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Abstract

Despite their remarkable successes, state-of-the-art large language models (LLMs),
including vision-and-language models (VLMs) and unimodal language models
(ULMs), fail to understand precise semantics. For example, semantically equivalent
sentences expressed using different lexical compositions elicit diverging represen-
tations. The degree of this divergence and its impact on encoded semantics is not
very well understood. In this paper, we introduce the SUGARCREPE++ dataset
to analyze the sensitivity of VLMs and ULMs to lexical and semantic alterations.
Each sample in SUGARCREPE++ dataset consists of an image and a correspond-
ing triplet of captions: a pair of semantically equivalent but lexically different
positive captions and one hard negative caption. This poses a 3-way semantic
(in)equivalence problem to the language models. We comprehensively evaluate
VLMs and ULMs that differ in architecture, pre-training objectives and datasets
to benchmark the performance of SUGARCREPE++ dataset. Experimental results
highlight the difficulties of VLMs in distinguishing between lexical and semantic
variations, particularly to object attributes and spatial relations. Although VLMs
with larger pre-training datasets, model sizes, and multiple pre-training objectives
achieve better performance on SUGARCREPE++, there is a significant opportu-
nity for improvement. We demonstrate that models excelling on compositionality
datasets may not perform equally well on SUGARCREPE++. This indicates that
compositionality alone might not be sufficient to fully understand semantic and
lexical alterations. Given the importance of the property that the SUGARCREPE++
dataset targets, it serves as a new challenge to the vision-and-language community.
Data and code is available at https://github.com/Sri-Harsha/scpp.

1 Introduction

Large language models (LLMs), including vision-and-language models and unimodal language
models, have shown tremendous results in solving a majority of vision and natural language processing
(NLP) tasks. Surprisingly, despite such success, LLMs can exhibit different behaviors for semantically
equivalent sentences composed with different syntactic or lexical structures. Previous works have
reported such lack of compositional reasoning in both vision-and-language models (e.g., [83, 97, 100,
69, 87]) and unimodal language models (e.g., [40, 11, 104, 57]). For instance, the performance of
the state-of-the-art (SOTA) LLMs including GPT-4, Gemini and Llama are sensitive to the prompt
formatting [77]. The model editing techniques [11, 57] suffer from misfired edits due to the dominance
of lexical overlap [90, 71]. Similarly, Zou et al. [104] demonstrated that safety aligned models can
be “jailbroken” by simply appending an adversarial suffix causing them to generate objectionable
content bypassing all safeguards.
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These observations suggest that language models’ perception of semantic similarity crucially depends
on the lexical representation of the sentence and calls for a stricter evaluation of semantic text
similarity that factors in lexical and syntactic structures. Semantic text similarity is one of the oldest
metrics to evaluate language understanding [92, 65, 84, 28, 27, 33, 79] and despite recent evidence
of lexical sensitivity, large benchmarks (e.g., [80, 61]) evaluate semantic similarity without explicitly
considering the lexical influence. In this work, we aim to address this gap by proposing a dataset to
perform joint evaluation of semantic understanding — through the semantic equivalence detection
task (elaborated below) — and lexical sensitivity in language models.

Recognizing semantic similarity is often viewed as being fundamental to language understanding.
In fact, strong performance on semantic text similarity is often predictive of a language model’s
performance in various downstream applications [12] including question-answering, retrieval and
summarization. Based on overlap in their meaning, a pair of sentences can be roughly labeled as
semantically equivalent, semantically similar or semantically dissimilar. More specifically, semanti-
cally equivalent sentences convey the same meaning 2, perhaps differing in terms of syntactic 3 and
lexical 4 structures. On the other hand, sentences that are not semantically equivalent but describe the
same topic are said to be semantically similar [3]. Important examples include MRPC [20], QQP [34]
and STS [2–6]: while MRPC and QQP contain binary labels indicating semantic equivalence, STS
uses a score between 0 to 5 to indicate the degree of semantic equivalence.

The timely release of these datasets have fueled the research and development of improved language
models. While these datasets remain relevant even today and are included as part of the challeng-
ing GLUE benchmark [85], we aim to improve upon the following aspects to evaluate language
understanding through semantic equivalence task under controlled lexical constraints:

(a) Varying Definitions of Semantic Equivalence: While MRPC [20] aims to evaluate if language
models can detect semantic equivalence, it ultimately uses a loose definition of equivalence in that
the sentence pairs that convey different information about the same topic are also considered to be
semantically equivalent. Different from semantically equivalent sentences, a pair of questions are
defined to be semantically equivalent if they have the same answer [72] and hence, datasets on
semantically equivalent question pairs (e.g., QQP) require additional knowledge beyond language
understanding. In contrast, we focus our evaluation on fundamental language understanding
ability and evaluate a language model in terms of its ability to recognize semantic equivalence
between a pair of sentences. In this work, two sentences are said to be semantically equivalent if
the sentences convey the same meaning and can be inferred from each other (i.e., bidirectional
entailment).

(b) Lack of Lexical Constraints: While achieving perfect scores on the existing semantic similarity
datasets is indeed challenging, trivial baselines using lexical overlap also provide reasonable
estimates of semantic similarity (for example, see Figure 2 and Table 6 in Abdalla et al. [1]).
Therefore, the extent to which language models rely upon lexical structure when identifying
semantic equivalence and semantic similarity is not clearly known. We are thus motivated to
explore a more challenging setting that requires a language model to encode semantics beyond
superficial lexical structure.

Closer to our goal, Hsieh et al. [29] introduced the challenging SUGARCREPE dataset to evaluate the
ability of vision-language models (VLMs) to identify one correct caption in a pair of lexically similar
sentences. As an example, given an image, the model may be asked to select the correct caption
between “A tractor and two boats far from the water” (incorrect) and “A tractor and two boats
beside the water”(correct). Hsieh et al. [29] reported that several VLMs face challenges in selecting
the correct caption and attributed the low performance to the text encoder’s inability to identify
semantic differences in a pair of lexically similar sentences. While this dataset provides a good
starting point, it is insufficient for comprehensively evaluating the lexical sensitivity and semantic
understanding of a model; the model’s understanding of semantic equivalence in the presence of
lexical differences remains unclear from such an evaluation. For instance, “Couple of boats and
a tractor located next to the water” is semantically identical to the correct caption despite lexical
dissimilarities. A precise evaluation of lexical influence upon semantic understanding should include

2Semantic [59] relates to meaning in language.
3Syntax [60] refers to the way in which linguistic elements (such as words) are put together to form

constituents (such as phrases or clauses).
4Lexical [58] relates to the words or the vocabulary of a language as distinguished from its grammar and

construction.
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Figure 1: Examples from SUGARCREPE++ (SC++) dataset. P1 and P2 are semantically equivalent but lexically
different while N is semantically different than both P1 and P2 despite its lexical similarity with P1. The
adjacent line charts highlight the performance gaps in VLMs discovered upon re-evaluation using SC++, and
shows that strong lexical and semantic understanding may not be required to achieve better performance on
SUGARCREPE (SC). Refer to Appendix C.4 for details on negative captions (e.g., swap-object, replace-relation).

pairs of semantically-equivalent, semantically-opposite, lexically-similar, and lexically-dissimilar
sentences. In this work, we target these four cases and define the following research questions:

1. How well do LLMs understand the semantic equivalence between a pair of sentences given
their syntactic and lexical differences?

2. How well do LLMs understand the semantic differences between a pair of sentences given
their syntactic and lexical similarities?

To that end, we extend SUGARCREPE to introduce SUGARCREPE++ dataset which additionally
contains semantically equivalent sentences that are lexically dissimilar. The answer to these two
questions enable us to evaluate the semantic understanding while disentangling the effect of lexical
matches between sentences.

Our contributions to this work are as follows:

• SUGARCREPE++ dataset. We introduce SUGARCREPE++, a diverse, multi-modal and
human-validated dataset, especially designed to evaluate the sensitivity of encoded semantics
in language models to lexical composition. The introduction of a three-way semantic
(in)equivalence task enables evaluation with increased resolution previously not possible
with two captions[29]. Figure 1, illustrates instances from five categories incorporated
in SUGARCREPE++ and highlights the apparent gaps in performance of VLMs when
re-evaluated using SUGARCREPE++.

• Unified evaluation. We designed SUGARCREPE++ dataset such that the overlap of semantic
information between the two positive captions is always higher than between the positive
and negative captions, even without considering the image. This allows us to evaluate on the
Text-to-Text task twice for the same triplet, using each positive caption as the reference once.
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These caption triplets combined with an image enables a previously unexplored dual-mode
evaluation of VLMs in both Image-to-Text and Text-to-Text settings.

In this work, we evaluate a comprehensive list of VLMs and standalone/unimodal language models
(ULMs) using SUGARCREPE++. A few of the notable findings are summarized below:

• VLMs struggle to identify the differences between semantic and lexical alterations, par-
ticularly if the lexical alterations are based on swapping attributes or objects, or replacing
relations.

• There exists a large gap between the VLMs and human-level performance signifying huge
scope for improvement in VLMs.

• Text encoders of VLMs form the major bottleneck in achieving better performance on
SUGARCREPE++.

• Even state-of-the-art ULMs fail to consistently dissociate semantics from lexical forms i.e.,
they tend to select captions with higher lexical overlap than the ones with higher semantic
overlap.

2 SUGARCREPE++

In this section, we describe the data generation and validation pipeline used to create SUGARCREPE++
dataset. The SUGARCREPE dataset [29] — derived from MS-COCO [49], a dataset of image-caption
pairs — consists of a correct caption and an incorrect caption for each image while ensuring that the
two captions are lexically similar. To create SUGARCREPE++ dataset, we generate another correct
caption for each image such that it uses alternative lexical representation while being semantically
identical to the original correct caption in SUGARCREPE. If we refer to the correct captions as
positives, the incorrect caption can be termed as a hard negative due to its high lexical overlap with
one of the positive captions. In contrast to SUGARCREPE, SUGARCREPE++ enables evaluation
across both multimodal and unimodal settings while also providing a comprehensive evaluation of
semantic understanding with lexical constraints. Additional related work is discussed in Appendix B.

2.1 Dataset Generation and Validation

Algorithm 1 Generation Pipeline

Require: Original caption P1

1: P2 ← LLM(M{P1})
2: Accept← False
3: while not Accept do
4: if Duplicated(P1, P2) then
5: P2 ← LLM(M{P1;P2})
6: else if Superfluous(P2, P1) then
7: P2 ← LLM(M{P1})
8: else
9: Accept← True

10: return P2

Algorithm 2 Automatic Validation Pipeline

Require: Original caption P1,
Generated caption P2

1: V alid← LLM(V {P2, P1})
2: while not Valid do
3: P2 ← GenerationP ipeline(M{P1})
4: valid← LLM(V {P2, P1})

Return P2

Prior works [8, 24, 41, 64] have exten-
sively used image-caption pairs from
MS-COCO; specifically Crepe [56] and its
improved derivative SUGARCREPE [29]
that leverages the recent advancements
in conditional text generation using large
language models (LLMs) to generate hard
negative captions, thereby overcoming
the issues with procedurally generated
captions. The SUGARCREPE dataset
consists of (only) one positive and one
hard negative caption for each image.
Relative to the negative caption, a single
positive caption can either have low
or high lexical overlap. The original
SUGARCREPE only captures the high
overlap case. To evaluate the sensitivity
of encoded semantics to lexical alteration,
we require an additional positive caption
with a different lexical composition. We
build SUGARCREPE++ using instruction
fine-tuned Mistral 7B [36] model to further
introduce an additional positive caption
as illustrated in Algorithms 1 and 2. The
generation process of the additional caption can be divided into two stages: (1) generation using
meta-prompts and (2) automated and human validation of generated captions.
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Role-playing Prompt: You are an instruction-following DataGenAI. Your expertise lies in accurately
interpreting and generating datasets based on given instructions. Your responses are expected to be
precise and limited to the required output.

Figure 2: Role playing prompt for “Data Generator AI".

Generation using meta-prompts: Algorithm 1 presents our generation pipeline. We followed an
iterative prompting methodology to refine a meta-prompt (M) that generates optimal second positive
captions (P2) given the original positive caption (P1). The meta-prompt (M) is a composition of
constituent prompts (Mi) formed by concatenating (;) different sub-prompts.

M = M1;M2;M3; . . . ;Mi

The meta-prompt is applied to an input (x) to obtain the final prompt M{x} that conditions the LLM
to generate the second positive caption (P2) as LLM(M{P1}) −→ P2. We find integrating different
techniques into a larger meta-prompt (M ) improves the generation quality, exploiting the benefits
from each of them. Following [39], we prefix M with a ‘role-play’ prompt (M1) that conditions
the LLM to the high-level task of data generation and simulates the role of a ‘Data Generating AI.’
We utilize ‘Rules Prompting’ [99] to enhance LLMs’ faithfulness in instruction following using
explicit and itemized rules: in particular, we further condition M using a ‘rules’ prompt (M2) that
describes three rules to ensure the consistency of the generated caption (P2). Expanding on the
prompting methodology from [29], we also append few-shot ‘demonstrations’ (M3) that include
additional reasoning and the generated caption. The ‘role-play’ (M1) prompt is described in Figure 2.
The ‘rules’ (M2) and ‘demonstrations’ (M3) sub-prompts are elaborated in Figure 3 of Appendix
C. During our initial testing, we noticed the following systematically recurring errors: (i) LLM
generated caption is identical to the input caption; (ii) parsing failure due to superfluous outputs.
Consequently, we incorporate the following safeguards in the generation pipeline as shown in
Algorithm 1: 1) If the generated caption is found to be identical to the input caption (using automatic
tools), we use a meta-prompt that includes the complete context with basic instructions to regenerate
P2; 2) We detect superfluous outputs based on word overlap and then discard any generation that
does not meet the minimum threshold.

Automated and human validation of generated captions: Since the above safeguards do not
ensure that the generated caption is always semantically equivalent to the input caption, we require
additional steps to ensure semantic equivalence. We notice subtle differences in generated caption
that break the semantic equivalence and this also highlights the limitations of semantic understanding
in LLMs. Despite such limitations, prior works [63, 13] have demonstrated that LLM agents — e.g.,
LLMs instantiated with different prompts — can interact with each other to solve complex tasks.
We build on this to reduce human effort and optimize labelling costs using automatic validation of
generated captions similar to [102, 99]. We employ a validator LLM agent, that is responsible for
validating the semantic consistency of the generated caption with the original caption and signalling
the Generator agent to retry as needed. Here, we refer to the LLM agents as two instances of the
same LLM conditioned on different meta-prompts.

We define a validation meta-prompt (V) that uses P1 and P2 from the previous step to form a validation
input to the validator LLM. Similar to the meta-prompt (M), the validation prompt (V) consists of
a sequence of sub-prompts, including the ‘Validation instruction’ (V1) prompt and the ‘Validation
demonstration’ (V2). The validator LLM is conditioned using V to generate a boolean value indicating
the caption’s validity,

LLM(V {P1, P2}) → {True, False}, where V = V1;V2. We use the boolean output value to
trigger a regeneration step that starts the generation pipeline again as described in Algorithm 2. The
prompt for employing validator LLM is detailed in Figure 4 in Appendix C.3. In our automatic
validation, we assume that the image is captioned correctly and do not consider the image when
ensuring semantic correctness.

