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“C stirs the noodles in the pot with the spoon in his right hand.”

Exo-centric video Ego-centric video

Figure 1: The cross-view video prediction task aims to predict future RGB frames of the ego-centric
video, given the first ego-centric frame, a text instruction, and a synchronised exo-centric video.

ABSTRACT

Generating videos in the first-person perspective has broad application prospects
in the field of augmented reality and embodied intelligence. In this work, we ex-
plore the cross-view video prediction task, where given an exo-centric video, the
first frame of the corresponding ego-centric video, and textual instructions, the
goal is to generate future frames of the ego-centric video. Inspired by the notion
that hand-object interactions (HOI) in ego-centric videos represent the primary
intentions and actions of the current actor, we present EgoExo-Gen that explic-
itly models the hand-object dynamics for cross-view video prediction. EgoExo-
Gen consists of two stages. First, we design a cross-view HOI mask prediction
model that anticipates the HOI masks in future ego-frames by modeling the spatio-
temporal ego-exo correspondence. Next, we employ a video diffusion model to
predict future ego-frames using the first ego-frame and textual instructions, while
incorporating the HOI masks as structural guidance to enhance prediction quality.
To facilitate training, we develop an automated pipeline to generate pseudo HOI
masks for both ego- and exo-videos by exploiting vision foundation models. Ex-
tensive experiments demonstrate that our proposed EgoExo-Gen achieves better
prediction performance compared to previous video prediction models on the Ego-
Exo4D and H2O benchmark datasets, with the HOI masks significantly improving
the generation of hands and interactive objects in the ego-centric videos.

1 INTRODUCTION

This paper considers the task of animating an ego-centric frame based on a third-person (exo-centric)
video captured simultaneously in the same environment. As illustrated in Fig. 1, given the first frame
of an ego-centric video, a textual instruction, and a synchronised exo-centric video (Grauman et al.,
2024; Kwon et al., 2021; Jia et al., 2020; Sener et al., 2022), the goal is to predict the subsequent
frames in ego-view. Exo-centric views typically provide broader environmental context and body
kinetics (Carreira & Zisserman, 2017; Miech et al., 2019), but are less focused on fine-grained
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actions. In contrast, ego-centric views center on the hands of the camera wearer and the interacting
objects (Grauman et al., 2022; Damen et al., 2018), which are critical for tasks like manipulation and
navigation (Nair et al., 2022; Bharadhwaj et al., 2023; Rhinehart & Kitani, 2017; Shah et al., 2022).
The challenge in cross-view video prediction arises from the significant perspective shift between
these views, as the future frames must align with both the contextual environment of the first frame
and the actor’s motion as indicated by the textual instruction and the exo-centric video.

Bridging these two perspectives offers two key benefits: first, it allows agents to build a robust ego-
centric world model from third-person demonstrations, enabling them to translate broader scene
information into a first-person perspective (Huang et al., 2024a; Luo et al., 2024b); second, it en-
ables the agents to think from the humans’ perspective by aligning their viewpoint with human
users, improving their ability to anticipate future actions and make more informed decisions. This
capability is particularly valuable in real-time applications such as augmented reality (AR) (Huang
et al., 2018; 2024b) and robotics (Wang et al., 2023a), where agents must synchronize their actions
with humans or the environment. By learning to translate exo-centric video into accurate ego-centric
frames, agents can become more adaptive when engaging in dynamic, real-world environments.

Recent researches in video prediction models have shown tremendous progress (Xing et al., 2023;
Chen et al., 2023; Ren et al., 2024; Guo et al., 2023a). These models mainly rely on the first frame
and textual instructions as inputs for diffusion models (Rombach et al., 2022b; Song et al., 2020),
with a primary focus on generating videos from an exo-centric perspective. Regarding ego-centric
video prediction, (Gu et al., 2023; Xing et al., 2024) have explored the decomposition of text instruc-
tions, but they lack customised design for the ego-centric view. In the context of cross-view video
generation, specialised models have been developed (Luo et al., 2024a;b). For example, (Luo et al.,
2024a) leveraged head trajectory data from ego-centric videos to generate optical flow and occlusion
maps in exo-centric videos, while (Luo et al., 2024b) estimated hand poses in ego-centric views to
guide conditional ego-video generation. However, these approaches rely on 3D scene reconstruc-
tion (Schonberger & Frahm, 2016; Tschernezki et al., 2024) or precise human annotations (Kwon
et al., 2021), limiting their scalability and generalization ability across diverse scenarios.

In this paper, we propose EgoExo-Gen, a cross-view video prediction model that generates future
ego-centric video frames by explicitly modeling hand-object dynamics. EgoExo-Gen employs a
two-stage approach: first, it predicts semantic hand-object interaction (HOI) masks in ego-centric
view, and second, it uses these masks as condition, driving a diffusion model to produce the corre-
sponding RGB frames. For the cross-view HOI mask prediction model, it takes an exo-centric video
and the first frame of an ego-centric video as inputs, and predicts HOI masks for future ego-centric
frames. To handle the drastic change in viewpoints, we design an ego-exo memory attention module
that captures spatio-temporal correspondences between the two views, enabling the model to infer
HOI masks even when the current ego-centric frame is not visible. The predicted HOI masks are then
integrated into the diffusion model, guiding the generation of accurate future ego-centric frames. To
ensure scalable training and minimise reliance on manual annotations, we also develop a fully au-
tomated HOI mask annotation pipeline for both ego-centric and exo-centric videos by leveraging
powerful vision foundation models (Khirodkar et al., 2024; Kirillov et al., 2023; Ravi et al., 2024).
This combination of methods allows EgoExo-Gen to generate high-quality ego-centric videos while
significantly improving scalability and generalisation across diverse environments.

