
Published as a conference paper at ICLR 2023

PROVABLE MEMORIZATION CAPACITY OF TRANS-
FORMERS

Junghwan Kim
CSE Department
University of Michigan
Ann Arbor, MI
kimjhj@umich.edu

Michelle YoungJin Kim
CSE Department
Michigan State University
East Lansing, MI
kimmic16@msu.edu

Barzan Mozafari
CSE Department
University of Michigan
Ann Arbor, MI
mozafari@umich.edu

ABSTRACT

Quantifying memorization capacity is essential for understanding the expressive-
ness and generalizability of deep learning model architectures. However, the
memorization capacity of the Transformer architecture has yet to be explored.
In this work, we present the first study of the memorization capacity of the Trans-
former architecture. We prove that Transformers are capable of memorizing N
sequence-to-sequence mappings of length n with d-dimensional input tokens us-
ing Õ(d + n +

√
nN) parameters. Our theory supports memorization both with

and without permutation equivariance, utilizing positional encodings in the lat-
ter case. Building on our theory, we also analyze the memorization capacity of
Transformers in the sequence classification and language modeling tasks. To ver-
ify these theoretical findings, we conduct experiments analyzing the memorization
capacity of Transformers in the natural language domain.

1 INTRODUCTION

Transformer networks (Vaswani et al., 2017) have shown tremendous success in natural language
processing tasks (Devlin et al., 2019; Yang et al., 2019; Brown et al., 2020; Fedus et al., 2022),
rapidly becoming the standard architecture for natural language modeling. The success of Trans-
formers has also transferred to various other sequence and set modeling tasks, including image
recognition (Parmar et al., 2018; Dosovitskiy et al., 2021), semantic segmentation (Zheng et al.,
2021), video understanding (Akbari et al., 2021; Bertasius et al., 2021), reinforcement learn-
ing (Parisotto et al., 2020; Chen et al., 2021; Janner et al., 2021), 3D point cloud processing (Zhao
et al., 2021), protein structure prediction (Jumper et al., 2021), and automatic theorem proving (Polu
& Sutskever, 2020). Despite this success across various areas, the theoretical understanding of
Transformers lags behind that of standard fully-connected networks.

The major strength of Transformers is in their efficient scaling, which is enabled through parallel
token processing with parameter sharing and simple dot-product-based token interaction. Surpris-
ingly, even though the parameter sharing and simple token interaction impose constraints on the
function space of Transformers, Yun et al. (2020a) show that Transformers can approximate any
continuous function from input to output sequences. However, their result focuses on the function
approximation capacity with infinite precision, leaving the finite sample memorization capacity with
finite precision unexplored. We note that universal function approximation does not automatically
imply efficient memorization in terms of the number of parameters. Generalizing infinite precision
results to the finite precision case is not straightforward and may not be possible in some cases. For
example, Transformers are Turing complete only with infinite precision (Pérez et al., 2019), but not
with finite precision (Dehghani et al., 2019).

Understanding the memorization capacity of a model is critical for choosing an appropriate model
size. Practitioners often choose a model size with enough representation capacity to achieve zero
training loss (i.e., a size larger than memorization capacity). Moreover, the memorization capac-
ity has generalization implications, as observed in the double descent phenomena (Belkin et al.,
2019; Nakkiran et al., 2021). As the network size increases, generalization performance exhibits
a bias-variance tradeoff until the memorization is possible and then improves monotonically after-

1

Published as a conference paper at ICLR 2023

ward. Understanding the memorization capacity of Transformers requires answers to the following
questions: How large should the size and precision of the Transformer architecture be to enable
memorization of any given number of input-output sequence pairs? How does the memorization
capacity of Transformers differ for various problem settings in practical application scenarios?

In this paper, we answer these questions by proving that Transformers can memorize N sequences
of d-dimensional tokens with length n using Õ(d + n +

√
nN) parameters. Our proof constructs

permutation equivariant Transformers that can memorize all permutations of N input sequences. We
extend this construction to the memorization without permutation equivariance by adding positional
encodings. In addition, we derive the memorization capacity for sequence classification task from
our proposed theory.

The key technical component of our construction is efficient contextual mapping, which requires
only n self-attention layers. Our contextual mapping also applies to sparse-attention Transformers
making fewer assumptions on sparsity patterns than Yun et al. (2020b) and Zaheer et al. (2020). Fur-
thermore, we present the generalization of contextual mapping to function approximation settings,
vastly improving the parameter efficiency of attention layers compared to the selective-shifting-
based contextual mapping in Yun et al. (2020a).

Our main contributions are summarized as follows:

• We prove the memorization capacity of Transformers for sequence-to-sequence mappings
with and without permutation equivariance. We analyze the memorization capacity in other
standard task settings, such as sequence classification and language modeling.

• We show that the efficient contextual mapping presented in our theoretical analysis extends
to sparse attention settings and improves the function approximation results.

• We provide experiments validating the memorization capacity of Transformers for token
classification and sequence classification tasks.

1.1 RELATED WORKS

Memorization capacity. Characterizing the memorization capacity of neural networks has been
an active research area with a long history (Baum, 1988; Sontag, 1997; Huang & Babri, 1998;
Huang, 2003; Zhang et al., 2017; Yun et al., 2019; Bubeck et al., 2020; Vershynin, 2020; Rajput
et al., 2021; Park et al., 2021; Vardi et al., 2022). Recently, Park et al. (2021) constructed neural
networks with O(N2/3) parameters to memorize N data points. They bypass the Ω(N) lower
bound in Sontag (1997) by assuming a simple separation (i.e., ∥xi − xj∥ ≥ δ, ∀i ̸= j). Vardi
et al. (2022) improve further, showing that Õ(N1/2) parameters are sufficient. They also prove the
matching lower bound of Ω̃(N1/2) through the VC-dimension analysis.

Inspired by Park et al. (2021) and Vardi et al. (2022), our construction assumes a similar separation,
but it is between pairs of distinct tokens, not the whole sequence pairs. (See Definition 3.1 and
the discussion that follows the definition.) In addition, our construction uses the same pipeline of
projection, string matching, and bit extraction as in Vardi et al. (2022). However, we introduce an
additional critical step: efficient contextual mapping to complement projection by summarizing all
token information via self-attention layers.

In contrast to the extensive results on fully-connected networks, there are few studies on the memo-
rization capacity of specific modern architectures. Hardt & Ma (2017) show that the residual network
with ReLU activation and O(N) hidden neurons can memorize N data points under the separation
assumption. Nguyen & Hein (2018) show that the convolutional network with O(N) hidden neu-
rons can memorize N data points. To the best of our knowledge, there is no existing literature on
the memorization capacity of the Transformer architecture.

Transformer expressivity. Given the recent empirical success of Transformers observed across
multiple areas, several papers have studied the expressivity of Transformers. Yun et al. (2020a)
establish the first universal approximation theorem for Transformers, and the result is later extended
to sparse-attention Transformers (Yun et al., 2020b; Zaheer et al., 2020) and Transformers with
hard constraints (Kratsios et al., 2022). All these results study the function approximation but not

2

Published as a conference paper at ICLR 2023

the finite sample memorization as in our paper. We also note that our construction can reduce the
number of self-attention layers in the function approximation setting.

There are other lines of studies focusing on different aspects of the representation capacity of Trans-
formers. Some papers aim to characterize the representation capacity of a single self-attention layer.
Bhojanapalli et al. (2020) suggest that the small size of attention heads limits the rank of a self-
attention matrix. Dong et al. (2021) show that the rank of self-attention decays exponentially when
self-attention layers are composed without skip-connections or feedforward layers. Likhosherstov
et al. (2021) show that a fixed self-attention module can approximate any sparsity pattern.

Other papers investigate a tradeoff between width and depth since it is a crucial issue when scaling
Transformers. Levine et al. (2020) demonstrate the depth efficiency in modeling feature interaction
through the separation rank analysis of Transformers. Wies et al. (2021) identify the rank of the
input embedding matrix as a bottleneck for the network width’s contribution to expressivity.

Finally, Vuckovic et al. (2020) and Kim et al. (2021) study the Lipschitz smoothness of attention
operations. Edelman et al. (2022) derive the norm-based generalization bounds from the Lipschitz
smoothness of norm-bounded attention layers to analyze the inductive bias of attention layers. Wei
et al. (2021) study the expressivity of Transformers under the constraint of statistical learnability.
Our memorization study provides a complementary understanding of the capacity of Transformers.

2 PRELIMINARIES

This section establishes the notation and defines the Transformer architecture.

2.1 NOTATION

Denote the number of input-output pairs as N , the number of output classes as C, the token em-
bedding dimension as d, and the sequence length as n. We use Õ(·) to hide logarithmic factors and
O(·) to hide constant factors. We use σR to represent the ReLU activation function. We let σS and
σH be the softmax and hardmax operators, respectively. These operators take a matrix as an input,
apply softmax/hardmax columnwise, and output a column stochastic matrix of the same size.

For m ∈ N, we define [m] = {1, 2, · · · ,m}. We use |S| to denote the number of elements in
a set S. We denote a set or a function as an upper case caligraphic letter, a matrix by an upper
case bold letter and a vector by a lower case bold letter. We denote the standard unit vector with
all but i-th coordinates 0 as ei, the m dimensional vector with all coordinates 1 as 1m and the m
dimensional vector with all coordinates 0 as 0m. For a vector x, we represent its i-th entry as x[i]
and its Euclidean norm as ∥x∥. For a matrix X , we use X[i, j], X[i, :], and X[:, j] to represent
(i, j)-th entry, i-th row, and j-th column, respectively. We use ∥X∥F to represent the Frobenius
norm of the matrix X .

2.2 TRANSFORMER ARCHITECTURE

We define a Transformer N : Rd×n → R1×n of depth L as a composition of L Transformer blocks
with input and output embedding mappings:

N = Eout ◦ FL ◦ · · · ◦ F2 ◦ F1 ◦ Ein
where each Transformer block Fl : Rm×n → Rm×n is a sequence-to-sequence function consisting
of two subblocks: a self-attention subblock and a tokenwise feedforward subblock. The input em-
bedding block Ein : Rd×n → Rm×n and the output embedding block Eout : Rm×n → R1×n are
1-layer tokenwise linear mappings.

The self-attention subblock represents the interaction among tokens. Formally, given an input Z ∈
Rm×n, the self-attention subblock F (SA)

l with h heads and head size k computes

F (SA)
l (Z) = Z +

h∑
i=1

W
(O)
l,i

(
W

(V)
l,i Z

)
σS

[(
W

(K)
l,i Z

)T (
W

(Q)
l,i Z

)]
,

where W
(O)
l,i ∈ Rm×k and W

(V)
l,i ,W

(K)
l,i ,W

(Q)
l,i ∈ Rk×m are the weight matrices parametrizing

the self-attention subblock. We include a skip-connection in the self-attention subblock.

3

Published as a conference paper at ICLR 2023

The feedforward subblock processes each token independently in parallel by applying two feed-
forward layers. Given an input H ∈ Rm×n, the feedforward subblock F (FF)

l with dimension q
computes

F (FF)
l (H) = H +W

(2)
l σR

(
W

(1)
l H + b

(1)
l 1

T
n

)
+ b

(2)
l 1

T
n ,

where W
(2)
l ∈ Rm×q , b(2)l ∈ Rm, W (1)

l ∈ Rq×m and b
(1)
l ∈ Rq parametrize the feedforward

subblock. The feedforward subblock also includes a skip-connection.

Finally, the Transformer block composes two subblocks as

Fl(Z) = F (FF)
l (F (SA)

l (Z))

Unlike the original formulation in Vaswani et al. (2017), our definition excludes layer normalization
as Yun et al. (2020a) to simplify our analysis. Since layer normalizations mainly contribute to
optimization without much effect on expressivity, our definition still captures the representation
aspect of the Transformer architecture.

Since each Transformer block consists of a fixed number of layers even in the most fine-grained
sense, we use the number of blocks L as the depth of the network. We define the width of the
network as max{m, kh, q}1. The number of parameters is the number of non-zero weights in our
network. We note that the single parameter is reused n times for a sequence length n, but still is
counted as one parameter. The bit complexity of the network is the maximum bit complexity of its
weights, where the bit complexity of a weight is the number of bits required to represent it. We
adopt these definitions of the number of parameters and the bit complexity from the convention in
the VC dimension literature (Bartlett et al., 2019) and the recent paper on the optimal memorization
capacity of fully-connected networks (Vardi et al., 2022).

