

GRAPHON CROSS-VALIDATION: ASSESSING MODELS ON NETWORK DATA

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Graphon models have emerged as powerful tools for modeling complex network structures by capturing connection probabilities among nodes. A key challenge in their application lies in accurately characterizing the graphon function, particularly with respect to parameters that govern its smoothness, which significantly impact the estimation accuracy. In this article, we propose a novel graphon cross-validation method for selecting tuning parameters and estimation approaches. Our method is both theoretically sound and computationally efficient. We show that our proposed cross-validation score is asymptotically parallel to the estimation error, and the selected model asymptotically converges to the optimal model. Through extensive simulations and real-world applications, we demonstrate that our method consistently delivers superior computational efficiency and accuracy.

1 INTRODUCTION

Graphon models represent cutting-edge statistical and machine-learning techniques for describing intricate network structures. In these models, the presence of an edge between nodes i and j hinges on a probability, independently determined by a measurable symmetric graphon function f across the unit square (Lovász and Szegedy [2006]). The graphon function f , the key to the model, gauges the probability of node connections. Accurately estimating f poses a significant challenge to the models' general application. The efficacy of existing estimation methods is intrinsically linked to the precise calibration of tuning parameters. For instance, the accuracy of the graphon function estimated using the sort-and-smoothing (SAS) method (Chan and Airoldi [2014]) or the neighborhood-smoothing (NS) method (Zhang et al. [2017]) is heavily contingent on the chosen size of the neighborhood. This parameter is analogous to the bandwidth in kernel smoothing and is crucial for the estimation process. As depicted in Figure 1, varying the neighborhood size parameter can result in markedly different estimates of the graphon function, highlighting the sensitivity of the model to this tuning parameter.

Figure 1: From left to right, we present the heatmap of true graphon probability matrix, the estimated graphon probability matrix (under low, medium, and large hyperparameters).

Cross-validation (CV) is widely regarded as the gold standard for parameter tuning and model selection by dividing the dataset into subsets, training the model on a portion of the data, and then testing it on the remaining data. The primary goal of cross-validation is to assess how well a model generalizes to new, unseen data. Yet, when applied to network data, traditional CV encounters a fundamental obstacle: it assumes the independence of observations—a condition that is invariably violated by the interconnected nature of network nodes. Consequently, the standard practice of random sampling on nodes falls short, calling for an alternative approach to data splitting, which is critical to the integrity of the model validation process.

In graphon models, where edges are presumed to follow an independent Bernoulli distribution, the method of edge sampling takes on particular importance compared to node sampling. Common practices involve randomly removing edges and using the remaining graph for training. However, direct edge sampling can change the network's inherent topology and connectivity, thereby altering neighborhood structure, which introduces a significant bias in the estimation of the graphon function. In addition, direct edge sampling may lead to a sampling bias when the network is partitioned into training and testing sets, potentially resulting in different distributions. Such bias has profound implications: it may trigger an inaccurate estimation of the standard deviation, distort confidence intervals, and undermine hypothesis testing reliant on exact margins of error. Ultimately, it may elevate prediction error, thereby impairing the model's predictive efficacy. In response, [Li et al. \(2020a\)](#) proposes imputing entries of matrix \mathbf{A} corresponding to reserved node pairs using a matrix completion algorithm. However, a critical condition of this approach is that \mathbf{P} must be a low-rank matrix, which can be violated in dense networks. Furthermore, while theoretical guarantees exist for specific models like the Stochastic Block Model and the Random Dot Product Graph Model within the graphon model class, they are lacking for the broader category. Additionally, the computational cost of iteratively conducting matrix completion is prohibitively expensive, hindering the general applicability of the proposed algorithm in practical settings.

To face these challenges, this paper introduces a perturbation-based sampling method that innovatively splits data into training and testing sets. This method judiciously applies controlled perturbations to the network edges, thereby ensuring that training and validation data remain representative of the network's comprehensive distribution. Our condition is that the graphon function's smoothness is not compromised by such perturbations, allowing for a more faithful estimation of the true graphon. The method is versatile, accommodating varying degrees of sparsity and complexity within the network. We rigorously validate our approach against standard edge sampling methods, employing a series of experiments that underscore both its theoretical and practical merit.

2 MODEL SETUP

Network analysis was originally developed to map out the relationships or connections between various entities, which can represent either samples or features. A network $G = (\mathcal{V}, \mathcal{E})$ is composed of a vertex set $\mathcal{V} = \{v_i | i = 1, 2, \dots, n\}$ and an edge set $\mathcal{E} = \{(v_i, v_j) | v_i, v_j \text{ are connected}\}$. Let $I_{\{\cdot\}}$ be an indicator function that maps subset $\{\cdot\}$ to one and all other elements to zero. Mathematically a network can be represented by a $n \times n$ binary matrix, say \mathbf{A} , with the (i, j) th entry a_{ij} , where $a_{ij} = I_{\{(v_i, v_j) \in \mathcal{E}\}}$. This matrix \mathbf{A} is generally referred to as the adjacency matrix.