We conduct extensive experiments on the cross-view video benchmark datasets, i.e., Ego-
Exo4D (Grauman et al., 2024) and H2O (Kwon et al., 2021) that include rich and diverse hand-
object interactions and shooting environment. Experimental results show that EgoExo-Gen signif-
icantly outperforms prior video prediction models (Chen et al., 2023; Ren et al., 2024; Gu et al.,
2023) and improves the quality of predicted videos by leveraging hand and object dynamics. Also,
EgoExo-Gen demonstrates strong zero-shot transfer ability on unseen actions and environments.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

This paper considers a challenging problem of animating one ego-centric frame, based on an exo-
centric video, captured at the same time and in the same environment. Specifically, given the exo-
centric video withN frames, Vexo = {x1, . . . , xN}, the first ego-centric frame g1, and a text instruc-
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Figure 2: An overview of EgoExo-Gen. Given an exo-centric video, a text instruction, and the
first frame of an ego-centric video, (1) a cross-view mask prediction model first anticipates the
hand-object masks of the unobserved future frames; (2) an HOI-aware video diffusion model then
predicts future frames of an ego-centric video by incorporating the predicted hand-object masks.

tion T , our goal is to predict the corresponding ego-centric video, Vego = {g1, . . . , gN}. Notably, the
camera poses and depth information for both ego-centric and exo-centric videos are not available,
encouraging the development of methods that can generalise across different cameras and locations.
Note that, unlike the cross-view correspondence benchmark (Grauman et al., 2024) and exo-to-ego
image translation (Luo et al., 2024b), our considered problem only assumes the availability of one
starting frame in ego-centric view at test time, which makes this task significantly more challenging.

Overview. We propose EgoExo-Gen, that enables to animate one ego-centric video frame based
on its corresponding exo-centric video, by explicitly modeling the hand-object dynamics. As illus-
trated in Fig. 2, our proposed model consists of: (1) a cross-view mask prediction network Φseg that
estimates the spatio-temporal hand-object segmentation masks of the ego-video (M̂ego); (2) an HOI-
aware video diffusion model Φgen for predicting the RGB ego-frames (V̂ego), given the hand-object
masks; (3) a fully automated pipeline to generate ego-exo HOI segmentation masks for training both
models. At inference time, the overall process can be formulated as:

M̂ego = Φseg(Vexo, g1), V̂ego = {ĝ2, . . . , ĝN} = Φgen(g1, T ,M̂ego). (1)

2.2 CROSS-VIEW MASK PREDICTION

This section details the cross-view mask prediction model, which translates the hand-object masks
from an exo-centric video into ego-centric view. Specifically, the model takes as input: (i)
exo-centric video, Vexo; (ii) frame-wise hand object masks of the exo-centric videos, Mexo ∈
{0, 1, 2}N×H×W , including background, hand, and object; and (iii) the first frame of an ego-centric
video, g1. The desired outputs are the corresponding frame-wise hand-object masks in ego-centric
view, M̂ego, generated in an auto-regressive manner. In the following section, we only present the
overall pipeline at training time, while during inference, we only assume the availability of one
starting frame in the ego-centric view, thus replacing the ego-centric video with the first ego-centric
frame, Vego → g1, and all zero images for subsequent ego-centric frames.

Image and mask feature encoding. For the image encoder, we adopt a shared ResNet (He et al.,
2016) with the last convolution block removed. The encoder takes as input the exo- and ego-frame,
and outputs the exo- and ego-features respectively, xn, gn = Φenc(xn),Φenc(gn). The mask encoder
takes the concatenation of the current exo-frame and exo-mask as input and encodes them with
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another ResNet. Then it fuses with the exo-image feature via a CBAM block (Woo et al., 2018), and
produces the exo-mask feature, mx

n = CBAM(xn,Φmask(xn,m
x
n)).

Ego-exo memory attention. As shown in Fig. 2, the core of this module is a memory bank, that
enables to predict the HOI mask features for ego-centric videos from corresponding exo-centric
frames. The model operates in an auto-regressive manner, for example, when generating for the
nth ego-frame, the corresponding frame feature from exo-centric video is treated as query, the
historical exo- and ego-frame features as keys, e.g., x1, g1, . . . , xn−1, gn−1, and corresponding
mask features as values, e.g., mx

1 , m̂
g

1, . . . ,m
x
n−1, m̂

g

n−1:

Qexo =WT
q xn, K =WT

k [x1, g1, . . . , xn−1, gn−1], V =WT
v [mx

1 , m̂
g

1, . . . ,m
x
n−1, m̂

g

n−1], (2)

where m̂
g

1, . . . , m̂
g

n−1 refer to mask features of earlier predictions; Wq,Wk,Wv are linear transfor-
mations and [] denotes concatenation along an additional time dimension. The mask feature for the
nth ego-frame can thus be obtained with cross-attention:

Z =WT
out(AV), where A = softmax(QexoKT/

√
D3),

and the softmax operation is performed over the time dimension. At training time, as all frames
in an ego-centric video are visible, we also obtain a residual memory output Z ′ by leveraging ego-
visual features as query, i.e., Qego = WT

q gn. The final output of the memory attention module is
Z ′′ = αZ ′ + (1 − α)Z , where α anneals from 1.0 to 0.0 at training stage. We observe that such
strategy helps the model training in the early stage, and eventually learns to predict the mask features
for all ego-centric frames at inference time.