3 MEMORIZATION CAPACITY OF TRANSFORMERS

In this section, we describe the problem setting and present our main theorem on the memorization
capacity of the Transformer architecture. Then, we sketch the proof for our main theorem and
discuss the memorization capacity of Transformers in other standard task settings.

3.1 PROBLEM SETTING

We consider the memorization of N input-output sequence pairs (X(1),Y (1)), · · · , (X(N),Y (N))
where each input X(i) ∈ Rd×n is a sequence of n token vectors in dimension d. Each output
Y (i) ∈ [C]1×n is a sequence of n labels where each label Y (i)[1, k] is assigned to a token X(i)[:, k].
We define the context of each input sequence X(i) as V(i) = {v ∈ Rd : v = X(i)[:, k] for some k ∈
[n]}. We define the vocabulary V =

⋃
i∈[N] V(i) as the set of all tokens appearing in the input

sequences. Note that |V| ≤ nN .

As pointed out in Park et al. (2021) and Vardi et al. (2022), we must assume some conditions on
the dataset to bypass the lower bound in Sontag (1997) and memorize N data points with o(N)
parameters. We present a natural generalization of the separation condition defined in Vardi et al.
(2022) to sequence modeling settings.
Definition 3.1. Let r ≥ 1, 0 < δ ≤ 1. Let X(1), · · · ,X(N) ∈ Rd×n be N input sequences with
vocabulary V . We say that X(1), · · · ,X(N) are tokenwise (r, δ)-separated if

1. ∥v∥ ≤ r for all v ∈ V and
2. ∥v − v′∥ ≥ δ for all v,v′ ∈ V with v ̸= v′.

This condition requires (1) each token to have a bounded norm and (2) each pair of distinct tokens
to be separated. We note that the tokenwise separation is a stronger condition than the separation of
input sequences2. However, the condition better captures many practical settings where the number
of tokens in the vocabulary is much smaller than the number of input sequences.

1We recall that m is the embedding dimension, h is the number of attention heads, k is the attention head
size, and q is the feedforward dimension.

2When X(1), · · · ,X(N) ∈ Rd×n are distinct and (r, δ)-separated, then (1) ∥X(i)∥F ≤ r
√
n for i ∈ [N]

and (2) ∥X(i) −X(j)∥F ≥ δ for i, j ∈ [N] with i ̸= j.

4

Published as a conference paper at ICLR 2023

For the permutation equivariant mappings, we need the following label consistency condition.

Definition 3.2. Let (X(1),Y (1)), · · · , (X(N),Y (N)) ∈ Rd×n × [C]1×n be N input-output pairs
of sequences. We say that (X(1),Y (1)), · · · , (X(N),Y (N)) are consistently labeled if

X(i)[:, k] = X(i)[:, l] implies Y (i)[1, k] = Y (i)[1, l]

for every i ∈ [N] and k, l ∈ [n].

We emphasize that we impose this condition only on the memorization with permutation equivari-
ance but not on the memorization without permutation equivariance3. The condition implies that
two identical tokens appearing in the same context should have the same label. Consider a permu-
tation equivariant mapping F : Rd×n → R1×n and an input sequence X ∈ Rd×n. Define X ′ by
swapping two tokens X[:, k] and X[:, l] in X . Then, we have F(X)[1, k] = F(X ′)[1, l] due to the
permutation equivariance. However, if two tokens X[:, k] and X[:, l] were identical, then X = X ′

and consequently F(X)[1, k] = F(X)[1, l].

3.2 MAIN RESULTS

We now present our main theorem on the memorization capacity of Transformers.

Theorem 3.1. Let N, d, n, C ∈ N and r ≥ 1, 0 < δ ≤ 1. Let (X(1),Y (1)), · · · , (X(N),Y (N)) ∈
Rd×n × [C]1×n be N input-output sequence pairs of sequences where input sequences are distinct
and tokenwise (r, δ)-separated.

1. (With permutation equivariance) Suppose that contexts V(i) are distinct and sequences are
consistently labeled. Then, there exists a Transformer network N : Rd×n → R1×n such that

N (X(i)P) = Y (i)P

for every i ∈ [N] and for every permutation matrix P ∈ Rn×n.

2. (Without permutation equivariance) There exists a Transformer network N : Rd×n → R1×n

and positional encoding E ∈ Rd×n such that

N (X(i) +E) = Y (i)

for every i ∈ [N].

In both cases, the Transformer N has width 16 (m = 8, h = k = 1 and q = 16), depth

O

(
n+

√
nN log(nN) +

√
nN

log(nN)
·max{logC, logR}

)
and bit complexity bounded by

O

(
log d+

√
nN

log(nN)
·max{logC, logR}

)
where we denote R := 8000r2δ−2dn5N6.

Theorem 3.1 shows that Õ(d + n +
√
nN) parameters are enough to memorize N sequence-to-

sequence mapping of length n with token dimension d since the initial embedding layer has d pa-
rameters and the rest layers have a constant number of parameters. We provide the proof sketch in
Section 3.3 and the full proof in Appendix A.
Remark 3.2. Extensions to real vector outputs. Some application scenarios of Transformers re-
quire real vector outputs. As proposed in Park et al. (2021) and Vardi et al. (2022), extension to real
scalar values is easily achievable by using O(1ϵ) classes when the output has a bounded range. More
concretely, we partition the output range into ϵ-length intervals and match each class to one partition
to perform regression with error ϵ per token. This replaces logC in Theorem 3.1 with log(1ϵ).

3The general sequence-to-sequence mappings do not satisfy the condition. For example, the same word
appearing multiple times in a sentence may have different meanings.

5

Published as a conference paper at ICLR 2023

Similarly, extension to vector outputs is possible when the output has a bounded domain. Suppose
that we aim to minimize the tokenwise L2 distances in dimension p. We partition the output range
into ϵ√

p -length cubes and match each class to one cube. Then, we use O
(
(
√
p

ϵ)p
)

classes to perform
regression with error ϵ per token. This construction replaces logC in Theorem 3.1 with p log(pϵ).

Remark 3.3. Large width and fixed bit complexity. Theorem 3.1 uses fixed width and large bit
complexity to minimize the number of parameters. However, a common approach to scaling Trans-
formers is to increase width (Levine et al., 2020) while using the same number of bits per param-
eter. Using a similar argument as Vardi et al. (2022), we extend Theorem 3.1 to the cases with a
larger width and with bounded bit complexity. When the larger width is allowed, Transformers of
width O(nN/L2), depth Õ(n + L) and bit complexity Õ(L) memorize the same dataset for some
L ≤

√
nN . When the bit complexity is bounded, Transformers of width O(1), depth Õ(n+nN/B)

and bit complexity Õ(B) memorize the same dataset for some B ≤
√
nN . We provide the formal

theorem and the proof in Appendix B.

Remark 3.4. Tightness in the order of bit counts. Suppose the token dimension d and the sequence
length n are both O(N). Theorem 3.1 shows that a Transformer memorizes N input-output sequence
pairs using Õ(

√
nN) parameters of bit complexity Õ(

√
nN), which sum up to Õ(nN) bits. Without

any additional assumption on a dataset, representing models that memorize all CnN possible labels4

for N input sequences requires Ω(nN) bits. Thus, Theorem 3.1 is tight upto logarithmic factors in
the order of bit counts.

Remark 3.5. Comparison against fully-connected ReLU networks. With a slight modification of
results in Vardi et al. (2022)5, fully-connected ReLU networks require Õ(dn+

√
nN) parameters.

• The dependence on the number of data points N is the same as Õ(
√
nN). However, for the

permutation equivariant case, Transformers memorize all permutations of each input sequence.
That is, Transformers are capable of memorizing at most n! times more data points at the cost
of reusing each parameter n times6.

• Our construction has a better dependence on d and n: O(d+n) for Transformers and O(dn) for
fully-connected ReLU networks. Transformers exploit the structure of sequence data through
parameter sharing. As a result, Transformers do not need O(dn) parameters to read all dn
values in the input sequence.

We note that this comparison is not completely fair because (1) our result makes a slightly stronger
assumption of the separation between tokens than the separation between whole input; and (2) fully-
connected networks are not designed for permutation equivariant datasets. However, the difference
in assumption affects the final bound only to the logarithmic terms. Furthermore, there is no known
result on the memorization capacity of other permutation equivariant architectures.

3.3 PROOF SKETCH

We outline the proof of Theorem 3.1. A more formal statement of each stage with detailed proof is
in Appendix A. Our proof adopts the approach from Vardi et al. (2022) and shares similar steps. We
discuss our technical novelty after sketching the main ideas of our proof.

Our proof constructs a Transformer in 4 stages. The first two stages assemble input values and en-
code as a ”contextual token id” that identify each token in the different context of sequence. We
ensure that the ”contextual token id” is permutation equivariant and that the ”contextual token id” is
uniquely assigned to each token in each context. Then, the last two stages map each ”contextual to-
ken id” to the corresponding label using the bit-extraction network adopted from Vardi et al. (2022).
We describe key ideas of each stage.

4There are C possible labels for n tokens in N sequences.
5We consider inputs as dn-dimensional flattened vectors and outputs as values from [Cn]. We choose a

different balancing point between stages 2 and 3 in their construction to balance the extra factors.
6A similar benefit of Transformers has been previously observed in the function approximation (Yun et al.,

2020a): the number of parameters is reduced by (n − 1)! times to successfully approximate permutation
equivariant functions.

6

Published as a conference paper at ICLR 2023

• Stage 1. Tokenwise Projection. We project each token vector to a scalar token id while
keeping distinct tokens well separated.

• Stage 2. Contextual Mapping. We compose a sequence id as a linear combination of token
ids. Weights of each id in the linear combination depend on the order of token id within each
sequence. The resulting sequence ids are permutation invariant. 7 We concatenate the token id
and the sequence id to obtain a contextual token id.

• Stage 3. String Lookup. We partition all nN contextual token ids into intervals, each con-
taining the same number of ids. We construct two encoding numbers for each interval by
concatenating all corresponding contextual token ids and token labels. Then, we find which
group the contextual token id falls into and retrieve the corresponding encoding numbers.

• Stage 4. Bit Extraction. We extract each contextual token id and token label from the encoding
numbers. If the extracted contextual token id agrees with the one composed in stage 2, then we
output the corresponding token label.

Our technical novelty in this proof is in (1) the implementation of the contextual mapping in stage 2
using self-attention subblocks and (2) generalizing stages 3 and 4 to incorporate skip connections.
Remark 3.6. Contextual mapping. The number of self-attention subblocks that our proof uses is
proportional to the length of the sequence n but independent of the number of data points N . This
requirement is in striking contrast to the selective-shifting-based contextual mapping from Yun et al.
(2020a), which requires

(
1
δ

)dn
layers for shifting each grid cell of side length δ. In the memorization

setting, we may remove layers for grid cells without any data point. But the selective-shifting-based
contextual mapping would still need nN self-attention subblocks, which alone is already larger
than the number of required layers in our result. In contrast, our efficient contextual mapping uses n
layers, improving all the above when δ,N > 1. 8 We showcase the benefit of our contextual mapping
in Appendix C. Specifically, we show that our contextual mapping are capable of incorporating
sparse self-attention settings with minimal parameter overhead. Moreover, we show that the same
idea of our contextual mapping can be applied in the function approximation setting.
Remark 3.7. Parameter contribution. In our construction, self-attention subblocks contribute only
O(n) parameters while feedforward subblocks contribute O(

√
nN). When n < N , most of the pa-

rameter count comes from feedforward subblocks. Although the self-attention layers play a critical
role in contextual mapping, we do not need many of them. This explains the model design in prac-
tice, where more than half of the parameters are in the tokenwise feedforward subblocks (Vaswani
et al., 2017; Devlin et al., 2019; Brown et al., 2020; Geva et al., 2021). Moreover, Mandava et al.
(2020) observes that the self-attention layers can be further reduced without much performance loss.

4 MEMORIZATION CAPACITY IN OTHER TASKS

In this section, we generalize Theorem 3.1 to analyze the memorization capacity for other standard
task settings. We consider sequence classification in Theorem 4.1, masked language modeling in
Theorem D.1 and autoregressive language modeling in Theorem D.2. Due to the limited space, for-
mal results on language modeling tasks and the proofs of the theorems are provided in Appendix D.