To ensure the quality of the SUGARCREPE++ dataset, we conducted human validation with two
experts to correct the errors in the positive sentences (P2) generated by LLMs (Appendix C.5 provides
a list of common errors generated by LLMs) and any disagreements between the expert annotators
were mutually resolved through inter-annotator discussion. These human annotators also assessed the
validity of caption triplets (P1, P2, N ) and paired images (I) as a data point. The final statistics of the
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Table 1: SUGARCREPE++ consists of 4757 examples with the following distribution of sample sizes

Swap Object Swap Attribute Replace Object Replace Attribute Replace relation Total
245 666 1652 788 1406 4757

SUGARCREPE++ dataset after the human validation are described in Table 1. Additional statistics,
including the categories from MS-COCO and the VERA or grammar scores of SUGARCREPE++ are
detailed in Appendix I. We formulated a measure of syntactic and lexical similarity to analyze pairs
of sentences in our dataset. See Appendix D for more details.

3 Benchmark on SUGARCREPE++ Dataset

Experimental setup We benchmark VLM performance on SUGARCREPE++ dataset under two
different evaluation settings. (1) Multi-modal image-to-text (ITT) evaluation: both image and text
are provided as inputs to evaluate VLMs in a multi-modal setting. (2) Uni-modal text-only (TOT)
evaluation: only text is provided as input to evaluate the text encoders of VLMs in a unimodal setting.

Each sample in the SUGARCREPE++ dataset consists of an image I and corresponding two positive
captions (P1 and P2) and a negative caption (N). If p(X|I) denotes the likelihood of caption X for
image I , we compute the ITT evaluation metric given P1, P2 and N as:

ITThit =

{
1 (p(P1|I) > p(N |I)) ∧ (p(P2|I) > p(N |I))
0 otherwise

For a VLM model such as CLIP which relies upon embeddings, the log-likelihood log p is defined
to be proportional to the cosine similarity between the respective embeddings. Similarly, the TOT
evaluation is defined as:

TOThit =

{
1 (p(P1|P2) > p(N |P2)) ∧ (p(P2|P1) > p(N |P1)).

0 otherwise

As above, we use cosine-similarity for embedding-based models. We report the performance in terms
of Accuracy (%), computed as the ratio of the number of hits to the total number of samples. we
also perform a human evaluation to calculate the human performance on the benchmark. Human
evaluation is performed by 4 graduate-level students where each person was provided with a randomly
selected 150 samples (30 from each subset) and was asked to select the negative caption for each
sample. In TOT setting, only the three captions were provided. In the ITT setting, image along with
the captions were provided to the human evaluators. The average human performance is reported in
terms of accuracy (%).

3.1 Evaluation of VLMs on SUGARCREPE++

We consider a variety of VLMs for evaluation using SUGARCREPE++: 1) Models trained with
a contrastive learning objective such as CLIP [66], RoBERTa-ViT-B/32 [76], ALIGN [35] and
ALIP [95]. 2) Models trained by combining multiple objective functions, such as FLAVA [78],
ALBEF [43], BLIP [44] and BLIP-2 [45]. 3) Models with a unified encoder for text and images,
such as ViLT [38], and multi-lingual distilled models like AltCLIP [16]; 4) Models that align text
with corresponding visual concepts in the image, such as SegCLIP [54], and XVLM [98] - with two
variants, XVLM-4M and XVLM-16M. We consider a wide array of VLMs that differ in terms of
model architecture, total number of parameters, embedding dimension and pre-training objectives to
measure the effect of various training choices on the model’s semantic understanding capabilities.
For further model details, refer to Appendix E.1.

Performance of VLMs on SUGARCREPE++ is strongly influenced by the type of hard negative.
The performance of VLMs on different subsets of SUGARCREPE++ are provided in Table 2. Swap
type hard negatives, which are generated by swapping either Objects or attributes, pose a significant
challenge to VLMs, as most achieve very low performance. Failing in examples with simple
reordering of words, as in swap subset, highlights a key limitation of VLMs in understanding the
structure of the input text. For replace-type hard negatives (generated by replacing objects, attributes,
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or relations), VLMs are comparatively better at discerning the negative from the positive caption when
the object is replaced. VLMs can also somewhat discern hard negatives from positives when attributes
are replaced. However, they struggle when the relation between objects is replaced. Additionally,
large performance gaps (ranging from 10% to 50%) between the best models and human performance
across most subsets signifies opportunity for improvement in VLMs’ semantic understanding abilities.

Pre-training data size and objective functions affect VLM performance. Table 2 shows that the
models trained with multiple objective functions, particularly FLAVA and BLIP, perform better on
SUGARCREPE++ compared to models trained using contrastive loss function alone. This indicates
that the contrastive learning objective alone may not be sufficient for VLMs to effectively learn
the semantic relations between text and images. Furthermore, models pre-trained with smaller
datasets, such as ALIP, ALBEF and XVLM-4M, have lower performance compared to other models.
Interestingly, these observations are consistent across all subsets of SUGARCREPE++.

Text encoders bottleneck VLM performance on SUGARCREPE++. All VLMs perform signif-
icantly better on the ITT task compared to the TOT task on SUGARCREPE++ (see Table 2). This
shows that there is a higher ambiguity in identifying the semantic and lexical alterations using only
the text embeddings (TOT) compared to the case of comparing the text embeddings with the image
embeddings (ITT). Moreover, the text encoders of VLMs perform inferior to the text encoders of
ULMs (see Table 7). This is in agreement with the findings in [37, 15]. Additionally, FLAVA, the
best performaning model on most of the subsets also achieves a good performance in TOT setting,
further signifying the importance of a strong text encoder in achieving better performance.

Fine-tuning VLMs for image-text retrieval improves performance with opportunity for further
improvements. Table 3 provides the performance of VLMs (ViLT and XVLM-16M) fine-tuned
for the task of image-to-text retrieval (ITR). While we observe performance improvements on
SUGARCREPE++, VLMs still face significant challenges in discerning negative captions from
positive ones, particularly for the Swap object and Replace relation subsets. Moreover, there remains
a substantial gap between VLM performance and human-level performance. This indicates that
VLMs capable of matching images to corresponding captions do not necessarily learn the intricate
details regarding semantic information and lexical variations in the text.

Table 2: Comparison of VLMs performance on SUGARCREPE++. Performance reported in terms of Accuracy
(%). Overall best values are in bold, and group-level best values are underlined.

Model Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

Human 100.00 96.67 96.67 93.3 100.00 95.00 100.00 98.33 100.00 96.67

CLIP [66] 45.18 19.74 45.21 33.03 86.80 83.72 65.61 59.14 56.26 38.62
RoBERTa-ViT-B/32 [76] 44.30 29.39 56.32 52.66 89.04 94.55 74.49 80.46 59.39 57.75
ALIGN [35] 41.23 25.43 51.90 41.40 90.19 84.62 69.92 69.04 51.71 45.23
ALIP [95] 36.84 20.18 46.12 28.77 71.49 50.06 54.95 34.52 47.80 23.47

FLAVA [78] 54.39 45.18 59.21 57.84 89.59 94.43 73.35 72.46 60.10 57.97
ALBEF [43] 28.94 10.09 36.83 18.87 76.27 55.57 56.35 30.33 47.80 30.65
BLIP [44] 47.37 31.14 60.58 52.97 92.62 89.04 72.08 75.13 56.76 57.47
BLIP2 [45] 35.09 21.49 37.60 29.98 89.41 72.58 62.82 64.47 53.27 43.47

ViLT [38] 35.23 – 52.20 – 91.10 – 55.33 – 37.48 –
AltCLIP [16] 42.54 25.43 45.81 35.77 92.61 93.46 71.06 74.62 57.25 56.69
SegCLIP [54] 45.61 25.44 46.12 40.64 85.90 95.16 62.69 67.89 54.84 41.96
XVLM-4M [98] 31.14 10.96 36.52 19.48 79.42 67.07 59.39 40.74 46.23 29.23
XVLM-16M [98] 34.21 18.86 40.33 31.05 90.81 92.07 68.02 70.43 57.47 47.87

Table 3: Evaluation of VLMs fine-tuned for image-text retrieval task. Performance reported in terms of
Accuracy (%). ITR dataset is the dataset used to fine-tune the model for image-to-text retrieval.

Model ITR Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

Dataset ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

ViLT [38] – 35.23 – 52.20 – 91.10 – 55.33 – 37.48 –
XVLM-16M [98] – 34.21 18.86 40.33 31.05 90.81 92.07 68.02 70.43 57.47 47.87

ViLT-ITR-COCO [38] MS-COCO 50.88 – 73.36 – 89.89 – 71.95 – 61.24 –
XVLM-16M-COCO [98] MS-COCO 39.91 21.06 49.93 51.60 91.65 96.79 74.24 83.63 63.09 62.87
XVLM-16M-Flickr [98] Flickr 45.61 21.49 50.53 44.44 91.71 96.01 74.24 81.59 64.01 59.89
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Table 4: Performance of the methods for improving compositionality of VLMs on SUGARCREPE++. Perfor-
mance reported in terms of Accuracy (%). Here, performance of CLIP is the baseline.

Model Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

Human 100.00 96.67 96.67 93.3 100.00 97.00 100.00 98.33 100.00 96.67

CLIP [66] 45.18 19.74 45.21 33.03 86.80 83.72 65.61 59.14 56.26 38.62

NegCLIP [97] 55.25 34.65 57.99 56.47 89.53 94.55 69.41 76.27 52.27 51.57
CLIP-SVLC [21] 42.98 18.86 48.40 34.56 80.93 91.56 56.98 66.88 47.30 51.28
BLIP-SGVL [26] 13.16 – 38.81 – 53.75 – 34.39 – 30.65 –
CyCLIP [23] 37.72 13.60 34.40 18.72 70.28 78.29 49.87 49.12 40.41 29.87

Compositionality enhancing methods improve performance on SUGARCREPE++ by strength-
ening the VLM text encoder. We evaluate recent methods proposed to improve compositionality
of VLMs, including NegCLIP [97], SVLC [21], CyCLIP [23], and BLIP-SGVL [26]. As shown in
Table 4, methods that improve compositionality of CLIP such as NegCLIP and CLIP-SVLC also
achieve better performance on SUGARCREPE++ compared to CLIP, underscoring the importance of
compositionality as a critical component for understanding semantic and lexical differences. Inter-
estingly, the text encoders of models with improved compositionality (NegCLIP and CLIP-SVLC)
perform significantly better than the text encoder of CLIP in the TOT setting. Improved text encoders,
in turn, lead to improvements in ITT. On the other hand, methods such as BLIP-SGVL and CyCLIP,
which do not use explicit techniques to strengthen the text encoders, show degradation in performance
on SUGARCREPE++. This further highlights the importance of the text encoder in achieving better
performance.

Table 5: Evaluation of several variants of CLIP on SUGARCREPE++. Performance reported in terms of
Accuracy (%). Best performances in bold. RoB refers to RoBERTa.

#Model Pre-train Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

Model Params Data Size ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

CLIP [66] 151M 400M 45.18 19.74 45.21 33.03 86.80 83.72 65.61 59.14 56.26 38.62
RN50×4 [66] 178M 400M 46.93 21.49 46.42 30.59 87.77 80.87 67.51 53.93 53.91 38.55
RN50×64 [66] 623M 400M 44.74 16.67 45.36 31.51 90.79 73.31 64.47 48.61 54.27 38.12
RoB-ViT-B/32 [76] 212M 2000M 44.30 29.39 56.32 52.66 89.04 94.55 74.49 80.46 59.39 57.75
ViT-H/14 [76] 986M 2000M 43.42 27.63 54.19 50.69 93.71 90.43 71.06 73.98 56.62 51.92
ViT-bigG/14 [76] 2540M 2000M 45.61 29.82 57.38 52.05 94.13 90.44 76.41 72.84 59.45 53.49
XLM-RoB-ViT-B/32 [76] 366M 5000M 42.55 30.26 55.25 55.56 89.41 95.34 72.97 80.96 55.48 57.82

Larger pre-training data and model size improve CLIP’s performance. We evaluated variants of
CLIP that differ in model architecture and size, as well as pre-training data size, on SUGARCREPE++
(see Table 5). For CLIP variants pre-trained on a dataset of 400 million image-text pairs, smaller
models (CLIP and RN50×4) performed better than larger models (RN50×64). Interestingly, larger
models (ViT-bigG/14) performed better than smaller models when the pre-training data was increased
to 2 billion samples. Moreover, the text encoders also performed better when the pre-training data
was increased to 2 billion image-text pairs.

Fine-tuning on SUGARCREPE++ does not necessarily improve semantic understanding of
VLMs. Table 13 (see Appendix E.3) presents the fine-tuning results.hl Experimental results show
that while there are performance improvements on some subsets, fine-tuning can lead to performance
degradation on others, which may be attributed to catastrophic forgetting [55]. To address this issue,
we used LoRA [30]. Results demonstrate that LoRA improved performance across all subsets.

Comparison of performance between SUGARCREPE and SUGARCREPE++ reveals significant
differences. Table 6 compares the performance of VLMs between SUGARCREPE and SUGAR-
CREPE++. Since a direct comparison of the models’ absolute performance on SUGARCREPE and
SUGARCREPE++ is not possible, we assess their relative rankings using CLIP as a baseline. Notably,
we observe significant differences in performance trends across the models. For instance, ALBEF
and XVLM which achieve better performance on SUGARCREPE show substantial degradation in
performance on SUGARCREPE++. On the other side, there are models such as BLIP and NegCLIP
that show improvements on both SUGARCREPE and SUGARCREPE++. Interestingly for the replace
relation subset, NegCLIP achieves better performance on SUGARCREPE but shows degradation
in performance on SUGARCREPE++. These results emphasize the importance of our dataset in
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evaluating the models in terms of their semantic and lexical understanding, which is not evident by
evaluating on compositionality datasets such as SUGARCREPE.

Table 6: Comparing the performance of VLMs on SUGARCREPE (SC) and SUGARCREPE++ (SC++) for the
ITT task. ↑ and ↓ show increases and decreases in performance with the corresponding CLIP performance as the
baseline. Expanded version of the Table is provided in Appendix E.5.

Model Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

SC SC++ SC SC++ SC SC++ SC SC++ SC SC++

CLIP [66] 59.21 45.18 64.99 45.21 90.86 86.8 80.33 65.61 70.48 56.26

ALBEF [43] 63.16 (↑) 28.94(↓) 69.25(↑) 36.83(↓) 93.04(↑) 76.27(↓) 84.65(↑) 56.35(↓) 77.60(↑) 47.80(↓)
XVLM [98] 64.91(↑) 31.14(↓) 73.97(↑) 36.52(↓) 95.22(↑) 79.42(↓) 87.69(↑) 59.39(↓) 77.45(↑) 46.23(↓)
BLIP [44] 66.22(↑) 47.37(↑) 76.25(↑) 60.58(↑) 96.55(↑) 92.62(↑) 81.98(↑) 72.08(↑) 68.35(↓) 56.76(↑)
NegCLIP [97] 75.44(↑) 55.25(↑) 76.87(↑) 57.99(↑) 93.88(↑) 89.53(↑) 87.18(↑) 69.41(↑) 74.47(↑) 52.27(↓)

3.2 Evaluation of ULMs on SUGARCREPE++

ULMs show promise over VLMs in text-only task of SUGARCREPE++. We evaluate a compre-
hensive list of unimodal language models (ULMs) to determine the semantic and lexical sensitivity
of text-only models. We sample ULMs covering various model sizes, architectures, and training
objectives. Recent state-of-the-art small-sized models include MiniLM [70], GTE [47] and BGE
[93]. From the results presented in Table 7, we observe trends similar to the VLM’s performance in
TOT task but more importantly, we observe ULMs achieve significant improvements on average as
compared to VLMs. Nevertheless, we notice that some of these performances are far below human
performance — for instance, we observe a performance gap of ≈40% in swap object and swap
attribute subsets. Comprehensive results are available in Appendix F.

Table 7: Comparison of SOTA unimodal language models (ULMs) on SUGARCREPE++. We report the TOT
accuracy (%), and group the results row-wise based on the model size as reflected by the parameter count. We
include the number of parameters in text encoders relative to BERT-base, i.e., 109.5 Million parameters. Overall,
best values are in bold, and group-level best values are underlined. We report the average across different subsets
as an additional column. Refer to Table 16 for additional results.

