are not applicable in asynchronous networks. The weights of a layer are
decided by three sets of parameters W̃ , γ, β, which correspond to the original weight, scale, and shift:

Ŵ (k) =
W̃ (k) − E[W̃ (k)]√

Var[W̃ (k)] + ε
, W (k) = γ(k) · Ŵ (k) + β(k). (15)

Here x(k) means the k-th channel of x, Ŵ (k) is the normalized weights for W̃ (k), and the final
weight W (k) goes through a linear transform with the scale γ(k) and shift β(k). In time-based training
(Figure 1(c)(d)), weights participate in backpropagation by passing gradients from output spike timing
to membrane potential and then to input spike timing of a neuron. According to Eqs. (2) (5), we have:

∂tk(s
(l)
i)

∂u
(l)
i (tk)

=
−1

du
(l)
i (tk)/dt

=

 ∑
j,tk,last(s

(l)
i)<tm(s

(l−1)
j)≤tk(s

(l)
i)

∂u
(l)
i (tk)

∂tm(s
(l−1)
j)


−1

, (16)

∂u
(l)
i (tk)

∂tm(s
(l−1)
j)

= w
(l)
ij ·

∂ϵ(tk − tm)

∂tm
. (17)

Therefore the change in the weight scale will influence the gradient backpropagation by changing
w

(l)
ij in Eq.17. However, threshold values do not appear in the above backpropagation paths. Thus,

learning thresholds instead of weights might stabilize the training process. In forward formulas
Eqs. (1) (2), scaling up weights w(n)

ij and thresholds θ by the same factor will not change the output
spike train. The weight scale is determined by γ and β, so we can transform to keep γ constant and
learn θ:

θ(k) ← γ0
γ(k)

· θ(k), β(k) ← γ0
γ(k)

· β(k), γ(k) ← γ0, (18)

where γ0 is the value we want to fix γ to. When doing parameter updates, denote dγ(k) = ∂L
∂γ(k) and

dβ(k) = ∂L
∂β(k) , the parameter update rule after the above transformation can be described by:

dθ(k)new = d(
γ0
γ(k)

θ(k)) = θ(k)
−γ0

(γ(k))2
dγ(k) = − θ(k)

γ(k)
dγ(k), (19)

dβ(k)
new = d(

γ0
γ(k)

β(k)) =
γ0
γ(k)

dβ(k) + β(k) −γ0
(γ(k))2

dγ(k) = dβ(k) − β(k)

γ(k)
dγ(k). (20)

7

It should be noticed that the value of γ(k) will be unchanged (always equal to γ0) during learning after
this transformation. During learning, parameters to be learned are θ and β where θ(k) ← θ(k)+ηdθ

(k)
new

and β(k) ← β(k) + ηdβ
(k)
new.

4.6 Overall Algorithm

Algorithm 1 Discrete Version of Our Algorithm

Input: s(0): Input spike train, W (n)(n = 1, ..., N): Weight for all layers (where N is the number of layers),
Total simulation time T
Output: ∇W (n)(n = 1, ..., N)
// Forward propagation:
Initialize Neuron(n)(n = 1, ..., N): Neurons with states (membrane potential parameters) for all layers
for n = 0 to N − 1 do

for t = 0 to T − 1 do
Update state of Neuron(n+1) according to Eq. 1
if Membrane potential u(n+1)[t] ≥ θ then ▷ Fire spikes

s(n+1)[t] = 1

Reset state of Neuron(n+1)

end if
end for

end for
// Backward propagation:
Initialize∇W (n) ← 0, ∂L

∂t(s)n ← 0 for n = 1, 2, ..., N

Calculate ∂L
∂t(s)N

according to Eq. 13 14
for n = N to 1 do

for t = T − 1 to 0 do
if s(n)(t) = 1 then ▷ Spikes fired

Set ∂L
∂u(n) [t] to ∂L

∂t(s(n))
∂t(s(n))
∂u(n)(t)

▷ ∂L
∂t(s(n))

∂t(s(n))
∂u(n)(t)

is part of Eq. 3 4
Reset ∆t← 0

else
Set ∆t← ∆t+ 1

end if
// ∂u(n)

∂W (n) and ∂u(n)

∂t(s(n−1))
both involve ϵ(∆t) where ϵ(·) is the spike response kernel

Set ∇W (n) ← ∇W (n) + ∂L
∂u(n) · ∂u(n)

∂W (n) ▷ Eq. 3

Set ∂L
∂t(s(n−1))

← ∂L
∂u(n) · ∂u(n)

∂t(s(n−1))
▷ Eq.4

end for
Update θ,β according to Eq. 19 20 as well as W̃ using∇W (n)

end for

Algorithm 1 describes our overall algorithm. Our algorithm works in discrete time-steps here since it
suits better for current deep learning frameworks such as PyTorch. The main training and inference
workflow follows [69]. The enhanced counting loss is in the beginning of the backward propagation
and the transfer of training from scaling factor to threshold is embodied in the second last line.