4.1 SEQUENCE CLASSIFICATION

In sequence classification, we assign a single label y(i) ∈ [C] for each input sequence X(i). We
present our theorem for sequence classification task.
Theorem 4.1. Let N, d, n, C ∈ N and r ≥ 1, 0 < δ ≤ 1. Let (X(1), y(1)), · · · , (X(N), y(N)) ∈
Rd×n × [C] be N input-output pairs of sequences where input sequences are distinct and tokenwise
(r, δ)-separated.

1. (With permutation invariance) Suppose that contexts V(i) are distinct. Then, there exists a
Transformer network N : Rd×n → R1×n such that

N (X(i)P)[1, k] = y(i)

7An appropriate choice of positional encoding bypasses permutation invariance by collecting token ids in
the position order. See the second part of Theorem 3.1 for the result and Section A.5 for the details.

8The most practical settings fall into this regime.

7

Published as a conference paper at ICLR 2023

for every i ∈ [N], k ∈ [n] and for every permutation matrix P ∈ Rn×n.

2. (Without permutation invariance) There exists a Transformer network N : Rd×n → R1×n and
positional encoding E ∈ Rd×n such that

N (X(i) +E)[1, k] = y(i)

for every i ∈ [N], k ∈ [n].

In both cases, the Transformer N has width 16 (m = 6, h = k = 1 and q = 16), depth

O

(
n+

√
N logN +

√
N

logN
·max{logC, logR}

)
and bit complexity bounded by

O

(
log d+

√
N

logN
·max{logC, logR}

)
where we denote R := 8000r2δ−2dn5N6.

Theorem 4.1 shows that Õ(d+n+
√
N) parameters are enough to memorize N sequence classifica-

tion examples of length n with token dimension d. Compared to the sequence-to-sequence mapping,
there is

√
n factor of saving in the last term.

4.2 LANGUAGE MODELING

We consider two language modeling tasks commonly used for pre-training Transformers: masked
language modeling and autoregressive language modeling. We consider the memorization of all
possible length n sequences obtainable from the given corpus of length T . The input is embedded
in the d-dimensional space while the output is mapped to one of V tokens in the dictionary.

The memorization of masked language modeling requires Õ(d+n+
√
nm+1mT) parameters (The-

orem D.1) while the memorization of autoregressive language modeling requires Õ(d + n +
√
T)

parameters (Theorem D.2). Compared to the autoregressive language modeling, the masked lan-
guage modeling has the additional factor nmm that comes from memorizing all masking patterns
separately and the factor n that comes from memorizing all masked tokens instead of one next token.
For more details on the settings and formal statement of the result, we refer to Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We complement our theory with experiments on real-world dataset. We train encoder-only Trans-
former models (Vaswani et al., 2017) on token classification task where each token is assigned a
label as in Theorem 3.1 and sequence classification task where each sequence is assigned a label as
in Theorem 4.1. We study the relationship between the memorized dataset size and the model size.

For token classification, we use 14,000 randomly selected examples among 14,041 training exam-
ples in the named entity recognition dataset from CoNLL-2003 (Tjong Kim Sang & De Meulder,
2003). For sequence classification, we use 50,000 randomly selected examples among 392,702
training examples in the MNLI dataset from GLUE benchmark (Wang et al., 2019).

We vary the model size through the embedding size m while fixing the number of layers as L = 6.
We fix the number of attention head as h = 12, the embedding to head size ratio as m/k = h = 12
and the feedforward to embedding size ratio as q/m = 4, as commonly done in practice. More
details on experiments are in the Appendix F.

5.2 RESULTS

Figure 1 shows heatmaps of training errors as the dataset size and the model size vary. There is
a clear trend that the training error is smaller (darker in color) for the smaller dataset size and the

8

Published as a conference paper at ICLR 2023

12 48 84 12
0

15
6

19
2

22
8

26
4

30
0

33
6

37
2

40
8

44
4

48
0

51
6

55
2

58
8

62
4

66
0

69
6

73
2

76
8

Model Embedding Size

1400

2800

4200

5600

7000

8400

9800

11200

12600

14000

D
at

as
et

 S
iz

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) Token Classification

96 192 288 384 480 576 672 768
Model Embedding Size

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

D
at

as
et

 S
iz

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Sequence Classification

Figure 1: Heatmaps of training errors. We show the color-coded training errors as the dataset
size and the model size vary. The dataset size is represented in the Y-axis while the model size is
represented in the X-axis as the embedding size. The training error tends to get better for the smaller
dataset size and the larger model size.

2000 4000 6000 8000 10000 12000 14000
Dataset Size

0.5

1.0

1.5

2.0

2.5

3.0

N
um

. P
ar

am
et

er
s

1e7

(a) Token Classification

10000 20000 30000 40000 50000
Dataset Size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
N

um
. P

ar
am

et
er

s
1e7

(b) Sequence Classification

Figure 2: The number of parameters required for memorization. We show the number of pa-
rameters (Y-axis) of the smallest model that achieves less than 0.005 training error for each dataset
size (X-axis). We observe a linear trend in the number of parameters with a subtle concavity as our
theory predicts, but only at the low data regime.

larger model size. To see the clearer relationship between model size and the dataset size, we plot in
Figure 2 the minimum model size that achieves less than 0.005 training error for each dataset size. In
general, there is a linear increase in the model size as the memorized dataset size increases. We also
observe a slight downward curvature (concavity) as our theory predicts, but only at the low dataset
size. We conjecture that the linear trend may be due to the fixed depth and bit complexity during the
experiments. See Remark 3.3 for the discussion of this bounded depth and bit complexity regime
and see Appendix B for the formal result in these regimes. Indeed, Theorem B.1 and Theorem B.2
predicts linear dependence of the model size in the dataset size.

6 CONCLUSIONS

In this paper, we prove that Transformers are capable of memorizing N length-n sequence-to-
sequence mappings with Õ(d+ n+

√
nN) parameters. We extend our theory to analyze the mem-

orization capacity of Transformers in other standard task settings. Our proof constructs a contex-
tual mapping with O(n) self-attention layers, which significantly improves the previously proposed
selective-shifting-based contextual mapping in terms of parameter efficiency. Finally, we provide
experimental results that verify our theory.

9

Published as a conference paper at ICLR 2023

REFERENCES

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing
Gong. Vatt: Transformers for multimodal self-supervised learning from raw video, audio and
text. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 24206–24221. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
cb3213ada48302953cb0f166464ab356-Paper.pdf.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019. URL http://jmlr.org/papers/v20/17-612.html.

Eric B Baum. On the capabilities of multilayer perceptrons. Journal of Complexity, 4(3):193–215,
1988. ISSN 0885-064X. doi: https://doi.org/10.1016/0885-064X(88)90020-9. URL https:
//www.sciencedirect.com/science/article/pii/0885064X88900209.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias-variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019. doi: 10.1073/pnas.1903070116. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.1903070116.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 813–824. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
bertasius21a.html.

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-
rank bottleneck in multi-head attention models. In Hal Daumé III and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 864–873. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/bhojanapalli20a.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Sebastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size
and size of the weights in memorization with two-layers neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 4977–4986. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
34609bdc08a07ace4e1526bbb1777673-Paper.pdf.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 15084–15097. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/
file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

10

https://proceedings.neurips.cc/paper/2021/file/cb3213ada48302953cb0f166464ab356-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cb3213ada48302953cb0f166464ab356-Paper.pdf
http://jmlr.org/papers/v20/17-612.html
https://www.sciencedirect.com/science/article/pii/0885064X88900209
https://www.sciencedirect.com/science/article/pii/0885064X88900209
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://proceedings.mlr.press/v139/bertasius21a.html
https://proceedings.mlr.press/v139/bertasius21a.html
https://proceedings.mlr.press/v119/bhojanapalli20a.html
https://proceedings.mlr.press/v119/bhojanapalli20a.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/34609bdc08a07ace4e1526bbb1777673-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/34609bdc08a07ace4e1526bbb1777673-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7

Published as a conference paper at ICLR 2023

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: pure
attention loses rank doubly exponentially with depth. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 2793–2803. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/dong21a.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and vari-
able creation in self-attention mechanisms. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
5793–5831. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
edelman22a.html.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022. URL http://jmlr.org/papers/v23/21-0998.html.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In International Confer-
ence on Learning Representations, 2017. URL https://openreview.net/forum?id=
ryxB0Rtxx.

Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer feedforward net-
works. IEEE Transactions on Neural Networks, 14(2):274–281, 2003. doi: 10.1109/TNN.2003.
809401.

Guang-Bin Huang and H.A. Babri. Upper bounds on the number of hidden neurons in feedforward
networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural
Networks, 9(1):224–229, 1998. doi: 10.1109/72.655045.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big se-
quence modeling problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 1273–1286. Curran Associates, Inc., 2021. URL https://proceedings.neurips.
cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5562–5571.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/kim21i.
html.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v139/dong21a.html
https://proceedings.mlr.press/v139/dong21a.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v162/edelman22a.html
https://proceedings.mlr.press/v162/edelman22a.html
http://jmlr.org/papers/v23/21-0998.html
https://aclanthology.org/2021.emnlp-main.446
https://openreview.net/forum?id=ryxB0Rtxx
https://openreview.net/forum?id=ryxB0Rtxx
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.mlr.press/v139/kim21i.html
https://proceedings.mlr.press/v139/kim21i.html

Published as a conference paper at ICLR 2023

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015. URL http://arxiv.org/abs/1412.6980.

Anastasis Kratsios, Behnoosh Zamanlooy, Tianlin Liu, and Ivan Dokmanić. Universal approxima-
tion under constraints is possible with transformers. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=JGO8CvG5S9.

Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. Limits to depth efficien-
cies of self-attention. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 22640–22651. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of self-
attention matrices. CoRR, abs/2106.03764, 2021. URL https://arxiv.org/abs/2106.
03764.

Swetha Mandava, Szymon Migacz, and Alex Fit-Florea. Pay attention when required. CoRR,
abs/2009.04534, 2020. URL https://arxiv.org/abs/2009.04534.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, dec 2021. doi: 10.1088/1742-5468/ac3a74. URL
https://doi.org/10.1088/1742-5468/ac3a74.

Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep CNNs. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3730–3739.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/nguyen18a.
html.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew Botvinick, Nicolas
Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 7487–7498. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/parisotto20a.html.

Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin. Provable memorization via deep neural net-
works using sub-linear parameters. In Mikhail Belkin and Samory Kpotufe (eds.), Proceedings of
Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine Learning
Research, pp. 3627–3661. PMLR, 15–19 Aug 2021. URL https://proceedings.mlr.
press/v134/park21a.html.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4055–4064. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/parmar18a.html.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGBdo0qFm.

Shashank Rajput, Kartik Sreenivasan, Dimitris Papailiopoulos, and Amin Karbasi. An expo-
nential improvement on the memorization capacity of deep threshold networks. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 12674–12685. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
69dd2eff9b6a421d5ce262b093bdab23-Paper.pdf.

12

http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=JGO8CvG5S9
https://proceedings.neurips.cc/paper/2020/file/ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf
https://arxiv.org/abs/2106.03764
https://arxiv.org/abs/2106.03764
https://arxiv.org/abs/2009.04534
https://doi.org/10.1088/1742-5468/ac3a74
https://proceedings.mlr.press/v80/nguyen18a.html
https://proceedings.mlr.press/v80/nguyen18a.html
https://proceedings.mlr.press/v119/parisotto20a.html
https://proceedings.mlr.press/v134/park21a.html
https://proceedings.mlr.press/v134/park21a.html
https://proceedings.mlr.press/v80/parmar18a.html
https://proceedings.mlr.press/v80/parmar18a.html
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=HyGBdo0qFm
https://proceedings.neurips.cc/paper/2021/file/69dd2eff9b6a421d5ce262b093bdab23-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/69dd2eff9b6a421d5ce262b093bdab23-Paper.pdf

Published as a conference paper at ICLR 2023

Eduardo D. Sontag. Shattering All Sets of ‘k’ Points in “General Position” Requires (k — 1)/2
Parameters. Neural Computation, 9(2):337–348, 02 1997. ISSN 0899-7667. doi: 10.1162/neco.
1997.9.2.337. URL https://doi.org/10.1162/neco.1997.9.2.337.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003, pp. 142–147, 2003. URL https:
//aclanthology.org/W03-0419.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. On the optimal memorization power of reLU neural
networks. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=MkTPtnjeYTV.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Roman Vershynin. Memory capacity of neural networks with threshold and rectified linear unit
activations. SIAM Journal on Mathematics of Data Science, 2(4):1004–1033, 2020. doi: 10.
1137/20M1314884. URL https://doi.org/10.1137/20M1314884.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of atten-
tion. CoRR, abs/2007.02876, 2020. URL https://arxiv.org/abs/2007.02876.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. CoRR, abs/2107.13163, 2021. URL https:
//arxiv.org/abs/2107.13163.

