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Abstract
We consider multiple senders with informational
advantage signaling to convince a single self-
interested actor to take certain actions. Gener-
alizing the seminal Bayesian Persuasion frame-
work, such settings are ubiquitous in computa-
tional economics, multi-agent learning, and ma-
chine learning with multiple objectives. The core
solution concept here is the Nash equilibrium of
senders’ signaling policies. Theoretically, we
prove that finding an equilibrium in general is
PPAD-Hard; in fact, even computing a sender’s
best response is NP-Hard. Given these intrinsic
difficulties, we turn to finding local Nash equi-
libria. We propose a novel differentiable neural
network to approximate this game’s non-linear
and discontinuous utilities. Complementing this
with the extra-gradient algorithm, we discover lo-
cal equilibria that Pareto dominates full-revelation
equilibria and those found by existing neural net-
works. Broadly, our theoretical and empirical
contributions are of interest to a large class of
economic problems.

1. Introduction
Bayesian Persuasion (BP) (Kamenica & Gentzkow, 2011)
has emerged as a seminal concept in economics and deci-
sion theory. At its heart, it is a principal-agent problem that
models an informed sender strategically revealing some in-
formation to affect the decisions of a self-interested receiver.
Both parties are assumed to be Bayesian and have distinct
utilities that depend on some realized state of nature, and the
action taken by the receiver. The sender privately observes
the state and can commit to selectively disclosing this infor-
mation through a randomized signaling policy. The receiver
updates their posterior belief based on the realized signal
and best responds with an optimal action for this belief. The
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sender’s goal is to maximize their utility by designing a
signaling policy that nudges the receiver toward decisions
preferred by the sender. This information design problem
has found widespread applicability in a myriad of domains
including recommendation systems (Mansour et al., 2015;
2016), auctions and advertising (Bro Miltersen & Sheffet,
2012; Emek et al., 2014; Badanidiyuru et al., 2018), social
networks (Candogan & Drakopoulos, 2020; Acemoglu et al.,
2021), and reinforcement learning (Castiglioni et al., 2020;
Wu et al., 2022).

The standard BP model is however significantly constrained
by a strong assumption: the presence of only one sender. In
the applications mentioned above and indeed more broadly
in settings like multi-agent learning (Balduzzi et al., 2018)
and machine learning with multiple objectives (Pfau &
Vinyals, 2016; Jaderberg et al., 2017), it is natural to have
multiple parties who wish to influence the receiver toward
their respective, possibly conflicting goals. As a demon-
strative example, consider two ride-sharing firms, Uber and
Lyft, and a dual-registered driver. While the driver is un-
aware of real-time demand patterns, both firms have access
to and can strategically signal this to the driver and influ-
ence them toward certain pick-ups. The platforms’ goals
however are not aligned, with each wishing to direct the
driver to their respective optimal pick-ups. The driver is
also self-interested and may prefer pick-ups that are on
the way home. Our work aims to study this tension in-
duced by multiple informed parties attempting to influence
a self-interested receiver’s decision-making, within the BP
paradigm. Crucially, while the sender-receiver relation still
outlines a sequential game, the interaction among the multi-
ple senders in our setting forms a simultaneous game, with
the resulting Nash Equilibrium (NE) being of core interest.

While this setup has been modeled in economic literature
Gentzkow & Kamenica (2017b); Ravindran & Cui (2022),
the multi-sender persuasion problem has not been formally
studied from a computational perspective and presents dis-
tinct challenges. In standard single-sender BP, the optimal
signaling policy for the sender can be computed efficiently
by a linear program (Dughmi & Xu, 2016), which no longer
holds in the multi-sender case where we need to compute
a sender’s best-responding signaling policy given others’
policies. We give a non-convex optimization program for
the best response problem (Proposition 2) and through an
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involved reduction, prove that computing best response is
in-fact NP-Hard in multi-sender persuasion games (Theo-
rem 3). For the equilibrium computation, we significantly
generalize a specific characterization from prior works to
show that a trivial equilibrium can be found easily under cer-
tain conditions, but it might offer poor utility to the senders
(Theorem 4). We then prove that finding an equilibrium in
general settings is PPAD-hard (Theorem 5). These computa-
tional hardness results are our main theoretical contribution.