5 Experiments

We conduct experiments on MNIST [31], Fashion-MNIST [62], NMNIST [41], CIFAR10/100 [30],
DVS-Gesture [1], and CIFAR10-DVS [32] datasets to evaluate the performance of our method.
The methods we compare are Spiking Neural Networks trained with time-based gradients carried
by spikes, including TC [39], ASF [8], S4NN [27], BS4NN [28], STiDi-BP [38], STDBP [66],
TSSL-BP[67], and EDBP [69]. All experiments are run on single Nvidia RTX 3080Ti/3090 GPUs.
The implementation details are provided in the Appendix.

5.1 Compare with the State-of-the-Art

We first compare our method with current state-of-the-art time-based SNN training approaches.
Table. 1 reports the results on MNIST, Fashion-MNST, N-MNIST, CIFAR10, CIFAR100, DVS-

8

Table 1: Performance comparison on MNIST and CIFAR-10/100 datasets

Dataset Model Gradient Type Architecture Accuracy

MNIST

TC [39] Temporal 784-800 97.5%
ASF [8] Temporal 784-340 97.9%

S4NN [27] Temporal 784-600 97.4%
BS4NN [28] Temporal 784-600 97.0%

STiDi-BP [38] Temporal 784-500 97.4%
STDBP [66] Temporal 16C5-P2-32C5-P2-800-128a 99.4%

TSSL-BP [67] Temporal 15C5-P2-40C5-P2-300 99.53%
EDBP [69] Temporal 15C5-P2-40C5-P2-300 99.47%

ANN - 15C5-P2-40C5-P2-300 99.50%
Ours Temporal 15C5-P2-40C5-P2-300 99.50%

Fashion-MNIST

S4NN [27] Temporal 784-1000 88.0%
BS4NN [28] Temporal 784-1000 87.3%
STDBP [66] Temporal 16C5-P2-32C5-P2-800-128 90.1%

TSSL-BP [67] Temporal 32C5-P2-64C5-P2-1024 92.83%
EDBP [69] Temporal 32C5-P2-64C5-P2-1024 93.28%

ANN - 32C5-P2-64C5-P2-1024 93.94%
Ours Temporal 32C5-P2-64C5-P2-1024 94.03%

N-MNIST
TSSL-BP [67] Temporal 12C5-P2-64C5-P2 99.40%

EDBP [69] Temporal 12C5-P2-64C5-P2 99.39%
Ours Temporal 12C5-P2-64C5-P2 99.39%

CIFAR10

TSSL-BP [67] Temporal CIFARNetb 91.41%
EDBP [69] Temporal VGG11b 92.10%

ANN - VGG11 94.51%
Ours Temporal VGG11 93.54%

CIFAR100
EDBP [69] Temporal VGG11 63.97%

ANN - VGG11 74.23%
Ours Temporal VGG11 70.50%

DVS-Gesture Ours Temporal VGG11 97.22%
CIFAR10-DVS Ours Temporal VGG11 76.30%

a 15C5: convolution layer with 15 channels of 5× 5 filters; P2: pooling layer with 2× 2 filters
b The detailed network architectures are provided in the Appendix (section Experimental Settings)

Gesture, and CIFAR10-DVS datasets. It should be noticed that we do not list BPTT-based methods
here since they make use of information when neurons do not fire spikes in the gradient propagation,
which certainly benefits the training process and the final performance. On the easy MNIST and
N-MNIST datasets, the performance of our algorithm is comparable to those of TSSL-BP [67] and
EDBP [69]. The improvement is not noticeable as the performance is saturated (> 99%). On other
datasets, our algorithm evidently outperforms other time-based SNN training algorithms. For the
Fashion-MNIST dataset, our algorithm outperforms the previous time-based SOTA algorithm [69]
by 0.75%. For the CIFAR10 dataset, we achieve 93.54% top-1 accuracy with a VGG11 network,
outperforming EDBP [69] by 1.44% with the same network architecture. Besides, we have achieved
70.50% accuracy on the CIFAR100 dataset, outperforming the previous SOTA SNN trained with
a time-based scheme by more than 6% with the same architecture. In addition, we are the first
time to train SNNs with time-based schemes on both the DVS-Gesture and CIFAR10-DVS datasets,
achieving 97.22% accuracy on the DVS-Gesture dataset and 76.30% accuracy on the CIFAR10-DVS
dataset. All these results demonstrate that the proposed method outperforms the state-of-the-art
accuracy on nearly all datasets.

