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ABSTRACT

Graphon models have emerged as powerful tools for modeling complex network
structures by capturing connection probabilities among nodes. A key challenge
in their application lies in accurately characterizing the graphon function, partic-
ularly with respect to parameters that govern its smoothness, which significantly
impact the estimation accuracy. In this article, we propose a novel graphon cross-
validation method for selecting tuning parameters and estimation approaches. Our
method is both theoretically sound and computationally efficient. We show that our
proposed cross-validation score is asymptotically parallel to the estimation error,
and the selected model asymptotically converges to the optimal model. Through
extensive simulations and real-world applications, we demonstrate that our method
consistently delivers superior computational efficiency and accuracy.

1 INTRODUCTION

Graphon models represent cutting-edge statistical and machine-learning techniques for describing
intricate network structures. In these models, the presence of an edge between nodes i and j hinges
on a probability, independently determined by a measurable symmetric graphon function f across the
unit square (Lovász and Szegedy, 2006). The graphon function f , the key to the model, gauges the
probability of node connections. Accurately estimating f poses a significant challenge to the models’
general application. The efficacy of existing estimation methods is intrinsically linked to the precise
calibration of tuning parameters. For instance, the accuracy of the graphon function estimated using
the sort-and-smoothing (SAS) method (Chan and Airoldi, 2014) or the neighborhood-smoothing
(NS) method (Zhang et al., 2017) is heavily contingent on the chosen size of the neighborhood. This
parameter is analogous to the bandwidth in kernel smoothing and is crucial for the estimation process.
As depicted in Figure 1, varying the neighborhood size parameter can result in markedly different
estimates of the graphon function, highlighting the sensitivity of the model to this tuning parameter.

Figure 1: From left to right, we present the heatmap of true graphon probability matrix, the estimated graphon
probability matrix (under low, medium, and large hyperparameters).

Cross-validation (CV) is widely regarded as the gold standard for parameter tuning and model
selection by dividing the dataset into subsets, training the model on a portion of the data, and then
testing it on the remaining data. The primary goal of cross-validation is to assess how well a model
generalizes to new, unseen data. Yet, when applied to network data, traditional CV encounters a
fundamental obstacle: it assumes the independence of observations—a condition that is invariably
violated by the interconnected nature of network nodes. Consequently, the standard practice of
random sampling on nodes falls short, calling for an alternative approach to data splitting, which is
critical to the integrity of the model validation process.
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In graphon models, where edges are presumed to follow an independent Bernoulli distribution, the
method of edge sampling takes on particular importance compared to node sampling. Common
practices involve randomly removing edges and using the remaining graph for training. However,
direct edge sampling can change the network’s inherent topology and connectivity, thereby altering
neighborhood structure, which introduces a significant bias in the estimation of the graphon function.
In addition, direct edge sampling may lead to a sampling bias when the network is partitioned into
training and testing sets, potentially resulting in different distributions. Such bias has profound
implications: it may trigger an inaccurate estimation of the standard deviation, distort confidence
intervals, and undermine hypothesis testing reliant on exact margins of error. Ultimately, it may
elevate prediction error, thereby impairing the model’s predictive efficacy. In response, Li et al.
(2020a) proposes imputing entries of matrix A corresponding to reserved node pairs using a matrix
completion algorithm. However, a critical condition of this approach is that P must be a low-rank
matrix, which can be violated in dense networks. Furthermore, while theoretical guarantees exist for
specific models like the Stochastic Block Model and the Random Dot Product Graph Model within
the graphon model class, they are lacking for the broader category. Additionally, the computational
cost of iteratively conducting matrix completion is prohibitively expensive, hindering the general
applicability of the proposed algorithm in practical settings.

To face these challenges, this paper introduces a perturbation-based sampling method that innovatively
splits data into training and testing sets. This method judiciously applies controlled perturbations to
the network edges, thereby ensuring that training and validation data remain representative of the
network’s comprehensive distribution. Our condition is that the graphon function’s smoothness is not
compromised by such perturbations, allowing for a more faithful estimation of the true graphon. The
method is versatile, accommodating varying degrees of sparsity and complexity within the network.
We rigorously validate our approach against standard edge sampling methods, employing a series of
experiments that underscore both its theoretical and practical merit.