The intrinsic difficulty of finding (global) equilibrium in
multi-sender persuasion motivates us to propose a deep-
learning approach to finding ϵ-local equilibria (no unilateral
deviation in a limited range is beneficial). This spiritually
straddles two bodies of work - the emergent area of differen-
tiable economics that builds a parameterized representation
for optimal economic design (Dütting et al., 2023), and the
rich literature on learning in games (Bowling, 2004; Bal-
duzzi et al., 2018; Azizian et al., 2020; Fiez et al., 2020;
Bai et al., 2021; Bichler et al., 2021; Haghtalab et al., 2022;
Goktas et al., 2023). Mirroring the obstacles encountered
in theoretical analysis, the non-differentiable and indeed
discontinuous nature of the utility functions (Proposition 1)
also pose hurdles to identifying even local equilibria. To
address this, we propose a novel end-to-end differentiable
network architecture that is expressive enough to model the
abrupt changes in utilities. Once trained, these networks
can complement algorithms like extra-gradient (Korpele-
vich, 1976; Jelassi et al., 2020) to locate ϵ-local NE. The
quality of the approximated utility landscape confirms the
superior expressive capacity of our networks. Further, we
demonstrate that this improvement helps to discover ϵ-local
NE that Pareto dominates the full-revelation equilibria (The-
orem 4) and the ϵ-local NE found in both synthetic and
real-world scenarios by existing continuous and discontin-
uous (Wang et al., 2023) networks. Our novel techniques
may be of independent interest for learning in general games
with discontinuous and non-linear utilities.

1.1. Additional Related Work

The study of Bayesian persuasion and its various iterations
has been extensively explored in the literature, as evidenced
by the comprehensive surveys of Dughmi (2017); Kamenica
(2019); Bergemann & Morris (2019). Among these, the
most closely aligned with our work are the investigations
involving multiple senders. The model of Gentzkow &
Kamenica (2017b) explores a scenario where senders can
arbitrarily correlate their signals, whereas Li & Norman
(2021) consider sequential senders who choose signaling
policies after observing those of previous senders. These
two models differ from ours wherein the senders send sig-
nals to the receiver independently and simultaneously condi-
tioning on the realized state. Further, they do not provide
significant computational insights. Ding et al. (2023) study

multi-sender information design in a special Pandora Box
setup which differs significantly from ours and is thus not
comparable.

Ravindran & Cui (2022) also study Bayesian persuasion
games featuring multiple independent and simultaneous
senders but assume that the senders have zero-sum utilities.
They show that with a sufficiently large signaling space,
the only Nash equilibrium is full revelation, wherein the
state of nature is fully revealed to the receiver. However,
many multi-sender persuasion games do not conform to a
zero-sum utility framework. Consequently, two important
structural questions arise from their work: (1) whether such
a full-revelation equilibrium exists under a limited signaling
space, and (2) whether multi-sender persuasion games with
general utility structures give rise to other types of equilibria
that extend beyond full revelation. We provides affirmative
answers to these queries, as delineated in Theorem 4.

Bayesian persuasion is subsumed within the broader
principal-agent model (Gan et al., 2024), a concept that
addresses a multitude of economics problems, including con-
tract design (Zhu et al., 2023) and Stackelberg games (Myer-
son, 1982). In economic theory, the notion of incorporating
multiple principals, analogous to senders in our context, has
been proposed to model a range of important settings (Wa-
terman & Meier, 1998; Hu et al., 2023). However, similar to
the existing work on multi-sender persuasion, these contribu-
tions typically retain a conceptual focus from an economic
perspective. Our work diverges by taking a computational
lens. We introduce rigorous hardness guarantees for the
best-response computation and equilibrium determination
and propose a novel deep learning approach for identifying
ϵ-local equilibria that may hold wider applicability.

2. Model
Preliminaries There are n senders {1, . . . , n} and a re-
ceiver. Let Ω be a finite set of possible states, with ω ∈ Ω
denoting an arbitrary one. All senders and the receiver share
a common prior distribution µ0 over the states Ω. We use
µ ∈ ∆(Ω) to denote a distribution over states. Receiver
takes some action a ∈ A whose utility depends on the
realized state ω, and is given by v : Ω × A → R. The
receiver’s utility can also be represented as an |Ω| × |A|
matrix V , with V [i, j] denoting the utility the receiver has
for action j at state i. The utility function of the jth sender
uj : Ω×A → R also depends on the realized state and the
receiver’s action. While the receiver only knows the prior,
senders privately observe the state realization ω ∼ µ0 and
can use this informational advantage to alter the receiver’s
belief and persuade it to take certain actions.

Persuasion We model the interaction between senders
and the receiver using the seminal Bayesian Persuasion
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Figure 1. Discontinuous utility functions in a multi-sender persuasion game with 2 senders, 2 signals, 2 actions, and 2 states. In each
subplot: the x-axis represents the probability of Sender1 transmitting Signal1 at State1, the y-axis shows the probability of Sender2
emitting Signal1 at State1, and the z-axis quantifies Sender2’s utility. Signaling strategies of both senders at State2 are set to
(0.5, 0.5) in the top row and to (0.2, 0.8) and (0.8, 0.2) in the bottom row. In each column, we show the groundtruth ex-ante utility, and
the approximation results achieved by our method, ReLU, and DeLU (Wang et al., 2023) networks, respectively.