Noam Wies, Yoav Levine, Daniel Jannai, and Amnon Shashua. Which transformer architecture
fits my data? a vocabulary bottleneck in self-attention. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 11170–11181. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/wies21a.html.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/dbea3d0e2a17c170c412c74273778159-Paper.pdf.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020a. URL https://openreview.net/forum?
id=ByxRM0Ntvr.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and
Sanjiv Kumar. O(n) connections are expressive enough: Universal approximability of sparse

13

https://doi.org/10.1162/neco.1997.9.2.337
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://openreview.net/forum?id=MkTPtnjeYTV
https://openreview.net/forum?id=MkTPtnjeYTV
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1137/20M1314884
https://arxiv.org/abs/2007.02876
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2107.13163
https://proceedings.mlr.press/v139/wies21a.html
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dbea3d0e2a17c170c412c74273778159-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dbea3d0e2a17c170c412c74273778159-Paper.pdf
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr

Published as a conference paper at ICLR 2023

transformers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 13783–13794. Curran Asso-
ciates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
9ed27554c893b5bad850a422c3538c15-Paper.pdf.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17283–17297. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx&.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16259–
16268, October 2021.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu,
Jianfeng Feng, Tao Xiang, Philip H.S. Torr, and Li Zhang. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6881–6890, June 2021.

14

https://proceedings.neurips.cc/paper/2020/file/9ed27554c893b5bad850a422c3538c15-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ed27554c893b5bad850a422c3538c15-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://openreview.net/forum?id=Sy8gdB9xx&

Published as a conference paper at ICLR 2023

A PROOF OF THEOREM 3.1

Our proof of Theorem 3.1 consists of four stages as described in Section 3.3. We state and prove
the main lemma for each stage in the following subsections. Then, we combine all stages in the
end. The lemmas in each stage assumes permutation equivariance. We analyze how to circumvent
permutation equivariance through the positional encoding in a separate subsection.

A.1 STAGE 1: TOKENWISE PROJECTION

The main lemma for stage 1 is stated below.

Lemma A.1. Let N, d, n ∈ N and r ≥ 1, 0 < δ ≤ 1. Let X(1), · · · ,X(N) ∈ Rd×n be a set of N in-
put sequences that are distinct and tokenwise (r, δ)-separated. Denote r′ = 2⌈2n2N2

√
πdδ−1⌉⌈r⌉.

Then, there exists a network N1 : Rd×n → R1×n consisting of the input embedding block
and one tokenwise feedforward subblock with feedforward dimension q = 1 and bit complexity
⌈log(2rn2N2d

√
πδ−1)⌉ such that N1(X

(i)), i ∈ [N] are non-negative and tokenwise (2r′, 2)-
separated. Moreover, for i, j ∈ [N] and k, l ∈ [n],

N1(X
(i))[1, k] = N1(X

(j))[1, l] if and only if X(i)[:, k] = X(j)[:, l].

Proof. Our proof defines a vector u ∈ Rd such that sequences x(i) = uTX(i) ∈ R1×n, i ∈ [N] are
tokenwise (r′, 2)-separated and satisfy that, for i, j ∈ [N] and k, l ∈ [n],

x(i)[1, k] = x(j)[1, l] if and only if X(i)[:, k] = X(j)[:, l]

Then, we construct the network N1 with the required size and bit complexity that computes
N1(X) = uTX + r′1T

n .

Construction of u. Recall the definition of the vocabulary V =
⋃

i∈[N] V(i) = {v ∈ Rd : v =

X(i)[:, k] for some i ∈ [N], k ∈ [n]}. Note that |V| ≤ nN . We use Lemma E.1 on V to find ũ such
that

1

n2N2

√
8

πd
∥v − v′∥ ≤ 1

|V|2

√
8

πd
∥v − v′∥ ≤

∣∣ũT (v − v′)
∣∣ ≤ ∥v − v′∥

for every v,v′ ∈ V .

Let û ∈ Rd be a vector with each coordinate being the first ⌈log(n2N2d
√
π)⌉ bits of the corre-

sponding coordinate of ũ. We note that ∥û− ũ∥ ≤
√
d

2log(n2N2d
√

π)
= 1

n2N2

√
1
πd .

Define u = Sû with S = ⌈2n2N2
√
πdδ−1⌉ ≥ 2. We now check that x(i) = uTX(i), i ∈ [N] are

tokenwise (r′, 2)-separated with r′ = 2S⌈r⌉. Let i, j ∈ [N], k, l ∈ [n] with X(i)[:, k] ̸= X(j)[:, l]
and v,v′ ∈ V with v = X(i)[:, k],v′ = X(j)[:, l]. Then, we have∣∣∣x(i)[1, k]

∣∣∣ = ∣∣∣uTX(i)[:, k]
∣∣∣

= S
∣∣ûTv

∣∣
≤ S

(∣∣ũTv
∣∣+ ∣∣(û− ũ)Tv

∣∣)
≤ S

(
∥v∥+ 1

n2N2

√
1

πd
∥v∥

)
≤ 2S∥v∥
≤ 2Sr ≤ r′.

15

Published as a conference paper at ICLR 2023

We also have∣∣∣x(i)[1, k]− x(j)[1, l]
∣∣∣ = ∣∣∣uT (X(i)[:, k]−X(j)[:, l])

∣∣∣
= S

∣∣ûT (v − v′)
∣∣

≥ S
(∣∣ũT (v − v′)

∣∣− ∣∣(û− ũ)T (v − v′)
∣∣)

≥ S

(
1

n2N2

√
8

πd
∥v − v′∥ − 1

n2N2

√
1

πd
∥v − v′∥

)

≥ S
1

n2N2

√
1

πd
∥v − v′∥

≥ S
1

n2N2

√
1

πd
δ ≥ 2,

which also implies

x(i)[1, k] = x(j)[1, l] if and only if X(i)[:, k] = X(j)[:, l].

Construction of N1. We construct N1 as a composition of the input embedding block Ein :
Rn×d → R1×n and a tokenwise feedforward block F (FF) : R1×n → R1×n with a skip-connection.
We define Ein(X) = ûTX and

F (FF)(z) = z + (S − 1)σR(z + 2⌈r⌉1T
n) + 2⌈r⌉1T

n .

Then, we have

N1(X) = F (FF)(Ein(X))

= ûTX + (S − 1)σR(û
TX + 2⌈r⌉1T

n) + 2⌈r⌉1T
n

= ûTX + (S − 1)(ûTX + 2⌈r⌉1T
n) + 2⌈r⌉1T

n

= SûTX + 2S⌈r⌉1T
n = uTX + r′1T

n ,

where we removed the ReLU activation because ûTX + 2⌈r⌉1T
n have all positive values.

It is straightforward from the definition of F (FF) that the feedforward dimension of the network
is 1. Moreover, we can represent each coordinate of û with ⌈log(n2N2d

√
π)⌉ bits, the weights

in F (FF) with ⌈logS⌉ = ⌈log(2n2N2
√
πdδ−1)⌉ bits, and the biases in F (FF) with ⌈log 2r⌉ bits.

Thus, the bit complexity of the network N1 is ⌈log(2rn2N2d
√
πδ−1)⌉.

A.2 STAGE 2: CONTEXTUAL MAPPING

Before proceeding on to the stage 2, we reindex the tokens of each output from Lemma A.1. Due to
the permutation equivariance of the Transformer architecture, we may reorder tokens in any order
as we want without loss of generality.

For each i ∈ [N], we consider x(i) ∈ Rn as a vector and reindex as follows. Suppose that there
are ni unique tokens in X(i). Then, there are also ni unique values in x(i). We assign indices for
tokens so that the first ni tokens have ni unique values of x(i) in descending order:

x(i)[1] > x(i)[2] > · · · > x(i)[ni].

Then, we index the remaining redundant tokens in descending order:

x(i)[ni + 1] ≥ x(i)[ni + 2] ≥ · · · ≥ x(i)[n].

We note that the resulting vector x(i) is uniquely defined. That is, X(i) corresponds to one and only
one valid resulting vector x(i).

We need the following definition in this section.

Definition A.1. Let N,n ∈ N and r ≥ 1, 0 < δ ≤ 1. Let x(1), · · · ,x(N) ∈ Rn be N data instances.
We say that x(1), · · · ,x(N) are (r, δ)-separated if

16

Published as a conference paper at ICLR 2023

• ∥x(i)∥ ≤ r for all i ∈ [N] and
• ∥x(i) − x(j)∥ ≥ δ for all i, j ∈ [N] with i ̸= j.

We now state the main lemma for stage 2.

Lemma A.2. Let N,n, r′ ∈ N. Let x(1), · · · ,x(N) ∈ Rn be a set of N input sequences that are
non-negative and tokenwise (2r′, 2)-separated. Denote R′ = 4⌈2N2

√
πn⌉⌈r′⌉⌈

√
n⌉.

Then, there exists a network N2 : R3×n → R3×n consisting of 2n Transformer blocks with the
number of head h = 1, head size k = 1, feedforward dimension q = 4 and bit complexity
⌈log(2r′nN2

√
π)⌉ such that

N2

x(i)T

0T
n

0T
n

 =

 0T
n

0T
n

z(i)1T
n


where z(i) ∈ R, i ∈ [N] are (R′ + 1, 2)-separated.

Proof. Our proof defines a vector w ∈ Rn such that values z̃(i) = w[1 : ni]
Tx(i)[1 : ni] ∈ R, i ∈

[N] are (R′, 4)-separated where we denote the number of unique values in x(i) as ni. Then, we
construct the network N2 with the required size and bit complexity that computes

N2

x(i)T

0T
n

0T
n

 =

 0T
n

0T
n

z(i)1T
n


where z(i) approximates z̃(i) within 1 as ∣∣∣z(i) − z̃(i)

∣∣∣ ≤ 1.

Since we have ∣∣∣z(i)∣∣∣ ≤ ∣∣∣z̃(i)∣∣∣+ ∣∣∣z(i) − z̃(i)
∣∣∣ ≤ R′ + 1

for i ∈ [N] and∣∣∣z(i) − z(j)
∣∣∣ ≥ ∣∣∣z̃(i) − z̃(j)

∣∣∣− ∣∣∣z(i) − z̃(i)
∣∣∣− ∣∣∣z(j) − z̃(j)

∣∣∣ ≥ 4− 1− 1 = 2

for i, j ∈ [N] with i ̸= j, we conclude that z(i) ∈ R, i ∈ [N] are (R′ + 1, 2)-separated.

Construction of w. For i ∈ [N], we define x̃(i) ∈ Rn as a vector having the same values as x(i)

in the first ni coordinates and 0 in the rest. We use Lemma E.1 on x̃(1), x̃(2), · · · , x̃(N) to find w̃
such that

1

N2

√
8

πn
∥x̃(i) − x̃(j)∥ ≤

∣∣∣w̃T
(
x̃(i) − x̃(j)

)∣∣∣ ≤ ∥x̃(i) − x̃(j)∥

for every i, j ∈ [N].

Let ŵ ∈ Rd be a vector with each coordinate being the first ⌈log(nN2
√
π)⌉ bits of the corresponding

coordinate of w̃. We note that ∥ŵ − w̃∥ ≤
√
n

2log(nN2√
π)

= 1
N2

√
1
πn .