2 MODEL SETUP

Network analysis was originally developed to map out the relationships or connections between
various entities, which can represent either samples or features. A network G = (V, E) is composed
of a vertex set V = {vi|i = 1, 2, . . . , n} and an edge set E = {(vi, vj)|vi, vj are connected}. Let I{·}
be an indicator function that maps subset {·} to one and all other elements to zero. Mathematically
a network can be represented by a n → n binary matrix, say A, with the (i, j)th entry aij , where
aij = I{(vi,vj)→E}. This matrix A is generally referred to as the adjacency matrix.

In this article, we assume that the aijs are independent and follow Bernoulli distributions with mean
pij respectively, i.e.,

aij
ind↑ Ber(pij), (1)

Model (1) is known as the inhomogeneous random graph model (Söderberg, 2002; van der Hofstad,
2013; Ghoshdastidar et al., 2020). Clearly, pij is not estimable unless we impose a specific constraint.
Consequently, we further assume:

pij = f(µi, µj), (2)
where f : [0, 1] → [0, 1] ↓ [0, 1] is referred to as the graphon function and the function is smooth.
Here, µi and µj represent latent parameters associated with vertices vi and vj , respectively. Without
loss of generality, we further assume that f is a bounded symmetric function, and additionally, µi for
1 ↔ i ↔ n are independently and identically distributed from a uniform distribution on interval [0, 1].

Clearly, f is neither unique nor identifiable as f and µis are confounding with each other (Diaconis
and Janson, 2007). Thus, instead of estimating f , researchers usually focus on the estimation of the
n → n probability matrix P = [pij ]. The combined model described by (1) and (2) is commonly
referred to as the graphon model. Graphon model is a general non-parametric model (Chan and
Airoldi, 2014) which encompasses a variety of model classes, each with its own conditions on f .
Common model classes include piecewise constant graphons, piecewise linear graphons, and smooth
graphons. Model selection involves choosing the appropriate class that best captures the underlying
structure of the graph data.

Given f ’s inherent smoothness, researchers commonly embrace the concept of neighborhood smooth-
ing methods, often utilized in spatial analysis, to gauge pij by capitalizing on adjacent node val-
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ues. Noteworthy methodologies in this domain encompass the neighborhood smoothing (NS)
method (Zhang et al., 2017), which amalgamates nodes sharing common neighbors, and the sort-
and-smoothing (SAS) method (Chan and Airoldi, 2014), which pool nodes with akin degrees. Both
techniques center on identifying neighboring nodes within a network, requiring the establishment of
a neighbor. The parameters that define the neighbor usually gauge the accuracy of the estimates.

3 GRAPHON CROSS-VALIDATION WITH RANDOM IMPUTATION

Let P̂(M |A) be the estimated probability of observing A given model M ↗ M, where M represents
the candidate pool of models. The performance of the model M can be assessed via the mean squared
error

L(M) =
1

n(n↘ 1)
||P̂(M |A)↘P||2F . (3)

Given M, the model Mo ↗ M that minimizes L(M) represents the ideal choice one would like to
make given the observed A and is referred to as the optimal model. Given the need for edge sampling
methods that preserve the network’s structural integrity while minimizing the introduction of biases,
we propose the K↘fold cross-validation with a random imputation method. The general idea of this
approach is to treat the edges in the validation set as missing values that need to be randomly imputed
before model training.

We randomly partition the set {(vi, vj) ↗ V → V : i < j} into K subsets S1, · · · ,SK , where each
subset contains approximately n(n↑1)

2K node pairs. This partitioning ensures that the subsets are of
approximately equal size and that each node pair has an equal chance of being included in any of the
subsets. Let A[k] denote the set of observed entries aij for node pairs within Sk. For the kth fold
validation, we generate the n→ n training adjacency matrix as A[↑k], of which the ijth entry is

A[↑k]
ij =

{
aij if (vi, vj) /↗ Sk

bij otherwise, (4)

where bijs are independently identically sampled from the Bernoulli distribution with mean ω. This
equation defines how the training adjacency matrix is constructed by incorporating the observed
training entries aij and randomly imputed entries bij . ω serves as a tuning parameter and remains
fixed as a constant throughout our procedure. The selection of ω is discussed in Section S.4.