(BP) framework. Senders can leverage their private observa-
tion of ω by strategically signaling the receiver. Formally,
letting S be a finite signal space, each sender j has an in-
dependent signaling policy πj(sj |ω) which specifies the
probability of sending signal sj ∈ S when the realized state
is ω. From the receiver’s perspective, it observes a joint
signal s = (s1, . . . , sn) sampled from the joint conditional
distribution π(s|ω) =

∏n
j=1 πj(sj |ω). While many works

on Bayesian persuasion assume the signal space |S| ≥ |A|
(Kamenica & Gentzkow, 2011; Dughmi & Xu, 2016), we
study the multi-sender problem in full generality (allowing
|S| < |A|), since in many settings, action space can be
arbitrarily large or even continuous (common in economic
literature), but signaling/communication space may be lim-
ited. Consistent with the classical BP model, we assume that
senders announce and commit to their signaling policies be-
fore observing state realizations. The receiver is considered
Bayesian rational, and upon signal realization, it updates its
belief about the state and takes a resulting optimal action
according to its utility. We denote the interaction between
senders and the receiver as a multi-sender persuasion game
and summarize it as follows:

• All senders simultaneously announce their signaling
policies π = (π1, . . . , πn).

• State ω ∼ µ0 is observed by senders but not the receiver.
• Each sender j simultaneously draws a signal sj ∼
πj(·|ω) to send to the receiver. For s = (s1, . . . , sn),
π(s|ω) =

∏n
j=1 πj(sj |ω) is the joint signal probability.

• After observing joint signal s, the receiver forms poste-

rior belief µs about the state (µs(ω) =
µ0(ω)π(s|ω)

π(s) for
every ω ∈ Ω) and takes an optimal action

a∗(µs) = argmax
a∈A

Eω∼µs v(ω, a).

• Each sender j obtains utility uj(ω, a
∗(µs)).

The senders attempt to use signaling to maximize their ex-
ante utility, described below.
Definition 1. The ex-ante utility for sender j under
joint signaling policy π = (πj ,π−j) is uj(π) =∑

ω∈Ω µ0(ω)
∑

s∈Sn π(s|ω)uj(ω, a
∗(µs)), where µs is

the posterior distribution induced by joint signal s and
policy π, and a∗(µs) is the receiver’s optimal (utility-
maximizing) action at belief µs.

The relationship between senders and the receiver forms a
multi-leader-single-follower game since senders reveal their
policies first and the receiver subsequently best responds to
joint signal realizations generated by these policies. While
the senders and the receiver have a sequential relationship,
the senders choose their signaling policies simultaneously.
Thus, we consider Nash equilibria among the senders:
Definition 2. A Nash equilibrium (NE) for the multi-sender
persuasion game is a profile of signaling policies π =
(π1, . . . , πn) such that for any sender j and deviating policy
π′
j , uj(π) ≥ uj(π

′
j ,π−j).

The equilibrium defined above is in fact a subgame perfect
equilibrium of the extensive-form game among the senders
and the receiver. We use the term “Nash equilibrium” to
emphasize the simultaneity of the senders’ interaction.
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3. Theoretical Results
We now look to theoretically understand the equilibrium
properties of the multi-sender persuasion game. We first
consider the canonical best response problem and show that
solving it, even approximately, is NP-Hard. We then ex-
tend and generalize a known equilibrium characterization
that relies on revealing maximal information to the receiver.
This equilibrium is generally not ideal for senders and is
possible only under certain conditions. Furthermore, in
the general case, we show that equilibrium computation
is PPAD Hard. Cumulatively, our strong intractability re-
sults together suggest that developing provably efficient
algorithms for finding global equilibria would be extremely
challenging in our setting.

3.1. Best Response

We first consider the best response problem for an sender;
namely, fixing other senders’ signaling schemes π−i, what
is the optimal signaling scheme πi that maximizes the ex-
ante utility ui(πi,π−i) of sender i? The best-response prob-
lem is essential to verifying whether a given joint signaling
scheme π = (π1, . . . , πn) is a Nash equilibrium. Further,
standard equilibrium solving techniques often rely on simu-
lating best response dynamics.