5.2 Ablation Study

In this section, we study the effects of our proposed loss function and normalization scheme on the
network performance. We select EDBP [69] as the baseline in our ablation experiments, which uses
counting loss and weight normalization. The performance of SNNs with different loss functions and
normalization schemes is illustrated in Table. 2 and Figure 3(a). It can be seen that the proposed
enhanced counting loss outperforms the original counting loss on CIFAR100 to a large extent. We
achieve 68.95% top-1 accuracy, which is higher than the baseline by 4.97%. At the same time, our
proposed threshold normalization scheme is also effective in increasing the network performance.

9

0 200 400
Epoch

0.0

0.2

0.4

0.6

T
es

t
A

cc
u

ra
cy

counting – thresholds

enhanced – weights

enhanced – thresholds

(a)

0 200 400
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

S
u

m
of

A
b

so
lu

te
G

ra
d

ie
nt

V
al

u
es

×108

counting – thresholds

enhanced – weights

enhanced – thresholds

(b)

0 200 400
Epoch

0.0

0.5

1.0

S
u

m
of

G
ra

d
ie

nt
V

al
u

es

×107

counting – thresholds

enhanced – weights

enhanced – thresholds

(c)

0.00 0.25 0.50 0.75
Training Accuracy

0.4

0.5

0.6

0.7

R
at

io
of

P
os

it
iv

e
G

ra
d

ie
nt

s

counting – thresholds

enhanced – weights

enhanced – thresholds

(d)

Figure 3: Ablation results. (a) Test accuracy along with training epoch index. (b) Accumulated sum
of absolute gradient values along with training epoch index. (c) Accumulated sum of gradient values
along with training epoch index. (d) The ratio of positive gradients along with training accuracy. In
the figures, the blue line indicates the counting loss and threshold normalization scheme; the green
line indicates the enhanced counting loss and weight normalization scheme; the orange line indicates
the enhanced counting loss and threshold normalization scheme.

Table 2: Ablation study on the CIFAR-100 dataset

Loss Function Normalization Accuracy
Count (MSE) Weight 63.98%
Count (MSE) Threshold 66.35%

Enhanced Weight 68.95%
Enhanced Threshold 70.50%

To further illustrate how our proposed methods
help the network training, we analyze the gradi-
ent scale as well as the ratio of positive gradients.
Figure 3(b) plots the gradient scale described by
the L1-norm of gradients, which is the sum of
the absolute gradient value. Also, we provide
the sum of (not absolute) gradient values in Fig-
ure 3(c). Both values are plotted against the
number of training epochs, and they are both accumulated through epochs. From the figures, we
can find that the enhanced counting loss greatly reduces the overall scale of gradients. Besides, the
proposed threshold normalization scheme also slightly reduces the overall gradient scale.

We also show the ratio of positive gradients among all gradients in Figure. 3(d). It should be noticed
that we do not plot it against the epoch index, instead, we plot it against the network training accuracy.
The underlying reason is that this ratio is largely influenced by the ratio between the number of
spikes that label output neurons emitted and other output neurons emitted. The spike emission status
comparison between label neurons and other neurons in the output layer can be better described by
the network training accuracy compared with the epoch index, especially when the convergence rates
in different settings are different. Besides, we do not accumulate gradient data in this figure since we
want to get the information in each epoch. From this figure, we can see that in most cases, gradients
trained with the enhanced counting loss and the threshold normalization scheme are more balanced
(closer to 0.5 in the figure). There is a rising tendency for the proportion of positive gradients with
the convergence of the network, which is influenced by more spikes emitted by label output neurons.
In the very beginning, the negative part of gradients is much larger than the positive part. Oppositely,
the overall gradients mainly consist of the positive part near convergence.

6 Conclusion

In this paper, we demonstrate the applicability of rate-coding-based loss functions to time-based
training. We analyze loss function properties, introducing the enhanced counting loss to replace
mean square counting loss. Furthermore, we transfer scale factor training in weight standardization
to thresholds. Experiments show significant network performance improvements on datasets like
CIFAR100, achieving state-of-the-art results on most others. While we’ve made notable progress,
there’s potential for further research into the optimal positive gradient ratio during training and the
effectiveness of loss functions for SNN training in the time-based scheme. Additionally, extending
our approach to ANNs, as demonstrated in [25], holds promise.