In this article, we assume that the a_{ij} s are independent and follow Bernoulli distributions with mean p_{ij} respectively, i.e.,

$$a_{ij} \stackrel{\text{ind}}{\sim} \text{Ber}(p_{ij}), \quad (1)$$

Model (1) is known as the inhomogeneous random graph model [\(Söderberg, 2002; van der Hofstad, 2013; Ghoshdastidar et al., 2020\)](#). Clearly, p_{ij} is not estimable unless we impose a specific constraint. Consequently, we further assume:

$$p_{ij} = f(\mu_i, \mu_j), \quad (2)$$

where $f : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is referred to as the graphon function and the function is smooth. Here, μ_i and μ_j represent latent parameters associated with vertices v_i and v_j , respectively. Without loss of generality, we further assume that f is a bounded symmetric function, and additionally, μ_i for $1 \leq i \leq n$ are independently and identically distributed from a uniform distribution on interval $[0, 1]$.

Clearly, f is neither unique nor identifiable as f and μ_i s are confounding with each other [\(Diaconis and Janson, 2007\)](#). Thus, instead of estimating f , researchers usually focus on the estimation of the $n \times n$ probability matrix $\mathbf{P} = [p_{ij}]$. The combined model described by (1) and (2) is commonly referred to as the graphon model. Graphon model is a general non-parametric model [\(Chan and Airola, 2014\)](#) which encompasses a variety of model classes, each with its own conditions on f . Common model classes include piecewise constant graphons, piecewise linear graphons, and smooth graphons. Model selection involves choosing the appropriate class that best captures the underlying structure of the graph data.

Given f 's inherent smoothness, researchers commonly embrace the concept of neighborhood smoothing methods, often utilized in spatial analysis, to gauge p_{ij} by capitalizing on adjacent node val-

108 uses. Noteworthy methodologies in this domain encompass the neighborhood smoothing (NS)
 109 method (Zhang et al., 2017), which amalgamates nodes sharing common neighbors, and the sort-
 110 and-smoothing (SAS) method (Chan and Airola, 2014), which pool nodes with akin degrees. Both
 111 techniques center on identifying neighboring nodes within a network, requiring the establishment of
 112 a neighbor. The parameters that define the neighbor usually gauge the accuracy of the estimates.
 113

114 3 GRAPHON CROSS-VALIDATION WITH RANDOM IMPUTATION

116 Let $\hat{\mathbf{P}}(M|\mathbf{A})$ be the estimated probability of observing \mathbf{A} given model $M \in \mathcal{M}$, where \mathcal{M} represents
 117 the candidate pool of models. The performance of the model M can be assessed via the mean squared
 118 error

$$120 \quad L(M) = \frac{1}{n(n-1)} \|\hat{\mathbf{P}}(M|\mathbf{A}) - \mathbf{P}\|_F^2. \quad (3)$$

122 Given \mathcal{M} , the model $M_o \in \mathcal{M}$ that minimizes $L(M)$ represents the ideal choice one would like to
 123 make given the observed \mathbf{A} and is referred to as the optimal model. Given the need for edge sampling
 124 methods that preserve the network's structural integrity while minimizing the introduction of biases,
 125 we propose the K -fold cross-validation with a random imputation method. The general idea of this
 126 approach is to treat the edges in the validation set as missing values that need to be randomly imputed
 127 before model training.

128 We randomly partition the set $\{(v_i, v_j) \in \mathcal{V} \times \mathcal{V} : i < j\}$ into K subsets $\mathcal{S}_1, \dots, \mathcal{S}_K$, where each
 129 subset contains approximately $\frac{n(n-1)}{2K}$ node pairs. This partitioning ensures that the subsets are of
 130 approximately equal size and that each node pair has an equal chance of being included in any of the
 131 subsets. Let $\mathbf{A}^{[k]}$ denote the set of observed entries a_{ij} for node pairs within \mathcal{S}_k . For the k th fold
 132 validation, we generate the $n \times n$ training adjacency matrix as $\mathbf{A}^{[-k]}$, of which the ij th entry is
 133

$$134 \quad \mathbf{A}_{ij}^{[-k]} = \begin{cases} a_{ij} & \text{if } (v_i, v_j) \notin \mathcal{S}_k \\ b_{ij} & \text{otherwise,} \end{cases} \quad (4)$$

137 where b_{ij} 's are independently identically sampled from the Bernoulli distribution with mean θ . This
 138 equation defines how the training adjacency matrix is constructed by incorporating the observed
 139 training entries a_{ij} and randomly imputed entries b_{ij} . θ serves as a tuning parameter and remains
 140 fixed as a constant throughout our procedure. The selection of θ is discussed in Section S.4.