In normal-form games, fixing others’ strategies x−i, the
utility ui(xi,x−i) of a player is linear in xi, so the best
response problem can be solved by a linear program effi-
ciently. In persuasion, a sender’s signaling policy changes
the induced posteriors, which changes the optimal action the
receiver takes since the receiver maximizes expected utility.
Correspondingly, a sender’s utility function ui(πi,π−i) is
piece-wise linear with discontinuities corresponding to sig-
naling schemes wherein the mapping from signal realization
to optimal receiver actions changes. This is more generally
formalized in Proposition 1 (with proof in Appendix A.1).

Proposition 1 [Discontinuous Utility]. The sender’s utility
function ui(π) is discontinuous and piecewise non-linear
in (π1, . . . , πn). Fixing π−i, ui(πi,π−i) is discontinuous
and piecewise linear in πi.

Maximizing ui(πi,π−i) by enumerating all linear pieces
is infeasible because, by a rough estimate, the number of
linear pieces can be as large as O

(
(|S|n|A|2)|Ω||S|). Instead

of enumerating all O
(
(|S|n|A|2)|Ω||S|) linear pieces, we

design a continuous bi-linear program to solve the best
response problem (with proof in Appendix A.2).

Proposition 2 [Best Response Program]. Let ∆v(ω, a, a′)
≜ v(ω, a) − v(ω, a′) for actions a, a′. Then given others’
signaling schemes π−i, sender i’s best response can be
solved by the following optimization program with |Ω||S|+

|S|n|A| continous variables and O(|S|n|A|) constraints:

max
πi,y

∑
ω∈Ω

∑
s∈Sn

µ0(ω)π−i(s−i|ω)πi(si|ω)
∑
a∈A

ui(ω, a)ys,a

s.t. ∀ω :
∑
s

πi(si|ω) = 1 and ∀si, ω : πi(si|ω) ≥ 0

∀s :
∑
a∈A

ys,a = 1 and ∀s, a ∈ A : ys,a ∈ [0, 1]

∀s, a′ :
∑
ω∈Ω
a∈A

µ0(ω)π−i(s−i|ω)πi(si|ω)∆v(ω, a, a′)ys,a ≥ 0.

The ys,a ∈ {0, 1} in the above program means whether the
receiver takes action a given joint signal s, which can be
relaxed to the continuou range [0, 1]. Briefly, the program
above takes inspiration from the persuasion setting with
(1) a single sender and (2) |S| = |A|, where signals can
be interpreted as an action recommendation and optimal
signaling expressed as a linear program with an incentive
compatibility constraint to ensure that the receiver follows
the recommended action. In our setting, even if |S| = |A|,
the receiver observes joint signals of size |S|n and a single
sender cannot unilaterally specify the joint scheme; only the
marginal. Correspondingly, the program needs to resolve
the action taken by the receiver and becomes a bi-linear
optimization problem.

We next show that the best-response problem is NP-Hard,
even with just two senders. This means that the above
bi-linear program is not computationally tractable. This
is a key result in our work and rules out even additively
approximating to the best-response in polynomial time.

Theorem 3 [NP-hardness of Best Response]. It is NP-hard
to solve the best-response problem in multi-sender persua-
sion, even with additive approximation error 1

|Ω|6 and only
n = 2 senders (while |Ω| and |A| are large).

The proof (in Appendix A.3) is technical and based on a
non-trivial reduction from the NP-hard problem public per-
suasion with multiple receivers (Dughmi & Xu, 2017). Intu-
itively, each signal s−i from other non-responding senders
induces a different belief about the state. From the best-
responding sender’s perspective, this can be correspondingly
interpreted as facing multiple receivers with different prior
beliefs and needing to design a single signaling scheme πi

for all of them. With carefully crafted utilities, this prob-
lem can encode the public persuasion problem (Dughmi &
Xu, 2017), which involves multiple receivers with the same
belief but different utility functions. Our proof formally
establishes this connection, which leads to the NP-hardness
of our problem.

The NP-hardness of computing best response, however, does
not imply the hardness of equilibrium verification: i.e., de-
termining whether a given strategy profile of the senders
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constitutes a Nash equilibrium. We conjecture that the equi-
librium verification problem is Co-NP hard, whose formal
proof would be an intriguing direction for future work.