17

Published as a conference paper at ICLR 2023

Define w = P ŵ with P = ⌈2N2
√
πn⌉. We now check that z̃(i) = w[1 : ni]

Tx(i)[1 : ni] =
wT x̃(i), i ∈ [N] are (R′, 4)-separated. Let i, j ∈ [N] with i ̸= j. Then, we have∣∣∣z̃(i)∣∣∣ = ∣∣∣wT x̃(i)

∣∣∣
= P

∣∣∣ŵT x̃(i)
∣∣∣

≤ P
(∣∣∣w̃T x̃(i)

∣∣∣+ ∣∣∣(ŵ − w̃)T x̃(i)
∣∣∣)

≤ P

(
∥x̃(i)∥+ 1

N2

√
1

πn
∥x̃(i)∥

)
≤ 2P∥x̃(i)∥

= 2P

√√√√ n∑
k=1

∣∣∣x̃(i)
k

∣∣∣2
≤ 4Pr′

√
n ≤ R′.

and ∣∣∣z̃(i) − z̃(j)
∣∣∣ = ∣∣∣wT (x̃(i) − x̃(j))

∣∣∣
= P

∣∣∣ŵT (x̃(i) − x̃(j))
∣∣∣

≥ P
(∣∣∣w̃T (x̃(i) − x̃(j))

∣∣∣− ∣∣∣(ŵ − w̃)T (x̃(i) − x̃(j))
∣∣∣)

≥ P

(
1

N2

√
8

πn
∥x̃(i) − x̃(j)∥ − 1

N2

√
1

πn
∥x̃(i) − x̃(j)∥

)

≥ P
1

N2

√
1

πn
∥x̃(i) − x̃(j)∥

≥ P
1

N2

√
1

πn
· 2 ≥ 4.

Construction of N2. We construct N2 = F2n ◦ F2n−1 ◦ · · · ◦ F1 in n steps. Each step l ∈ [n]
consists of 2 Transformer blocks F2l−1,F2l : R3×n → R3×n.

First, we use Lemma E.2 to obtain a self-attention module F̃ (SA)
2l−1 : R1×n → R1×n that computes

a vector with all coordinates holding 1
2P

√
n

-approximation x̂max of xmax = maxi∈[n] x[i] given

x ∈ Rn. We extend F̃ (SA)
2l−1 to define a valid self-attention subblock F (SA)

2l−1 : R3×n → R3×n as

F (SA)
2l−1

xT

0T
n

zT

 =

xT

0T
n

zT

+

 0T
n

F̃ (SA)
2l−1 (x

T)
0T
n

 =

 xT

x̂max1
T
n

zT


for x, z ∈ Rn. The subblock F (SA)

2l−1 finds the 1
2P

√
n

-approximate maximum token id among the
first coordinate values and outputs in the second coordinate.

Next, we use Lemma E.3 to obtain a tokenwise feedforward module F̃ (FF)
2l−1 : R2×n → R1×n that

outputs r′ for tokens with the same value in two coordinates. We define a tokenwise feedforward
subblock F (FF)

2l−1 : R3×n → R3×n by extending F̃ (FF)
2l−1 so that, for x,y, z ∈ Rn,

F (FF)
2l−1

xT

yT

zT

 =

xT

yT

zT

−

2F̃ (FF)
2l−1 ([x,y]

T
)

0T
n

0T
n

 =

x̃T

yT

zT

 ,

where

x̃[i] =

{
x[i]− 2r′ if |x[i]− y[i]| < 1

2

x[i] if |x[i]− y[i]| > 1
.

18

Published as a conference paper at ICLR 2023

The subblock F (FF)
2l−1 compares the first two rows of the input and subtracts 2r′ from the first row

if two values are not separated. Since x[i] is bounded above by 2r′, the subtracted entries become
negative.

Since we do not need the self-attention subblock from F2l, we set all weights of F (SA)
2l to zero. We

define F (FF)
2l : R3×n → R3×n as

F (FF)
2l

xT

yT

zT

 =

xT

yT

zT

+

[
1 0
0 −1/P
0 ŵk

]
σR

[−eT1
PeT2

]xT

yT

zT


=

xT

yT

zT

+

[
1 0
0 −1/P
0 ŵk

]
σR

([
−xT

PyT

])

=

 xT + σR(−xT)
yT − σR(y

T)
zT + ŵkPσR(y

T)


=

 σR(x
T)

−σR(−yT)
zT + wkσR(y

T)

 ,

where P > 0 and wk = ŵkP are defined earlier. When y ≥ 0n, we can further simplify as

F (FF)
2l

xT

yT

zT

 =

 σR(x
T)

0T
n

zT + wky
T

 .

Let Z(i,l) = F2l ◦ F2l−1 ◦ · · · ◦ F1

x(i)T

0T
n

0T
n

 ∈ R3×n be the output of the l-th step when the

input is x(i) for l = 0, · · · , n. We show inductively that

Z(i,l)[1, k] =

{
x(i)[k] if l < ni and x(i)[k] < x(i)[l]

0 otherwise
,

Z(i,l)[2, k] = 0,

Z(i,l)[3, k] = w[1 : min{l, ni}]T x̂(i)[1 : min{l, ni}] =
min{l,ni}∑

j=1

w[j]x̂(i)[j]

(1)

for i ∈ [N], l, k ∈ [n], where x̂(i)[j] is 1
2P

√
n

-approximation of x(i)[j].

For l = 0, the conditions 1 hold for the input

x(i)T

0T
n

0T
n

. Suppose that the conditions 1 hold for

l = l̃ − 1. When l̃ > ni, the induction hypothesis implies that Z(i,l̃−1)[1, :] = 0T
n . Thus, we obtain

19

Published as a conference paper at ICLR 2023

the output as

F (FF)

2l̃
◦ F (FF)

2l̃−1
◦ F (SA)

2l̃−1

(
Z(i,l̃−1)

)
= F (FF)

2l̃
◦ F (FF)

2l̃−1
◦ F (SA)

2l̃−1

 0T
n

0T
n

Z(i,l̃−1)[3, :]


= F (FF)

2l̃
◦ F (FF)

2l̃−1

 0T
n

0T
n

Z(i,l̃−1)[3, :]


= F (FF)

2l̃

 −2r′1T
n

0T
n

Z(i,l̃−1)[3, :]


=

 0T
n

0T
n

Z(i,l̃−1)[3, :]

 .

When l̃ ≤ ni, the induction hypothesis implies that Z(i,l̃−1)[1, :] has non-zero entries among which
the largest value is x(i)[l̃]. Then, it follows that

F (FF)

2l̃
◦ F (FF)

2l̃−1
◦ F (SA)

2l̃−1

(
Z(i,l̃−1)

)
= F (FF)

2l̃
◦ F (FF)

2l̃−1
◦ F (SA)

2l̃−1


Z(i,l̃−1)[1, :]

Z(i,l̃−1)[2, :]

Z(i,l̃−1)[3, :]




= F (FF)

2l̃
◦ F (FF)

2l̃−1
◦ F (SA)

2l̃−1

Z(i,l̃−1)[1, :]
0T
n

Z(i,l̃−1)[3, :]


= F (FF)

2l̃
◦ F (FF)

2l̃−1

Z(i,l̃−1)[1, :]

x̂(i)[l̃]1T
n

Z(i,l̃−1)[3, :]


= F (FF)

2l̃

 x̃(i,l̃−1)T

x̂(i)[l̃]1T
n

Z(i,l̃−1)[3, :]



=

 σR

(
x̃(i,l̃−1)T

)
0T
n

Z(i,l̃−1)[3, :] +w[l̃]x̂(i)[l̃]1T
n


where x̂(i)[l̃] is 1

2P
√
n

-approximation of x(i)[l̃]. Here, x̃(i,l̃−1) denotes

x̃(i,l̃−1)[k] =

{
Z(i,l̃−1)[1, k]− 2r′ if |Z(i,l̃−1)[1, k]− x̂(i)[l̃]| < 1

2

Z(i,l̃−1)[1, k] if |Z(i,l̃−1)[1, k]− x̂(i)[l̃]| > 1

so

σR(x̃
(i,l̃−1)[k]) =

{
0 if |Z(i,l̃−1)[1, k]− x̂(i)[l̃]| < 1

2

Z(i,l̃−1)[1, k] if |Z(i,l̃−1)[1, k]− x̂(i)[l̃]| > 1
.

Since distinct tokens are separated by 2, 1
2P

√
n

-approximations of them are separated by 1. On the
other hand, since 1

2P
√
n
< 1

2 , the 1
2P

√
n

-approximation of the maximum element stays closer than 1
2 .

Consequently, σR(x̃
(i,l̃−1)T) is the same as Z(i,l̃)[1, :]. Thus, the conditions 1 hold and we conclude

our induction proof.

In the end of n steps, the output is Z(i,n) =

 0T
n

0T
n

z(i)1T
n

 with z(i) = wT x̂(i) where each entry of x̂(i)

1
2P

√
n

-approximates the corresponding entries of x̃(i). We check that z(i) approximates z̃(i) within

20

Published as a conference paper at ICLR 2023

1 as ∣∣∣z(i) − z̃(i)
∣∣∣ ≤ ∣∣∣wT x̂(i) −wT x̃(i)

∣∣∣
≤ ∥w∥∥x̂(i) − x̃(i)∥

≤ P∥ŵ∥
√
n

2P
√
n

≤ 1

2
(∥w̃∥+ ∥ŵ − w̃∥)

≤ 1

2

(
1 +

1

N2

√
1

πn

)
≤ 1.

Our construction of N2 involves 2n Transformer blocks. From Lemma E.2, the subblock F (SA)
2l−1

uses 1 head (h = 1) with head size 1 (k = 1) and bit complexity ⌈log
(
log(8n3/2r′P)

)
⌉ =

⌈log
(
log(16n2N2r′

√
π)
)
⌉. From Lemma E.3, the subblock F (FF)

2l−1 uses feedforward dimen-

sion 4 with bit complexity ⌈log 2r′⌉. The subblock F (FF)
2l uses feedforward dimension 2. All

weights in F (FF)
2l are either 0,±1, P,−1/P or ŵk. Since we represent each coordinate of ŵk

using ⌈log(nN2
√
π)⌉ bits, the bit complexity of F (FF)

2l is max{⌈logP ⌉, ⌈log(nN2
√
π)⌉} =

⌈log(2nN2
√
π)⌉. Thus, the network Ñ2 has 1 head (h = 1) with the head size 1 (k = 1), the

feedforward dimension 4 and the bit complexity ⌈log(2r′nN2
√
π)⌉.

A.3 STAGE 3: STRING LOOKUP

In stages 3 and 4, we map each token X(i)[:, k] to the corresponding label using both the token id
x(i)[k] from stage 1 and the sequence id z(i) from stage 2. Now that the token id x(i)[k] and the
sequence id z(i) hold enough information to identify the label, we process each token independently
using tokenwise feedforward blocks from now on. We first combine two ids into a single ”contextual
token” id and map to the corresponding token label in the last two stages. We adopt stages 2 and 3
in Vardi et al. (2022) to our architecture that involves skip-connections.

We can extend stage 2 by using extra dimension to pass x(i) from stage 1 without any additional
parameter. Then, after stage 2, the k-th token in the i-th sequence contains z(i) and x(i)[k], which
are enough to identify the corresponding label y(i)[k]. We note that 0 ≤ x(i)[k] ≤ 2r′ and

∣∣z(i)∣∣ ≤
R′ + 1 with r′, R′ > 6. We define a(i)[k] = (⌊z(i)⌋ + R′ + 1)(2r′ + 1) + ⌊x(i)[k]⌋ + 1 to be the
unique integer id for each token in each sequence. Then, we have

• 1 ≤ a(i)[k] < (2R′ + 3)(2r′ + 1) < 9r′R′ for i ∈ [N] and
•
∣∣a(i)[k]− a(j)[l]

∣∣ ≥ 2 for i, j ∈ [N], k, l ∈ [n] with V(i) ̸= V(j) or X(i)[:, k] ̸= X(j)[:, l].

We denote R = 9r′R′. Now, our goal is to map a(i)[k] ∈ [R] to y(i)[k] ∈ [C] using tokenwise
feedforward subblocks. We denote the number of distinct a(i)[k]’s as N ′ ≤ nN . We reindex each
of unique tokens and the corresponding label as ã(i) and ỹ(i) for i ∈ [N ′], respectively. Without loss
of generality, we supppose that 1 ≤ ã(1) < · · · < ã(N

′) < R.

Then, we partition N ′ contextual token ids into A groups of B ids. For each group g ∈ [A], we
construct two strings ug and wg . The binary string ug is a concatenation of B ids in the group g.
Each id is represented as an integer of ρ = ⌈logR⌉ bits. The binary string wg is a concatenation of B
labels corresponding to B ids in the group g. Each label is represented as an integer of γ = ⌈logC⌉
bits. Thus, ug and wg are strings of length ρB and γB, respectively.