Mask decoder. The mask decoder consists of a stack of upsampling blocks, each consisting of two
convolution layers followed by a bilinear upsampling operation (Oh et al., 2019; Cheng & Schwing,
2022). It accepts the output from the ego-exo memory attention module Z ′′, and fuse it with multi-
scale ego-features at each block, similar to UNet (Ronneberger et al., 2015) (not shown in Fig. 2).
The decoding process can be simplified as: m̂g

n = Φdec(Z ′′, g4n, g
8
n, g

16
n ), where gjn ∈ RH/j×W/j×dj

refers to multi-scale feature from the image encoder with a downscale of j.

Memory store and update. As aforementioned, our ego-exo memory bank stores the key and value
information of the past spatial image and mask features, respectively. At each time n, we encode the
predicted ego-mask into ego-mask feature, m̂

g

n = CBAM(gn,Φmask([gn, m̂
g
n])), and store it into the

ego/exo memory bank along with image and mask features, i.e., xn, gn and mx
n. At test time, we

consolidate the memory and discard obsolete features while always retaining the reliable features of
the first frame following (Cheng & Schwing, 2022; Ravi et al., 2024), but we do not emphasise this
process as a contribution of our approach.

2.3 HOI-AWARE VIDEO DIFFUSION MODEL

The objective of the HOI-aware video diffusion model is to generate the subsequent ego-video
frames {ĝ2, . . . , ĝN}, given the first frame g1, text instruction T and the predicted ego-centric hand-
object masks M̂ego.

Base architecture. Following (Rombach et al., 2022b), the diffusion and denoising processes in are
conducted in the latent space. Φgen consists of (i) a pre-trained VAE encoder E and decoder D for
per-frame encoding/decoding of the ego-centric video; (ii) a mask encoder ψmask for encoding hand-
object masks; (iii) a denoising UNet ϵθ, parameterised by θ. Following (Chen et al., 2023; Ren et al.,
2024), the UNet architecture is constructed based on pre-trained text-to-image models (Rombach
et al., 2022a). As illustrated in Fig. 2, in each down/upsampling block, a ResNet block, spatial self-
attention and cross-attention layers are stacked. An additional temporal attention layer is appended
to model the cross-frame relationship.

First frame and text guidance. The first frame g1 of the ego-video is injected into the diffusion
model to enable visual context guidance. Formally, the model takes as input the concatenation of
three items (z): (1) the corrupted noisy video frames; (2) the un-corrupted VAE feature representa-
tion of the video, with features of 2nd toN th frames set to zero; and (3) a temporal mask [1, 0, ...0]N

indicating the visibility of the first frame. The text instruction T is tokenised and encoded via a CLIP
text encoder (Radford et al., 2021), which is then injected to the UNet via cross-attention.
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HOI mask guidance. To incorporate hand-object masks obtained from the cross-view mask predic-
tion model into video diffusion model, {m̂g

1, . . . , m̂
g
N}, we encode them via a separate lightweight

mask encoder (ψmask) and insert the features into the denoising UNet. ψmask contains several down-
sampling blocks, each consists of a ResNet block followed by a temporal attention layer. It takes as
input the HOI masks and outputs the multi-scale spatio-temporal feature maps:

h4, h8, h16, h32 = ψmask([m̂
g
1, . . . , m̂

g
N ]), (3)

where the mask feature hj ∈ RH/j×W/j×Cj . In each decoder block, the mask features are fused
with the latent features via element-wise addition, and are then fed to the temporal attention layer
after linear projection. The training objective of the HOI-aware video diffusion model is denoted as:

Lhoi diffusion = Et,g∼pdata,ϵ∼N (0,I)||ϵ− ϵθ(z, T , h, t)||22, (4)

where t refers to the diffusion timestamp and ϵ ∼ N (0, I) denotes the Gaussian noise.

2.4 DATA, TRAINING AND INFERENCE PIPELINE

This section first describes an automatic procedure to generate ego-centric and exo-centric hand-
object masks, that enables to move beyond reliance on existing labeled datasets and extend to paired
ego and exo datasets in the wild. Then, we outline the training and inference processes.
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Figure 3: Ego-Exo mask annotation pipeline.
We first perform frame-wise annotation with
hand-object detector/segmentor, and prompt
SAM-2 to track HOI masks in the video.

Ego-Exo HOI mask construction. Our an-
notation pipeline is depicted in Fig. 3. For
ego-centric videos, we first employ EgoHOS
(Zhang et al., 2022) for per-frame segmenta-
tion of hands and interactive objects. Despite
good results for individual frames, EgoHOS
fails to capture the temporal dynamics between
frames. To address this, we leverage the ini-
tial hand-object masks generated by EgoHOS
as prompts for SAM-2 (Ravi et al., 2024), en-
abling object tracking across frames and ensur-
ing mask consistency throughout the video. For
exo-centric videos, EgoHOS proves inadequate
for segmentation. Instead, we use 100DOH
(Shan et al., 2020) for per-frame detection of
hands and interactive objects. Additionally,
we employ the human foundation model Sapi-
ens (Khirodkar et al., 2024) to segment key re-
gions, i.e., left and right hands, forearms, and
upper arms. For ego-centric videos, the bound-
ing boxes and masks serve as prompts for SAM-2 to ensure consistent cross-frame tracking.