3.2. Equilibrium Characterization

A simple observation from previous works on multi-sender
Bayesian persuasion (Gentzkow & Kamenica, 2017b; Ravin-
dran & Cui, 2022) is, if for every state ω ∈ Ω there is a
unique optimal action for the receiver, then a simple equilib-
rium can be achieved by all senders fully revealing the state
- i.e. S = Ω and πi(si = ω|ω) = 1,∀i. Observe that this
reveals the exact state realization to the receiver and thus no
sender can unilaterally affect the receiver’s belief and thus
their action. However, for this equilibrium to exist, every
sender’s signal space must be as large as the state space
(|S| ≥ |Ω|), which is impractical if there are many states.
Theorem 4 relaxes this assumption, and shows that an equiv-
alent equilibrium exists under a much weaker assumption,

|S| ≥ min(|A|
1

n−1 , |Ω|
1

n−1 ), which can be easily satisfied
when there are many senders. The proof of the theorem
(in App. A.4) is constructive and builds a mapping between
signals and actions inspired by grey codes (Wilf, 1989).

Theorem 4 [Full-Revelation Equilibrium]. Suppose |S| ≥
min(|Θ|1/(n−1)|,A|1/(n−1), and for every state ω ∈ Ω
there is a unique optimal action for the receiver. Then,
the multi-sender persuasion game has an NE that fully re-
veals the optimal action for the realized state to the receiver.
This equilibrium, however, is not necessarily unique.

While the result above generalizes an explicit equilibrium
characterization to a much larger setting with limited signals,
the corresponding equilibrium is optimal for the receiver
and not necessarily the senders. Indeed, if the preferences of
the senders do not perfectly align with the receiver (which
is common and in-fact the premise behind persuasion), this
will not be beneficial for the senders. Further, the construc-
tion above is based on the assumption that for every state,
the receiver has a unique optimal action. This may not
hold in many scenarios, with receivers being indifferent be-
tween multiple actions. We show that in such scenarios and
thus the general case, finding an equilibrium is PPAD-Hard,
even with constant number of senders, states, and actions.
The proof (in App. A.5) relies on a reduction from finding
equilibrium in two-player games with binary utilities.

Theorem 5 [PPAD-Hardness]. In multi-sender persuasion
games that do not satisfy the condition “the receiver has a
unique optimal action for every state ω”, under some tie-
breaking rules, finding NE is PPAD-hard. This holds even if
n = 2, |Ω| = 2, |A| = 4 (while |S| is large).

4. Deep Learning for Local Equilibrium
The strong computational hardness results established in the
previous section motivate us to find methods to efficiently
calculate local Nash equilibrium, a strategy profile wherein
any small unilateral deviation cannot improve a player’s
utility. This has been promoted as an attractive solution
concept for a plethora of settings (Fiez et al., 2020; 2021;
Jin et al., 2020). In doing so, we also relax the assump-
tion of having access to the exact utility model and take a
sample-based approach popularized in the nascent literature
on differentiable economics. This is especially prescient
as it gracefully generalizes to settings where action space
is rich (or even continuous) and it may only be possible
to sample utilities for arbitrary policies. Correspondingly,
we introduce a computational framework based on deep
learning. It consists of a novel discontinuous neural network
architecture approximating the senders’ utility functions and
a local equilibrium solver running extra-gradients on the
learned discontinuous networks. We describe the learning
framework in detail and compare the found local NE against
those obtained by strong baseline network structures as well
as the full revelation solution (Theorem 4).

Definition 3 [ϵ-Local Nash Equilibrium]. An ϵ-local Nash
equilibrium for a multi-sender persuasion game is a profile
of signaling policies π = (π1, . . . , πn) such that for any
sender j and deviating policy π′

j ∈ {π′ | ∥π′ − πj∥ ≤ ϵ}, it
holds that uj(π) ≥ uj(π

′
j ,π−j).

4.1. Method

We aim to use the extra-gradient (Korpelevich, 1976)
method to find an ϵ-local NE. However, the major chal-
lenge in applying this, or indeed any other gradient-based
learning algorithm, is that the senders’ utility function is
discontinuous and non-differentiable in their signaling pol-
icy, as per Proposition 1. Conventional neural networks
well approximate continuous functions but are not expres-
sive enough to express discontinuous functions (Scarselli &
Tsoi, 1998). To solve this problem, we extend a fully con-
nected feedforward network with ReLU activation (Agarap,
2018) to learn a differentiable representation of discontinu-
ous functions. To describe our method, we first introduce
the activation pattern and the piecewise linearity of ReLU
networks.

ReLU networks Suppose there are L hidden layers. Layer
l has weights W (l) ∈ Rnl×nl−1 and biases b(l) ∈ Rnl .
n0 = d is the input dimension. The output layer has
weights W (L+1) ∈ Rd′×nL and biases b(L+1) ∈ Rd′

.
With input x ∈ Rd, we have the pre- and post-activation
output of layer l: h(l)(x) = W (l)o(l−1)(x) + b(l) and
o(l)(x) = σ

(
h(l)(x)

)
, where σ(x) = max{x, 0} is the

ReLU activation. For each hidden unit, the ReLU activation
status has two values, defined as 1 when pre-activation h
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Figure 2. Our method finds better ϵ-local Nash equilibrium than the baseline DeLU (Wang et al., 2023) and ReLU networks.

is positive and 0 when h is strictly negative. The activation
pattern of the entire network is defined as follows.