We now state the main lemma for stage 3.

Lemma A.3. Let N ′, R ∈ N and 1 ≤ ã(1) < · · · < ã(N
′) < R to be distinct integer ids that identify

each token in each sequence. We suppose that
∣∣ã(i) − ã(j)

∣∣ ≥ 2 for i, j ∈ [N ′] with i ̸= j. Let
A,B, b ∈ N with A < N ′ and B = ⌈N ′

A ⌉. Let w1, · · · , wA ∈ N with the number of bits in their
binary representation at most b.

21

Published as a conference paper at ICLR 2023

Then, there exists a network N3 : R2 → R2 consisting of A feedforward blocks with skip-
connections every 2 layers, feedforward dimension q = 4 and bit complexity b + ⌈log(2R + 1)⌉
such that

N3

(
ã(i), 0

)
=
(
ã(i), w⌈ i

B ⌉

)
.

Proof. We construct N3 = FA◦FA−1◦· · ·◦F1 as a composition of A feedforward blocks Fl : R2 →
R2, l ∈ [A] where each feedforward block contains a single hidden layer and a skip-connection.

Let l ∈ [A]. We use Lemma E.4 to define F̃l : R2 → R1 such that F̃l(x) = wl if
x ∈

[
ã((l−1)·B+1), ã(l·B)

]
and F̃i(x) = 0 if x /∈

[
ã((l−1)·B+1) − 1

2 , ã
(l·B) + 1

2

]
where we regard

l ·B > N ′ to be N ′. We extend F̃l to define a valid feedforward block Fl as

Fl (x, y) = (x, y) +
(
0, F̃i(x)

)
=
(
x, y + F̃i(x)

)
.

Throughout the computation of N3, the first coordinate is the same across all blocks. For i ∈ [N ′],
ã(i) only activates one of F̃l, l ∈ [A]. In particular, F̃l(ã

(i)) = wl if l = ⌈ i
B ⌉ and F̃l(ã

(i)) = 0
otherwise. Thus, we get

N3

(
ã(i), 0

)
=
(
ã(i), w⌈ i

B ⌉

)
.

Our construction involves A feedforward blocks with skip-connections every 2 layers. From
Lemma E.4, feedforward dimension q = 4 and the bit complexity is b+ ⌈log(2R+ 1)⌉.

Remark A.4. We can extend the construction from Lemma A.3 to output multiple strings corre-
sponding to the same range without additional feedforward dimension. In particular, the first layer
in the construction of Lemma E.4 does not depend on w. Thus, we can reuse this four units with
different output weights to output additional strings corresponding to the same range. In stage 4, we
need 2 strings for each range.

A.4 STAGE 4: BIT EXTRACTION

We first define BINi:j(n) to be the substring of n with bits in places from i to j inclusive for
n, i, j ∈ N with i ≤ j. We now state the main lemma for stage 4.

Lemma A.5. Let B, ρ, γ ∈ N and u,w ∈ N. Suppose that the number of bits in binary representa-
tion of u and w are ρB and γB, respectively. We assume that∣∣BINρ·(i−1)+1:ρ·i(u)− BINρ·(j−1)+1:ρ·j(u)

∣∣ ≥ 2

for i, j ∈ [B] with i ̸= j.

Then, there exists a network N4 : R3 → R consisting of an output embedding block and
(max{ρ, γ} + 2)B + 2 feedforward blocks with skip-connections every 2 layers, feedforward di-
mension q = 16 and bit complexity 2max{ρ, γ}B such that

N4 (x, u, w) = BINρ·(i−1)+1:ρ·i(w),

if there exist i ∈ [B] such that x = BINρ·(i−1)+1:ρ·i(u).

Proof. We construct N4 = Fpost ◦ FB ◦ FB−1 ◦ · · · ◦ F1 ◦ Fpre in B steps with pre-processing
Fpre : R3 → R8 and post-processing Fpost : R8 → R. We define the pre-processing network as

Fpre(x, u, w) =

(
x,

u

2ρB
+

1

2ρB+1
,

u

2ρB
+

1

2ρB+2
, 0,

w

2γB
+

1

2γB+1
,

w

2γB
+

1

2γB+2
, 0, 0

)
and the post-processing network as

Fpost(z1, z2, · · · , z8) = z8.

22

Published as a conference paper at ICLR 2023

In each step l ∈ [B], Fl : R8 → R8 first implements two sub-networks Fu
l : R3 → R3 and

Fw
l : R3 → R3 in parallel on the middle 6 coordinates. Two sub-networks uses Lemma E.5 to

compute

Fu
l

ϕ(ρ(l−1))
(

u
2ρB

+ 1
2ρB+1

)
ϕ(ρ(l−1))

(
u

2ρB
+ 1

2ρB+2

)
0

 =

ϕ(ρl)
(

u
2ρB

+ 1
2ρB+1

)
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+2

)
BINρ(l−1)+1:ρl(u)


and

Fw
l

ϕ(γ(l−1))
(

w
2γB + 1

2γB+1

)
ϕ(γ(l−1))

(
w

2γB + 1
2γB+2

)
0

 =

ϕ(γl)
(

w
2γB + 1

2γB+1

)
ϕ(γl)

(
w

2γB + 1
2γB+2

)
BINγ(l−1)+1:γl(w)

 .

Then, Fl combines the result using two additional feedforward blocks as

x
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+1

)
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+2

)
BINρ(l−1)+1:ρl(u)
ϕ(γl)

(
w

2γB + 1
2γB+1

)
ϕ(γl)

(
w

2γB + 1
2γB+2

)
BINγ(l−1)+1:γl(w)

0


F1

l−−→



x
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+1

)
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+2

)
cl = F̃1

l (x, BINρ(l−1)+1:ρl(u))
ϕ(γl)

(
w

2γB + 1
2γB+1

)
ϕ(γl)

(
w

2γB + 1
2γB+2

)
BINγ(l−1)+1:γl(w)

0



F2
l−−→



x
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+1

)
ϕ(ρl)

(
u

2ρB
+ 1

2ρB+2

)
0

ϕ(γl)
(

w
2γB + 1

2γB+1

)
ϕ(γl)

(
w

2γB + 1
2γB+2

)
0

F̃2
l (cl, BINγ(l−1)+1:γl(w))


where F̃1

l uses Lemma E.3 to compute

F̃1
l (x, y) =

{
2γ if |x− y| < 1

2

0 if |x− y| > 1

and F̃2
l computes, for 0 ≤ y ≤ 2γ

F̃2
l (x, y) = σR(x− 2γ + y) =

{
y if x = 2γ

0 if x = 0
.

The resulting value in the last coordinate is BINγ(l−1)+1:γl(w) if |x− BINρ(l−1)+1:ρl(u)| < 1
2 and

0 if |x − BINρ(l−1)+1:ρl(u)| > 1. Therefore, the last coordinate throughout each step of N4 keeps
the value 0 until it finds x = BINρ(l−1)+1:ρl(u). When such l is found, the value is updated to
BINγ(l−1)+1:γl(w) as the requirement.

Finally, the parallel implementation of Fu
l and Fw

l requires max{ρ, γ} feedforward blocks, feed-
forward dimension 16 = 8 + 8 and bit complexity 2max{ρ, γ}B. Moreover, each of F1

l and F2
l

requires 1 feedforward block and bit complexity γ. The feedforward dimension of F1
l is 5 where

F̃1
l incurs 4 from Lemma E.3 and 1 additional unit wipes out the (positive) carried value in 4-th

coordinate from the skip-connection. The feedforward dimension of F2
l is 3 where F̃2

l incurs 1 and
2 additional units wipe out the carried values in 4-th and 7-th coordinates from the skip-connection.
In total, each step l ∈ [B] consists of max{ρ, γ} + 2 feedforward blocks with skip-connections,
feedforward dimension 16 and bit complexity 2max{ρ, γ}B.

The pre-processing network Fpre and the post-processing network Fpost can be implemented with 1
feedforward block, feedforward dimension at most 2 (to carry u and w or z8) and the bit complexity
at most max{ρ, γ}B + 2.

Thus, N4 consists of (max{ρ, γ}+2)B+2 feedforward blocks with skip-connections, feedforward
dimension 16 and bit complexity 2max{ρ, γ}B.

23

Published as a conference paper at ICLR 2023

A.5 POSITIONAL ENCODING

Consider the token id uTX(n) in stage 1. If we define the positional encoding as

E = r′u[n− 1, n− 2, · · · , 1, 0],
then we have

uT (X(n) +E) = uTX(n) + r′[n− 1, n− 2, · · · , 1, 0],
Since every element of uTX(n) are bounded above by r′, positional encoding enforces the decreas-
ing order used in stage 2 as the usual sequential order. Thus, the sequence id is no longer permutation
equivariant. The upper bound on the magnitude of token ids increases by a factor of n, but it only
affects parameter complexity and bit complexity logarithmically through R.

A.6 PROOF OF THEOREM 3.1

The final Transformer network combines all 4 stages as N = N4 ◦ N3 ◦ N2 ◦ N1 where N3 and
N4 applies the same function to each token independently. The mismatch in the embedding and
feedforward dimensions is easily resolved by using the maximum dimension required and set all
weights in the unused dimension to zero. We modify N3 to output both u⌈ i

B ⌉ and w⌈ i
B ⌉ as mentioned

in the Remark A.4. We summarize all stages:

1. N1 projects the input sequence X(i) ∈ Rd×n to the token ids x(i) ∈ Rn. This stage con-
sists of 1 feedforward block of dimension 1 and bit complexity ⌈log(2rn2N2d

√
πδ−1)⌉ ≤

log(r′
√
d).

2. N2 further projects the token ids x(i) ∈ Rn to the sequence id z(i) ∈ R permutation
equivariantly. This stage consists of 2n Transformer blocks of attention dimension 1, feed-
forward dimension 4 and bit complexity ⌈log(2r′nN2

√
π)⌉ ≤ log(R′).

3. N3 combines a token id and a sequence id to obtain the contextual token id and finds two
group strings. N ′ ≤ nN memorized contextual token ids are partitioned into A groups
of B ids so that N ′ ≤ AB. Two group strings are crafted as concatenations of contextual
token ids and corresponding labels in the group. This stage consists of A feedforward
blocks of dimension 8 and bit complexity ⌈max{logR, logC}⌉B + ⌈logR⌉+ 1.

4. N4 extracts the correct label from the crafted strings. This stage consists of (max{ρ, γ}+
2)B+2 feedforward blocks of dimension 16 and bit complexity 2⌈max{logR, logC}⌉B.

In total, the network N uses 1+2n+A+(max{ρ, γ}+2)B+2 = O(n+A+max{ρ, γ}B) Trans-
former blocks of dimension 16 and bit complexity log(r′

√
d)+log(R′)+⌈max{logR, logC}⌉B+

⌈logR⌉ + 1 + 2⌈max{logR, logC}⌉B = O(log d + ⌈max{logR, logC}⌉B). We note that
R = 9r′R′ ≤ 150r′2nN2 ≤ 8000r2n5N6dδ−2

Finally, we balance A and B as A =
√
nN log(nN) and B =

√
nN

log(nN) and conclude the proof of
Theorem 3.1.

B LARGE WIDTH AND FIXED BIT COMPLEXITY

In this section, we formally study the generalization of Theorem 3.1 in the case of large width
(Section B.1) and fixed bit complexity (Section B.2) from Remark 3.3. To simplify the argument,
we state and prove the result only for the case without permutation equivariance. The theorem for
the permutation equivariance case is straightforwardly obtained from our stated theorem.

B.1 LARGE WIDTH

We state and prove the theorem for large width.

Theorem B.1. Assume the same setting as in Theorem 3.1. Let L ≤
√
nN . There exists a Trans-

former network N : Rd×n → R1×n and positional encoding E ∈ Rd×n such that

N (X(i) +E) = Y (i)

24

Published as a conference paper at ICLR 2023

for every i ∈ [N]. In both cases, the Transformer N has width 16nN/L2 (m = 6nN/L2, h = k = 1
and q = 16nN/L2), depth

O

(
n+ L

√
log(L) + L

√
1

log(L)
·max{logC, logR}

)
and bit complexity bounded by

O

(
log d+ L

√
1

log(L)
·max{logC, logR}

)

where we denote R := 8000r2δ−2dn5N6.