Training stage. To train the cross-view mask prediction model, we employ the sum of binary cross-
entropy loss and dice loss. As the training progresses, we gradually mask ego-frames to encourage
the model to learn cross-view correspondence when ego-frames are unobserved. The training pro-
cess for the diffusion model is divided into two phases. In the first phase, we train the UNet backbone
on ego-centric videos, using the first frame and textual instructions as conditions, without incorporat-
ing hand-object interactions (HOI). In the second phase, we freeze the UNet backbone and train the
mask encoder and the linear projection layer, guided by Eq. 4. This phase utilises ego hand-object
masks generated by our automated data pipeline, ensuring high-quality mask predictions.

Inference stage. The cross-view mask prediction model takes the exo-centric video, exo-centric
HOI masks, and the first frame of the ego-centric video as inputs, and predicts ego-centric HOI
masks for all subsequent frames. These predicted ego-centric HOI masks, along with the first frame
of the ego-centric video, are then fed into the diffusion model to generate future ego-centric frames.

3 EXPERIMENTS

Dataset. We choose the Ego-Exo4D dataset (Grauman et al., 2024) in our experiment. Ego-Exo4D
is the largest multiview dataset with 1,286 hours of video recorded worldwide. Each ego-centric
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Table 1: Comparison of video prediction models on Ego-Exo4D and zero-shot transfer to H2O.

Method Ego-Exo4D Ego-Exo4D→H2O

SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ SSIM↑ PSNR↑ LPIPS↓ FVD↓
SVD (Blattmann et al., 2023a) 0.459 16.481 0.346 1120.680 0.394 14.310 0.338 1871.551
Seer (Gu et al., 2023) 0.376 15.468 0.527 1593.701 0.430 15.739 0.418 2272.068
DynamiCrafter (Xing et al., 2023) 0.457 15.880 0.434 1233.479 0.484 16.340 0.251 1657.931
SparseCtrl (Guo et al., 2023a) 0.474 16.455 0.355 1239.495 0.360 11.495 0.522 2566.101
SEINE (Chen et al., 2023) 0.518 17.680 0.321 1063.458 0.421 14.944 0.339 1797.965
ConsistI2V (Ren et al., 2024) 0.532 18.318 0.351 1109.314 0.458 16.188 0.276 1740.031

EgoExo-Gen 0.537 18.395 0.311 1031.693 0.486 16.424 0.240 1360.477

video has at least four exo-centric videos taken simultaneously in the same environment. We select
videos belonging to the cooking scenario (564 hours taken under 60 different locations) as these
videos contain rich hand-object interactions. The training set contains 33,448 video clips with an
average duration of 1 second. Each video clip is paired with a narration (e.g., C drops the knife on
the chopping board with his right hand.) with start and end timestamps. Notably, the Ego-Exo4D
cross-view relation benchmark contains paired ego-exo masks of specific objects, however, these
objects are not guaranteed to be interacting objects, and the hand masks are not annotated. In con-
trast, our automatic annotation process includes both hands and interactive objects, offering greater
scalability. We sample 1,000 video clips from the validation set, from which we select 500 video
clips and annotate them with HOI masks to evaluate the performance of the mask prediction model.
The training and validation sets have distinct takes, posing challenges to the model’s generalisation
ability on unseen subjects and locations. To evaluate the model’s zero-shot transfer ability, we also
adopt H2O (Kwon et al., 2021), an ego-exo HOI dataset focusing on tabletop activities (e.g., squeeze
lotion, grab spray). The validation set of H2O is composed of 122 clips with action labels.

Implementation details. We train our cross-view mask prediction model for 30 epochs with a
batch size of 32 using the Adam optimizer. The initial learning rate is set to of 10−5. We sample
16 frames with a fixed spatial resolution of 480×480 for both ego-centric and exo-centric videos.
We select one (out of four) exo-centric video with the highest proportion of exo-hand masks as the
optimal viewpoint, effectively minimising occlusion issues. For the video diffusion model, we train
both stages for 10 epochs with a batch size of 32 and a fixed learning rate of 10−4. We initialise
our model with SEINE (Chen et al., 2023) pre-trained on web-scale video-text pairs, and train the
model with 16 sampled frames with resolution 256×256. During inference, we adopt the DDIM
sampler (Song et al., 2020) with 100 steps in our experiments.

Evaluation metrics. Following (Grauman et al., 2024), we evaluate the cross-view mask prediction
model over three metrics: Intersection over Union (IoU), Contour Accuracy (CA), and Location
Error (LE). IoU assesses the overlap between the Ground-truth mask and prediction; CA measures
the shape similarity of the masks after applying translation to align their centroids; LE represents
the normalised distance between the centroids of the predicted and ground-truth masks. Regarding
the evaluation of video prediction models, we adopt SSIM (Wang et al., 2004), PSNR (Hore & Ziou,
2010), LPIPS (Zhang et al., 2018), and FVD (Unterthiner et al., 2018).