Definition 4 [Activation Pattern]. An activation pattern of
a ReLU network is a binary vector r = [r(1), · · · , r(L)] ∈
{0, 1}

∑L
l=1 nl , where r(l) is a layer activation pattern includ-

ing the activation status of each unit in layer l.

The activation pattern depends on the input x. Given an
activation pattern r(x), the ReLU network is a linear func-
tion (Croce et al., 2019)

h(L+1)(x) = M (L+1)x+ z(L+1),

where M (L+1) = W (L+1)(
∏L

k=1 R
(L+1−k)(x)W (L+1−k)),

z(L+1) = b(L+1)+
∑L

k=1(
∏L−k

j=0 W (L+1−j)R(L−j)(x))b(k),
and R(k) is a diagonal matrix with diagonal elements equal
to the layer k’s activation pattern r(k).

Previous work To introduce discontinuity, DeLU (Wang
et al., 2023) proposes to generate the bias of the last layer
b(L+1) by an auxiliary network that is conditioned on the
activation pattern r(x). The idea is that inputs with the
same r(x) come from a polytope that is the intersection of
half-spaces: D(x) = ∩l=1,··· ,L ∩i=1,··· ,nl

Γl,i, where Γl,i

corresponding to unit i of layer l defined as:

Γl,i =
{
y ∈ Rd|∆(l)

i

(
M

(l)
i y + z

(l)
i

)
≥ 0

}
. (1)

Here M (l)
i y+z

(l)
i is the output of unit i at layer l, and ∆

(l)
i

is 1 if h(l)
i (x) is positive, and is -1 otherwise.

In this way, different pieces D(x) has different biases, in-
troducing discontinuity at piece boundaries. However, since
inputs in the same piece share the same weights, DeLU
is a linear function in a piece and does not have enough
expressivity to represent the utility function in the multi-
sender persuasion games, which is piecewise non-linear
(Proposition 1).

Network architecture We enable a fully-connected net-
work to be piecewise Discontinuous and Non-Linear (DNL)
by dividing the network into a lower part and a higher part.
The lower part consists of the first K < L linear layers
and is a normal network with ReLU activation. During a
forward pass, we get the activation pattern

r(≤K) = [r(1), · · · , r(K)]

of this lower network and generate the weights and biases of
the higher part via a hyper-network g whose input is r(≤K).

Looking at the lower part, inputs with the same r(≤K) reside
in the intersection of half-spaces:

D(≤K)(x) = ∩l=1,··· ,K ∩i=1,··· ,nl
Γl,i,

with Γl,i defined in Eq. 1. By introducing the hyper-network,
inputs in D(≤K)(x) share a non-linear higher network.
Therefore, within this piece, the utility approximation can
be non-linear. Furthermore, different pieces have differ-
ent r(≤K), so the higher part can be different, introducing
discontinuity at boundaries.

Formally, we train a network fj(π; θj), parameterized by
θj , for each sender j to approximate its ex-ante utility (Def-
inition 1) under the joint signaling policy π. The input to
the lower part of fj is the joint signaling policy π. The
hyper-network g takes the activation pattern r(≤K)(x) of
the lower part as input and outputs {(W k, bk)}L+1

k=K+1 as
the weights and biases for layer K + 1 to L + 1. After
obtaining its weights and biases, the higher part then takes
the output of the lower part network as input and generates
an approximation of the ex-ante utility. It is worth noting
that K < L, and we have at least two linear layers at the
higher part, so that piecewise non-linearity can be ensured.
The whole network fj(π; θj) is end-to-end differentiable
and updated by the MSE loss function:

L(θj) = Eπ

(
[fj(π; θj)− uj(π)]

2
)
. (2)
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Figure 3. The ϵ-local Nash equilibria found by our method typically Pareto dominate the full revelation equilibria and improve the random
initial policies of extra-gradient by a large margin.
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Figure 4. Our network achieves lower approximation errors compared to baseline network structures.

To calculate this loss, we uniformly sample joint policies
π and obtain the corresponding ex-ante utility uj(π) by
running a game simulator.

Extra-gradient With fj as a differentiable representation
of the senders’ ex-ante utility, we can run extra-gradients
to find ϵ-local NE. We directly parameterize the signaling
policy πj of sender j by a learnable matrix ϕj residing in
Φ ⊂ R|Ω|×|S|. A matrix in Φ has all of its elements in the
range [0, 1], and each row summed to 1.