7 Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No.
62176003 and No. 62088102.

10

References
[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan

Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully event-
based gesture recognition system. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7243–7252, 2017.

[2] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in Neural Information
Processing Systems, 31:795–805, 2018.

[3] Sander M. Bohte, Joost N. Kok, and Han La Poutré. Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

[4] Olaf Booij and Hieu tat Nguyen. A gradient descent rule for spiking neurons emitting multiple spikes.
Information Processing Letters, 95(6):552–558, 2005.

[5] Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-latency
spiking neural networks. In In Proceedings of the AAAI Conference on Artificial Intelligence, pages 11–20,
2022.

[6] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In International Conference
on Learning Representations, 2022.

[7] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for energy-
efficient object recognition. International Journal of Computer Vision, 113(1):54–66, 2015.

[8] Iulia-Maria Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo, and Jyrki
Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function: Learning with
backpropagation. IEEE Transactions on Neural Networks and Learning Systems, pages 1–14, 2021.

[9] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday,
Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines,
Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkatara-
manan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[10] Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and Yuan Xie.
Rethinking the performance comparison between SNNs and ANNs. Neural Networks, 121:294–307, 2020.

[11] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural
network via gradient re-weighting. In International Conference on Learning Representations, 2021.

[12] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks. In International Joint Conference on Artificial
Intelligence, pages 2328–2336, 2021.

[13] Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. Advances in Neural Information Processing Systems, 35:34377–
34390, 2022.

[14] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep residual
learning in spiking neural networks. Advances in Neural Information Processing Systems, 34:21056–21069,
2021.

[15] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. Incorporating
learnable membrane time constant to enhance learning of spiking neural networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2661–2671, 2021.

[16] Zenke Friedemann and Ganguli Surya. Superspike: Supervised learning in multilayer spiking neural
networks. Neural Computation, 30(6):1514–1541, 2018.

[17] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker project. Proceedings
of the IEEE, 102(5):652–665, 2014.

[18] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From single
neurons to networks and models of cognition. Cambridge University Press, 2014.

[19] Yufei Guo, Xuhui Huang, and Zhe Ma. Direct learning-based deep spiking neural networks: a review.
Frontiers in Neuroscience, 17:1209795, 2023.

[20] Yufei Guo, Xinyi Tong, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Zhe Ma, and Xuhui Huang. Recdis-snn:
Rectifying membrane potential distribution for directly training spiking neural networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 326–335, June
2022.

11

[21] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13558–13567, 2020.

[22] Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion error
through residual membrane potential. In Proceedings of the AAAI Conference on Artificial Intelligence,
2023.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

[25] Alan Jeffares, Qinghai Guo, Pontus Stenetorp, and Timoleon Moraitis. Spike-inspired rank coding for fast
and accurate recurrent neural networks. In International Conference on Learning Representations, 2022.

[26] Christoph Kayser, Marcelo A Montemurro, Nikos K Logothetis, and Stefano Panzeri. Spike-phase coding
boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4):597–608,
2009.

[27] Saeed Reza Kheradpisheh and Timothée Masquelier. S4NN: Temporal backpropagation for spiking neural
networks with one spike per neuron. International Journal of Neural Systems, 30(06):2050027, 2020.

[28] Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier. BS4NN: Binarized spiking
neural networks with temporal coding and learning. Neural Processing Letters, pages 1–19, 2021.

[29] Jinseok Kim, Kyungsu Kim, and Jae-Joon Kim. Unifying activation-and timing-based learning rules
for spiking neural networks. In Advances in Neural Information Processing Systems, volume 33, pages
19534–19544, 2020.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[32] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream dataset
for object classification. Frontiers in neuroscience, 11:309, 2017.

[33] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and shi Gu. A free lunch from ann: Towards efficient,
accurate spiking neural networks calibration. In International Conference on Machine Learning, 2021.

[34] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
spike: Rethinking gradient-descent for training spiking neural networks. Advances in Neural Information
Processing Systems, 34:23426–23439, 2021.

[35] Zachary F Mainen and Terrence J Sejnowski. Reliability of spike timing in neocortical neurons. Science,
268(5216):1503–1506, 1995.

[36] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training high-
performance low-latency spiking neural networks by differentiation on spike representation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12444–12453, 2022.

[37] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser,
Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar,
and Dharmendra S. Modha. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science, 345(6197):668–673, 2014.