141 We have the following Lemma:

142 **Lemma 1.** *If \mathbf{A} follows a graphon model with $E(\mathbf{A}) = \mathbf{P}$, we can deduce that the value of any entry
 143 in $\mathbf{A}^{[-k]}$ is mutually independent of the node connectivity for node pairs in the validation set \mathcal{S}_k .
 144 More precisely, given \mathbf{P} , we have that $\mathbf{A}_{ij}^{[-k]}$ is distributed according to a Bernoulli distribution with
 145 parameter $w_k\theta + (1 - w_k)p_{ij}$, where w_k represents the proportion of number of node pairs in \mathcal{S}_k
 146 and p_{ij} represents the linking probability for (v_i, v_j) .*

148 Lemma 1 ensures the independence between $\mathbf{A}^{[-k]}$ and $\mathbf{A}^{[k]}$ given \mathbf{P} , which follows directly from
 149 the independence of the edges. It also demonstrates that despite the training set and the original
 150 graph holding different distributions, their distribution can be mapped to each other through an affine
 151 transformation. Let $\mathbf{P}^{[-k]}$ denote the nodes connecting probability matrix of the $n \times n$ adjacency
 152 matrix $\mathbf{A}^{[-k]}$. We have

$$153 \quad \mathbf{P}^{[-k]} = w_k\theta\mathbf{1}\mathbf{1}^T + (1 - w_k)\mathbf{P}, \quad (5)$$

154 where $\mathbf{1}$ is the ones vector. The proof of Lemma 1 is provided in the Appendix.

156 Equation (5) implies that with the k th fold training data $\mathbf{A}^{[-k]}$ and model M , we can obtain a
 157 predictor of \mathbf{P} as follows:

$$158 \quad \hat{\mathbf{P}}_k(M) = \frac{\hat{\mathbf{P}}(M|\mathbf{A}^{[-k]}) - w_k\theta\mathbf{1}\mathbf{1}^T}{1 - w_k}, \quad (6)$$

160 where $\hat{\mathbf{P}}(M|\mathbf{A}^{[-k]})$ is the estimate of $\mathbf{P}^{[-k]}$ computed based on method M or model M with
 161 the training data $\mathbf{A}^{[-k]}$. Let $\hat{p}_{ij}^{[k]}(M)$ denote the predicted probability for validation node pairs

($v_i, v_j \in \mathcal{S}_k$). It is evident that $\hat{p}_{ij}^{[k]}(M)$ corresponds to the (i, j) th entry of $\hat{\mathbf{P}}_k(M)$. Therefore, M can be selected if it minimizes the following prediction error:

$$V_K(M) = \frac{2}{n(n-1)} \sum_{k=1}^K \sum_{(v_i, v_j) \in \mathcal{S}_k} (\hat{p}_{ij}^{[k]}(M) - a_{ij})^2. \quad (7)$$

In practice, $\hat{p}_{ij}^{[k]}(M)$ may exceed one or fall below zero due to computational or measurement errors.

In such cases, we truncate the estimated $\hat{p}_{ij}^{[k]}(M)$ to ensure it lies within the interval $[0, 1]$. Given a set of candidate models \mathcal{M} , we select the optimal model M_V which minimizes $V_K(M)$. The detailed algorithm for the proposed K-fold cross-validation is provided in the Appendix Algorithm I.

Computational cost. To evaluate a set of $|\mathcal{M}|$ candidate hyperparameters on an n -node network using K -fold cross-validation, the total computational complexity of our CV-imputation method is $O(|\mathcal{M}| \cdot (KC_{\text{estim}}(n) + n^2))$, where $C_{\text{estim}}(n)$ denotes the cost of the specific graphon estimator (e.g., NS, ICE). The detailed analysis can be found in Section S.8. Existing graphon estimation method usually have C_{estim} greater than n^2 . So the cost is mainly dominated by the graphon estimation method itself rather than by CV-imputation itself. In contrast, the competing ECV method has complexity $O(|\mathcal{M}| \cdot (KC_{\text{estim}}(n) + KT_{\text{mc}}(n)))$ where $T_{\text{mc}}(n)$ is the matrix completion complexity. The critical difference between our CV-imputation and ECV is the additional overhead per fold: Our method adds a simple $O(n^2)$ cost for imputation and transformation. ECV adds a much larger $O(T_{\text{mc}}(n))$ cost for matrix completion, which is typically $O(n^3)$ for a full SVD. Thus our method is more computationally efficient than ECV. For very large networks, a practical way to scale CV-imputation is to combine it with network subsampling: (1) extract a structurally representative subgraph using network sampling methods (e.g., Metropolis-Hastings random walk [Hu and Lau (2013)], curvature-based sampling [Wu et al. (2023)]), (2) apply CV-imputation on this subgraph to tune hyperparameters, and (3) fit the full network using the selected hyperparameter.