Proof. Stages 1 and 2 are the same as the proof of Theorem 3.1. For stages 3 and 4, instead of
directly memorizing nN contextual token ids directly, we construct nN/L2 subnetworks where
each memorize L2 contextual token ids. By stacking subnetworks horizontally across width, we
obtain the result. We remark that the width is not increased for the self-attention layers which are
not used in the parallelized stages 3 and 4.

Theorem B.1 shows that, if depth is bounded above by Õ(L) with L > n, then Õ(d + n + nN/L)
parameters are enough to memorize N sequence classification examples of length n with token
dimension d. We count the number of parameters as linear in width instead of quadratic in width
because our construction uses parallel nN/L2 subnetworks without interaction among them.

B.2 FIXED BIT COMPLEXITY

We state and prove the theorem for fixed bit complexity.

Theorem B.2. Assume the same setting as in Theorem 3.1. Let B ≤
√
nN . There exists a Trans-

former network N : Rd×n → R1×n and positional encoding E ∈ Rd×n such that

N (X(i) +E) = Y (i)

for every i ∈ [N]. In both cases, the Transformer N has width 16 (m = 6, h = k = 1 and q = 16),
depth

O

(
n+

nN

B

√
log(B) +

nN

B

√
1

log(B)
·max{logC, logR}

)
and bit complexity bounded by

O

(
log d+B

√
1

log(B)
·max{logC, logR}

)

where we denote R := 8000r2δ−2dn5N6.

Proof. Stage 1 and 2 are the same as the proof of Theorem 3.1. For stage 3 and 4, instead of
directly memorizing nN contextual token ids directly, we construct nN/B2 subnetworks where
each memorize B2 contextual token ids. By stacking subnetworks vertically across depth, we obtain
the result.

Theorem B.2 shows that, if bit complexity is bounded above by Õ(B), then Õ(d + n + nN/B)
parameters are enough to memorize N sequence classification examples of length n with token
dimension d. We count the number of parameters as linear in width instead of quadratic in width
because our construction uses parallel nN/L2 subnetworks without interaction among them.

25

Published as a conference paper at ICLR 2023

C CONTEXTUAL MAPPING IMPLICATIONS

C.1 SPARSE ATTENTION TRANSFORMERS

This section shows how our result generalizes to sparse-attention Transformers. Sparse-attention
Transformers replaces self-attention subblocks with sparse counterparts. Let Al

k ⊂ [n] be the l-
th sparsity pattern of k-th token where k ∈ [n], l ∈ [p]. Given an input Z ∈ Rm×n, the sparse
self-attention subblock F

(SSA)
l with h heads and head size k computes

F
(SSA)
l (Z) = Z +

h∑
i=1

W
(O)
l,i

(
W

(V)
l,i ZAl

k

)
σS

[(
W

(K)
l,i ZAl

k

)T (
W

(Q)
l,i ZAl

k

)]
,

where ZAl
k

∈ Rm×|Al
k| denote the submatrix consisting of columns of Z in the index set Al

k.

Again, W (O)
l,i ∈ Rm×k and W

(V)
l,i ,W

(K)
l,i ,W

(Q)
l,i ∈ Rk×m are the weight matrices parametrizing

the sparse self-attention subblock.

We make the following assumption on the sparsity pattern, which is the last condition among three
conditions in Assumption 1 in Yun et al. (2020b). Thus, our assumption is strictly weaker.
Assumption C.1. (Relaxed version of Assumption 1 in Yun et al. (2020b)) Define a sequence of set
{St

k}t≥1 as
S1
k := A1

k,St
k :=

⋃
j∈A(t−1) mod p+1

k

St−1
j

We assume that the sparsity patterns {Al
k} satisfy that there exists a finite s ∈ N such that

s = min{u|Su
k = [n] for all k ∈ [n]}.

We provide the sparse-attention version of our main result.
Theorem C.1. Let N, d, n, C, s ∈ N and r ≥ 1, 0 < δ ≤ 1. Let
(X(1),Y (1)), · · · , (X(N),Y (N)) ∈ Rd×n × [C]1×n be N input-output pairs of sequences that
satisfies. Denote R := 8000r2δ−2dn5N6. Then, there exists a Transformer network F : Rd×n →
R1×n with width 16 (m = 6, h = k = 1 and r = 16), depth

O

(
ns+

√
nN logN +

√
nN

logN
·max{logC, logR}

)
and bit complexity bounded by

O

(
log d+

√
nN

logN
·max{logC, logR}

)
such that F (X(i)P) = Y (i)P for every i ∈ [N] and for every permutation matrix P ∈ Rn×n.

Proof. The stage 1, 3 and 4 are the same as the proof of Theorem 3.1. In stage 2, each step of N2 in
Lemma A.2 computes the maximum token id over the whole sequence using 1 self-attention layer.
Under Assumption C.1, we instead can compute the maximum token id over the allowed sparsity
pattern. Since the whole sequence is covered within a recursion of s consecutive sparsity patterns
and taking maximum is associative, repeating s self-attention layer will give the desired maximum
token id over the whole sequence again. Now, the other component in stage 2 works as before and
the resulting memorization is achieved in the same way. The only overhead in this approach is the s
times larger number of self-attention layers.

The simplicity of our contextual mapping enables easy generalization to the sparse attention. Since
the sparse attention Transformer only constrains the sparsity pattern in the self-attention subblock,
stages 1, 3 and 4 in our construction works without any modification. For the contextual mapping
in stage 2, we achieve the same memorization capacity with only s times more self-attention layers.
The number of parameters is Õ(d+ sn+

√
N).

26

Published as a conference paper at ICLR 2023

C.2 IMPROVED CONTEXTUAL MAPPING FOR FUNCTION APPROXIMATION

Our idea can be used to reduce the number of self-attention layers for the contextual mapping in
function approximation settings, too. We recall the formal definition of the contextual mapping as
follows.

Definition C.2. (Definition 3.1 in Yun et al. (2020a), Contextual Mapping) Consider a finite set
L ⊂ Rd×n. A map q : L → R1×n is a contextual mapping if the map satisfies the following:

1. For any L ∈ L, the n entries in q(L) are distinct.

2. For any L,L′ ∈ L with L ̸= L′, all entries of q(L) and q(L′) are distinct.

We state our improvement of the contextual mapping.

Theorem C.2. (Improved version of Lemma 6 in Yun et al. (2020a)) Consider the following subset
of Gδ = {0, δ, · · · , 1− δ}d×n:

G̃δ := {L ∈ Gδ|L:,i ̸= L:,j for all i ̸= j}.

Assume that n ≥ 2 and δ−1 ≥ 2. Then, there exist a function gc : R4×n → R4×n composed of
3n Transformer blocks with h = 1, k = 1 and q = 4 that employ the hardmax operator, vectors
w ∈ Rd,u ∈ R4, constants tl, tr ∈ R (0 < tl < tr), such that q(L) := uT gc(w

TL,wTL,0,0)
satisfies the following propeties:

1. For any L ∈ G̃δ , the entries of q(L) are all distinct.

2. For any L,L′ ∈ G̃δ such that L is not a permutation of L′, all entries of q(L), q(L′) are
distinct.

3. For any L ∈ G̃δ , all the entries of q(L) are in [tl, tr].

4. For any L ∈ G+
δ \ G̃δ , all the entries of q(L) are outside [tl, tr].

Proof. Since token embeddings are δ-discretized, we can concatenate each coordinate to obtain the
token id as in Yun et al. (2020a). Let w be the vector that represents such concatenation as a linear
operation. As in stage 2 of our proof for Theorem 3.1, we concatenate the token id in the decreasing
order of magnitude to obtain the sequence id in n steps. Then, we set u appropriately to obtain the
”contextual token id” or the concatenation of token id and sequence id in q(L). Then, the first three
conditions are easy to check. The first condition is trivially true because distinct token will have
distinct token id and consequently distinct contextual token id. The second condition is also true
because if L is not a permutation of L′, then their sequence ids should differ. The third condition is
true since a linear function in a compact region is bounded.

Consider the final condition. In any step of our efficient contextual mapping, when the maximum
token id is zero, there must be duplicate tokens in the input sequence. Conversely, if there are
duplicate tokens in the input sequence, the maximum token id should be zero at some steps of our
efficient contextual mapping. We may use one more feedforward block in each step of the efficient
contextual mapping to subtract the sequence id by M if such zero maximum token id is observed.
Here, M is the maximum value possible for the sequence id. Then, the sequence id will still be
negative in the end so q(L) will also be negative. Thus, the final condition is also true.

We highlight the difference in the architecture. The major difference is the number of Transformer
blocks used. We use 3n layers (linear in the sequence length) while Yun et al. (2020a) use δ−d + 1
layers (exponential in the embedding dimension). Since the sequence length and the embedding
dimension are of the same order in practice, our construction exponentially improves Lemma 6 in
Yun et al. (2020a). The minor difference in the architecture is the intermediate embedding dimension
(4 in ours and d in Yun et al. (2020a)) and the number of attention heads (1 in ours and 2 in Yun
et al. (2020a)).

27

Published as a conference paper at ICLR 2023

D OTHER TASKS

We provide the proof for Theorem 4.1 (Section D.1) and formal results on language modeling tasks.
We consider two language modeling tasks that are commonly used to pre-training Transformers:
masked language modeling (Section D.2) and autoregressive language modeling (Section D.3).

D.1 PROOF OF THEOREM 4.1

Stages 1 and 2 are the same as the proof of Theorem 3.1. Instead of classifying the contextual token
id, we can directly classify sequence ids in stages 3 and 4. Since there are N possible sequence id,
we replace nN with N in the parameter complexity from Theorem 3.1.

D.2 MASKED LANGUAGE MODELING

Let X ∈ Rd×T and Y ∈ [V]T be corpus data of T tokens represented as embedding vectors and
token ids, respectively. The corpus data is divided into P = T−n+1 sequences X(1), · · · ,X(P) ∈
Rd×n and Y (1), · · · ,Y (P) ∈ [V]n of length n by taking X(i) = X[:, i : i+n] and Y (i) = Y [i : i+
n]. Here, we use the slice index notation i : j for items from i (inclusive) to j (exclusive). We mask
m out of n tokens in the sequence with Q =

(
n
m

)
possible masking patterns M (1), · · · ,M (Q) ∈

{0, 1}n. We define the masked sequences M (j) ◦X(i) extracted from X as the sequence X(i) with
columns masked according to the pattern M (j).

We say that a Transformer network N : Rd×n → R1×n and positional encoding E ∈ Rd×n

memorizes masked language modeling of X,Y if

N (M (j) ◦X(i) +E) = Y (i)

for every i ∈ [P], j ∈ [Q].
Theorem D.1. Let T, d, n,m, V ∈ N and r ≥ 1, 0 < δ ≤ 1. Let X ∈ Rd×T ,Y ∈ [V]T be a
corpus data of T tokens represented as embedding vectors and token ids, respectively. Suppose that
the masked sequences extracted from X are distinct and tokenwise (r, δ)-separated.

Then, there exists a Transformer network N : Rd×n → R1×n and positional encoding E ∈ Rd×n

that memorizes masked language modeling of X,Y . The Transformer N has width 16 (m = 6,
h = k = 1 and q = 16), depth

O

(
n+

√
nPQ log(nPQ) +

√
nPQ

log(nPQ)
·max{log V, logR}

)
and bit complexity bounded by

O

(
log d+

√
nPQ

log(nPQ)
·max{log V, logR}

)
where we denote P = T − n+ 1, Q =

(
n
m

)
and R := 8000r2δ−2dn5P 6Q6.

Proof. We apply Theorem 3.1 to memorize PQ masked sequences M (j) ◦X(i).

D.3 AUTOREGRESSIVE LANGUAGE MODELING

Let X ∈ Rd×T and Y ∈ [V]T be a corpus data of T tokens represented as embedding vectors and
token ids, respectively. The corpus data is divided into P = T − n sequences X(1), · · · ,X(P) ∈
Rd×n and y(1), · · · , y(P) ∈ [V] of length n by taking X(i) = X[:, i : i + n] and y(i) = Y [i + n].
We call X(i) as the input sequences extracted from X .

We say that a Transformer network N : Rd×n → R1×n and positional encoding E ∈ Rd×n

memorizes autoregressive language modeling of X,Y if

N (X(i) +E) = y(i)

for every i ∈ [P].