Model #Params
(BERT Scale)

Swap
Object

Swap
Attribute

Replace
Object

Replace
Attribute

Replace
Relation Average

Human 96.67 93.3 97.00 98.33 96.67 96.40

BGE-small-en-v1.5 [93] 0.3 15.51 24.02 94.19 75.00 75.53 56.85
All-MiniLM-L12-v2 [91] 0.3 18.78 25.38 95.22 73.86 70.41 56.73

Angle-BERT-base [46] 1 25.71 33.63 92.07 78.43 75.32 61.03
BGE-base-en-v1.5 [93] 1 17.14 25.23 93.83 78.55 76.10 58.17

UAE-Large-v1 [46] 3 40.41 41.44 96.85 76.14 75.82 66.13
All-RoBERTa-large-v1 [70] 3.1 42.04 45.20 94.61 74.75 74.96 66.31
Sentence-T5-xl [62] 11.3 47.35 49.25 90.98 75.38 75.32 67.66

Angle-Llama-7b-nli-v2 [46] 62.3 37.96 45.80 95.22 84.39 81.44 68.96
E5-Mistral-7b-instruct [89, 88] 64.9 33.47 37.84 96.67 87.06 80.51 67.11

3.3 Evaluation on GPT-4o and Other Generative VLMs on SUGARCREPE++

We evaluated generative VLMs such as BLIP, BakLLaVA [53] and GPT-4o using SUGARCREPE++
dataset in a prompt-based format. We prompted the generative VLMs with the following semantically
identical prompts, where N, P1, P2 refer to the negative (N) and the two positive captions (P1 and P2)
corresponding to the image, respectively.

Prompt - 1 Do any of the following captions not match the image? (1) <N>; (2)<P1>"; (3) <P2>;
provide output as (1), (2), (3) or none

Prompt - 2 Do any of these captions fail to correspond with the image? (1) <N>; (2) <P1>; (3) <P2>;
provide output as (1), (2), (3) or none

Prompt - 3 Do any of these captions fail to correspond with the image? (1) <N>; (2) <P1>; (3) <P2>;
provide output as (1), (2) or (3)
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First two prompts (Prompt-1 and Prompt-2) are paraphrases of each other and are 4-class problems
(Output to be (1), (2), (3) or none). Whereas Prompt-3 is a 3-class problem i.e., outputs to be (1), (2)
or (3).

Table 8 provides GPT-4o’s performance on SUGARCREPE++ across the three different prompts.
Significant differences between Prompt-1 and Prompt-2, which are paraphrases, highlight the model’s
sensitivity to prompt structure. GPT-4o struggled to identify negative captions when given four
options ((1), (2), (3), or none) but improved when limited to three ((1), (2), or (3)). The model
performed best when negative captions were created by replacing an object or attribute in the positive
caption but struggled when objects or relations were swapped. While GPT-4o’s performance on
"replace object" and "replace attribute" tasks neared human levels, it fell short significantly in
"swap object," "swap attribute," and "replace relation" cases. Prompt-based evaluation of BLIP and
BakLLaVA are provided in Appendix G.1.

Table 8: Prompt-based evaluation of GPT-4o on SUGARCREPE++. We provide both image and a prompt to the
GPT-4o and receive the output from GPT-4o. Based on the response, we compute the performance i.e., it is a
hit if the model outputs (1) else a miss. Performance is reported in terms of Accuracy (%), where accuracy is
computed as the ratio of the #hits/(#hits + #misses).

Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

Human 100.00 96.67 100.00 100.00 100.00

Prompt-1 46.93 73.36 91.64 87.94 69.06
Prompt-2 48.25 75.04 90.82 84.90 71.19
Prompt-3 67.61 85.82 96.25 93.27 84.13

Inference techniques can influence the performance of generative VLMs on SUGARCREPE++.
We evaluated generative VLMs on SUGARCREPE++ (see Appendix G.2) using recent approaches
such as VGPTScore [50] and VQAScore [51, 42]. We find that despite using significantly larger mod-
els (3B-11B parameters), VGPTScore performs comparably with several discriminative VLMs
previously considered in our paper (e.g., Table 2). Interestingly, using the same generative
VLMs, VQAScore achieves significant performance improvements on SUGARCREPE++ as com-
pared to VGPTScore. However, this is still below human performance signifying opportunity
for further improvement. Based on several experiments with generative VLMs, we can conclude
that the performance of generative VLMs ultimately depends on the inference-technique (e.g.,
VGPTScore/VQAScore/Prompting-styles) and with the right inference-technique, generative-VLMs
may outperform discriminative models.

4 Conclusion

We introduce SUGARCREPE++, a dataset for evaluating the ability of language models, includ-
ing both vision-language models (VLMs) and unimodal language models (ULMs), to understand
their sensitivity to semantic and lexical alterations in text. Our dataset supports evaluations in both
image-to-text (ITT) and text-to-text (TOT) settings. We evaluated a comprehensive list of VLMs and
ULMs to highlight a fundamental limitation with these language models in understanding semantic
and lexical alterations. The key findings from our evaluation are: (1) There is a significant perfor-
mance gap between VLMs and human-level performance signifying huge scope for improvement in
VLMs. (2) All VLMs exhibit difficulty in comprehending semantic and lexical alterations, especially
when these alterations involve swapping attributes or objects, or replacing relations. (3) Similarly,
state-of-the-art (SOTA) ULMs lack a robust understanding of lexical composition and consistently
fail to separate semantics from lexical forms. (4) While increasing pre-training data, model size,
and improving compositionality enhance performance on SUGARCREPE++ dataset, these models
still fall considerably short of human performance. These insights underscore the critical need
for advancements to close the performance gap between models and human understanding. Our
SUGARCREPE++ dataset serves as a valuable tool for driving future research in this area.

10



Acknowledgments

We acknowledge the support provided by the Faculty of Computer Science, Dalhousie University.
Resources used in preparing this research were provided, in part, by the support of the Natural
Sciences and Engineering Research Council of Canada (NSERC), the Province of Ontario, the
Government of Canada through Canadian Institute for Advanced Research (CIFAR), ACENET (ace-
net.ca), the Digital Research Alliance of Canada (alliancecan.ca), Canada Foundation of Innovation
and companies sponsoring the Vector Institute www.vectorinstitute.ai/#partners. We are
grateful to the anonymous reviewers for their insightful feedback and active engagement throughout
the rebuttal process, which was instrumental in strengthening our paper.

References
[1] M. Abdalla, K. Vishnubhotla, and S. Mohammad. What makes sentences semantically

related? a textual relatedness dataset and empirical study. In A. Vlachos and I. Augen-
stein, editors, Proceedings of the 17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 782–796, Dubrovnik, Croatia, May 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.55. URL
https://aclanthology.org/2023.eacl-main.55.

[2] E. Agirre, M. Diab, D. Cer, and A. Gonzalez-Agirre. Semeval-2012 task 6: a pilot on semantic
textual similarity. In Proceedings of the First Joint Conference on Lexical and Computational
Semantics - Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume
2: Proceedings of the Sixth International Workshop on Semantic Evaluation, SemEval ’12,
page 385–393, USA, 2012. Association for Computational Linguistics.

[3] E. Agirre, D. Cer, M. Diab, A. Gonzalez-Agirre, and W. Guo. *SEM 2013 shared task:
Semantic textual similarity. In M. Diab, T. Baldwin, and M. Baroni, editors, Second
Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceed-
ings of the Main Conference and the Shared Task: Semantic Textual Similarity, pages 32–
43, Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics. URL
https://aclanthology.org/S13-1004.

[4] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-Agirre, W. Guo, R. Mi-
halcea, G. Rigau, and J. Wiebe. SemEval-2014 task 10: Multilingual semantic textual
similarity. In P. Nakov and T. Zesch, editors, Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014), pages 81–91, Dublin, Ireland, Aug. 2014.
Association for Computational Linguistics. doi: 10.3115/v1/S14-2010. URL https:
//aclanthology.org/S14-2010.

[5] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-Agirre, W. Guo, I. Lopez-Gazpio,
M. Maritxalar, R. Mihalcea, G. Rigau, L. Uria, and J. Wiebe. SemEval-2015 task 2: Semantic
textual similarity, English, Spanish and pilot on interpretability. In P. Nakov, T. Zesch, D. Cer,
and D. Jurgens, editors, Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 252–263, Denver, Colorado, June 2015. Association for Computational
Linguistics. doi: 10.18653/v1/S15-2045. URL https://aclanthology.org/S15-2045.

[6] E. Agirre, C. Banea, D. Cer, M. Diab, A. Gonzalez-Agirre, R. Mihalcea, G. Rigau, and
J. Wiebe. SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual
evaluation. In S. Bethard, M. Carpuat, D. Cer, D. Jurgens, P. Nakov, and T. Zesch, editors,
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016),
pages 497–511, San Diego, California, June 2016. Association for Computational Linguistics.
doi: 10.18653/v1/S16-1081. URL https://aclanthology.org/S16-1081.

[7] M. Alper, M. Fiman, and H. Averbuch-Elor. Is bert blind? exploring the effect of vision-and-
language pretraining on visual language understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6778–6788, 2023.

[8] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual
Question Answering. In International Conference on Computer Vision (ICCV), 2015.

11

www.vectorinstitute.ai/#partners
https://aclanthology.org/2023.eacl-main.55
https://aclanthology.org/S13-1004
https://aclanthology.org/S14-2010
https://aclanthology.org/S14-2010
https://aclanthology.org/S15-2045
https://aclanthology.org/S16-1081


[9] R. Boghrati, J. Hoover, K. M. Johnson, J. Garten, and M. Dehghani. Conversation level syntax
similarity metric. Behavior research methods, 50:1055–1073, 2018.

[10] H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and stuff classes in context. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1209–1218, 2018.
doi: 10.1109/CVPR.2018.00132.

[11] N. D. Cao, W. Aziz, and I. Titov. Editing factual knowledge in language models. In
M. Moens, X. Huang, L. Specia, and S. W. Yih, editors, Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021, pages 6491–6506. Association
for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.522. URL
https://doi.org/10.18653/v1/2021.emnlp-main.522.

[12] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia. SemEval-2017 task 1: Semantic
textual similarity multilingual and crosslingual focused evaluation. In S. Bethard, M. Carpuat,
M. Apidianaki, S. M. Mohammad, D. Cer, and D. Jurgens, editors, Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada, Aug. 2017. Association for Computational Linguistics.

[13] C. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, and Z. Liu. Chateval: Towards
better llm-based evaluators through multi-agent debate. CoRR, abs/2308.07201, 2023. doi:
10.48550/ARXIV.2308.07201. URL https://doi.org/10.48550/arXiv.2308.07201.

[14] M. Chen, C. Chen, X. Yu, and Z. Yu. FastKASSIM: A fast tree kernel-based syntactic
similarity metric. In A. Vlachos and I. Augenstein, editors, Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics, pages 211–231,
Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.eacl-main.17. URL https://aclanthology.org/2023.eacl-main.17.

[15] Z. Chen, G. Chen, S. Diao, X. Wan, and B. Wang. On the difference of bert-style and clip-style
text encoders. In Findings of the Association for Computational Linguistics: ACL 2023, pages
13710–13721, 2023.

[16] Z. Chen, G. Liu, B. Zhang, Q. Yang, and L. Wu. Altclip: Altering the language encoder in
CLIP for extended language capabilities. In Findings of the Association for Computational
Linguistics: ACL 2023, pages 8666–8682. Association for Computational Linguistics, 2023.

[17] K. J. Chow, S. Tan, and M.-Y. Kan. Travlr: Now you see it, now you don’t! a bimodal
dataset for evaluating visio-linguistic reasoning. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics, pages 3314–3339, 2023.

[18] J. Ding, N. Xue, G. Xia, and D. Dai. Decoupling zero-shot semantic segmentation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, pages
11573–11582. IEEE, 2022.

[19] A. Diwan, L. Berry, E. Choi, D. Harwath, and K. Mahowald. Why is winoground hard? inves-
tigating failures in visuolinguistic compositionality. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, pages 2236–2250.
Association for Computational Linguistics, 2022.

[20] B. Dolan and C. Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third International Workshop on Paraphrasing (IWP2005), 2005.

[21] S. Doveh, A. Arbelle, S. Harary, E. Schwartz, R. Herzig, R. Giryes, R. Feris, R. Panda,
S. Ullman, and L. Karlinsky. Teaching structured vision & language concepts to vision &
language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2657–2668, 2023.

[22] S. Y. Gadre, G. Ilharco, A. Fang, J. Hayase, G. Smyrnis, T. Nguyen, R. Marten, M. Wortsman,
D. Ghosh, J. Zhang, et al. Datacomp: In search of the next generation of multimodal datasets.
arXiv preprint arXiv:2304.14108, 2023.

12

https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.48550/arXiv.2308.07201
https://aclanthology.org/2023.eacl-main.17


[23] S. Goel, H. Bansal, S. Bhatia, R. Rossi, V. Vinay, and A. Grover. Cyclip: Cyclic contrastive
language-image pretraining. Advances in Neural Information Processing Systems, 35:6704–
6719, 2022.

[24] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter:
Elevating the role of image understanding in Visual Question Answering. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[25] M. Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

[26] R. Herzig, A. Mendelson, L. Karlinsky, A. Arbelle, R. Feris, T. Darrell, and A. Globerson.
Incorporating structured representations into pretrained vision & language models using scene
graphs. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, pages 14077–14098. Association for Computational Linguistics,
2023.

[27] A. Hliaoutakis, G. Varelas, E. G. Petrakis, and E. Milios. Medsearch: A retrieval system for
medical information based on semantic similarity. In Research and Advanced Technology for
Digital Libraries: 10th European Conference, ECDL 2006, Alicante, Spain, September 17-22,
2006. Proceedings 10, pages 512–515. Springer Berlin Heidelberg, 2006.

[28] A. Hliaoutakis, G. Varelas, E. Voutsakis, E. G. Petrakis, and E. Milios. Information retrieval by
semantic similarity. International journal on semantic Web and information systems (IJSWIS),
2(3):55–73, 2006.

[29] C.-Y. Hsieh, J. Zhang, Z. Ma, A. Kembhavi, and R. Krishna. Sugarcrepe: Fixing hackable
benchmarks for vision-language compositionality. In Thirty-Seventh Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2023.

[30] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

[31] H. IIMURA. Distractor plausibility in a multiple-choice listening test. JLTA Journal, 21:
65–81, 2018.

[32] G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori, A. Dave, V. Shankar,
H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt. Openclip, July 2021. URL
https://doi.org/10.5281/zenodo.5143773.

[33] A. Islam, E. Milios, and V. Kešelj. Text similarity using google tri-grams. In Advances in
Artificial Intelligence: 25th Canadian Conference on Artificial Intelligence, Canadian AI 2012,
Toronto, ON, Canada, May 28-30, 2012. Proceedings 25, pages 312–317. Springer Berlin
Heidelberg, 2012.

[34] S. Iyer, N. Dandekar, and K. Csernai. First quora dataset release: Question pairs, 2017. URL
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs.
Accessed: 2024-01-01.

[35] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig.
Scaling up visual and vision-language representation learning with noisy text supervision. In
International conference on machine learning, pages 4904–4916. PMLR, 2021.

[36] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bres-
sand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao,
T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023.

[37] A. Kamath, J. Hessel, and K.-W. Chang. Text encoders bottleneck compositionality in
contrastive vision-language models. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 4933–4944, 2023.

13

https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.5281/zenodo.5143773
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


[38] W. Kim, B. Son, and I. Kim. Vilt: Vision-and-language transformer without convolution or
region supervision. In International Conference on Machine Learning, pages 5583–5594.
PMLR, 2021.