4 THEORETICAL JUSTIFICATION

A set of potential graphon estimates is denoted by $\hat{\mathbf{P}}(M|\mathbf{A})$, where $M \in \mathcal{M}$. The CV-imputation score is crafted to fine-tune M to select the best estimate from this set. In this section, we offer asymptotic justifications for the CV-imputation score.

We aim to demonstrate that $V_K(M)$ approximates $L(M)$ uniformly up to a constant by postulating assumptions on the maximum K -fold optimism bias:

$$Q_K(M) = \sup_{1 \leq k \leq K} \frac{1}{n(n-1)} \left\| \hat{\mathbf{P}}(M|\mathbf{A}) - \hat{\mathbf{P}}_k(M) \right\|_F^2,$$

where $\|\cdot\|_F$ denotes the Frobenius norm. The optimism bias quantifies the maximum prediction bias between the full-sample estimate and the estimate obtained after data splitting and imputation. Then, under the following conditions:

Condition 1. *There exists a positive constant $\alpha > 0$ such that for any $M \in \mathcal{M}$ and any $\varepsilon > 0$, there exist a constant δ_0 and an integer K_0 such that*

$$P \left(\left| \frac{Q_K(M)}{K^{-\alpha}} \right| \geq \delta_0 \right) \leq \varepsilon \quad \forall K \geq K_0,$$

we can show that

Theorem 1. *As $n \rightarrow \infty$ and $K \rightarrow \infty$,*

$$V_K(M) - L(M) - \Lambda = O_p \left(\frac{1}{n} \vee \frac{1}{K^{(1+\alpha)/2}} \vee \frac{1}{K^\alpha} \right) \quad (8)$$

uniformly, where $\Lambda = \frac{2}{n(n-1)} \sum_{i < j} p_{ij}(1 - p_{ij})$, and \vee denotes the operator that returns the largest of two values.

Theorem I suggests that the validation score $V_K(M)$ is a consistent estimator of $L(M) + \Lambda$ with an error rate of $\frac{1}{n} \vee \frac{1}{K^{(1+\alpha)/2}} \vee \frac{1}{K^\alpha}$. Note that Λ does not depend on M , so the validation score function $V_K(\cdot)$ and the loss function $L(\cdot)$ are asymptotically parallel in probability. Thus, the probability that the minimizer of $V_K(M)$ approximately minimizes $L(M)$ is high within a neighborhood of M_0 . Theorem I essentially establishes the consistency of the CV-imputation score, ensuring that the score for each candidate model is close to its true loss up to a constant. The proof of Theorem I is provided in the appendix.

It is worth noting that Condition I specifies that the maximum K -fold optimism bias is bounded by a polynomial rate of $K^{-\alpha}$. The polynomial order α is determined by the complexity of the underlying graphon model and the efficiency of the estimation methods. For instance, in the case of an Erdős-Rényi model (Erdos and Renyi [1959]) where $f(\mu_i, \mu_j) \equiv p$, we have $\alpha = 1$ when using the simple averaging estimator and letting $K \asymp n$. Unlike many assumptions that are not verifiable, $Q_K(M)$ can be verified computationally, as both $\hat{\mathbf{P}}(M|\mathbf{A})$ and $\hat{\mathbf{P}}_k(M)$ are accessible from the data. In Figure S.3 in the Appendix, the validation of Condition I is provided. **Further discussion of Condition I can be found in Section S.10.**

231

5 EMPIRICAL STUDIES

To compare the empirical performance of our method to the edge cross-validation method proposed in Li et al. (2020a), we investigate their performance using data generated from four graphon models introduced in (Chan and Airolidi [2014]). Figure 2 illustrates the probability matrices \mathbf{P} of 200 nodes generated for Graphons 1 to 4. Graphons 1 and 2 generate dense networks, while Graphons 3 and 4 yield sparse networks. Graphons 1, 3, and 4 produce low-rank probability matrices, while Graphon 2 produces full-rank probability matrices. All results are averaged over 100 replications. The experiments are conducted on a machine equipped with a 40-core CPU and 192 GB of RAM. The implementation issues of our methods are detailed in Section S.4 in the Appendix.

Figure 2: The heatmaps of \mathbf{P} generated by Graphons 1 to 4 are displayed from left to right.