3.1 QUANTITATIVE COMPARISON

Performance on Ego-Exo4D. We compare our method with prior video prediction models with (i)
first frame as condition (SVD (Blattmann et al., 2023a)); (ii) both text and first frame as conditions,
including Seer (Gu et al., 2023), DynamiCrafter (Xing et al., 2023), SparseCtrl (Guo et al., 2023a),
SEINE (Chen et al., 2023) and ConsistI2V (Ren et al., 2024). We finetune all these models on Ego-
Exo4D except for SVD, which we found its zero-shot performance is better. As shown in Table 1, the
fine-tuned ConsistI2V (Ren et al., 2024) and SEINE (Chen et al., 2023) models achieve comparably
higher accuracy over the video prediction models, especially on SSIM and LPIPS, respectively.
EgoExo-Gen consistently outperforms prior methods on all metrics, highlighting the benefits of
explicit modeling the hand-object dynamics in video prediction models.

Zero-shot transfer to H2O. We evaluate our model’s generalisation ability on unseen data distri-
bution, i.e., H2O (Kwon et al., 2021), containing synchronised ego-centric and exo-centric videos
of hand-object interactions performing tabletop activities. The distinction of shooting location, con-
text environment, object, and action categories compared to Ego-Exo4D poses challenges to model
transfer. As revealed in Table 1 right, most methods achieve a relative high FVD (i.e., low perfor-
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mance). Our approach surpasses these models by effectively modeling the movement of hands and
interactive objects, even when directly transferring from Ego-Exo4D to H2O without re-training.

Table 2: Comparison on different hand-object
conditions.
Method SSIM↑ PSNR↑ FVD↓
No mask 0.518 17.681 1063.458
Random 0.528 18.132 1089.458
Object only 0.548 18.707 883.872
Hand only 0.565 19.065 851.705
Hand object (ours) 0.571 19.212 836.033
Left right hand object 0.569 19.188 839.349

Table 3: Comparison on different modalities as
condition for video prediction.
ID Frame Text HOI SSIM↑ PSNR↑ FVD↓

1 ! 0.477 16.628 1205.598
2 ! 0.229 8.579 3133.769
3 ! ! 0.518 17.680 1063.458
4 ! ! 0.555 18.930 864.739
5 ! ! ! 0.571 19.212 836.033

3.2 ABLATION STUDIES AND DISCUSSIONS

Analysis on the HOI condition. We compare different hand-object conditions in Table 2. To
preserve the mask quality, here we apply the hand-object masks extracted from the future video
frames instead of cross-view mask predictions. As shown in the first row, a baseline video prediction
model without mask conditions only achieves 0.518 SSIM and 17.681 PSNR. Random mask does
not make improvement over the baseline, with higher SSIM/PSNR but lower LPIPS/FVD. Applying
either hand-only or object-only masks yield significant improvement over the baseline model. Our
default choice of hand-object masks achieves the best results on all metrics, while distinguishing
between left and right hands does not yield further performance gain. These results indicate that the
fine-grained control of both hands and interacting objects is crucial for ego-centric video prediction.

Analysis on conditioning modalities. Table 3 lists the comparison results of applying different
modalities as condition for the video prediction task. We again apply the HOI masks extracted
from the future video to guarantee the mask quality. By default, the model takes as input the first
frame and text instruction as conditions and predicts the subsequent frames (ID-3). Discarding text
input (ID-1) makes the predicted video no longer conforms to human instructions, leading to less
controllability. Similarly, the removal of the first frame as a control condition (ID-2) turns the model
into a Text-to-Video (T2V) model. In this case, the model fails to generate actions in current scene
context, and thus the performance degrades significantly (ID-1 vs. ID-3). When combining first
frame and HOI mask, the model achieves superior performance than the baseline (ID-3 vs. ID-4).
This indicates the structural control of the generation appears more effective than text instructions,
as the hand-object movement can serve as a valuable cue for inferring the current action semantics.
On the opposite, given a textual instruction, there can be multiple ways in which the hands and
objects may actually interact and move. ID-5 shows that combining all modalities as conditions
yields the best prediction performance.

Analysis on the cross-view mask prediction. We investigate the impact of ego memory atten-
tion (ego feature as query) and exo memory attention (exo feature as query) on cross-view mask
prediction and video prediction in Table 4. The 1st row shows an oracle performance, where the
future frames are visible to the cross-view mask prediction model. High accuracy on both segmen-
tation and generation tasks can be observed as expected. As listed in the 2nd row, the model using
ego-memory attention only yields low segmentation results. Despite its good segmentation on the
visible first frame, it struggles with subsequent frames, as it can only use zero-image features as
queries due to the invisibility, making it difficult to effectively aggregate historical information. In
contrast, when using only exo-memory attention, the model can make better mask predictions than
ego-memory attention on unobserved frames, resulting in overall better performance. Combining
ego- and exo-memory attention (detailed in Sec. 2.2) assists the model training at early stages, with
an enhanced prediction ability for segmenting hands and objects in both observed and unobserved
frames, and subsequently improves the video prediction model.

Analysis on exocentric video clues. EgoExo-Gen decouples the cross-view video prediction task
into cross-view learning (via a cross-view mask prediction model) and video prediction (via an
HOI-aware video diffusion model). We modify our model to enable the incorporation of exocentric
information in a single model, by replacing the ego-centric hand-object mask condition with either
the original exo-centric RGB frames or the exo-centric hand-object masks. As observed in Table 5,
both approaches obtain sub-optimal performance, indicating the difficulty of learning exo-ego trans-
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Table 4: Comparison of the Ego/Exo memory attention (Ego-MA/Exo-MA) on cross-view mask
prediction and video prediction.