We have the following Lemma:
Lemma 1. If A follows a graphon model with E(A) = P, we can deduce that the value of any entry
in A[↑k] is mutually independent of the node connectivity for node pairs in the validation set Sk.
More precisely, given P , we have that A[↑k]

ij is distributed according to a Bernoulli distribution with
parameter wkω + (1↘ wk)pij , where wk represents the proportion of number of node pairs in Sk

and pij represents the linking probability for (vi, vj).

Lemma 1 ensures the independence between A[↑k] and A[k] given P, which follows directly from
the independence of the edges. It also demonstrates that despite the training set and the original
graph holding different distributions, their distribution can be mapped to each other through an affine
transformation. Let P[↑k] denote the nodes connecting probability matrix of the n→ n adjacency
matrix A[↑k]. We have

P[↑k] = wkω11
T + (1↘ wk)P, (5)

where 1 is the ones vector. The proof of Lemma 1 is provided in the Appendix.

Equation (5) implies that with the kth fold training data A[↑k] and model M , we can obtain a
predictor of P as follows:

P̂k(M) =
P̂(M |A[↑k])↘ wkω11T

1↘ wk
, (6)

where P̂(M |A[↑k]) is the estimate of P[↑k] computed based on method M or model M with
the training data A[↑k]. Let p̂[k]ij (M) denote the predicted probability for validation node pairs

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(vi, vj) ↗ Sk. It is evident that p̂[k]ij (M) corresponds to the (i, j)th entry of P̂k(M). Therefore, M
can be selected if it minimizes the following prediction error:

VK(M) =
2

n(n↘ 1)

K∑

k=1

∑

(vi,vj)→Sk

(p̂[k]ij (M)↘ aij)
2
. (7)

In practice, p̂[k]ij (M) may exceed one or fall below zero due to computational or measurement errors.
In such cases, we truncate the estimated p̂

[k]
ij (M) to ensure it lies within the interval [0, 1]. Given a

set of candidate models M, we select the optimal model MV which minimizes VK(M). The detailed
algorithm for the proposed K-fold cross-validation is provided in the Appendix Algorithm 1.

Computational cost. To evaluate a set of |M| candidate hyperparameters on an n-node network
using K-fold cross-validation, the total computational complexity of our CV-imputation method is
O(|M|·(KCestim(n)+n

2)), where Cestim(n) denotes the cost of the specific graphon estimator (e.g.,
NS, ICE). The detailed analysis can be found in Section S.8. Existing graphon estimation method
usually have Cestim greater than n

2. So the cost is mainly dominated by the graphon estimation
method itself rather than by CV-imputation itself. In contrast, the competing ECV method has
complexity O(|M| · (KCestim(n) +KTmc(n))) where Tmc(n) is the matrix completion complexity.
The critical difference between our CV-imputation and ECV is the additional overhead per fold:
Our method adds a simple O(n2) cost for imputation and transformation. ECV adds a much larger
O(Tmc(n)) cost for matrix completion, which is typically O(n3) for a full SVD. Thus our method
is more computationally efficient than ECV. For very large networks, a practical way to scale CV-
imputation is to combine it with network subsampling: (1) extract a structurally representative
subgraph using network sampling methods (e.g., Metropolis-Hastings random walk Hu and Lau
(2013), curvature-based sampling Wu et al. (2023)), (2) apply CV-imputation on this subgraph to
tune hyperparameters, and (3) fit the full network using the selected hyperparameter.

4 THEORETICAL JUSTIFICATION

A set of potential graphon estimates is denoted by P̂(M |A), where M ↗ M. The CV-imputation
score is crafted to fine-tune M to select the best estimate from this set. In this section, we offer
asymptotic justifications for the CV-imputation score.

We aim to demonstrate that VK(M) approximates L(M) uniformly up to a constant by postulating
assumptions on the maximum K-fold optimism bias:

QK(M) = sup
1↓k↓K

1

n(n↘ 1)

∥∥∥P̂(M |A)↘ P̂k(M)
∥∥∥
2

F
,

where ≃ · ≃F denotes the Frobenius norm. The optimism bias quantifies the maximum prediction bias
between the full-sample estimate and the estimate obtained after data splitting and imputation. Then,
under the following conditions:
Condition 1. There exists a positive constant ε > 0 such that for any M ↗ M and any ϑ > 0, there
exist a constant ϖ0 and an integer K0 such that

P

(∣∣∣∣
QK(M)