To evaluate the empirical performance of our method, we use it to select the tuning parameter for four state-of-the-art graphon estimation methods: (1) neighborhood smoothing (NS) method (Zhang et al. [2017]), (2) sort-and-smooth (SAS) method (Chan and Airolidi [2014]), (3) universal singular value thresholding (USVT) method (Chatterjee [2015]), and (4) iterative connecting probability estimation method (ICE) (Qin et al. [2021]). All four methods make different conditions about the underlying model. In each of these estimation methods, the parameter M , although with different meanings, governs the trade-off between goodness-of-fit and model complexity. For instance, in the NS method, M represents the neighborhood size, while in the SAS method, it denotes the number of blocks. We apply our method with the selected tuning parameter to the synthetic datasets generated from the four aforementioned graphon functions. This enables us to compare the estimated graphons with the true underlying graphon functions and assess the performance of our method in recovering the underlying structure of the graphons using the mean squared error (MSE) measurement denoted by $L(M)$.

In Table I, we present the estimation accuracy measured by $L(M)$ for $n = 200$. The table illustrates that for all five estimation methods, our method and ECV select M resulting in lower MSE values compared to the default selection. This underscores the significance of tuning M for all five estimation methods. Moreover, CV-imputation method consistently selects models with smaller MSE values compared to those chosen by ECV for all five methods and all synthetic datasets.

Figure 3 provides a comparison of the **end-to-end** computational cost between our method (CV-imputation) and ECV. **Here, the reported CPU time includes both the cost of fitting the graphon**

270
271
272
273Table 1: The mean \pm standard deviation of MSE across 100 replicates are calculated using M selected by CV-imputation, ECV, and default selection. To facilitate comparison, all values are multiplied by 100. Note that ICE does not have a default model setup, so the default ICE results are not shown in this table.274
275
276
277
278
279
280
281
282
283
284
285

Graphon ID	Graphon 1	Graphon 2	Graphon 3	Graphon 4
CV-imputation (NS)	0.51 \pm 0.07	2.13 \pm 0.15	0.79 \pm 0.07	1.05 \pm 0.06
ECV (NS)	9.15 \pm 19.25	3.82 \pm 0.21	3.07 \pm 0.95	1.06 \pm 0.10
Default NS ($M=1$)	39.05 \pm 3.33	2.75 \pm 0.16	0.74 \pm 0.04	1.06 \pm 0.10
CV-imputation (USVT)	0.28 \pm 0.03	2.99 \pm 0.19	0.61 \pm 0.10	0.75 \pm 0.05
ECV (USVT)	0.60 \pm 0.09	5.06 \pm 0.27	1.18 \pm 0.02	1.08 \pm 0.74
Default USVT ($M=0.01$)	0.60 \pm 0.09	5.06 \pm 0.25	1.18 \pm 0.02	2.79 \pm 0.26
CV-imputation (SAS)	1.69 \pm 0.11	8.43 \pm 0.22	12.77 \pm 0.20	1.49 \pm 0.10
ECV (SAS)	1.72 \pm 0.12	8.47 \pm 0.27	12.86 \pm 0.23	1.53 \pm 0.11
Default SAS ($M=[n/\log n]$)	1.93 \pm 0.15	8.77 \pm 0.23	13.64 \pm 0.60	1.89 \pm 0.14
CV-imputation (ICE)	0.31 \pm 0.03	2.69 \pm 0.24	0.50 \pm 0.06	0.82 \pm 0.06
ECV (ICE)	0.32 \pm 0.05	3.05 \pm 0.55	0.53 \pm 0.06	0.86 \pm 0.06

286
287
288
289
290
291
292

estimators (NS, USVT, SAS, ICE) and the cross-validation overhead (fold construction, masking, prediction on validation edges, and loss aggregation). It is clear that our method consistently outperforms ECV in terms of speed across all tested configurations. To isolate estimator fitting overhead from the cross-validation mechanism itself, Figure S.7 further reports the cross-validation-only runtime (with the graphon estimation time subtracted out). The cross-validation-only results show that CV-imputation also remains substantially faster than ECV at this level, confirming that the observed speedup is indeed driven by our CV-imputation scheme.

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318319
320
321
322
323Figure 3: The plots display the average computational time (in seconds) for Graphons 1 to 4 with $n \in \{50, 100, 150, 200\}$, arranged from left to right. The panel from top to bottom corresponds to the NS method, the USVT method, the SAS method, and the ICE method, respectively.

To evaluate the consistency of our model selection method as network size increases, we compare mean square validation error $V_K(\cdot)$ and mean squared error (MSE) $L(\cdot)$. Both errors are standardized

324 using the function $\frac{L - \min(L)}{\max(L) - \min(L)}$ for better visualization. In Figure 4, we focus on the performance
 325 of CV-imputation for the NS estimator. Additional plots for the other three estimation methods are
 326 provided in Figure S.4, Figure S.5, and Figure S.6 in the supplementary materials. We examine the
 327 influence of parameter M ranging from 0.5 to 5 with an increment of 0.5. The number of nodes in
 328 the network ranges from 50 to 200 in steps of 50 to allow for an evaluation of performance as the
 329 network size increases towards asymptotic levels.