The extra-gradient update can be written as

(extrapolation) ϕτ+1/2
j = pΦ(ϕ

τ
j − γτ∇ϕτ

j
fj(πϕτ ; θj)),

(update) ϕτ+1
j = pΦ(ϕ

τ
j − γτ∇ϕ

τ+1/2
j

fj(πϕτ+1/2 ; θj)).

Here, pΦ[·] is the projection to the constraint set Φ, and we
use a SoftMax projection in practice. The parameters θj
of fj is fixed during extra-gradient updates. πϕ is the joint
parameterized signaling policy, and γτ is the learning rate.

5. Empirical Results
In this section, we evaluate our deep learning method by
comparing against continuous neural networks with ReLU
activation, discontinuous neural networks DeLU (Wang
et al., 2023), and full-revelation strategies on a illustrative

example and a synthetic benchmark.

5.1. Didactic Example

We first demonstrate the representational capacity of our
method on a simple multi-sender game with 2 senders, 2
signals, 2 actions, and 2 states. The utility matrix of the
receiver is [ 1 0

0 1 ], where each row corresponds to a state and
each column corresponds to an action. The utilities for two
senders are

[
1 1
−1 3

]
and [ 4 1

1 1 ], respectively.

In the first row of Fig. 1, we fix both of the two senders’
signaling policies at State 2 to (0.5, 0.5) and vary their
signaling policies at State 1. The x-axis is the probability
of Sender 1 sending Signal 1 at State 1, the y-axis is
the probability of Sender 2 sending Signal 1 at State 1,
and the z-axis is the (possibly approximated) ex-ante utility
of Sender 2. The second row is similar to the first, but
the two senders’ signaling policies at State 2 are (0.2, 0.8)
and (0.8, 0.2), respectively.

The first column shows Sender 2’s actual ex-ante utility.
This utility function displays discontinuities, effectively cap-
tured by our method (second column). In contrast, ReLU
approximations in the third column are not accurate at
piece boundaries, and we can observe that the approximated
DeLU function in the fourth column is linear in each piece,
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Figure 5. Our method achieves higher social welfare compared against baselines and full-revelation solutions in games with 4 senders.

limiting its representational power for this game.

To ensure a fair comparison, networks used in this study,
including ours, ReLU, and DeLU, are standardized in terms
of architecture, featuring three hidden layers with 64 units
each. The training process involves a dataset of 500,000
randomly selected samples (pairs of signaling policies and
corresponding ex-ante utilities), over which the networks
are trained for a total of 200 epochs. For our network, the
lower part has the first hidden layer. This layer’s activation
pattern is used to generate the weights and biases of the
subsequent two layers by a hyper-network, which is itself
composed of two hidden layers, each containing 32 units.

5.2. Synthetic Benchmark

In this section, we generate synthetic problems to test
whether our network can find ϵ-local Nash equilibria that
are better (in terms of sender utility) than those found by
baseline network architectures as well as the full-revelation
equilibria mentioned in Theorem 4.

Setup The size of a problem is determined by the tuple
(n, |Ω|, |S|, |A|), and our evaluation encompasses a range
of problem sizes to thoroughly assess the efficacy of our
method. Specifically, we consider 2 and 4 senders, and
for each, (|Ω|, |S|, |A|) are drawn from a three-dimensional
grid {2, 4, 6, 8, 10}3. For each problem size, we randomly
generate 5 problem instances. In total, we have 1,250 prob-
lem instances to benchmark the proposed learning frame-
work. The utility matrices for the receiver and senders, as
well as the prior belief of states, are randomly sampled from
a Gaussian distribution with variance at 100 and mean at 0,
with a SoftMax applied to generate prior beliefs. We employ
random numbers featuring significant variance to enhance
the complexity of the benchmark, thereby facilitating a more
effective evaluation of different solutions.

We standardize the network architecture of our method and
baselines mirroring the configuration delineated in the di-
dactic example to ensure a fair comparative analysis. The
training setup is described in detail in Appendix B. To test
whether a joint signaling policy profile π is an ϵ-local Nash
equilibrium, we randomly sample K policies π′

j for each
sender j in the neighborhood {π′

j | ∥π′
j − πϕj∥∞ ≤ ϵ}

and check whether it can gain a higher utility at π′
j . In our

experiments, the number of test samples K grows with the
problem size. We set the neighborhood size ϵ to 0.005 and
find that our experimental results are robust with the value
of ϵ up to 0.01 as evidenced by more results in Appendix B.