28

Published as a conference paper at ICLR 2023

Theorem D.2. Let T, d, n,m, V ∈ N and r ≥ 1, 0 < δ ≤ 1. Let X ∈ Rd×T ,Y ∈ [V]T be a
corpus data of T tokens represented as embedding vectors and token ids, respectively. Suppose that
the input sequences extracted from X are distinct and tokenwise (r, δ)-separated.

Then, there exists a Transformer network N : Rd×n → R1×n and positional encoding E ∈ Rd×n

that memorizes autoregressive language modeling of X,Y . The Transformer N has width 16 (m =
6, h = k = 1 and q = 16), depth

O

(
n+

√
P logP +

√
P

logP
·max{log V, logR}

)
and bit complexity bounded by

O

(
log d+

√
P

logP
·max{log V, logR}

)

where we denote P = T − n and R := 8000r2δ−2dn5P 6.

Proof. We apply Theorem 4.1 to memorize P input sequences X(i).

E TECHNICAL LEMMAS

Here, we state technical lemmas that are used in our proofs.

Lemma E.1. (Lemma 13 from Park et al. (2021)) Let N, d ∈ N and x(1), · · ·x(N) ∈ Rd. Then, there

exists a unit vector u ∈ Rd such that 1
N2

√
8
πd∥x

(i) − x(j)∥ ≤ |uT (x(i) − x(j))| ≤ ∥x(i) − x(j)∥
for every i, j ∈ [N].

Lemma E.2. Let n ∈ N and r′, P > 1. Then, there exists a neural network F : R1×n →
R1×n consisting of a single softmax self-attention with 1 head, head size 1 and bit complexity
⌈log

(
log(8n3/2r′P)

)
⌉ such that F(xT) = c1T

n with xmax − 1
2P

√
n
≤ c ≤ xmax whenever x ∈ Rn

satisfies

• |x[i]| ≤ 2r′ for i ∈ [n] and
• x[i] ≤ xmax − 2 for i ∈ [n] with x[i] ̸= xmax,

where we denote xmax =
(
maxi∈[n] x[i]

)
.

Proof. When we have hardmax activation on the attention matrix, it is easy to construct the network
that satisfies the condition. Consider the following self-attention:

F(x) = 1 · (1 · x)σH

[
(1 · x)T (0 · x+ 1T

n)
]
= xσH

[
xT1T

n

]
=

(
max
i∈[n]

xi

)
1T
n .

Indeed, the output is exactly xmax and the bit complexity is 1 since all weights are either 0 or 1.

To approximate hardmax with softmax, we introduce some large factor t > 0 in the attention matrix.
Consider the following self-attention:

F(x) = 1 · (1 · x)σS

[
(t · x)T (0 · x+ 1T

n)
]
= xσS

[
txT1T

n

]
= c1T

n

where

c =

n∑
i=1

x[i]
exp(tx[i])∑n
j=1 exp(tx[j])

.

Since c is a convex combination of x[i]’s, it is easy to see that xmax upper bounds c. It suffices to
find t that satisfies the lower bound condition.

29

Published as a conference paper at ICLR 2023

Choose t = ⌈ 1
2 log(8n

3/2r′P)⌉. We lower bound the softmax weights on xmax as

pmax :=

∑
i:x[i]=xmax

exp(tx[i])∑n
i=1 exp(tx[i])

=

∑
i:x[i]=xmax

exp(tx[i])∑
i:x[i]=xmax

exp(tx[i]) +
∑

i:x[i]̸=xmax
exp(tx[i])

≥
∑

i:x[i]=xmax
exp(txmax)∑

i:x[i]=xmax
exp(txmax) +

∑
i:x[i]̸=xmax

exp(t(xmax − 2))

=
nmax

nmax + (n− nmax) exp(−2t)

=
1

1 + (n
nmax

− 1) exp(−2t)

≥ 1

1 + (n
nmax

− 1) 1
8n3/2r′P

≥ 1

1 + 1
8r′P

√
n

,

where nmax := |{i : x[i] = xmax}|. Now, we can lower bound c as

c ≥ xmaxpmax − 2r′(1− pmax)

= xmax − (xmax + 2r′)(1− pmax)

≥ xmax − 4r′ (1− pmax)

≥ xmax − 4r′

(
1− 1

1 + 1
8r′P

√
n

)

= xmax −
1

2P
√
n

1 + 1
8r′P

√
n

≥ xmax −
1

2P
√
n
.

This self-attention module only has 1 head with head size 1. All weights are either 0, 1 or t so the
bit complexity is ⌈log t⌉ ≤ ⌈log

(
log(8n3/2r′P)

)
⌉.

Lemma E.3. Let r′ ∈ N. Then, there exists a neural network F : R2 → R with 1 hidden layer,
width 4 and bit complexity ⌈log 2r′⌉ such that

F(x, y) =

{
r′ if |x− y| < 1

2

0 if |x− y| > 1
.

Proof. Consider the following neural network:

F(x, y) = [r′ −r′ −r′ r′]σR


2 −2
2 −2
2 −2
2 −2

[xy
]
+

 2
1
−1
−2




= r′ (σR(2x− 2y + 2)− σR(2x− 2y + 1)− σR(2x− 2y − 1) + σR(2x− 2y − 2)) .

It is straightforward to see that the network F computes the desired function. This network has 1
hidden layer and width 4. All parameters are either ±1,±2 or ±r′ so the bit complexity is ⌈log 2r′⌉.

Lemma E.4. Let a, b, w ∈ N with a < b. Then, there exists a neural network F : R → R with 1
hidden layer, width 4 and bit complexity ⌈logw⌉+ ⌈log(2b+ 1)⌉ such that

F(x) =

{
w if x ∈ [a, b]

0 if x /∈ [a− 1
2 , b+

1
2]

.

30

Published as a conference paper at ICLR 2023

Proof. Consider the following neural network:

F(x, y) = [w −w −w w]σR


222
2

x−

2a− 1
2a
2b

2b+ 1




= w (σR(2x− 2a+ 1)− σR(2x− 2a)− σR(2x− 2b) + σR(2x− 2b− 1)) .

It is straightforward to see that the network F computes the desired function. This network has
1 hidden layer and width 4. All parameters are either ±w, 2 or 2a − 1, 2a, 2b, 2b + 1 so the bit
complexity is ⌈logw⌉+ ⌈log(2b+ 1)⌉.

Lemma E.5. Let i, j, n, x, y ∈ N with i < j ≤ n. Denote ϕ(z) = σR(σR(2z) − σR(4z − 2)).
Then, there exists a neural network F : R3 → R3 consisting of j − i + 1 feedforward blocks with
skip-connections every 2 layers, feedforward dimension 8 and bit complexity 2n such that

F

ϕ(i−1)
(

x
2n + 1

2n+1

)
ϕ(i−1)

(
x
2n + 1

2n+2

)
y

 =

ϕ(j)
(

x
2n + 1

2n+1

)
ϕ(j)

(
x
2n + 1

2n+2

)
y + BINi:j(x)

 .

Proof. We construct F = Fj ◦ Fj−1 ◦ · · · ◦ Fi as a composition of j − i + 1 feedforward blocks
Fl : R2 → R2, i ≤ l ≤ j where each feedforward block contains a single feedforward layer with 8
hidden units and a skip-connection. In step l, the block Fl computesϕ(l−1)

(
x
2n + 1

2n+1

)
ϕ(l−1)

(
x
2n + 1

2n+2

)
y

 7→

ϕ(l)
(

x
2n + 1

2n+1

)
ϕ(l)

(
x
2n + 1

2n+2

)
y + 2j−lBINl(x)

 . (2)

Since we have

BINi:j(x) =

j∑
l=i

2j−lBINl(x),

the block computation in Equation 2 ensures that F computes the desired function.

Construction of Fl. To obtain Equation 2, we define the feedforward block Fl with a skip-
connection as

Fl

([
z1
z2
z3

])
=

[
z1
z2
z3

]
+

[
ϕ(z1)− z1
ϕ(z2)− z2
fl(z1, z2)

]
=

[
ϕ(z1)
ϕ(z2)

z3 + fl(z1, z2)

]
where

fl(z1, z2) = 2j−l

(
2n+1−lϕ(z2)− 2n+1−lϕ(z1) +

1

2

)
.

We first note that the triangle function ϕ can be implemented with one hidden layer as

ϕ(z) = σR(2z)− σR(4z − 2) + σR(2z − 2).

Also, we can implement identity function as

z =
1

2
σR(2z)−

1

2
σR(−2z).

Thus, the following 8 hidden units

σR (2z1) , σR (4z1 − 2) , σR (2z1 − 2) , σR (−2z1)

σR (2z2) , σR (4z2 − 2) , σR (2z2 − 2) , σR (−2z2)

are enough to represent Fl.

31

Published as a conference paper at ICLR 2023

We check Equation 2 as follows:

Fl

ϕ(l−1)
(

x
2n + 1

2n+1

)
ϕ(l−1)

(
x
2n + 1

2n+2

)
y

 =

 ϕ
(
ϕ(l−1)

(
x
2n + 1

2n+1

))
ϕ
(
ϕ(l−1)

(
x
2n + 1

2n+2

))
y + fl

(
ϕ(l−1)

(
x
2n + 1

2n+1

)
, ϕ(l−1)

(
x
2n + 1

2n+2

))


=

ϕ(l)
(

x
2n + 1

2n+1

)
ϕ(l)

(
x
2n + 1

2n+2

)
y + 2j−lBINl(x)


because

BINl(x) = 2n+1−lϕ(l)

(
x

2n
+

1

2n+2

)
− 2n+1−lϕ(l)

(
x

2n
+

1

2n+1

)
+

1

2
.

Finally, since all parameters are have the form 2k for some −1 ≤ k ≤ 2n, the bit complexity is
2n.

F EXPERIMENTAL SETUP

We use HuggingFace 9 PyTorch implementation of the BERT model for our experiments. All ex-
periments are conducted on an Nvidia Quatro RTX 5000, 16 GB memory GPU in a machine with
Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz.

As mentioned in the main paper, we use 14,000 random samples in the named entity recognition
dataset from CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) for token classification and
50,000 random samples in the MNLI dataset from GLUE benchmark (Wang et al., 2019) for se-
quence classification. For token classification, the task is to classify the named entity type for each
token among 9 possible classes. The sequence classification dataset aims to classify the relationship
between sentence pairs as 3 classes: entailment, contradiction, and neutral. We vary the dataset size
by randomly order examples and picking first p% for p = 10, 20, · · · , 100.

We vary the model size through the embedding size m, which is varied by 12 and 96 for token
and sequence classification tasks, respectively. As mentioned in the main paper, we fix the number
of layers as L = 6, the number of attention head as h = 12, the embedding to head size ratio as
m/k = h = 12 and the feedforward to embedding size ratio as q/m = 4, as commonly done in
practice.

We optimize using Adam optimizer (Kingma & Ba, 2015) with learning rate 0.00002, batch size
32 and dropout rate 10%. We train our models for 1,500 and 7,500 steps for token and sequence
classification, respectively. We determine the above number of steps to ensure that the training error
does not improve at least for the last 3 epochs.

For Figure 2, we choose the minimum size memorizing model as the smallest model that reaches the
training error 0.005. The maximum training errors of selected models are 0.00499 and 0.00450 for
token and sequence classification tasks, respectively. The average training errors of selected models
are 0.00464 and 0.00259 for token and sequence classification tasks, respectively.

9https://huggingface.co/

32

https://huggingface.co/

	Introduction
	Related works

	Preliminaries
	Notation
	Transformer architecture

	Memorization Capacity of Transformers
	Problem setting
	Main results
	Proof sketch

	Memorization Capacity in Other Tasks
	Sequence classification
	Language Modeling

	Experiments
	Experimental Setup
	Results

	Conclusions
	Proof of Theorem 3.1
	Stage 1: Tokenwise projection
	Stage 2: Contextual mapping
	Stage 3: String lookup
	Stage 4: Bit extraction
	Positional encoding
	Proof of Theorem 3.1

	Large Width and Fixed Bit Complexity
	Large width
	Fixed bit complexity

	Contextual Mapping Implications
	Sparse Attention Transformers
	Improved Contextual Mapping for Function Approximation

	Other Tasks
	Proof of Theorem 4.1
	Masked Language Modeling
	Autoregressive Language Modeling

	Technical Lemmas
	Experimental Setup