K↑ω

∣∣∣∣ ⇐ ϖ0

)
↔ ϑ ⇒K ⇐ K0,

we can show that
Theorem 1. As n ↓ ⇑ and K ↓ ⇑,

VK(M)↘ L(M)↘ ! = Op

(
1

n
⇓ 1

K(1+ω)/2
⇓ 1

Kω

)
(8)

uniformly, where ! = 2
n(n↑1)

∑
i<j pij(1↘ pij), and ⇓ denotes the operator that returns the largest

of two values.
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Theorem 1 suggests that the validation score VK(M) is a consistent estimator of L(M) + ! with an
error rate of 1

n ⇓ 1
K(1+ω)/2 ⇓ 1

Kω . Note that ! does not depend on M , so the validation score function
VK(·) and the loss function L(·) are asymptotically parallel in probability. Thus, the probability
that the minimizer of VK(M) approximately minimizes L(M) is high within a neighborhood of M0.
Theorem 1 essentially establishes the consistency of the CV-imputation score, ensuring that the score
for each candidate model is close to its true loss up to a constant. The proof of Theorem 1 is provided
in the appendix.

It is worth noting that Condition 1 specifies that the maximum K-fold optimism bias is bounded
by a polynomial rate of K↑ω. The polynomial order ε is determined by the complexity of the
underlying graphon model and the efficiency of the estimation methods. For instance, in the case of
an Erdős–Rényi model (Erdos and Renyi, 1959) where f(µi, µj) ⇔ p, we have ε = 1 when using
the simple averaging estimator and letting K ↖ n. Unlike many assumptions that are not verifiable,
QK(M) can be verified computationally, as both P̂(M |A) and P̂k(M) are accessible from the data.
In Figure S.3 in the Appendix, the validation of Condition 1 is provided. Further discussion of
Condition 1 can be found in Section S.10.

5 EMPIRICAL STUDIES

To compare the empirical performance of our method to the edge cross-validation method proposed
in Li et al. (2020a), we investigate their performance using data generated from four graphon models
introduced in (Chan and Airoldi, 2014). Figure 2 illustrates the probability matrices P of 200 nodes
generated for Graphons 1 to 4. Graphons 1 and 2 generate dense networks, while Graphons 3
and 4 yield sparse networks. Graphons 1, 3, and 4 produce low-rank probability matrices, while
Graphon 2 produces full-rank probability matrices. All results are averaged over 100 replications.
The experiments are conducted on a machine equipped with a 40-core CPU and 192 GB of RAM.
The implemtation issues or our methods are detailed in Section S.4 in the Appendix.

Figure 2: The heatmaps of P generated by Graphons 1 to 4 are displayed from left to right.

To evaluate the empirical performance of our method, we use it to select the tuning parameter for four
state-of-the-art graphon estimation methods: (1) neighborhood smoothing (NS) method (Zhang et al.,
2017), (2) sort-and-smooth (SAS) method (Chan and Airoldi, 2014), (3) universal singular value
thresholding (USVT) method (Chatterjee, 2015), and (4) iterative connecting probability estimation
method (ICE) (Qin et al., 2021). All four methods make different conditions about the underlying
model. In each of these estimation methods, the parameter M , although with different meanings,
governs the trade-off between goodness-of-fit and model complexity. For instance, in the NS method,
M represents the neighborhood size, while in the SAS method, it denotes the number of blocks. We
apply our method with the selected tuning parameter to the synthetic datasets generated from the four
aforementioned graphon functions. This enables us to compare the estimated graphons with the true
underlying graphon functions and assess the performance of our method in recovering the underlying
structure of the graphons using the mean squared error (MSE) measurement denoted by L(M).

In Table 1, we present the estimation accuracy measured by L(M) for n = 200. The table illustrates
that for all five estimation methods, our method and ECV select M resulting in lower MSE values
compared to the default selection. This underscores the significance of tuning M for all five estimation
methods. Moreover, CV-imputation method consistently selects models with smaller MSE values
compared to those chosen by ECV for all five methods and all synthetic datasets.

Figure 3 provides a comparison of the end-to-end computational cost between our method
(CV-imputation) and ECV. Here, the reported CPU time includes both the cost of fitting the graphon
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Table 1: The mean ± standard deviation of MSE across 100 replicates are calculated using M selected by
CV-imputation, ECV, and default selection. To facilitate comparison, all values are multiplied by 100. Note that
ICE does not have a default model setup, so the default ICE results are not shown in this table.