[39] A. Kong, S. Zhao, H. Chen, Q. Li, Y. Qin, R. Sun, and X. Zhou. Better zero-shot reasoning
with role-play prompting. CoRR, abs/2308.07702, 2023.

[40] K. Krishna, Y. Song, M. Karpinska, J. F. Wieting, and M. Iyyer. Paraphrasing evades detectors
of AI-generated text, but retrieval is an effective defense. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=WbFhFvjjKj.

[41] T. Le, V. Lal, and P. Howard. Coco-counterfactuals: Automatically constructed counterfactual
examples for image-text pairs. Advances in Neural Information Processing Systems, 36, 2024.

[42] B. Li, Z. Lin, D. Pathak, J. Li, Y. Fei, K. Wu, X. Xia, P. Zhang, G. Neubig, and D. Ramanan.
Evaluating and improving compositional text-to-visual generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5290–5301, 2024.

[43] J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H. Hoi. Align before fuse:
Vision and language representation learning with momentum distillation. Advances in neural
information processing systems, 34:9694–9705, 2021.

[44] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In International Conference on Machine
Learning, pages 12888–12900. PMLR, 2022.

[45] J. Li, D. Li, S. Savarese, and S. Hoi. BLIP-2: bootstrapping language-image pre-training with
frozen image encoders and large language models. In ICML, 2023.

[46] X. Li and J. Li. Angle-optimized text embeddings. arXiv preprint arXiv:2309.12871, 2023.

[47] Z. Li, X. Zhang, Y. Zhang, D. Long, P. Xie, and M. Zhang. Towards general text embeddings
with multi-stage contrastive learning, 2023.

[48] F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang, P. Vajda, and D. Marculescu.
Open-vocabulary semantic segmentation with mask-adapted CLIP. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2023, pages 7061–7070. IEEE, 2023.

[49] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pages 740–755. Springer, 2014.

[50] Z. Lin, X. Chen, D. Pathak, P. Zhang, and D. Ramanan. Revisiting the role of language priors
in vision-language models. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=J5VB1h3Aed.

[51] Z. Lin, D. Pathak, B. Li, J. Li, X. Xia, G. Neubig, P. Zhang, and D. Ramanan. Evaluating
text-to-visual generation with image-to-text generation, 2024. URL https://arxiv.org/
abs/2404.01291.

[52] F. Liu, G. Emerson, and N. Collier. Visual spatial reasoning. Transactions of the Association
for Computational Linguistics, 11:635–651, 2023.

[53] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
26296–26306, 2024.

[54] H. Luo, J. Bao, Y. Wu, X. He, and T. Li. Segclip: Patch aggregation with learnable centers for
open-vocabulary semantic segmentation. In International Conference on Machine Learning,
pages 23033–23044. PMLR, 2023.

14

https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=J5VB1h3Aed
https://arxiv.org/abs/2404.01291
https://arxiv.org/abs/2404.01291


[55] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, and Y. Zhang. An empirical study of catas-
trophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

[56] Z. Ma, J. Hong, M. O. Gul, M. Gandhi, I. Gao, and R. Krishna. Crepe: Can vision-language
foundation models reason compositionally? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10910–10921, 2023.

[57] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations
in GPT. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[58] Merriam-Webster. Lexical, . URL https://www.merriam-webster.com/dictionary/
lexical. [Accessed 23-10-2024].

[59] Merriam-Webster. Semantics, . URL https://www.merriam-webster.com/dictionary/
semantics. [Accessed 23-10-2024].

[60] Merriam-Webster. Syntax, . URL https://www.merriam-webster.com/dictionary/
syntax. [Accessed 23-10-2024].

[61] N. Muennighoff, N. Tazi, L. Magne, and N. Reimers. MTEB: massive text embedding
benchmark. In A. Vlachos and I. Augenstein, editors, Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik,
Croatia, May 2-6, 2023, pages 2006–2029. Association for Computational Linguistics, 2023.

[62] J. Ni, G. H. Ábrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and Y. Yang. Sentence-t5: Scalable
sentence encoders from pre-trained text-to-text models. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 1864–1874. Association for Computational
Linguistics, 2022.

[63] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents:
Interactive simulacra of human behavior. In Proceedings of the 36th annual acm symposium
on user interface software and technology, pages 1–22, 2023.

[64] S. Park, D. Um, H. Yoon, S. Chun, S. Yun, and J. Y. Choi. Rococo: Robustness benchmark of
ms-coco to stress-test image-text matching models. arXiv preprint arXiv:2304.10727, 2023.

[65] H. Peng and D. Roth. Two discourse driven language models for semantics. In K. Erk
and N. A. Smith, editors, Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 290–300, Berlin, Germany, Aug.
2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1028. URL https:
//aclanthology.org/P16-1028.

[66] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[67] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR, 2021.

[68] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[69] A. Ray, F. Radenovic, A. Dubey, B. A. Plummer, R. Krishna, and K. Saenko. Cola: How to
adapt vision-language models to compose objects localized with attributes? arXiv preprint
arXiv:2305.03689, 2023.

[70] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019.

15

https://www.merriam-webster.com/dictionary/lexical
https://www.merriam-webster.com/dictionary/lexical
https://www.merriam-webster.com/dictionary/semantics
https://www.merriam-webster.com/dictionary/semantics
https://www.merriam-webster.com/dictionary/syntax
https://www.merriam-webster.com/dictionary/syntax
https://aclanthology.org/P16-1028
https://aclanthology.org/P16-1028


[71] H. Rizwan, D. Rosati, G. Wu, and H. Sajjad. Resolving lexical bias in edit scoping with
projector editor networks, 2024. URL https://arxiv.org/abs/2408.10411.

[72] J. Rodrigues, C. Saedi, A. Branco, and J. Silva. Semantic equivalence detection: Are interrog-
atives harder than declaratives? In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi,
K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis,
and T. Tokunaga, editors, Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language
Resources Association (ELRA). URL https://aclanthology.org/L18-1513.

[73] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in Neural Information Processing Systems, 35:
36479–36494, 2022.

[74] U. Sahin, H. Li, Q. Khan, D. Cremers, and V. Tresp. Enhancing multimodal compositional
reasoning of visual language models with generative negative mining. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 5563–5573, 2024.

[75] M. C. Schiappa, M. Cogswell, A. Divakaran, and Y. S. Rawat. Probing conceptual understand-
ing of large visual-language models. arXiv preprint arXiv:2304.03659, 2023.

[76] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

[77] M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr. Quantifying language models’ sensitivity to
spurious features in prompt design or: How i learned to start worrying about prompt formatting,
2023.

[78] A. Singh, R. Hu, V. Goswami, G. Couairon, W. Galuba, M. Rohrbach, and D. Kiela. Flava:
A foundational language and vision alignment model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15638–15650, 2022.

[79] A. J. Soto, A. Mohammad, A. Albert, A. Islam, E. Milios, M. Doyle, R. Minghim, and
M. C. Ferreira de Oliveira. Similarity-based support for text reuse in technical writing. In
Proceedings of the 2015 ACM Symposium on Document Engineering, pages 97–106, 2015.

[80] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro,
A. Gupta, A. Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models, 2022. URL https://arxiv.org/abs/2206.04615.

[81] H. Su, W. Shi, J. Kasai, Y. Wang, Y. Hu, M. Ostendorf, W. Yih, N. A. Smith, L. Zettlemoyer,
and T. Yu. One embedder, any task: Instruction-finetuned text embeddings. In Findings of
the Association for Computational Linguistics: ACL 2023, pages 1102–1121. Association for
Computational Linguistics, 2023.

[82] U. Taladngoen and R. H. Esteban. Assumptions on plausible lexical distractors in the re-
designed toeic question-response listening test. LEARN Journal: Language Education and
Acquisition Research Network, 15(2):802–829, 2022.

[83] T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams, D. Kiela, and C. Ross. Winoground:
Probing vision and language models for visio-linguistic compositionality. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5238–5248,
2022.

[84] G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. Petrakis, and E. E. Milios. Semantic similarity
methods in wordnet and their application to information retrieval on the web. In Proceedings
of the 7th annual ACM international workshop on Web information and data management,
pages 10–16, 2005.

16

https://arxiv.org/abs/2408.10411
https://aclanthology.org/L18-1513
https://arxiv.org/abs/2206.04615


[85] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In T. Linzen, G. Chrupała,
and A. Alishahi, editors, Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium, Nov. 2018.
Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL https:
//aclanthology.org/W18-5446.

[86] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In 7th International
Conference on Learning Representations, ICLR 2019. OpenReview.net, 2019.

[87] F. Wang, L. Ding, J. Rao, Y. Liu, L. Shen, and C. Ding. Can linguistic knowledge improve
multimodal alignment in vision-language pretraining? arXiv preprint arXiv:2308.12898, 2023.

[88] L. Wang, N. Yang, X. Huang, B. Jiao, L. Yang, D. Jiang, R. Majumder, and F. Wei. Text
embeddings by weakly-supervised contrastive pre-training. arXiv preprint arXiv:2212.03533,
2022.

[89] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, and F. Wei. Improving text embeddings
with large language models. arXiv preprint arXiv:2401.00368, 2023.

[90] S. Wang, Y. Zhu, H. Liu, Z. Zheng, C. Chen, and J. Li. Knowledge editing for large language
models: A survey, 2023.

[91] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained transformers, 2020.

[92] Y. W. Wong and R. Mooney. Learning for semantic parsing with statistical machine translation.
In R. C. Moore, J. Bilmes, J. Chu-Carroll, and M. Sanderson, editors, Proceedings of the
Human Language Technology Conference of the NAACL, Main Conference, pages 439–446,
New York City, USA, June 2006. Association for Computational Linguistics. URL https:
//aclanthology.org/N06-1056.

[93] S. Xiao, Z. Liu, P. Zhang, and N. Muennighoff. C-pack: Packaged resources to advance
general chinese embedding, 2023.

[94] P. Xu, W. Shao, K. Zhang, P. Gao, S. Liu, M. Lei, F. Meng, S. Huang, Y. Qiao, and P. Luo.
Lvlm-ehub: A comprehensive evaluation benchmark for large vision-language models. arXiv
preprint arXiv:2306.09265, 2023.

[95] K. Yang, J. Deng, X. An, J. Li, Z. Feng, J. Guo, J. Yang, and T. Liu. Alip: Adaptive language-
image pre-training with synthetic caption. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2922–2931, 2023.

[96] L. Yujian and L. Bo. A normalized levenshtein distance metric. IEEE transactions on pattern
analysis and machine intelligence, 29(6):1091–1095, 2007.

[97] M. Yuksekgonul, F. Bianchi, P. Kalluri, D. Jurafsky, and J. Zou. When and why vision-language
models behave like bags-of-words, and what to do about it? In The Eleventh International
Conference on Learning Representations, 2023.

[98] Y. Zeng, X. Zhang, and H. Li. Multi-grained vision language pre-training: Aligning texts
with visual concepts. In International Conference on Machine Learning, pages 25994–26009.
PMLR, 2022.

[99] Z. Zeng, J. Yu, T. Gao, Y. Meng, T. Goyal, and D. Chen. Evaluating large language models at
evaluating instruction following. CoRR, abs/2310.07641, 2023.

[100] T. Zhao, T. Zhang, M. Zhu, H. Shen, K. Lee, X. Lu, and J. Yin. Vl-checklist: Evaluating
pre-trained vision-language models with objects, attributes and relations. arXiv preprint
arXiv:2207.00221, 2022.

[101] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before use: Improving few-shot
performance of language models. In International conference on machine learning, pages
12697–12706. PMLR, 2021.

17

https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056


[102] L. Zheng, W. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench and chatbot
arena. CoRR, abs/2306.05685, 2023.

[103] K. Zhou, E. Lai, W. B. A. Yeong, K. Mouratidis, and J. Jiang. ROME: evaluating pre-
trained vision-language models on reasoning beyond visual common sense. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 10185–10197. Association
for Computational Linguistics, 2023.

[104] A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson. Universal and transferable adversarial attacks
on aligned language models. CoRR, abs/2307.15043, 2023. doi: 10.48550/ARXIV.2307.15043.
URL https://doi.org/10.48550/arXiv.2307.15043.

18

https://doi.org/10.48550/arXiv.2307.15043


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix A.1.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix A.2.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include the
Github link to our data and code in Appendix K.4.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] We perform zero-shot evaluation of models. We did not train
any models for this work.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We provide these details in
Appendix K.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the existing

assets in Section 2 and Appendix K.
(b) Did you mention the license of the assets? [Yes] We mention these details in Appendix

K.
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] We include the Github link to our data and code in the Abstract and in
Appendix L.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We mention in Appendix K.2.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We mention in Appendix K.2.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See Figure 14.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] we did not hire any participants for the
study and the evaluation is conducted in the research group.

19



Appendix
Table of Contents

A Statements of Limitations, Impact & Contribution 21
A.1 Limitation and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2 Impact Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.3 Contribution Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B Related Work 22

C SUGARCREPE++ Benchmark Generation 23
C.1 Dataset Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
C.2 Prompt for SUGARCREPE++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
C.3 Validation Prompt for SUGARCREPE++ . . . . . . . . . . . . . . . . . . . . . 24
C.4 Negative Caption Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
C.5 Incorrect Generation Artifacts by LLMs . . . . . . . . . . . . . . . . . . . . . . 25

D Lexical, Syntactical and Semantic Properties 26
D.1 Measuring Lexical/Syntactic Variations . . . . . . . . . . . . . . . . . . . . . . 26

E Additional Analysis of VLMs 28
E.1 Specification of Evaluated VLMs . . . . . . . . . . . . . . . . . . . . . . . . . 28
E.2 Evaluation of Variants of CLIP. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
E.3 Finetuning on VLMs on SUGARCREPE++ . . . . . . . . . . . . . . . . . . . . 29
E.4 Few-shot Learning on SUGARCREPE++ . . . . . . . . . . . . . . . . . . . . . 30
E.5 Comparison of Performance Between SUGARCREPE and SUGARCREPE++ . . . 31

F Additional Analysis of ULMs 31

G Additional Results on Generative VLMs 32
G.1 Prompt-based Evaluation of BLIP and BakLLaVA . . . . . . . . . . . . . . . . 32
G.2 Generative VLM Performance Using VGPTScore and VQAScore . . . . . . . . 33

H Qualitative Results 34
H.1 Both Image-Text Task (ITT) and Text-Only Task (TOT) Fail . . . . . . . . . . . 34
H.2 Image-Text Task (ITT) Pass and Text-Only Task (TOT) Fail . . . . . . . . . . . 35
H.3 Text-Only Task (TOT) Pass and Image-Text Task (ITT) Fail . . . . . . . . . . . 36

I Additional Statistics for SUGARCREPE++ 36
I.1 Vera and Grammar Scores of SUGARCREPE++ . . . . . . . . . . . . . . . . . . 36
I.2 MS-COCO Categories in SUGARCREPE++ . . . . . . . . . . . . . . . . . . . . 37

J Human Evaluation Instruction 39

K Implementation Details 39
K.1 Hardware Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
K.2 Dataset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
K.3 Model Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
K.4 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
K.5 Author Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
K.6 License, Hosting and Maintenance Plan . . . . . . . . . . . . . . . . . . . . . . 41

L Datasheet 42
L.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
L.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
L.3 Collection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
L.4 Preprocessing, Cleaning, and/or Labeling . . . . . . . . . . . . . . . . . . . . . 45
L.5 Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
L.6 Distribution and License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
L.7 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

20



A Statements of Limitations, Impact & Contribution

A.1 Limitation and Future Work

In this paper, we evaluate a large set of VLMs on our proposed SUGARCREPE++ dataset. We provide
observations based on the results even though it is difficult to provide comparison between models
as the models differ in terms of model architecture, pre-training data content and size, pre-training
objectives, etc. Unless we can train train separate models for each setting where one of the parameters
is kept constant, it is difficult to draw definitive conclusions. Providing guidelines to improve the
performance of VLMs on SUGARCREPE++ dataset depends on the observations we draw from the
above mentioned analysis. Thus, in this paper, we limit to identifying one of the major issue with
current VLMs, which can probe further research in this direction. Moreover, our dataset can be
used to evaluate models to access their ability to discern lexical alterations from semantic alterations.
We followed a simple procedure for human evaluation of SUGARCREPE++ tasks in this paper,
which might not give human performance that can be directly compared to the embedding-based
performance of VLMs and ULMs. A better and more rigorous approach to evaluate the ability of
humans in understanding the affect of altering semantic and lexical content in the input text can be
proposed in the future work.