330 Figure 4 demonstrates that the model selected by our method rapidly converges to the optimal model
 331 M_o . When $n = 50$, the model selected by our method aligns with the optimal model selected by MSE
 332 for Graphons 1 and 2, a pattern that holds across all graphons when $n = 200$. Similar trends were
 333 observed for all the other methods. These simulations demonstrate that CV-imputation maintains
 334 rank consistency in model selection for any given estimation approach.

356 Figure 4: Plotted here are the scores for CV-imputation (red) and MSE (black) under varying values of the
 357 tuning parameters for the NS method. We vary the neighborhood size parameter M from 0.5 to 5 with increments
 358 of 0.5, while the number of nodes n ranges from 50 to 200 with an increment of 50. Each row corresponds to a
 359 specific graphon function listed in Figure 2.

360 Similar to traditional cross-validation (CV) techniques, CV-imputation offers a model-agnostic
 361 measure for assessing a model's generalization to new data. The term "agnostic" in this context
 362 indicates that our method is unbiased towards any specific model or estimation technique. It functions
 363 independently of particular conditions or methods and can be universally applied, irrespective of the
 364 underlying model structure or estimation process.

365 The upper panel of Figure 5 demonstrates the consistent superiority of our method over ECV across
 366 various graphon configurations, with more pronounced benefits observed for smaller network sizes (n).
 367 It is important to note that Figure 5 evaluates the method selection task, choosing which estimation
 368 method (NS, USVT, SAS, or ICE) with its optimally tuned hyperparameter should be used, rather
 369 than hyperparameter tuning for a single method. Notably, at $n = 200$, our method achieves a 100%
 370 accuracy rate in selecting the best candidate model – that is, the one with the lowest estimation Mean
 371 Squared Error (MSE) among all estimators obtained by the five given estimation methods. Here,
 372 "accuracy" denotes the percentage of cases where our method successfully identifies the optimal
 373 candidate model. This indicates that our method is particularly efficient for model selection compared
 374 to ECV. Furthermore, the lower panel of Figure 5 displays the computational efficiency of our method
 375 in relation to ECV. The reported time measures only the computational cost of the method selection
 376 step itself, excluding the time spent on hyperparameter tuning for each individual method. Our
 377 approach consistently outperforms ECV in terms of speed across all configurations. These results
 378 collectively highlight the effectiveness and efficiency of our approach for model selection.

Figure 5: **Method selection performance across different graphon designs.** The plots display the average selection accuracy and computational time (in seconds) for Graphons 1 to 4, arranged from left to right. The top panel illustrates CV-imputation’s model selection accuracy as n increases from 50 to 200 in steps of 50, while the bottom panel shows the corresponding computational time. Here, accuracy is defined as the percentage of cases where the model with the smallest mean squared error (MSE) is selected from the top-tuned estimators obtained using NS, SAS, USVT, and ICE, respectively.

6 CASE STUDY: MODEL SELECTION IN LINK PREDICTION

We applied our method to four networks: the drug-disease co-occurrence network with 280 nodes and 952 edges; the political blogs network, consisting of 1,222 nodes and 16,714 edges (Adamic and Glance [2005]); the coauthorship network for scientists in network science, which contains 1,589 nodes and 2,742 edges (Newman [2006]); and the yeast protein-protein interaction network, comprising 2,617 nodes and 11,855 edges (Von Mering et al. [2002]). These example networks vary in size, including moderate-sized networks suitable for detailed analysis and larger networks that illustrate real-world computational challenges. Analyzing these networks allows us to evaluate the capability of CV-imputation to accurately identify existing connections and potentially uncover new insights.

For all networks, we used both CV-imputation and ECV to first tune each estimation method to obtain the optimal M_0^{method} , and then compared across the aforementioned candidate estimation methods—NS, ICE, SAS, and USVT—to identify the best graphon estimate M_0 . Since NS and ICE are highly computationally intensive, we did not include them as candidate methods for large networks with over 1,000 nodes.

6.1 MODERATE SIZE NETWORK: TEXT CO-OCCURRENCE NETWORK FOR COVID-19

In this study, the abstracts of 5,496 publications were retrieved from the Medline database using "COVID-19" as the query term and a time window of January 1, 2020, to April 30, 2020. After conducting data cleaning and entity annotation procedures, we identified entities related to drugs or diseases and constructed a co-occurrence network consisting of 280 nodes and 952 edges¹. The network is sparse, with a density of only 0.02. The co-occurrence network, depicted in Figure 6(a), highlights two central nodes: COVID-19 and hydroxychloroquine. In what follows, we show our estimation results using neighborhood smoothing method (Zhang et al. [2017]) for variable neighbourhood size.