Method Exo-MA Ego-MA Segmentation Generation

IoU% ↑ CA ↑ LE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓
w/ future
EgoExo-Gen - - 63.594 0.715 0.037 0.561 18.909 0.284 859.444

w/o future
EgoExo-Gen % ! 4.630 0.048 0.182 0.529 18.143 0.322 1096.771
EgoExo-Gen ! % 14.655 0.188 0.086 0.534 18.241 0.308 1049.182
EgoExo-Gen (ours) ! ! 20.315 0.207 0.082 0.537 18.395 0.311 1031.693

lation and video prediction in a single video diffusion model. In contrast, hand-object movement in
the ego-centric view provides explicit pixel-aligned visual clues to improve the video prediction.

Table 5: Comparison on the incorporation of
exo-centric information.
Method SSIM↑ PSNR↑ FVD↓
w/o exo
Baseline 0.518 17.680 1063.548

w/ exo
Exo RGB 0.525 17.901 1094.316
Exo HOI 0.529 18.013 1090.517
Ego HOI (Ours) 0.537 18.395 1031.693

Table 6: Comparison on the HOI mask quality in
the annotation pipeline.
Method SSIM↑ PSNR↑ FVD↓
Hand only
EgoHOS (Zhang et al., 2022) 0.562 19.001 865.407
EgoHOS+SAM-2 0.565 19.065 851.705

Hand object
EgoHOS (Zhang et al., 2022) 0.562 19.022 868.928
EgoHOS+SAM-2 0.571 19.212 836.033

Analysis on data pipeline. To verify the effect of our cross-view mask generation pipeline, we
compare the video prediction model that is trained on HOI masks generated via EgoHOS only vs
EgoHOS+SAM-2. Here, we apply the HOI masks extracted from future frames as conditions for
straightforward comparison. EgoHOS (Zhang et al., 2022) performs per-frame hands and interacting
object segmentation, while ignoring the temporal consistency across consequent frames. SAM-
2 (Ravi et al., 2024) compensates the loss of temporal consistency by tracking hands and objects
through all frames given mask prompts generated by EgoHOS. As seen in Table 6, SAM-2 leads to
better generation performance due to the improved quality of both hand and object masks.

Table 7: Generalisation ability of EgoExo-Gen to
different video prediction models.

Model w/ exo SSIM ↑ PSNR ↑ FVD ↓

SEINE % 0.518 17.680 1063.458
SEINE ! 0.537 18.395 1031.693

ConsistI2V % 0.532 18.318 1109.314
ConsistI2V ! 0.540 18.581 1017.377

Application to different diffusion models. To
demonstrate the generalization capability of our
approach, we integrate our cross-view mask
prediction model with different video diffusion
models. By default, we adopt SEINE (Chen
et al., 2023) as our primary video diffusion
model. Additionally, we experiment with Con-
sistI2V (Ren et al., 2024) as an alternative dif-
fusion model, and the training and inference
pipeline remains unchanged. The experimental
results, as shown in Table 7, demonstrate that incorporating the cross-view mask prediction model
leads to performance gains on both SEINE and ConsistI2V. This validates the generalization capa-
bility of our method in introducing cross-view information across different video diffusion models.

3.3 QUALITATIVE COMPARISON AND LIMITATIONS

We show the visualisation results of the predicted videos in Fig. 4. Our default model, i.e., EgoExo-
Gen (w/o future) predicts videos with reasonable hand-object movement, despite actions that re-
quire minor hand-object movement (e.g., stirring). In comparison, the videos generated by Con-
sistI2V (Ren et al., 2024) could result in the unstable object shape (e.g., bowl) or nearly static video
in the 2nd case. However, we find that both EgoExo-Gen and ConsistI2V fail in the case where
complex hand movement is involved, as shown in the last row. In the 2nd column, we also show the
results of an oracle model, where our HOI-aware video diffusion model takes the hand-object masks
extracted from the visible future frames using EgoHOS and SAM-2. Despite the aforementioned
challenges, EgoExo-Gen (w/ future) predicts realistic videos that are close to the Ground-Truth.

8



Published as a conference paper at ICLR 2025

Text instruction: C pours the eggs in the stainless bowl with his right hand.

Text instruction: C stirs the milk tea in the pot on the stovetop with the spoon in his right hand.

Text instruction: C adds the cut tomato to the bowl of salad mixture with his left hand.

Ground-Truth EgoExo-Gen (w/ future) EgoExo-Gen (w/o future) ConsistI2V

Figure 4: Qualitative comparisons. EgoExo-Gen (w/o future) refers to our default model using
the predicted HOI masks as condition. EgoExo-Gen (w/ future) uses the HOI masks extracted from
visible future frames (Sec: 2.4), serving as an oracle. The last row shows a failure case with complex
hand movement. Best viewed with Acrobat Reader. Click the image to view the animated videos.

This indicates the HOI-aware video diffusion model in EgoExo-Gen learns good controllability
over hands and objects, while the performance is bounded by the sub-optimal mask prediction abil-
ity, which can also be observed in Table 4 and Fig. 5. Improving the quality of predicted masks in
future invisible frames (e.g., 10th frame) would be our future work.