Graphon ID Graphon 1 Graphon 2 Graphon 3 Graphon 4
CV-imputation (NS) 0.51 ± 0.07 2.13 ± 0.15 0.79 ± 0.07 1.05 ± 0.06

ECV (NS) 9.15 ± 19.25 3.82 ± 0.21 3.07 ± 0.95 1.06 ± 0.10
Default NS (M=1) 39.05 ± 3.33 2.75 ± 0.16 0.74 ± 0.04 1.06 ± 0.10

CV-imputation (USVT) 0.28 ± 0.03 2.99 ± 0.19 0.61 ± 0.10 0.75 ± 0.05

ECV (USVT) 0.60 ± 0.09 5.06 ± 0.27 1.18 ± 0.02 1.08 ± 0.74
Default USVT (M=0.01) 0.60 ± 0.09 5.06 ± 0.25 1.18 ± 0.02 2.79 ± 0.26

CV-imputation (SAS) 1.69 ± 0.11 8.43 ± 0.22 12.77 ± 0.20 1.49 ± 0.10

ECV (SAS) 1.72 ± 0.12 8.47 ± 0.27 12.86 ± 0.23 1.53 ± 0.11
Default SAS (M=[n/logn]) 1.93 ± 0.15 8.77 ± 0.23 13.64 ± 0.60 1.89 ± 0.14

CV-imputation (ICE) 0.31 ± 0.03 2.69 ± 0.24 0.50 ± 0.06 0.82 ± 0.06

ECV (ICE) 0.32 ± 0.05 3.05 ± 0.55 0.53 ± 0.06 0.86 ± 0.06

estimators (NS, USVT, SAS, ICE) and the cross-validation overhead (fold construction, masking, pre-
diction on validation edges, and loss aggregation). It is clear that our method consistently outperforms
ECV in terms of speed across all tested configurations. To isolate estimator fitting overhead from
the cross-validation mechanism itself, Figure S.7 further reports the cross-validation–only runtime
(with the graphon estimation time subtracted out). The cross-validation–only results show that
CV-imputation also remains substantially faster than ECV at this level, confirming that the observed
speedup is indeed driven by our CV-imputation scheme.

Figure 3: The plots display the average computational time (in seconds) for Graphons 1 to 4 with n →
{50, 100, 150, 200}, arranged from left to right. The panel from top to bottom corresponds to the NS method,
the USVT method, the SAS method, and the ICE method, respectively.

To evaluate the consistency of our model selection method as network size increases, we compare
mean square validation error VK(·) and mean squared error (MSE) L(·). Both errors are standardized

6
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using the function L↑min(L)
max(L)↑min(L) for better visualization. In Figure 4, we focus on the performance

of CV-imputation for the NS estimator. Additional plots for the other three estimation methods are
provided in Figure S.4, Figure S.5, and Figure S.6 in the supplementary materials. We examine the
influence of parameter M ranging from 0.5 to 5 with an increment of 0.5. The number of nodes in
the network ranges from 50 to 200 in steps of 50 to allow for an evaluation of performance as the
network size increases towards asymptotic levels.

Figure 4 demonstrates that the model selected by our method rapidly converges to the optimal model
Mo. When n = 50, the model selected by our method aligns with the optimal model selected by MSE
for Graphons 1 and 2, a pattern that holds across all graphons when n = 200. Similar trends were
observed for all the other methods. These simulations demonstrate that CV-imputation maintains
rank consistency in model selection for any given estimation approach.

Figure 4: Plotted here are the scores for CV-imputation (red) and MSE (black) under varying values of the
tuning parameters for the NS method. We vary the neighborhood size parameter M from 0.5 to 5 with increments
of 0.5, while the number of nodes n ranges from 50 to 200 with an increment of 50. Each row corresponds to a
specific graphon function listed in Figure 2.

Similar to traditional cross-validation (CV) techniques, CV-imputation offers a model-agnostic
measure for assessing a model’s generalization to new data. The term "agnostic" in this context
indicates that our method is unbiased towards any specific model or estimation technique. It functions
independently of particular conditions or methods and can be universally applied, irrespective of the
underlying model structure or estimation process.