Figure 6(b) illustrates the relationship between the average prediction error of K-fold cross-validation (CV) and the neighborhood size parameter M , ranging from 0.2 to 2. The minimum average prediction error $L(M)$ occurs at $M = 1.2$, contrasting with ECV, which achieves its minimum at $M = 0.4$.

To evaluate the empirical performance of the CV-imputation method against ECV, we utilize testing data extracted from articles published between May 1, 2020, and May 15, 2020. A predicted link is deemed correct if it also exists in the testing network. Figure 6(c) illustrates the proportion of the correctly predicted links among the top q predicted links with q ranging from 10 to 50, for

¹The generated data can be freely downloaded from the following website: <https://drive.google.com/file/d/1yvtE58n4Pz6nQT7AWtdzQEHb39Bxy0MG/view?usp=sharing>

Figure 6: (a) Disease-drug co-occurrence network with red and green nodes representing diseases and drugs, respectively. (b) CV-imputation score and ECV score with different models M . (c) Accuracy of CV-imputation and ECV for different q .

$M = 1.2$ (selected by CV-imputation) and $M = 0.4$ (selected by ECV) respectively. Generally, as more predicted links are included, the accuracy tends to decrease. However, our method consistently outperforms ECV in terms of prediction accuracy. Furthermore, our method boasts a computational cost of 56.76 seconds, which is more efficient than the 71.82 seconds required for ECV, as it eliminates the need for the time-consuming matrix completion step. Remarkably, among all current unlinked node pairs, the third highest predicted probability corresponds to a link between COVID-19 and ledipasvir, a drug primarily developed for treating hepatitis C virus infections. Our findings suggest a potential repurposing of ledipasvir to treat COVID-19. Recent research findings support our discovery, indicating that ledipasvir, when combined with sofosbuvir, exhibits significant potential to inhibit SARS-CoV-2 replication (Pirzada et al., 2021). This medical condition was further confirmed by a recently completed phase-3 clinical trial. This particular application underscores the importance of our approach in drug repurposing efforts.

6.2 LARGE SIZE NETWORKS: POLITICAL BLOGS NETWORK, COAUTHORSHIP NETWORK, AND PROTEIN INTERACTION NETWORK.

To evaluate the prediction accuracy, we randomly sampled 10% of the node pairs from each network, with the connectivity of the sampled node pairs used as testing data to assess link prediction accuracy and computational efficiency. Three large networks: the political blogs network (PolBlog), the coauthorship network for scientists in network science (NetSci), and the yeast protein-protein interaction network (Yeast) were compared on the area under the curve (AUC) metric, and the average time taken in minutes metric.

As shown in Table 2, CV-imputation significantly outperforms the ECV method for the PolBlog and NetSci networks while demonstrating comparable prediction accuracy for the Yeast network. Moreover, since CV-imputation eliminates the highly computationally intensive matrix completion step in each fold, it substantially reduces computational costs, making it significantly more efficient.

Table 2: AUC (average \pm standard deviation) and computational time in minutes (average \pm standard deviation) of CV-imputation and ECV, over 100 replications.

		PolBlog	NetSci	Yeast
AUC	CV-imputation	0.88 ± 0.01	0.72 ± 0.01	0.80 ± 0.02
	ECV	0.80 ± 0.02	0.70 ± 0.01	0.80 ± 0.02
Time (seconds)	CV-imputation	56.90 ± 0.13	51.01 ± 3.96	240.90 ± 16.22
	ECV	258.65 ± 2.11	771.23 ± 10.00	6021.12 ± 18.72

7 CONCLUSIONS AND DISCUSSIONS

Our proposed method, denoted as CV-imputation, offers several key advantages that make it a valuable tool for analyzing network data. Firstly, CV-imputation is versatile as it does not assume any specific form for the graphon function, making it broadly applicable across different types of networks. This flexibility enables researchers to apply CV-imputation to various network structures without conforming to a specific model.

486 Moreover, CV-imputation is supported by rigorous theoretical foundations, showing that the min-
 487 imizer of CV-imputation asymptotically converges to the minimizer of the mean squared error
 488 (MSE) in our model. This theoretical basis enhances confidence in the accuracy and consistency of
 489 CV-imputation results.

490 In terms of computation efficiency, CV-imputation outperforms existing methods by eliminating
 491 costly singular value decomposition (SVD) steps, making it particularly suitable for analyzing large
 492 networks. Our simulation studies have confirmed the superior performance of CV-imputation, further
 493 highlighting its effectiveness in practical applications.

494 **Beyond graphons, CV-imputation may extend to broader network models that preserve the required**
 495 **edge-independence structure, such as latent-space networks and generalized sparse graphons.** Sec-
 496 **tion [S.9] provides preliminary empirical support and discusses how our theoretical results may extend**
 497 **to these settings. Establishing formal guarantees in these settings remains an important direction**
 498 **for future work. However, our method can not be extended to models with temporal or sequential**
 499 **dependence since they violate edge independence.**

500 In summary, CV-imputation stands out as an efficient, versatile, and theoretically grounded method
 501 for analyzing networks. Its user-friendly implementation and lack of tuning requirements make it a
 502 practical choice for various network analysis tasks.