Figure 5: Visualisation of the exo-centric hand-object masks and predicted ego-centric masks at the
visible 1st frame and invisible 5th and 10th frames.
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4 RELATED WORK

Egocentric-Exocentric video understanding and generation. Going beyond ego-only Wang et al.
(2023b); Pei et al. (2024) or exo-only Wang et al. (2022) video analysis, video understanding from
joint ego-centric and exo-centric perspectives covers a wide range of tasks, such as action recogni-
tion (Li et al., 2021; Xue & Grauman, 2023; Zhang et al., 2024), retrieval (Huang et al., 2024a; Xu
et al., 2024), cross-view relation (Grauman et al., 2024), and skill assessment (Huang et al., 2024a;
Li et al., 2024). While most works perform cross-view action understanding at video level, another
line of research focuses on cross-view translation/generation (Regmi & Borji, 2018; Liu et al., 2021;
Tang et al., 2019; Grauman et al., 2024; Liu et al., 2025), which requires building spatio-temporal
relationship across different views. For instance, (Luo et al., 2024a) proposed to generate the exo-
centric view by mining trajectory information from ego-centric view. (Luo et al., 2024b) realised
exo-to-ego image generation by exploring hand pose as explicit guidance for an image diffusion
model. In contrast to prior approaches, we design a cross-view mask prediction model to anticipate
spatio-temporal masks of both hand and interacting object from exo-view to ego-view.

Diffusion models for video prediction. Video prediction (a.k.a, image animation) aims to generate
the subsequent video frames given the first frame as condition (Xue et al., 2016; Franceschi et al.,
2020; Voleti et al., 2022). Motivated by text-to-image (T2I) diffusion models (Rombach et al.,
2022b; Saharia et al., 2022) and text-to-video (T2V) diffusion models (Zhou et al., 2022; Blattmann
et al., 2023b; Guo et al., 2023b; Wu et al., 2023; Wang et al., 2023c; Ma et al., 2024), a line of
works take the first frame as an extra condition to the T2V model (Chen et al., 2023; Zhang et al.,
2023; Ren et al., 2024; Xing et al., 2023) to achieve controllable video prediction. ConsistI2V (Ren
et al., 2024) conducted spatio-temporal attention over the first frame to maintain spatial and motion
consistency. DynamiCrafter (Xing et al., 2023) designed a dual-stream image injection paradigm
to improve the generation. In contrast to previous methods that have focused on generating videos
in general domains, (Gu et al., 2023; Xing et al., 2024) target the prediction of real-world ego-
centric videos by decomposing text instructions (Gu et al., 2023; Xing et al., 2024) or specialised
adapter (Xing et al., 2024). Our work explicitly model the dynamics (i.e., hands and interacting
objects) in ego-centric video prediction.

Hand-Object segmentation. The analysis on Hand and object interaction (HOI) covers a wide
range of research directions (Kumar et al., 2009; Shan et al., 2020; Xu et al., 2023b; Ohkawa et al.,
2023a). Here, we focus on hand and interacting object segmentation (HOS), a challenging task that
requires the model to segment open-world interacting objects Xu et al. (2023a); Wang et al. (2021);
Ouyang et al. (2024). VISOR (Darkhalil et al., 2022) and EgoHOS (Zhang et al., 2022) proposed
to segment left/right hands and interacting objects in ego-centric view. Despite excellent perfor-
mance, these works generally fail in exo-centric view. To address HOS in third-person perspective,
HOISTformer (Narasimhaswamy et al., 2024) designed a maskformer-based (Cheng et al., 2022)
hand-object segmentation model trained on exo-centric dataset. Recent vision foundation models
dedicated for segmentation (Khirodkar et al., 2024; Kirillov et al., 2023), SAM-2 (Ravi et al., 2024)
is capable of segmenting and tracking objects given visual prompts. Sapiens (Khirodkar et al., 2024)
excels at segmenting human body parts, including hands and arms. Our automated pipeline is built
upon these works to segment hands and objects in both ego- and exo-view.

5 CONCLUSION

In this paper, we propose EgoExo-Gen to solve cross-view video prediction task by modeling hand-
object dynamics in the video. EgoExo-Gen combines (1) a cross-view mask prediction model that
estimates hand-object masks in unobserved ego-frames by modeling the spatio-temporal ego-exo
correspondence and (2) a HOI-aware video diffusion model that incorporates the predicted HOI
masks as structural guidance. We also devise an automated HOI mask annotation pipeline to gener-
ate HOI masks for both ego- and exo-videos, enhancing the scalability of EgoExo-Gen. Experiments
demonstrate the superiority of EgoExo-Gen over prior video prediction models in predicting videos
with realistic hand-object movement, revealing its potential application in AR/VR and embodied AI.
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A ADDITIONAL EXPERIMENTS

A.1 NUMBER OF CONDITIONING HOI FRAMES

SS
IM

SS
IM

# HOI condition frames

# First frames

Figure 6: Comparison on the number of
HOI conditioning frames (top) and RGB
conditioning frames (bottom).

First, we investigate the impact of varying the number
of given HOI mask frames on ego-centric video pre-
diction. The baseline model is trained without HOI
mask condition. When altering the number of HOI
conditioning frames, the remaining HOI masks are set
to zero. As depicted in the Fig. 6 top, EgoExo-Gen
significantly outperforms the baseline by utilising only
one or two HOI conditioning frames. As the number of
HOI mask frames gradually increases, EgoExo-Gen’s
performance steadily improves while approaching sat-
uration around 12 frames, due to better encoding of
hand and object dynamics. Next, we compare model
performance as we continuously increase the number
of beginning RGB frames as conditions. Notably, our
default setting uses only the first RGB frame as condi-
tion. Fig. 6 bottom shows that both EgoExo-Gen and
the baseline model significantly improve as the frame
number increases, thanks to the rich visual context pro-
vided by the beginning frames. In this case, EgoExo-
Gen still outperforms the baseline on all numbers of conditioning frames, indicating that subsequent
HOI masks also contribute to the prediction of future frames.