The upper panel of Figure 5 demonstrates the consistent superiority of our method over ECV across
various graphon configurations, with more pronounced benefits observed for smaller network sizes (n).
It is important to note that Figure 5 evaluates the method selection task, choosing which estimation
method (NS, USVT, SAS, or ICE) with its optimally tuned hyperparameter should be used, rather
than hyperparameter tuning for a single method. Notably, at n = 200, our method achieves a 100%
accuracy rate in selecting the best candidate model – that is, the one with the lowest estimation Mean
Squared Error (MSE) among all estimators obtained by the five given estimation methods. Here,
"accuracy" denotes the percentage of cases where our method successfully identifies the optimal
candidate model. This indicates that our method is particularly efficient for model selection compared
to ECV. Furthermore, the lower panel of Figure 5 displays the computational efficiency of our method
in relation to ECV. The reported time measures only the computational cost of the method selection
step itself, excluding the time spent on hyperparameter tuning for each individual method. Our
approach consistently outperforms ECV in terms of speed across all configurations. These results
collectively highlight the effectiveness and efficiency of our approach for model selection.
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Figure 5: Method selection performance across different graphon designs. The plots display the average
selection accuracy and computational time (in seconds) for Graphons 1 to 4, arranged from left to right. The top
panel illustrates CV-imputation’s model selection accuracy as n increases from 50 to 200 in steps of 50, while
the bottom panel shows the corresponding computational time. Here, accuracy is defined as the percentage of
cases where the model with the smallest mean squared error (MSE) is selected from the top-tuned estimators
obtained using NS, SAS, USVT, and ICE, respectively.

6 CASE STUDY: MODEL SELECTION IN LINK PREDICTION

We applied our method to four networks: the drug-disease co-occurrence network with 280 nodes
and 952 edges; the political blogs network, consisting of 1,222 nodes and 16,714 edges (Adamic and
Glance, 2005); the coauthorship network for scientists in network science, which contains 1,589 nodes
and 2,742 edges (Newman, 2006); and the yeast protein-protein interaction network, comprising
2,617 nodes and 11,855 edges (Von Mering et al., 2002). These example networks vary in size,
including moderate-sized networks suitable for detailed analysis and larger networks that illustrate
real-world computational challenges. Analyzing these networks allows us to evaluate the capability
of CV-imputation to accurately identify existing connections and potentially uncover new insights.

For all networks, we used both CV-imputation and ECV to first tune each estimation method to
obtain the optimal Mmethod

0 , and then compared across the aforementioned candidate estimation
methods—NS, ICE, SAS, and USVT—to identify the best graphon estimate M0. Since NS and
ICE are highly computationally intensive, we did not include them as candidate methods for large
networks with over 1,000 nodes.

6.1 MODERATE SIZE NETWORK: TEXT CO-OCCURRENCE NETWORK FOR COVID-19

In this study, the abstracts of 5,496 publications were retrieved from the Medline database using
"COVID-19" as the query term and a time window of January 1, 2020, to April 30, 2020. After
conducting data cleaning and entity annotation procedures, we identified entities related to drugs
or diseases and constructed a co-occurrence network consisting of 280 nodes and 952 edges 1. The
network is sparse, with a density of only 0.02. The co-occurrence network, depicted in Figure
6(a), highlights two central nodes: COVID-19 and hydroxychloroquine. In what follows, we show
our estimation results using neighborhood smoothing method (Zhang et al., 2017) for variable
neighbourhood size.

Figure 6(b) illustrates the relationship between the average prediction error of K-fold cross-validation
(CV) and the neighborhood size parameter M , ranging from 0.2 to 2. The minimum average
prediction error L(M) occurs at M = 1.2, contrasting with ECV, which achieves its minimum at
M = 0.4.

To evaluate the empirical performance of the CV-imputation method against ECV, we utilize testing
data extracted from articles published between May 1, 2020, and May 15, 2020. A predicted link
is deemed correct if it also exists in the testing network. Figure 6(c) illustrates the proportion of
the correctly predicted links among the top q predicted links with q ranging from 10 to 50, for

1The generated data can be freely downloaded from the following website:
https://drive.google.com/file/d/1yvtE58n4Pz6nQT7AWtdzQEHb39Bxy0MG/view?usp=sharing.
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Figure 6: (a) Disease-drug co-occurrence network with red and green nodes representing diseases and drugs,
respectively. (b) CV-imputation score and ECV score with different models M . (c) Accuracy of CV-imputation
and ECV for different q.