504 USE OF LLMs

505 During the preparation of this manuscript, the authors used ChatGPT (<https://openai.com/>) solely for
 506 improving the language, readability, and correcting the grammar.

510 REFERENCES

511 Adamic, L. A. and Glance, N. (2005), The political blogosphere and the 2004 us election: divided
 512 they blog, in ‘Proceedings of the 3rd international workshop on Link discovery’, pp. 36–43.

514 Athreya, A., Fishkind, D. E., Tang, M., Priebe, C. E., Park, Y., Vogelstein, J. T., Levin, K., Lyzinski,
 515 V., Qin, Y. and Sussman, D. L. (2018), ‘Statistical inference on random dot product graphs: a
 516 survey’, *Journal of Machine Learning Research* **18**(226), 1–92.

517 Chan, S. and Airoltdi, E. (2014), ‘A consistent histogram estimator for exchangeable graph models’,
 518 *International Conference on Machine Learning* pp. 208–216.

520 Chatterjee, S. (2015), ‘Matrix estimation by universal singular value thresholding’, *The Annals of*
 521 *Statistics* **43**(1), 177–214.

522 Diaconis, P. and Janson, S. (2007), ‘Graph limits and exchangeable random graphs’, *arXiv preprint*
 523 *arXiv:0712.2749* .

525 Erdos, P. and Renyi, A. (1959), ‘On random graphs. publicationes mathematicae (debrecen), vol. 6’.

526 Ghoshdastidar, D., Gutzeit, M., Carpenter, A. and Luxburg, U. v. (2020), ‘Two-sample hypothesis
 527 testing for inhomogeneous random graphs’, *Annals of Statistics* **48**(4).

529 Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002), ‘Latent space approaches to social network
 530 analysis’, *Journal of the american Statistical association* **97**(460), 1090–1098.

531 Hu, P. and Lau, W. C. (2013), ‘A survey and taxonomy of graph sampling’, *arXiv preprint*
 532 *arXiv:1308.5865* .

534 Klopp, O., Tsybakov, A. B. and Verzelen, N. (2017), ‘Oracle inequalities for network models and
 535 sparse graphon estimation’, *Annals of Statistics* **45**(1), 316–354.

536 Li, J., Wu, S., Cui, C., Xu, G. and Zhu, J. (2023), ‘Statistical inference on latent space models for
 537 network data’, *arXiv preprint arXiv:2312.06605* .

539 Li, T., Levina, E. and Zhu, J. (2020a), ‘Network cross-validation by edge sampling’, *Biometrika*
 107(2), 257–276.

540 Li, T., Levina, E. and Zhu, J. (2020b), ‘Network cross-validation by edge sampling’, *Biometrika*
 541 **107**(2), 257–276.
 542

543 Lovász, L. and Szegedy, B. (2006), ‘Limits of dense graph sequences’, *Journal of Combinatorial
 544 Theory, Series B* **96**(6), 933–957.
 545

546 Newman, M. E. (2006), ‘Finding community structure in networks using the eigenvectors of matrices’,
 547 *Physical review E* **74**(3), 036104.
 548

549 Pirzada, R. H., Haseeb, M., Batool, M., Kim, M. and Choi, S. (2021), ‘Remdesivir and ledipasvir
 550 among the fda-approved antiviral drugs have potential to inhibit sars-cov-2 replication’, *Cells*
 551 **10**(5), 1052.
 552

553 Qin, Y., Yu, L. and Li, Y. (2021), ‘Iterative connecting probability estimation for networks’, *Advances
 554 in Neural Information Processing Systems* **34**.
 555

556 Söderberg, B. (2002), ‘General formalism for inhomogeneous random graphs’, *Physical review E*
 557 **66**(6), 066121.
 558

559 van der Hofstad, R. (2013), ‘Critical behavior in inhomogeneous random graphs’, *Random Structures
 560 & Algorithms* **42**(4), 480–508.
 561

562 Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S. and Bork, P. (2002), ‘Com-
 563 parative assessment of large-scale data sets of protein–protein interactions’, *Nature* **417**(6887), 399–
 564 403.
 565

566 Wu, S., Cheng, H., Cai, J., Ma, P. and Zhong, W. (2023), Subsampling in large graphs using ricci
 567 curvature, in ‘International Conference on Learning Representations’.
 568

569 Zhang, Y., Levina, E. and Zhu, J. (2017), ‘Estimating network edge probabilities by neighbourhood
 570 smoothing’, *Biometrika* **104**(4), 771–783.
 571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593