[38] Maryam Mirsadeghi, Majid Shalchian, Saeed Reza Kheradpisheh, and Timothée Masquelier. STiDi-BP:
Spike time displacement based error backpropagation in multilayer spiking neural networks. Neurocomput-
ing, 427:131–140, 2021.

[39] Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 29(7):3227–3235, 2017.

[40] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal
Processing Magazine, 36(6):51–63, 2019.

[41] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image datasets
to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

[42] Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and efficient information transmis-
sion with burst spikes in deep spiking neural networks. In 56th ACM/IEEE Design Automation Conference,
pages 1–6. IEEE, 2019.

12

[43] Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: Deep spiking neural networks
with time-to-first-spike coding. In 2020 57th ACM/IEEE Design Automation Conference, pages 1–6. IEEE,
2020.

[44] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe Zou,
Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip architecture.
Nature, 572(7767):106–111, 2019.

[45] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with batch-channel
normalization and weight standardization. arXiv preprint arXiv:1903.10520, 2019.

[46] M. C. W. van Rossum. A novel spike distance. Neural Computation, 13(4):751–763, 2001.

[47] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence with
neuromorphic computing. Nature, 575(7784):607–617, 2019.

[48] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in
neuroscience, 11:682, 2017.

[49] Juncheng Shen, De Ma, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaoqiang Xu, Qi Xu, Yangjing Shen,
and Gang Pan. Darwin: a neuromorphic hardware co-processor based on spiking neural networks. Science
China Information Sciences, 59(2):1–5, 2016.

[50] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In Advances in
Neural Information Processing Systems, volume 31, pages 1419–1428, 2018.

[51] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[52] Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high accuracy
through temporal coding with two spikes. Nature Machine Intelligence, 3(3):230–238, 2021.

[53] KJ Stratford, K Tarczy-Hornoch, KAC Martin, NJ Bannister, and JJB Jack. Excitatory synaptic inputs to
spiny stellate cells in cat visual cortex. Nature, 382(6588):258–261, 1996.

[54] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and Anthony
Maida. Deep learning in spiking neural networks. Neural Networks, 111:47–63, 2019.

[55] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies for rapid processing.
Neural Networks, 14(6-7):715–725, 2001.

[56] Simon J Thorpe. Spike arrival times: A highly efficient coding scheme for neural networks. Parallel
Processing in Neural Systems, pages 91–94, 1990.

[57] Rufin Van Rullen and Simon J Thorpe. Rate coding versus temporal order coding: what the retinal ganglion
cells tell the visual cortex. Neural Computation, 13(6):1255–1283, 2001.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems,
30, 2017.

[59] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

[60] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1311–1318, 2019.

[61] Timo C. Wunderlich and Christian Pehle. Event-based backpropagation can compute exact gradients for
spiking neural networks. Scientific Reports, 11(1):12829, 2021.

[62] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[63] Qi Xu, Yaxin Li, Jiangrong Shen, Jian K Liu, Huajin Tang, and Gang Pan. Constructing deep spiking neural
networks from artificial neural networks with knowledge distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7886–7895, 2023.

[64] Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated neighborhood aggregation for accurate training
of spiking neural networks. In International Conference on Machine Learning, pages 11852–11862.
PMLR, 2021.

[65] Friedemann Zenke, Sander M Bohté, Claudia Clopath, Iulia M Comşa, Julian Göltz, Wolfgang Maass,
Timothée Masquelier, Richard Naud, Emre O Neftci, Mihai A Petrovici, et al. Visualizing a joint future of
neuroscience and neuromorphic engineering. Neuron, 109(4):571–575, 2021.

13

[66] Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan Zhang,
Venkata Pavan Kumar Miriyala, Hong Qu, Yansong Chua, Trevor E. Carlson, and Haizhou Li. Recti-
fied linear postsynaptic potential function for backpropagation in deep spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–12, 2021.

[67] Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking neural
networks. Advances in Neural Information Processing Systems, pages 12022–12033, 2020.

[68] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-coded
deep spiking neural network with easy training and robust performance. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 11143–11151, 2021.

[69] Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier. Training
spiking neural networks with event-driven backpropagation. Advances in Neural Information Processing
Systems, 2022.

14

	Introduction
	Related Work
	Preliminaries
	Methods
	Relate Gradients of Spike Train to Spike Firing Time
	Why Can Rate-coded Losses be Applied in The Time-based Training Scheme?
	Balance Positive and Negative Time-based Gradient
	Enhanced Counting Loss
	Moving Scaling on Weights to Thresholds
	Overall Algorithm

	Experiments
	Compare with the State-of-the-Art
	Ablation Study

	Conclusion
	Acknowledgements