M = 1.2 (selected by CV-imputation) and M = 0.4 (selected by ECV) respectively. Generally, as
more predicted links are included, the accuracy tends to decrease. However, our method consistently
outperforms ECV in terms of prediction accuracy. Furthermore, our method boasts a computational
cost of 56.76 seconds, which is more efficient than the 71.82 seconds required for ECV, as it eliminates
the need for the time-consuming matrix completion step. Remarkably, among all current unlinked
node pairs, the third highest predicted probability corresponds to a link between COVID-19 and
ledipasvir, a drug primarily developed for treating hepatitis C virus infections. Our findings suggest a
potential repurposing of ledipasvir to treat COVID-19. Recent research findings support our discovery,
indicating that ledipasvir, when combined with sofosbuvir, exhibits significant potential to inhibit
SARS-CoV-2 replication (Pirzada et al., 2021). This medical condition was further confirmed by a
recently completed phase-3 clinical trial. This particular application underscores the importance of
our approach in drug repurposing efforts.

6.2 LARGE SIZE NETWORKS: POLITICAL BLOGS NETWORK, COAUTHORSHIP NETWORK, AND
PROTEIN INTERACTION NETWORK.

To evaluate the prediction accuracy, we randomly sampled 10% of the node pairs from each network,
with the connectivity of the sampled node pairs used as testing data to assess link prediction accuracy
and computational efficiency. Three large networks: the political blogs network (PolBlog), the coau-
thorship network for scientists in network science (NetSci), and the yeast protein-protein interaction
network (Yeast) were compared on the area under the curve (AUC) metric, and the average time taken
in minutes metric.

As shown in Table 2, CV-imputation significantly outperforms the ECV method for the PolBlog
and NetSci networks while demonstrating comparable prediction accuracy for the Yeast network.
Moreover, since CV-imputation eliminates the highly computationally intensive matrix completion
step in each fold, it substantially reduces computational costs, making it significantly more efficient.

Table 2: AUC (average ± standard deviation) and computational time in minutes (average ± standard
deviation) of CV-imputation and ECV, over 100 replications.

PolBlog NetSci Yeast
AUC CV-imputation 0.88 ± 0.01 0.72 ± 0.01 0.80 ± 0.02

ECV 0.80 ± 0.02 0.70 ± 0.01 0.80 ± 0.02
Time (seconds) CV-imputation 56.90 ± 0.13 51.01 ± 3.96 240.90 ± 16.22

ECV 258.65 ± 2.11 771.23 ± 10.00 6021.12 ± 18.72

7 CONCLUSIONS AND DISCUSSIONS

Our proposed method, denoted as CV-imputation, offers several key advantages that make it a
valuable tool for analyzing network data. Firstly, CV-imputation is versatile as it does not assume
any specific form for the graphon function, making it broadly applicable across different types of
networks. This flexibility enables researchers to apply CV-imputation to various network structures
without conforming to a specific model.
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Moreover, CV-imputation is supported by rigorous theoretical foundations, showing that the min-
imizer of CV-imputation asymptotically converges to the minimizer of the mean squared error
(MSE) in our model. This theoretical basis enhances confidence in the accuracy and consistency of
CV-imputation results.

In terms of computation efficiency, CV-imputation outperforms existing methods by eliminating
costly singular value decomposition (SVD) steps, making it particularly suitable for analyzing large
networks. Our simulation studies have confirmed the superior performance of CV-imputation, further
highlighting its effectiveness in practical applications.

Beyond graphons, CV-imputation may extend to broader network models that preserve the required
edge-independence structure, such as latent-space networks and generalized sparse graphons. Sec-
tion S.9 provides preliminary empirical support and discusses how our theoretical results may extend
to these settings. Establishing formal guarantees in these settings remains an important direction
for future work. However, our method can not be extended to models with temporal or sequential
dependence since they violate edge independence.

In summary, CV-imputation stands out as an efficient, versatile, and theoretically grounded method
for analyzing networks. Its user-friendly implementation and lack of tuning requirements make it a
practical choice for various network analysis tasks.

USE OF LLMS

During the preparation of this manuscript, the authors used ChatGPT (https://openai.com/) solely for
improving the language, readability, and correcting the grammar.
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