A.2 Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning in general and
Language Models research in particular. We discuss several limitations of language models related
to the separation of semantics of an input text from its syntactic and lexical form. In order to build
trust-worthy Language Models, it is important to establish that the language models emphasize
semantics contained in a sentence rather than the lexical form and syntactic style of the sentence.
Our evaluation provides evidence of this problem through two curated datasets and can potentially
be impactful for evaluating newer language models and/or inspiring novel solutions to this problem.
There are many other potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

A.3 Contribution Statement

SHD, AJ and CSS are the student contributors in this project and the following summarizes their
contributions to this paper: SHD led the research efforts in developing a novel contribution and wrote
the first draft of the paper as well as the rebuttals. SHD benchmarked the VLMs and created a first
draft of the visualisations. AJ worked on the research and development of a pipeline for automatic
paraphrase generation and validation before the human verification step. AJ worked on benchmarking
the ULMs, created the visualisations in the paper, led the efforts in creating the final shareable dataset
and drafted the corresponding sections. CSS proposed the 3-way testing approach for evaluating
semantic consistency in language embeddings and helped with finalizing the paper draft and rebuttals.
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B Related Work

VLMs and ULMs have achieved impressive results on a range of vision and language downstream
tasks. These state-of-the-art VLMs and ULMs serve as foundation models for both multimodal
applications, like image captioning [45], semantic segmentation of images [18, 48], text-to-image
generation [67, 68, 73], and unimodal applications, like clustering [89, 88], reranking [93], and
retrieval [46]. Their emergence as foundation models has motivated recent research to evaluate the
strengths and weaknesses of these models. We summarize the findings from common benchmarks of
VLMs and ULMs below.

Findings from the existing benchmarks for VLMs: Thrush et al. [83] evaluate VLMs through an
image-text retrieval task and find that SOTA VLMs struggle to distinguish between texts containing
the same words but ordered differently. Similarly, Yuksekgonul et al. [97] evaluate VLMs in
terms of their abilities to form object-attribute associations and highlight shortcomings of VLMs.
Other studies with similar conclusions include [100], [69] and [87]. Recent works have introduced
benchmarks to evaluate different abilities of VLMs such as counter-intuitive reasoning [103], visual
question answering [94], conceptual understanding [75], visio-linguistic reasoning [17], visual-spatial
reasoning [52] and compositionality [83]. Kamath et al. [37] demonstrate challenges in decoding
salient aspects of input text encoded with CLIP and draw connections to the lack of compositionality
in CLIP text embeddings.

The task of evaluating compositionality in VLMs is the nearest neighbor to our work. Several datasets
have been introduced to evaluate the compositionality of VLMs [52, 29, 83, 100, 97, 56, 69, 87, 74].
Most of the existing compositionality benchmarks formulate the evaluation task as image-text retrieval.
Winoground [83] is one of the earliest benchmarks to report the lack of compositional understanding
in VLMs. Latest benchmarks encompassing different aspects of compositionality include VL-
CheckList [100], CREPE [56], Cola [69], and ARO [97]. Some benchmarks like Winoground have
challenges beyond compositionality that include additional visual and textual reasoning [19].

Findings from the existing benchmarks for ULMs: In the context of ULM text encoders, paraphras-
ing is the closest to our paper. Paraphrasing is a well-studied problem in NLP. Several previous studies
analyzed the ability of the language models to recognize paraphrasing in text. The Microsoft Research
Paraphrase Corpus (MRPC) [20] and Quora Question Pairs (QQP) [34] are popular paraphrasing
datasets (text-only without images) that are part of the GLUE (General Language Understanding
Evaluation) [86] benchmark. The Semantic Textual Similarity (STS) benchmark [12] build from
the STS shared tasks [2–6] have pairs of text snippets with scores indicating the degree of semantic
equivalence between them.

Shortcomings of existing benchmarks: Alper et al. [7] find that the CLIP text encoder outperforms
the ULMs in tasks that require implicit visual reasoning, while Chen et al. [15] find that ULMs
perform better in terms of general language understanding. Most VLM benchmarks are generated
using rule-based algorithms [56, 97] and consist of only a pair of sentences (either semantically
similar or dissimilar sentences). These similar pairs might not have strong semantic similarities,
and the dissimilar pairs can have significant lexical differences, which does not represent a strict
setting of evaluation. Moreover, we must finetune or linearly probe [52] these models to evaluate
LLM encoders using these datasets, which can require significant resources. None of the existing
benchmarks systematically evaluates the resilience of model embeddings in the presence of lexical
distractors [31, 82], i.e., lexically similar but semantically different negative inputs.
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C SUGARCREPE++ Benchmark Generation

C.1 Dataset Guidelines

The main guidelines followed to create the benchmarks are:

• The lexical changes allowed for creation of the three captions include, replacing words with
synonyms and antonyms, reordering the words, etc. These lexical changes do not include
adding more details about the image in the caption.

• Due to the lexical alterations, the three captions should not consist of any nonsensical and
non-fluent errors.

• The three captions should be generated such that they do not need any visual, logical or
commonsense reasoning to distinguish the semantically similar captions (P1 and P2) from
the semantically different caption (N) i.e., given only three captions without image, one
should be able to distinguish P1, P2 from N.

C.2 Prompt for SUGARCREPE++

Figure 3 shows the prompts used to condition the generation of P2 using LLM, given P1. Here, we
use instruct fine-tuned Mistral 7B [36] model to generate P2.

Rules Instruction: Given an input sentence describing an image caption, follow these steps:

1. Rephrase each provided sentence, focusing on preserving the original spatial rela-
tionship.

2. Pay careful attention to the positioning of objects or entities in relation to one another.
3. Ensure that the meaning remains consistent and that both the original and paraphrased

sentences maintain logical coherence and grammatical correctness.

Demonstration: For example,

Input: Cat is under the table.
Paraphrase Idea: Rephrase the sentence to convey that the table is positioned above the cat.
Paraphrased: The table is above the cat.

Input:The plane flies below the bright white clouds.
Paraphrase Idea: Ensure the spatial context is maintained by stating that the bright white
clouds are situated above the flying plane.
Paraphrased: The plane flies below the bright white clouds.

Input: The third balcony is below the fourth balcony from the bottom.
Paraphrase Idea: Emphasize the consistent spatial arrangement while indicating that the
fourth balcony is positioned above the third balcony from the bottom.
Paraphrased: The fourth balcony is above the third balcony from the bottom.

Remember to keep the meaning intact, and both the original and paraphrased sentences
should be logically coherent and grammatically correct.

Input: [Original caption goes here]
Paraphrase Idea: Focus on replicating the spatial arrangement while maintaining the original
meaning of the sentence, correct grammar, same meaning.
Paraphrased: [Your paraphrased sentence goes here]

Figure 3: Rules and demonstration sub-prompts used to condition the generator LLM.

23



C.3 Validation Prompt for SUGARCREPE++

Figure 4 shows the comprehensive prompt used to validate the samples generated by priming the
LLM. The outputs obtained from this prompt are further validated by a human expert. This reduces
the manual effort required to create the SUGARCREPE++ dataset.

Instruction: Given a pair of captions, you must check if the second caption is semantically
consistent with the first caption. If the second caption is consistent, output the second caption
as is; otherwise, rephrase the second caption to be consistent with the first sentence. We are
interested in preserving the spatial consistency and spatial relationship of the objects with
each other.

Demonstrations: examples,

Caption 1: A guy holding a skateboard is speaking into a microphone.
Caption 2: The guy holding the microphone is speaking into the skateboard.
isConsistent: No, you cannot speak into a skateboard.
newCaption: The guy is speaking into the microphone while holding a skateboard.

Caption 1: A family are playing frisbee on the beach.
Caption 2: The frisbee is being played on the beach by a family.
isConsistent: Yes, caption 2 is consistent as it is the same caption written in passive voice.
new caption is the same as caption 2.
newCaption: A family are playing frisbee on the beach.

caption 1:A stop sign vandalized with an "eating animals" sticker below the word "stop."
caption 2: The stop sign is below an "eating animals" sticker.
isConsistent: The stop cannot be below and above the sticker at the same time.
newCaption: The word "stop" sign is above an "eating animals" sticker.

caption 1:There is a phone on top of a calculator.
caption 2: A calculator lies beneath the phone.
isConsistent:Yes, the sentences are semantically equivalent. new caption is same as caption
2.
newCaption: A calculator lies beneath the phone.

Now the same for the below caption only.
caption 1: [Original caption goes here]
caption 2: [Generated caption goes here]
isConsistent: [Output Here]

Figure 4: Validation Meta-prompt used to validate the consistency of the generated caption and origi-
nal caption. We use the isConsistent output to signal the regeneration of a semantically inconsistent
caption.

C.4 Negative Caption Description

We use five negative caption categories from the SUGARCREPE dataset [29]. Hsieh et al. [29] describe
the generation procedure for these hard negative captions in Appendix C2 of their paper. Below, we
provide a brief description of these negative caption categories.

(a) Replace-Object: Replaces a noun in the scene description with a new noun, creating a distinctly
different scene while keeping the sentence fluent and logical.

(b) Replace-Attribute: Replaces an adjective describing an object with a new adjective to alter the
scene meaningfully, ensuring grammatical correctness.

(c) Replace-Relation: Changes a spatial or action-based relationship between objects, resulting in a
different scene description that is fluent and coherent.
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(d) Swap-Object: Swaps two noun phrases in the sentence to form a new scene description that is
grammatically correct and logically distinct from the original.

(e) Swap-Attribute: Exchanges two adjectives describing different objects to create a sentence that
describes a new scene.

C.5 Incorrect Generation Artifacts by LLMs

As shown in Figure 5, We observe various generation artifacts in the positive sentences (P2) generated
by LLMs that were corrected during the human validation stage.

Figure 5: Examples of common errors in the LLM generated positive sentences (P2). We provide
five of the most common types of errors. Manual correction refers to the corrected sentences after
the human validation step. Expert human annotators carefully checked each output of the LLM and
corrected the erroneous sentences to maintain grammatical and semantic equivalence with the original
positive caption (P1)
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D Lexical, Syntactical and Semantic Properties

In the following, we provide definitions, describe a metric for measuring lexical/syntactic similarities
and visualize the statistics of this metric applied to SUGARCREPE++ dataset.

(a) Lexical [58]: of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction.

(b) Syntax [60]: the way in which linguistic elements (such as words) are put together to form
constituents (such as phrases or clauses).

(c) Semantic [59]: of or relating to meaning in language.

Together, lexical and syntactic aspects of the sentence refer to the choice of words and writing style
used to construct a sentence. The meaning expressed by the sentence is referred to as semantics. By
varying the lexical and syntactic aspects, we can create different sentences that express the same
meaning (i.e., semantically equivalent). Likewise, we can create sentences that are semantically
non-equivalent but are very close in terms of their lexical and syntactic aspects. By extending
SUGARCREPE, SUGARCREPE++ consists of 3 captions for each image (P1, P2 & N) where P1 and
P2 are correct captions (see Fig. 1 of our paper) and are related as follows:

(P1,N) similar lexical/syntactic properties and semantically non-equivalent.
(P1,P2) different lexical/syntactic properties and semantically equivalent.
(P2,N) different lexical/syntactic properties and semantically non-equivalent.

D.1 Measuring Lexical/Syntactic Variations

Syntactic aspects of a sentence representing how words are put together to form constituents are best
represented by its constituency parse trees. Accordingly, recent techniques, such as FastKASSIM
[14] and CASSIM [9], utilize the constituency parse trees to estimate the syntactic similarity between
a pair of sentences. On the other hand, lexical similarity between sentences can be measured by
comparing the words used in each sentence and simple measures to compute lexical similarity include
jaccard scores (i.e., word overlap) and edit-distances. We define the following metric to jointly
measure the syntactic and lexical similarity (SLS) between two sentences U and V :

SLS(U, V ) = LexicalSimilarity(U, V )× SyntacticSimilarity(U, V )

We use the normalized levenshtein similarity based on [96] as a measure of lexical similarity and
FastKASSIM [14] with default parameters as a measure of syntactic similarity. We note that both
of these metrics yield similarity scores in the range of and hence SLS ∈ [0, 1] closer to 1 indicates
higher syntactic and lexical similarity.

For completeness, we extended this analysis and include a boxplot of the SLS in Figure 6. We find
that the (P1, P2) sentence pairs have consistently lower SLS scores as compared to (P1, N) sentence
pairs: specifically, on average, we find that majority of the (P1, P2) similarity scores lie between 0.2 -
0.4, while majority of the (P1, N) scores are greater than 0.75. In summary, this shows that (a) the
sentences which we intended to be lexically/syntactically similar are indeed so, according to this
measure; and (b) the sentences which we intended to be lexically/syntactically different are indeed so
as well, according to this measure.

Below we summarize the lexical-similarity and syntactic-similarity:

(a) Lexical-Similarity: By definition, lexical refers to words/vocabulary and hence, lexical-similarity
compares a pair of sentences at the word-level. In particular, a higher overlap of vocabulary and
order of occurrence should lead to higher lexical similarity. We measure lexical-similarity using
normalized Levenshtein similarity [96].

(b) Syntactic-Similarity: Syntax refers to the arrangement of words to form constituents (e.g.,
phrase/clause) and hence, syntactic-similarity compares a pair of sentences based on their
constituency parse trees. Thus, syntactic similarity is higher for sentences whose constituency
parse trees share a common structure. We use the FastKASSIM [14] score to measure syntactic-
similarity.

Lexical similarity is more aligned with human perception as compared to syntactic-similarity but
does not consider grammatical nuances while estimating similarity. On the other hand, constituency
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Figure 6: Box plot of syntactic and lexical similarity (SLS) for caption pairs in SUGARCREPE++. P1

and P2 refer to positive captions, while N refers to the negative caption. P1-P2, P1-N , and P2-N
represent the distribution of SLS for the corresponding caption pairs, respectively. We find that the
P1-P2 sentence pairs consistently have lower SLS scores compared to the P1-N sentence pairs.

parse trees are constructed using rules of grammar and seemingly minor changes to a sentence can
introduce important structural changes in the parse-tree. For example, consider a simple example
(not from our dataset):

Sentence-1 A[Article] boy[Noun] sits[Verb]

Sentence-2 The[Article] girl[Noun] runs[Verb]

The above two sentences are semantically different i.e., they convey very different meanings but the
syntactic structure of these two sentences is identical. We provide examples of sentence-pairs from
our dataset along with their syntactic-similarity, lexical-similarity scores and SLS scores in Table 9.

Table 9: Example caption pairs from SUGARCREPE++ with their corresponding syntactical-similarity,
lexical-similarity and SLS scores.

Sentence 1 Sentence 2 Syntactic
Similarity

Lexical
Similarity SLS

A living room with white furniture
and a small wooden table.

A living room without white furni-
ture and a small wooden table.

1.00 0.95 0.95

Three adult zebras walk calmly
along close together.

Three adult horses walk calmly
along close together.