A.2 DYNAMICS THE MODEL IS LEARNING

Given that the average duration of video clips in Ego-Exo4D is relatively short (∼1 second), we
conduct experiments to validate the dynamics the model is learning in two aspects.

Dynamics of the dataset. We first analyse the dynamics within the Ego-Exo4D dataset. Specifi-
cally, for each video clip, we uniformly sample 16 frames and calculate the Intersection over Union
(IoU) between the hands and interactive objects in the first frame and subsequent frames. We select
frames 2, 4, 8, 12, and 16 for this analysis. Results in Table 8 show that the IoU between the first
frame and subsequent frames gradually decreases, indicating the spatial dynamic changes of hand
and interactive objects.

Table 8: Mask IoU between the first frame and subsequent frames.

Class/Frame 2 4 8 12 16

Hand 0.66 0.45 0.31 0.25 0.23
Interacting object 0.67 0.48 0.33 0.27 0.24

Dynamics the model learns. Next, we compare the model’s performance on videos with different
dynamics. In particular, we calculate the averaged optical flow of the videos in the validation set
using RAFT [4], and split the videos into two sets using a threshold, i.e., small-flow (SF) set and
large-flow (LF) set. As shown in Table 9, compared to the baseline model, our model achieves more
significant improvements on the large-flow set, demonstrating that our HOI condition effectively
helps the model generate videos with dynamics. Despite the improvement, our model struggles to
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predict reliable future ego-centric frames where complex hand-object movement or rapid camera
movement is involved, as shown in the last row of Fig. 4.

Table 9: Comparison on the model’s performance on small-flow (SF) and large-flow (LF) subsets.

Methods SSIM (SF) LPIPS (SF) SSIM (LF) LPIPS (LF)

Baseline 0.546 0.259 0.470 0.381
Ours 0.565 0.238 0.512 0.354

A.3 HOI MASK VS. ALL-OBJECT MASK

In egocentric videos, the primary motion is centered around hand-object interactions, which play a
crucial role in tasks such as pose estimation (Kwon et al., 2021; Ohkawa et al., 2023b), action recog-
nition and segmentation (Damen et al., 2018; Huang et al., 2020b;a; Chen et al., 2024), interaction
anticipation (Grauman et al., 2022), and hand motion trajectory prediction. To justify the need of
hand-object masks in predicting ego-centric videos, we also compare our HOI mask with all-object
mask. In particular, we adopt SAM-2 (Ravi et al., 2024) to segment and track every possible object
without considering their classes, and train the mask encoder using this all-object masks. Note that
we do not train a cross-view mask prediction with this data as the correspondence between exo-
objects and ego-objects is not available due to the class-agnostic nature of SAM-2. Therefore, at
inference time, the all-object mask is only available for the first frame. As observed in Table 10,
using all-object masks does not lead to better performance, primarily because it is limited to masks
from only the first frame, which fail to provide accurate motion guidance. In contrast, our model
benefits from cross-view mask prediction, enabling the prediction of HOI masks for all frames. In
future work, we aim to extend this approach to include a broader range of objects that are relevant
to the ongoing task.

Table 10: Comparison between HOI mask and all-object mask

Conditions SSIM PSNR LPIPS FVD

All-object mask (first frame) 0.478 16.681 0.420 1324.360
HOI mask (first frame) 0.529 18.143 0.322 1096.771
HOI mask (ours, all frames) 0.537 18.395 0.311 1031.693

A.4 BALANCE BETWEEN EGO AND EXO MEMORY ATTENTION

In the ego-exo memory attention module, the final feature is calculated as Z ′′ = αZ ′ + (1 − α)Z,
where Z ′ and Z denotes ego and exo features, respectively. At training stage, we adopt a step decay
mechanism for α, which is representated as:

α(t) =



1.0, 0 ≤ t < 0.5T,

0.8, 0.5T ≤ t < 0.6T,

0.6, 0.6T ≤ t < 0.7T,

0.4, 0.7T ≤ t < 0.8T,

0.2, 0.8T ≤ t < 0.9T,

0.0, 0.9T ≤ t < T,

where t and T refer to the current training iteration and total iterations, respectively.

Table 4 in our manuscript compares our approach with methods that use (1) ego feature only (i.e.
α=1.0) and (2) exo feature only (i.e. α=0.0). Here, we also add a comparison that adopts cosine
decay. As list in Table 11, cosine decay performs worse than step decay, possibly because introduc-
ing exo features too early during the training phase might interfere with the model’s fundamental
segmentation ability. In contrast, step decay strategy helps the model training in the early stage, and
eventually learns to predict the mask features for all egocentric frames at inference time.
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Table 11: Comparison of different decay strategies.

Methods IoU CA LE SSIM PSNR LPIPS FVD

Cosine decay 13.632 0.132 0.131 0.530 18.131 0.321 1115.105
Step decay 20.315 0.207 0.082 0.537 18.395 0.311 1031.693
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