1.00 0.91 0.91

A street light in front of a colorful
train on a bridge.

A colorful train is on a bridge with
a street light in front of it.

0.84 0.28 0.24

A teddy bear is placed on a metallic
sculpture.

The metallic sculpture is positioned
below the teddy bear.

1.00 0.24 0.24

A desk with two computer monitors,
two mice, a cup and a keyboard on
it.

There are two computer monitors,
two mice, a cup, and a keyboard on
the desk.

0.26 0.76 0.20

A fire hydrant is decorated with an
American flag design.

The American flag design is adorned
on the fire hydrant.

0.96 0.19 0.18

An empty clean kitchen with cabi-
netry, stove and dishwasher.

An empty kitchen featuring cabinets,
stove, and a dishwasher is clean.

0.30 0.60 0.18

A table topped with apples, oranges
and bananas.

The table stands as a backdrop to
a fruitful display, showing apples,
oranges, and bananas arranged on
top.

0.11 0.40 0.04

A white chair, books and shelves
and a tv on in this room.

In this room, there is a white chair,
shelves, books, and a TV on.

0.12 0.27 0.03

27



E Additional Analysis of VLMs

E.1 Specification of Evaluated VLMs

Table 10: Details of the VLMs evaluated on the SUGARCREPE++ dataset. Pretraining Data type: R, N
and S refer to Real, Noisy and Synthetic data types, respectively. Pretraining Objectives – ITC: image-
text contrastive; ITM: image-text matching; MLM: masked language modeling; MMM: masked
multimodal modeling; MIM: masked image modeling; IC: image captioning; IS: image segmentation
using KL divergence; ITA: image-text alignment; CCL: Cycle-consistency loss; finetuning objectives –
ITR: image-text retrieval; NL: Negative loss for text; SG: scene graph loss; PT, FT refer to pretraining
and finetuning, respectively. CLIP refers to CLIP-ViT-B-32 model.

Model #Total Embedding Pretraining Pretraining Pretraining
Parameters Dimension Data size Data Type Objectives Finetuned

CLIP 2021 151M 512 400M R ITC ✗
RoBERTa-ViT-B-32 2022 212M 512 2B R ITC ✗
ALIGN 2021 490M 640 1.8B R+N ITC ✗
ALIP 2023 151M 512 15M R+S ITC ✗

FLAVA 2022 358M 768 70M R ITC, ITM, MLM
✗MMM, MIM

ALBEF 2021 210M 256 14M R+N ITC, ITM, MLM ✗
BLIP 2022 225M 512 129M R+S ITC, ITM, IC ✗
BLIP2 2023 1173M 256 129M R+S ITC, ITM, IC ✗

ViLT 2021 111M 768 10M R ITM, MLM ✗
AltCLIP 2023 864M 768 42M R ITC ✗

SegCLIP 2023 151M 512 400M+4M R ITC, MIM, IS ✗
XVLM-4M 2022 216M 256 4M R ITC, ITM, MLM, ITA ✗
XVLM-16M 2022 216M 256 16M R ITC, ITM, MLM, ITA ✗

ViLT-ITR-COCO 2021 111M 768 PT: 10M R ITM, MLM
✓FT: 110K FT: ITR

XVLM-16M-COCO 2022 216M 256 PT:16M R ITC, ITM, MLM, ITA
✓FT: 110K FT: ITR

XVLM-16M-Flickr 2022 216M 256 PT: 16M R TC, ITM, MLM, ITA
✓FT: 30K FT: ITR

NegCLIP 2023 151M 512 PT: 400M R ITC
✓FT:110K FT: ITM

CLIP-SVLC 2023 151M 512 PT:400M R ITC
✓FT:400M FT: ITC, NL

BLIP-SGVL 2023 696M 768 PT: 129M R ITC, ITM, IC
✓FT:4M FT: ITC, SG

CyCLIP 2022 102M 1024 PT: 102M R ITC, CCL ✗

We comprehensively evaluate a wide array of VLMs on SUGARCREPE++ including (Table 10
provides details about different VLMs):

• Models trained with a contrastive learning objective such as CLIP [66], RoBERTa-ViT-B-
32 [76], ALIGN [35] and ALIP [95]. ALIGN and ALIP utilize noisy and synthetic captions,
respectively.

• Models trained by combining multiple objective functions, such as FLAVA [78]: pretrained
by combining contrastive, Image-text matching (ITM), masked image modeling (MIM) and
masked language modeling (MLM) objectives; ALBEF [43]: which combines ITM and
MLM; BLIP [44] and BLIP-2 [45]: which combine contrastive, ITM and image captioning
objectives.

• Models with a unified encoder for text and images, such as ViLT [38], and multi-lingual
distilled models like AltCLIP [16].

• Models that align text with corresponding visual concepts in the image, such as Seg-
CLIP [54], and XVLM [98] - with two variants, XVLM-4M and XVLM-16M.

• We also evaluate several models that have been finetuned on downstream tasks of image-text
retrieval, such as ViLT-ITR-COCO [38] and XVLM-16M-ITR-COCO [98]. Specifically,
ViLT, and XVLM-16M models were trained for the ITM task using the COCO dataset.
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Additionally, XVLM-16M-ITR-Flickr [98] denotes XVLM-16M models trained for the
ITM task using the Flickr dataset.

• Moreover, we evaluate recent methods proposed to improve the compositionality of VLMs,
including NegCLIP [97], SVLC [21], CyCLIP [23], and BLIP-SGVL [26].

E.2 Evaluation of Variants of CLIP.

Table 11: Details of different variants of CLIP that are evaluated on the SUGARCREPE++ dataset. Data, Model
and Emb. refer to the pre-training dataset size and total number of parameters in the model (in Millions) and
embedding dimension, respectively.

Pre-training Pre-training # Params Embed.
Model Dataset Data size Model Dimen.

RN50 [66] WebImageText 400M 102M 1024
RN101 [66] WebImageText 400M 120M 512
CLIP [66] WebImageText 400M 151M 512
RN50×4 [66] WebImageText 400M 178M 640
RN50×16 [66] WebImageText 400M 291M 768
CLIP-ViT-L/14 [66] WebImageText 400M 428M 768
RN50×64 [66] WebImageText 400M 623M 1024

RoBERTa-ViT-B/32 [76] LAION 2B 212M 512
ViT-H/14 [76] LAION 2B 986M 1024
ViT-g/14 [76] LAION 2B 1367M 1024
ViT-bigG/14 [76] LAION 2B 2540M 1280
xlm-roberta-base-ViT-B/32 [76] LAION 5B 366M 512
xlm-roberta-large-ViT-H/14 [76] LAION 5B 1193M 1024

large:ViT-B/16 [22] DataComp 1B 150M 512
xlarge:ViT-L/14 [22] DataComp 13B 428M 768

We evaluated variants of CLIP [66] that different in pre-training data size, model architecture and
model size as listed below (see Table 11 for more details).

• CLIP [66] variants trained on the WebImageText dataset, which comprises 400 million
image-text pairs. These models encompass CNN-based architectures, such as RN50, RN101,
RN50× 4, RN50× 16, and RN50× 64, as well as transformer-based models like ViT-B/32
and ViT-L/14.

• CLIP-based models introduced by [76] pre-trained on extensive paired image-text datasets.
Schuhmann et al. [76] provided diverse CLIP variants, namely RoBERTa-ViT-B/32, ViT-
H/14, ViT-g/14, xlm-roberta-base-ViT-B/32, and xlm-roberta-large-ViT-H/14, trained on a
large image-text dataset called "LAION-5B," which consists of 5 billion image-text pairs.

• Gadre et al. [22] released two CLIP variants, namely Large:ViT-B/16 and xlarge:ViT-L/14,
trained on the DataComp dataset, comprising 13 billion image-text pairs.

Performance of various CLIP variants on SUGARCREPE++ dataset is provided in Table 12.

E.3 Finetuning on VLMs on SUGARCREPE++

For the fine-tuning results, we divided the SUGARCREPE++ dataset into train and test sets. We used
40% of the randomly selected samples from each subset for training the models, and remaining 60%
samples from each subset to obtain the performance of the models on each subset. We fine-tuned
the models using objective function employed in training sentence transformers [70] to ensure a
fair comparison between the fine-tuned and zero-shot evaluations of the models. During inference,
we adhered to the approach described in our paper. Table 13 shows the performance of three
different VLMs (CLIP-ViT-B/32, XLM-RoBERTa–ViT-B/32 and FLAVA) under the Frozen, full
fine-tuning and LORA fine-tuning conditions. Experimental results show that even though there are
improvements in performance on some subsets, fine-tuning the models can lead to degradation in
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Table 12: Comparison of the performance of different variants of CLIP on SUGARCREPE++. Performance
reported in terms of Accuracy (%). Overall best values are in bold, and group-level best values are underlined.

Model Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

RN50 [66] 46.05 17.98 49.01 31.35 87.41 82.45 67.39 57.36 56.12 39.04
RN101 [66] 42.10 18.86 48.10 29.68 88.20 83.17 67.89 55.21 53.20 39.76
CLIP [66] 45.18 19.74 45.21 33.03 86.80 83.72 65.61 59.14 56.26 38.62
RN50×4 [66] 46.93 21.49 46.42 30.59 87.77 80.87 67.51 53.93 53.91 38.55
RN50×16 [66] 39.04 17.55 46.42 30.29 89.10 76.57 65.74 49.87 53.41 38.19
CLIP-ViT-L/14 [66] 43.86 17.11 45.36 28.92 90.68 80.69 67.39 55.96 54.05 39.26
RN50×64 [66] 44.74 16.67 45.36 31.51 90.79 73.31 64.47 48.61 54.27 38.12

RoBERTa-ViT-B/32 [76] 44.3 29.39 56.32 52.66 89.04 94.55 74.49 80.46 59.39 57.75
ViT-H/14 [76] 43.42 27.63 54.19 50.69 93.71 90.43 71.06 73.98 56.62 51.92
ViT-g/14 [76] 44.3 26.32 52.06 43.99 93.1 91.83 71.19 73.73 57.54 52.56
ViT-bigG/14 [76] 45.61 29.82 57.38 52.05 94.13 90.44 76.40 72.84 59.45 53.49
xlm-RoBERTa-base-ViT-B/32 [76] 42.55 30.26 55.25 55.56 89.41 95.34 72.97 80.96 55.48 57.82
xlm-RoBERTa-large-ViT-H/14 [76] 42.1 29.83 54.19 52.36 93.94 94.25 75.38 79.19 58.75 60.69

large:ViT-B/16 [22] 35.96 17.98 39.58 30.44 87.83 90.5 67.89 70.81 50.36 39.04
xlarge:ViT-L/14 [22] 42.55 26.75 46.58 39.12 91.59 91.89 72.59 71.45 55.83 49.79

Table 13: Image-to-text (ITT) results on SUGARCREPE++ under frozen, full-tuning and LoRA settings.

CLIP-ViT-B/32 XLM-RoBERTa–ViT-B/32 FLAVA

Frozen Fine-tuning LoRA Frozen Fine-tuning LoRA Frozen Fine-tuning LoRA

Swap Object 47.53 51.23 53.4 42.59 46.31 49.63 54.32 51.02 55.18
Swap Attribute 44.77 51.04 53.29 55.68 57.68 60.73 61.13 64.47 65.44
Replace Object 86.43 85.54 87.91 88.07 87.55 88.61 88.26 87.11 89.56
Replace Attribute 65.26 68.74 70.31 72.55 69.43 71.92 72.74 70.03 75.58
Replace Relation 57.65 60.49 61.15 58.1 59.38 60.82 59.91 63.53 62.21

performance on some subsets. This can be attributed to the catastrophic forgetting issue. To resolve
this issue, we used the low-rank adapters (LoRA) [30], where we freeze the model’s weights and
train only the newly introduced LoRA parameters on our dataset. Here we report results for LoRA
with rank = 2. It can be observed from the results that LoRA improves performance on our datasets
across all subsets

Table 14: Few shot (4-shot and 8-shot) performance of ChatGPT-4o on SUGARCREPE++.

Swap Object Swap Attribute Replace Object Replace Attribute

Zero-shot 67.61 85.82 96.25 93.27
4-shot 49.24 61.49 79.30 75.71
8-shot 52.39 62.11 80.21 74.08

E.4 Few-shot Learning on SUGARCREPE++

Table 14 provides the preliminary results on GPT-4o under a few-shot setting (4/8 shot). For these
experiments, we provided demonstration samples (4-shot and 8-shot) from the same subset in addition
to the query prompt – "Do any of these captions fail to correspond with the image? (1) <N> ; (2)
<P1>; (3) <P2>; provide output as (1), (2) or (3)". We observed significant degradation in performance
of GPT-4o in both 4-shot and 8-shot settings. We suspect this could be due to the choice of the
reference samples or due to recency effects i.e., position of negative caption in the last reference
sample influencing the decision of the VLM [101]. We also observed that GPT-4o is very sensitive to
the type of examples given as reference. When samples from other subsets are provided as reference
samples, further degradation in performance was observed. Future research can explore the options
of tuning the prompt and to find the set of reference samples which could make few-shot learning
effective on our dataset.
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Although we conducted experiments with fine-tuning of VLMs (noting improvements in performance
using LoRA) and few-shot learning, we emphasize the importance of the zero-shot evaluation
procedure on SUGARCREPE++, which is followed through out the paper. The main objective of our
dataset is to assess a fundamental property of VLMs: whether these models can correctly encode
semantics regardless of the lexical/syntactic properties of the sentence. We believe this capability
should be inherently learned by the models during the pre-training process. Fine-tuning on our dataset
may enhance performance on our task but could also lead to catastrophic forgetting, impacting the
model’s performance on other downstream tasks.

E.5 Comparison of Performance Between SUGARCREPE and SUGARCREPE++

Table 15, the extended version of Table 6, provides the comparison between SUGARCREPE (P1

vs N), P2 vs N and SUGARCREPE++ on the ITT task. Here P2 vs N refers to the case where the
model need to match the input image to the correct caption given P2 (second positive caption) and
N (negative caption) as options. As a direct comparison of the models’ absolute performance on
SUGARCREPE, P2 vs N and SUGARCREPE++ is not possible, we assess their relative rankings using
CLIP as a baseline. It can be observed that there are significant variations in the ordering of the
models (comapred to CLIP performance) between the three cases. This shows that SUGARCREPE,
and SUGARCREPE++ evaluate different aspects of the VLMs.

Table 15: Expanded version of Table 6 by including P2vsN results. ↑ and ↓ show increases and
decreases in performance with the corresponding CLIP performance as the baseline.

Model Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

SC P2vsN SC++ SC P2vsN SC++ SC P2vsN SC++ SC P2vsN SC++ SC P2vsN SC++

CLIP-ViT-B/32 59.21 65.35 45.18 64.99 60.27 45.21 90.86 90.38 86.8 80.33 73.22 65.61 70.48 68.63 56.26

ALBEF 63.16↑ 37.72↓ 28.94↓ 69.25↑ 41.70↓ 36.83↓ 93.04↑ 77.60↓ 76.27↓ 84.65↑ 59.39↓ 56.35↓ 77.60↑ 52.21↓ 47.80↓
XVLM 64.91↑ 42.10↓ 31.14↓ 73.97↑ 46.27↓ 36.52↓ 95.22↑ 80.87↓ 79.42↓ 87.69↑ 62.56↓ 59.39↓ 77.45↑ 51.78↓ 46.23↓
BLIP 66.22↑ 60.53↓ 47.37↑ 76.25↑ 67.88↑ 60.58↑ 96.55↑ 93.70↑ 92.62↑ 81.98↑ 76.02↑ 72.08↑ 68.35↓ 67.21↓ 56.76↑
NegCLIP 75.44↑ 64.47↓ 55.25↑ 76.87↑ 63.93↑ 57.99↑ 93.88↑ 91.16↑ 89.53↑ 87.18↑ 72.84↓ 69.41↑ 74.47↑ 58.32↓ 52.27↓

F Additional Analysis of ULMs

Unimodal Language Models (ULMs) can be evaluated for their semantic and lexical sensitivity using
the Text-only task (TOT) in SUGARCREPE++. We report the TOT results of ULMs in Table 16. We
cover a comprehensive list of ULMs, varying in parameter counts, optimization objectives, training
data sizes, and architectures. We notice that ULMs consistently fail to disassociate semantics from
different lexical forms. This is indicated by the large deviation (ranging from 18% to 35%) in TOT
accuracy across different subsets. Generally, all models perform over 90% accuracy in identifying
the positive captions when the negative caption changes the type of an ’object’ in the positive caption
(altering the semantics and lowering lexical overlap). On the contrary, if multiple ’objects’ are
swapped within the same caption (altering the semantics but preserving the lexical overlap), the
performance, on average across all ULMs, decreases by ≈50%. This can be attributed to the lack of
compositional understanding required to associate semantics from different lexical forms.

Grouping the models based on model sizes reveals that sensitivity to lexical alteration does not
necessarily improve with scale. For example, a small-sized model like BAAI General Embedding
(BGE) [93] is only 5% behind very large LLMs like E5-mistral [89, 88] with 7 billion parameters in
the ’Replace Relation’ subset. We experimented with recently proposed text encoder models like
INSTRUCTOR [81] that aim to improve the generalization of sentence embeddings across various
embedding-based tasks. These models allow to add special prefix instructions before encoding text
to condition for a task. We compared the INSTRUCTOR model with a default prefix and a prefix
with instructions to encode the semantics (listed as custom-ins in Table 16). We notice minimal
performance gains with custom instruction, demonstrating that further development is required to
separate semantics from lexical composition.
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Table 16: Comprehensive results of ULMs on TOT of SUGARCREPE++. We report the TOT accuracy (%). and
group the results row-wise based on the model size as reflected by the parameter count. We include the number
of parameters in text encoders relative to BERT-base, i.e., 109.5 Million parameters. Overall, best values are in
bold, and group-level best values are underlined. We report the average and standard deviation across different
subsets as an additional column.

Model #Params
(BERT Scale)

Swap
Object

Swap
Attribute

Replace
Object

Replace
Attribute

Replace
Relation Average

All-MiniLM-L6-v2 [91] 0.21 14.29 22.52 93.95 64.97 63.94 51.9333.02
BGE-small-en-v1.5 [93] 0.3 15.51 24.02 94.19 75.00 75.53 56.8534.85

All-MiniLM-L12-v2 [91] 0.3 18.78 25.38 95.22 73.86 70.41 56.7333.11

GTE-small [47] 0.3 13.88 22.07 94.98 71.95 69.06 54.3934.84
Angle-BERT-base-uncased-nli-en-v1 [46] 1 25.71 33.63 92.07 78.43 75.32 61.0329.45

BGE-base-en-v1.5 [93] 1 17.14 25.23 93.83 78.55 76.10 58.1734.56

Sentence-T5-base [62] 1.01 28.98 31.98 92.37 75.00 75.32 60.7328.51

GTE-base [47] 1 17.14 22.82 94.31 75.00 71.98 56.2534.26

Instructor-large [81] 3.07 26.53 28.38 96.00 72.34 73.83 59.4230.65
Instructor-large(custom-ins)[81] 3.07 22.86 27.63 96.13 77.41 77.81 60.3732.99

UAE-Large-v1 [46] 3.06 40.41 41.44 96.85 76.14 75.82 66.1324.54

GTE-large [47] 3.06 26.53 27.93 96.31 76.78 72.83 60.0731.28
All-RoBERTa-large-v1 [70] 3.25 42.04 45.20 94.61 74.75 74.96 66.3122.26
Stsb-RoBERTa-large [70] 3.25 25.31 31.98 94.19 89.21 75.18 63.1732.37

Sentence-T5-xl [62] 11.34 47.35 49.25 90.98 75.38 75.32 67.6618.8
Angle-Llama-7b-nli-v2 [46] 62.28 37.96 45.80 95.22 84.39 81.44 68.9625.4
E5-Mistral-7b-instruct [89, 88] 64.95 33.47 37.84 96.67 87.06 80.51 67.1129.33

Table 17: Prompt-sensitivity analysis of BLIP (a generative VLM) using SUGARCREPE++. Results
show that simple paraphrases of the input prompts effect model performance significantly.

Input Prompts S. Obj S. Att R. Obj R. Att R. Rel

Does the following caption match the image:
<Caption>? Provide ’yes’ or ’no’ as response 6.1 18.12 48.09 34.64 16.06

Prompt-1
Paraphrases

Does the caption match the image:
<Caption>? Provide ’yes’ or ’no’ as response 7.34 20.87 45.46 37.56 18.55

Do the image and the following caption match:
<Caption>? Provide ’yes’ or ’no’ as response 8.21 12.46 40.86 29.06 11.95

Prompt-2
Paraphrases

Does the caption correctly describe the image:
<Caption>? Provide ’yes’ or ’no’ as response 6.53 24.47 51.51 41.16 23.25

Is the caption an accurate description of the image:
<Caption>? Provide ’yes’ or ’no’ as response. 7.34 23.27 53.39 42.89 25.1

G Additional Results on Generative VLMs

G.1 Prompt-based Evaluation of BLIP and BakLLaVA

We performed two different experiments to evaluate prompt sensitivity of generative VLMs using
SUGARCREPE++.

1. Paraphrasing of prompts: We prompt BLIP (in VQA format) with paraphrases of the
same prompt (see Table 17 for prompt details and results). It can be observed from table
17 that for different paraphrases of the same prompt, there are huge differences in model
performance, for both Prompt 1 and Prompt 2. Moreover, there is no single variant of the
prompt that achieved best performance across all subsets of SUGARCREPE++.

2. Reordering options in the prompts: As BLIP cannot handle long prompts, we analyzed
BakLLaVA [53], a generative VLM based on Mistral 7B augmented with LLaVA architec-
ture. We prompt BakLLaVA using the prompts shown in Figure 7, and report results on
SUGARCREPE++ in Table 18. We observed that by simply changing the ordering of the
captions, the performance of the BakLLaVA model changes drastically. This sensitivity of
model performance to simple paraphrases of the prompt further highlights the importance of
using our SUGARCREPE++ dataset to evaluate VLMs ability to understand semantic and
lexical alterations.
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Figure 7: Prompt variations considered by permuting order of options.

Table 18: Prompt sensitivity analysis of BakLLaVA on SUGARCREPE++. Here we experiment with
reordering the position of Positive caption 1, Positive caption 2 and Negative caption in the prompt:

BakLLaVA Swap Obj Swap Att Replace Obj Replace Att Replace Rel

Negative, Positive1, Positive 2 39.94 49.71 61.99 36.71 41.26
Positive 1, Negative, Positive 2 33.52 47.18 59.41 41.5 37.45
Positive 1, Positive 2, Negative 68.08 78.12 83.23 73.84 75.96

G.2 Generative VLM Performance Using VGPTScore and VQAScore

We consider five additional generative VLMs and evaluate two recent methods — VGPTScore [50]
and VQAScore [51, 42] — on image-text task of the SUGARCREPE++ dataset. For reference, we also
include the corresponding results on SUGARCREPE (See Table 19). Both VGPTScore and VQAScore
are methods designed to make the most effective use of generative VLMs for image-text matching
tasks. We further note that the additionally considered generative VLMs range between 3B-11B
in parameter counts and are larger than most VLMs previously considered in the paper — from
Tables 10 and 11, we can see that the largest model we considered is a 2.5B parameter CLIP model
(ViT-bigG/14). Despite using significantly larger models, we find that VGPTScore still performs
comparably with most other models already included in the paper (e.g., Table 2). However, using the
same generative VLMs, VQAScore achieves significantly improved performance. Nevertheless, we
note that this performance is comparable with that of GPT-4o (Table 8) and in general, a significant
gap still exists between the current performance and human-level performance.

Table 19: Generative VLM performance on ITT task of SUGARCREPE++ using VGPTScore [50],
VGPTScore Blind [50], and VQAScore [51, 42]. We consider five generative VLMs and report
their performance on different subsets of SUGARCREPE and SUGARCREPE++. The rows are
grouped by the method used for identifying the correct caption and the VLM model. The columns
represent the different datasets and their subsets. We report the accuracy of the image-text task
for SUGARCREPE++, with average performance presented in an additional column. We obtain the
performance of a blind version of VGPTScore using gaussian images.

Model
SUGARCREPE (ITT %) SUGARCREPE++ (ITT %)

Swap
Object

Replace
Attribute

Replace
Object

Replace
Relation

Swap
Attribute Avg Swap

Object
Replace
Attribute

Replace
Object

Replace
Relation

Swap
Attribute Avg

V
G

PT
Sc

or
e Clip-FlanT5-xl 77.14 79.44 80.33 74.40 82.43 78.75 60.41 61.55 65.31 54.91 71.02 62.64

Clip-FlanT5-xxl 77.55 80.33 78.75 77.03 87.84 80.30 58.78 57.23 57.57 54.27 75.53 60.67
InstructBLIP 76.73 83.50 87.11 89.19 86.49 84.60 54.69 51.78 63.92 53.13 58.26 56.36
Llava-v1.5-7b 76.33 70.69 71.31 76.53 84.98 75.97 54.29 48.60 51.82 52.06 70.12 55.38
ShareGPT4v-7b 79.59 73.98 74.39 80.51 88.89 79.47 59.59 51.40 53.69 56.97 75.08 59.35

V
G

PT
Sc

or
e

B
lin

d

Clip-FlanT5-xl 63.67 56.47 47.94 64.58 65.62 59.66 47.76 39.59 31.54 42.03 51.95 42.57
Clip-FlanT5-xxl 61.63 57.99 48.24 64.86 66.82 59.91 42.04 39.85 30.08 42.18 50.90 41.01
InstructBLIP 60.82 64.59 59.56 73.90 73.27 66.43 43.67 43.15 39.95 47.94 52.55 45.45
Llava-v1.5-7b 57.14 51.14 42.13 65.01 65.92 56.27 42.04 35.53 28.45 45.23 52.70 40.79
ShareGPT4v-7b 56.73 52.03 44.19 66.71 68.17 57.57 40.82 36.42 30.99 46.30 54.20 41.75

V
Q

A
Sc

or
e Clip-FlanT5-xl 80.82 89.85 96.85 83.29 90.09 88.18 72.24 86.68 95.34 77.67 85.74 83.53

Clip-FlanT5-xxl 83.27 94.67 97.64 88.98 94.74 91.86 74.69 88.96 95.94 82.15 88.29 86.01
InstructBLIP 78.37 91.62 96.73 84.57 84.68 87.19 60.00 83.38 93.77 76.32 74.02 77.50
Llava-v1.5-7b 74.29 87.56 95.10 80.58 80.33 83.57 57.14 78.43 91.53 70.41 68.17 73.14
ShareGPT4v-7b 80.82 93.15 97.88 86.98 89.64 89.69 66.94 83.25 94.37 75.11 74.62 78.86
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H Qualitative Results

We perform qualitative analysis to inspect examples from SUGARCREPE++ dataset, where majority
of models fail to dissociate semantics from lexical composition. In this section, we highlight the
results of our qualitative analysis.

H.1 Both Image-Text Task (ITT) and Text-Only Task (TOT) Fail

In this subsection, we provide examples where majority of vision-language models failed in both
the image-text task and the text-only task. These examples demonstrate cases where both the text
encoder and vision encoder of VLMs were ineffective in encoding semantics. Figure 8 shows such
examples from each subset of SUGARCREPE++ dataset.

Swap Object 
P1: A street light in front of a colorful train on a bridge. 

P2: A colorful train is on a bridge with a street light in front of it. 

N: A colorful train in front of a street light on a bridge.

Swap Attribute 
P1: There are two electronic devices on top of the laptop. 

P2: The laptop is positioned below the two electronic devices. 

N: There are electronic devices on top of the two laptops. 

Replace Object 
P1: Kitchen view with brick framework around the sink and by the oven 

P2: The sink and oven are surrounded by a brick framework in the kitchen view. 

N: Kitchen view with brick framework around the stove and by the oven. 

Replace Attribute 
P1: Two pieces of hard luggage are seen here. 

P2: A couple of pieces of hard luggage are visible in this location. 

N: Two pieces of soft luggage are seen here. 

Replace Relation 
P1: The black and white photograph of a classroom of schoolchildren is a bit out of focus 
on the right side of the picture. 

P2: The photograph of a classroom of schoolchildren is slightly blurred on the right side 
of the image. 

N: The black and white photograph of a classroom of schoolchildren is a bit out of focus 
on the left side of the picture. 

Figure 8: Examples from each subset of SUGARCREPE++ dataset where majority of VLMs failed
both the image-text task (ITT) and the text-only task (TOT).
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H.2 Image-Text Task (ITT) Pass and Text-Only Task (TOT) Fail

In this subsection, we provide examples where the majority of vision-language models (VLMs)
failed in text-only task (TOT) but were successful in image-text task (ITT), indicating that the vision
encoders were able to represent semantics more effectively than text encoders for these examples.
Figure 9 shows such examples from each subset of SUGARCREPE++ dataset.

Swap Object 
P1:A  close up of a dog with a car in the back. 

P2: A car in the background of a close-up photo of a dog. 

N: A close up of a car with a dog in the back.

Swap Attribute 
P1: A yellow cat is sitting on a green blanket. 

P2: The green blanket is positioned beneath the yellow cat. 

N: A green cat is sitting on a yellow blanket.

Replace Object 
P1:A pan with carrots, apples, meat, and potatoes. 

P2: The pan contains meat, carrots, potatoes and apples. 

N: A pan with carrots, apples, meat, and squash. 

Replace Attribute 
P1: A kitchen has a plain white fridge in the corner. 

P2: The fridge which is plain and white is positioned in the corner of the kitchen. 

N: A kitchen has a fancy white fridge in the corner. 

Replace Relation 
P1: Street signs going in every direction in front of a yellow building. 

P2: Street signs pointing in all directions in front of a yellow building. 

N: Street signs going in every direction behind a yellow building. 

Figure 9: Examples from each subset of SUGARCREPE++ dataset where majority of VLMs passed
the image-text task (ITT) and failed the text-only task (TOT).
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H.3 Text-Only Task (TOT) Pass and Image-Text Task (ITT) Fail

In this subsection, we provide examples where majority of vision-language models (VLMs) failed in
the image-text task (ITT) but succeeded in the text-only task (TOT). These examples demonstrate
cases where the text encoders of VLMs were more effective at encoding semantics than their vision
encoders. Figure 10 presents examples from each subset of SUGARCREPE++ dataset.

Swap Object 
P1: An old television set is displaying an old computer game in front of two bookshelves. 

P2: An old television set is positioned in front of two bookshelves and displaying an old     
computer game. 

N: Two old bookshelves are displaying an old computer game in front of a television set.

Swap Attribute 
P1: A person riding skis down a snow covered slope. 

P2: A person is descending a snow-covered slope while riding skis. 

N: A person covered in snow skis down a slope. 

Replace Object 
P1: A plaster external wall with multiple old paper images attached. 

P2: An external wall made of plaster, adorned with several old paper images. 

N: A wooden door with multiple old paper images attached. 

Replace Attribute 
P1: A donut with a cup of coffee and an ornate napkin holder 

P2: A cup of coffee along with an ornate napkin holder, and a donut. 

N: A donut with a cup of coffee and a minimalist napkin holder. 

Replace Relation 
P1: A person sitting on a bed looking at a book. 

P2: A person looking at a book while sitting on a bed. 

N: A person leaning against a bed looking at a book. 

Figure 10: Examples from each subset of SUGARCREPE++ dataset where majority of VLMs passed
the text-only task (TOT) and failed the image-text task (ITT).

I Additional Statistics for SUGARCREPE++

I.1 Vera and Grammar Scores of SUGARCREPE++

Hsieh et al. [29] proposed an experiment based on Vera and Grammar scores to determine if
language biases (e.g., fluency/grammar) can be exploited to “solve” the image-text matching
task. We repeated this experiment on SUGARCREPE++ and visualized the score gaps (e.g.,
0.5× (Vera(P1) + Vera(P2))− Vera(N) ) in Figure 11. For an ideal dataset that cannot be solved
by exploiting language bias, we should observe that both Grammar/Vera score gaps are centered
around zero. Accordingly, we confirm that both SUGARCREPE++ as well as SUGARCREPE cannot
be solved by exploiting language biases. We also provide numerical scores in Table 20.

36



Table 20: Comparison between SUGARCREPE++ and previous dataset in terms of Vera, Grammar,
and VLM performance (averaged across 15 variants of CLIP)

Dataset Category Random VERA Grammar VLMs

ARO

VG-Relation 50 61.71 59.55 50.53
VG-Attribution 50 82.59 58.38 61.03
COCO-Order 50 59.81 74.33 29.59
Flickr30K-Order 50 63.52 76.26 35.93

VL-CheckList
Object 50 82.48 57.95 86.48
Attribute 50 73.99 52.35 68.53
Relation 50 85.72 68.5 70.7

SUGARCREPE
Replace 50 49.43 50.00 82.33
Swap 50 49.30 50.00 64.82

SUGARCREPE++ (ours) Replace 33.33 36.50 33.30 76.06
Swap 33.33 40.00 34.60 46.33

Figure 11: Vera and Grammar score gap plots for SUGARCREPE and SUGARCREPE++. The
SUGARCREPE++ score gaps is computed as 0.5× (Vera(P1) + Vera(P2))− Vera(N).

I.2 MS-COCO Categories in SUGARCREPE++

We use images from MS-COCO [49, 10], which defines 91 "stuff" categories (amorphous, uncountable
elements like "sky," "water") and 80 "object" categories (countable, distinct items like "car," "dog"),
which are fully covered in SUGARCREPE++. We provide the distribution of these categories and
their super-categories and subcategories in Figure 12 . Additionally, we identify key topics in the
caption text using the BERTopic [25] package, and Figure 13 illustrates the top four topics across
different subsets of SUGARCREPE++.
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Figure 12: Distribution of MS-COCO [49, 10] super-categories and sub-categories in SUGAR-
CREPE++.

Figure 13: Topics in SUGARCREPE++ caption text, identified using BERTopic and illustrated
using word clouds. We identify and illustrate the common topics present in the caption text of
SUGARCREPE++ using word clouds. The different topics are represented vertically for all subsets of
SUGARCREPE++. We show the top four topics among the multiple topics identified by the BERTopic
package [25] across subsets in SUGARCREPE++.
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J Human Evaluation Instruction

Figure 14 provides the instructions given to the human evaluators along with the screen shot of the
interface used for human evaluation.

Figure 14: Human evaluation instructions and screenshot of the interface.

K Implementation Details

K.1 Hardware Information

We performed all the experiments in this paper using a single 40G NVIDIA A100 GPU available in
the Compute Canada Cluster.

K.2 Dataset Sources

We obtain all existing datasets from their original sources released by the authors. We refer readers to
these sources for questions regarding obtaining consent, dataset licenses and collection procedure.

• COCO [49]: We obtain COCO images from its official project website 5. We use the images
from the validation set 6

• SUGARCREPE [29]: We obtain SUGARCREPE captions and hard negatives from its official
website 7.

K.3 Model Sources

Evaluation of VLMs. Source and links of the VLMs detailed in Table 8 (in the Appendix of our
paper) is provided below.

5https://cocodataset.org/
6http://images.cocodataset.org/zips/val2017.zip
7https://github.com/RAIVNLab/sugar-crepe
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• CLIP [66]: ’ViT-B/32’ variant of CLIP available at HuggingFace Link

• RoBERTa-ViT-B-32 [76]: RoBERTa-ViT-B-32 trained on LAION dataset available at
HuggingFace Link

• ALIGN [35]: Model available at HuggingFace Link

• ALIP [95]: Model available at Google Drive Link

• FLAVA [78]: Model available at HuggingFace Link

• ALBEF [43]: ALBEF base model available in LAVIS

• BLIP [44]: BLIP base model available in LAVIS

• BLIP2 [45]: BLIP2 pretrained model available in LAVIS

• ViLT [38]: Pre-trained ViLT model available at HuggingFace Link

• SegCLIP [54]: Model available at Google Drive Link

• XVLM-4M [98]: XVLM base model trained using 4 Million samples available at Google
Drive Link

• XVLM-16M [98]: XVLM base model trained using 16 Million samples available at Google
Drive Link

• ViLT-ITR-COCO [38]: ViLT model finetuned for image-text retrieval task using MSCOCO
dataset. This model is available at HuggingFace Link

• XVLM-16M-COCO [98]: XVLM 16 Million model fine-tuned for image-text-retrieval
using MSCOCO dataset. This model is available at Google Drive Link

• XVLM-16M-Flickr [98]: XVLM 16 Million model fine-tuned for image-text-retrieval using
Flickr dataset. This model is available at Google Drive Link

• NegCLIP [97]: NegCLIP is trained on top of CLIP and the model link is available in Github
Link

• CLIP-SVLC [21]: Model is available at Google Drive Link

• BLIP-SGVL [26]: Model is available at Google Drive Link

• CyCLIP [23]: Model is available at Google Drive Link

Variants of CLIP: All the CLIP models’ weights for the different variants of CLIP reported in Table
10 in the appendix are obtained from OpenCLIP 8 framework [32].

Evaluated ULMs: Source and links of the ULMs detailed in Table 11 (in the Appendix of out paper)
is provided below.

• All-MiniLM-L6-v2 [91]: HuggingFace Link

• BGE-small-en-v1.5 [93]: HuggingFace Link

• All-MiniLM-L12-v2 [91]: HuggingFace Link

• GTE-small [47]: HuggingFace Link

• Angle-BERT-base-uncased-nli-en-v1 [46]: HuggingFace Link

• BGE-base-en-v1.5 [93]: HuggingFace Link

• Sentence-T5-base [62]: HuggingFace Link

• GTE-base [47]: HuggingFace Link

• Instructor-large [81]: HuggingFace Link

• Instructor-large (custom-ins)[81]: HuggingFace Link, we use ‘Represent the sentence for
spatial semantics’ as the custom instruction for Instructor-large (custom-ins) model.

• UAE-Large-V1 [46]: HuggingFace Link

• GTE-large [47]: HuggingFace Link

• All-RoBERTa-large-v1 [70]: HuggingFace Link

8https://github.com/mlfoundations/open_clip
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• Stsb-RoBERTa-large [70]: HuggingFace Link
• Sentence-T5-xl [62]: HuggingFace Link
• Angle-Llama-7b-nli-v2 [46]: HuggingFace Link

K.4 Reproducibility

We release SUGARCREPE++ dataset and the code to evaluate models on Github 9. The datasheet for
SUGARCREPE++ is provided in the Supplementary material and in the Appendix L. The HuggingFace
dataset croissant metadata is available here.

K.5 Author Statement

In case of violation of rights, the authors will bear all responsibility. We publicly release SUGAR-
CREPE++ dataset under the CC-BY-4.0 license.

K.6 License, Hosting and Maintenance Plan

We release the dataset publicly under the CC-BY-4.0 license on Github. The authors of this paper are
committed to support and maintain the dataset via our GitHub repository.

9https://github.com/Sri-Harsha/scpp
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L Datasheet

L.1 Motivation

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.

• The SUGARCREPE++ dataset was created to evaluate the sensitivity of vision language
models (VLMs) and unimodal language models (ULMs) to semantic and lexical
alterations. The SUGARCREPE dataset consists of (only) one positive and one hard
negative caption for each image. Relative to the negative caption, a single positive
caption can either have low or high lexical overlap. The original SUGARCREPE only
captures the high overlap case. To evaluate the sensitivity of encoded semantics to
lexical alteration, we require an additional positive caption with a different lexical
composition. SUGARCREPE++ fills this gap by adding an additional positive caption
enabling a more thorough assessment of models’ abilities to handle semantic content
and lexical variation.

Q2 Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

• The SUGARCREPE++ dataset is created by the authors of this paper (affiliated to
Faculty of Computer Science, Dalhousie University) to advance our understanding of
language models through a new evaluation dataset/task.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.

• We acknowledge the support provided by the Faculty of Computer Science, Dalhousie
University. Resources used in preparing this research were provided, in part, by
the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Province of Ontario, the Government of Canada through Canadian
Institute for Advanced Research (CIFAR), ACENET (ace-net.ca), the Digital Research
Alliance of Canada (alliancecan.ca) and companies sponsoring the Vector Institute
www.vectorinstitute.ai/#partners.

Q4 Any other comments?
• No.

L.2 Composition

Q5 What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.

• The instances from SUGARCREPE++ dataset represent images from MS-COCO [49]
and their associated text captions, negative captions from SUGARCREPE and newly
introduced positive captions.

Q6 How many instances are there in total (of each type, if appropriate)?
• In total, SUGARCREPE++ dataset consists of 4757 instances. The detailed statistics of

the subcategories are provided in https://github.com/Sri-Harsha/scpp.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe
how this representativeness was validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of instances, because instances
were withheld or unavailable).

• We included all possible instances from the SUGARCREPE dataset, except those which
are not suitable for our tasks.

Q8 What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
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• Each instance of SUGARCREPE++ dataset consists of an image associated with three
captions, where two captions describe the image and one caption does not.

Q9 Is there a label or target associated with each instance? If so, please provide a description.

• Each instance in SUGARCREPE++ consists of an image and a triplet of captions. The
label for a instance is whether each caption in the triplet correctly corresponds to the
image or not.

Q10 Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.

• No.

Q11 Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.

• To the best of our knowledge, there is no explicit relationship between the individual
instances.

Q12 Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.

• No, this is only an evaluation dataset.

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

• No, to the best of our knowledge there are no errors in SUGARCREPE++ dataset.
We have done human validation as described in detail in the paper, to minimize any
potential errors.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that might apply to a future user? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.

• The images used in our dataset are based on the MS-COCO [49] dataset, which
is freely and publicly available. MS-COCO dataset is released under the Creative
Commons Attribution 4.0 license as listed in their website https://cocodataset.
org/#termsofuse.

Q15 Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.

• No, we source part of our dataset, such as image-caption pairs from MS-COCO [49]
and negative captions from SUGARCREPE [29], both of which are open-source datasets.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

• The authors did not create any content to be explicitly offensive. However, there may
be instances that some users may find offensive. Since our SUGARCREPE++ dataset
depends on the MS-COCO [49] and SUGARCREPE [29], we encourage the reader to
refer to these datasets documentation for further details.

Q17 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

• No, the dataset does not relate to people, and is not focused on people (although people
may appear in the images and descriptions).

Q18 Does the dataset identify any subpopulations (e.g., by age, gender)?
• We explicitly do not identify any sub-populations.
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Q19 Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.

• Some images might contain identifiable individual faces.

Q20 Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.

• We do not provide any such data in our dataset that may be considered sensitive. All
images in our datasets are taken from publicly available datasets.

Q21 Any other comments?
• No

L.3 Collection Process

Q22 How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

• The data associated with each instance was acquired via our data generation process
(see Section 2 in our paper for a detailed description).

Q23 What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? How were these
mechanisms or procedures validated?

• Please see Section 2 of our paper for a complete description of our data generation and
extensive validation process.

Q24 If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

• Not applicable.

Q25 Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?

• The authors of this paper generated the textual content using generative AI as explained
in Section 2 of the paper, and manually validated it.

Q26 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

• The data was generated and evaluated over the course of approximately four months.

Q27 Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well
as a link or other access point to any supporting documentation.

• We corresponded with the Research Ethics Board (REB) at Dalhousie University. After
describing our project in detail, the REB confirmed that our project did not require
ethics approval as it did not meet the regulatory definition of human subjects research.
Therefore, we did not need to submit a formal application and were allowed to proceed
with our research without additional REB review.

Q28 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

• No, the dataset does not relate to people, and is not focused on people (although people
may appear in the images and descriptions).
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Q29 Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?

• Not applicable.

Q30 Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link
or other access point to, or otherwise reproduce, the exact language of the notification itself.

• Not applicable.

Q31 Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.

• Not applicable.

Q32 If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).

• Not applicable.
Q33 Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,

a data protection impact analysis) been conducted? If so, please provide a description
of this analysis, including the outcomes, as well as a link or other access point to any
supporting documentation.

• Not applicable.

Q34 Any other comments?
• No.

L.4 Preprocessing, Cleaning, and/or Labeling

Q35 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip the
remainder of the questions in this section.

• No preprocessing or labelling was done for creating the scenarios.

Q36 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.

• N/A.

Q37 Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.

• Not applicable

Q38 Any other comments?
•

L.5 Uses

Q39 Has the dataset been used for any tasks already? If so, please provide a description.

• No. SUGARCREPE++ is a new benchmark.

Q40 Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

• To the best of our ability, we will try to maintain links to derivative papers and systems
that use our dataset in the SUGARCREPE++ GitHub repository (https://github.
com/Sri-Harsha/scpp).

Q41 What (other) tasks could the dataset be used for?
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• The primary use case of our benchmark is to evaluate the sensitivity of VLMs and
ULMs to semantic and lexical alterations. While we did not explore this direction in
the present work, future work can use this dataset to evaluate any multi-modal system
that uses VLMs and ULMs as foundation blocks such as text-to-image retrieval models,
multi-modal chatbots, etc.

Q42 Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?

• Due to the reliance on the MS-COCO [49] and SUGARCREPE [29] datasets, SUGAR-
CREPE++ may contain offensive material, or biases present in these source datasets.
Users of SUGARCREPE++ should carefully consider how these limitations may impact
their potential use case and exercise discretion in their application of the dataset.

Q43 Are there tasks for which the dataset should not be used? If so, please provide a
description.

• The dataset should be avoided for a task if the limitations discussed above are unac-
ceptable or potentially problematic for the intended use case.

Q44 Any other comments?
• No.

L.6 Distribution and License

Q45 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

• Yes, SUGARCREPE++ dataset will be open-sourced and freely available.

Q46 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

• Our datset and code will be made available at the following Github link: https:
//github.com/Sri-Harsha/scpp

Q47 When will the dataset be distributed?
• October 31, 2024 and onward.

Q48 Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

• We release data under the CC-BY-4.0 license.
• Our code will be released under the Apache-2.0 license

Q49 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

• The dataset will be released under CC-BY-4.0 license.

Q50 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

• No.

Q51 Any other comments?
• No.
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L.7 Maintenance

Q52 Who will be supporting/hosting/maintaining the dataset?
• The authors will be supporting, hosting and maintaining the dataset and code through

GitHub.

Q53 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
• The authors can be contacted through their email. Alternatively, an issue can be created

on our GitHub repository.

Q54 Is there an erratum? If so, please provide a link or other access point.

• There is no erratum for our initial release. Errata will be documented as future releases
on the benchmark website.

Q55 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated
to users (e.g., mailing list, GitHub)?

• SUGARCREPE++ will be updated. Updates can be monitored through Github.

Q56 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.

• NA

Q57 Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.

• We will host older versions in GitHub, in case we release newer versions.

Q58 If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to other users? If so, please provide a
description.

• Users can extend and build on SUGARCREPE++ dataset as we did for SUGARCREPE.
We do not take responsibility for validating any extension of our work.

Q59 Any other comments?
• No.
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