Representational capacity In Fig. 4, we fix the number of
senders to 2 and compare the approximation errors (Eq. 2)
achieved by our method and the two baseline architectures.
We show the influence of the numbers of signals, states,
and actions in three subplots, respectively, by presenting
the average (solid lines) and the 95% confidence interval
(shaded areas) of approximation errors. In the first subplot
for example, we iterate the number of signals, and present
results on all problem instances for each number of signals.

The results suggest that our algorithm provides a more accu-
rate approximation than ReLU and DeLU. The advantage of
our method is consistently maintained across all the range
evaluated. It is also interesting to observe that the approxi-
mation error decreases for all three algorithms as the number
of signals increases, but it increases as the numbers of states
and actions increase. This observation indicates that the
multi-sender persuasion game becomes more challenging
with fewer signals, aligning with existing theoretical results
on persuasion with limited signals (Dughmi et al., 2016).

Equilibrium In Fig. 2, we conduct a comparison between
the equilibrium derived from our method against those pro-
duced by baselines. We run the verification process to ascer-
tain whether the extra-gradient outcomes are indeed ϵ-local
NE. We present the mean and the 95% confidence inter-
val of the sender utilities at the best solutions that satisfy
the criteria. Notably, our findings indicate that for each of
the two senders, the ex-ante utility achieved in our model
consistently outperforms that of the baselines, exhibiting
Pareto dominance. In Fig. 3, we provide additional evidence
demonstrating that extra-gradient with our trained networks
can significantly enhance the senders’ utility from the initial
starting points. Furthermore, DNL successfully generates
solutions that surpass full-revelation equilibria by a large
margin. This improvement underscores the synergisitic
benefit of integrating the extra-gradient approach with our
networks. Similar results can be observed for games with
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4 senders, and in Fig. 5, we show the welfare (the sum of
senders’ utilities) in these games.

5.3. Real-World Scenarios

Setting In this section, we extend the evaluation of our
method to the following real-world scenarios.

Scenario 1: Advertising of Quality Prior economic re-
search on multi-sender persuasion explored an advertising
problem (Gentzkow & Kamenica, 2017a). In this problem, a
total of n competing firms (senders) market their products to
a single consumer. The product of each firm i can be of high
quality (ωi = 5) or low quality (ωi = −5). The consumer
wants to buy at most one product. The quality of the prod-
ucts is the state, known to firms but not the consumer. By
sending signals, i.e., verifiable advertisements about their
product’s quality, a firm tries to persuade the consumer into
purchasing from it, which induces utility 1 for the firm. The
firm’s utility is 0 if the consumer doesn’t purchase from it.
The consumer is faced with n+ 1 actions, purchasing from
any one of the firms, or none at all. The consumer’s utility
of purchasing from firm i is ωi + ϵi, where ϵi is a shock
(Gaussian-distributed zero-mean noise). If the consumer
makes no purchase, their utility is 0. In our experiments, we
set n to 7 and generate 20 instances randomly.

Scenario 2: Advertising of Multiple Products We make
the previous advertising example more realistic by incor-
porating multiple products of different quality and prices.
Specifically, we consider the following problem.

There are n firms (senders), each of which i sells a product
of price pi and quality ωi. The true state is the prices and
quality of all products. The consumer (receiver) has a partial
observation of the state, as it has no access to the quality of
products. The receiver has n+1 actions, which are buying a
product from one of the firms or buying nothing. The utility
of firm i is pi if the receiver buys from it, or -1 otherwise.
The senders use signals to strategically reveal the quality
information to the receiver, trying to sway their purchase
decisions in their favor. The receiver wants to maximize its
utility, which is ωi − pi + ϵi if purchasing product i, or 0
if buying nothing. Here ϵi is the shock defined in the same
way as in Scenario 1. We test the case with n = 2 firms.
Price pi and quality ωi are uniformly random integers in the
range [1, 10] and [-8, 12], respectively.

Scenario 3: Uber or Lyft In this last scenario, we move
beyond advertising and consider the competition among
real-world ride-hailing apps, and a single driver subscribed
to both platforms. There are two senders, Uber and Lyft,
who receive m and n orders from users, respectively. Each
order has four features (1) The price charged to the user; (2)
The payment to the driver; (3) The true utility to the app,
which is the price minus the payment; and (4) The true cost

Table 1. The social welfare (avg±95% confidence interval) at the
ϵ-local equilibria found by our method and baseline networks.

Scenario ReLU DeLU Ours
1 0.498±0.004 0.599±0.003 0.699±0.003
2 0.407±0.176 0.467±0.179 0.526±0.004
3 3.216±0.790 3.783±0.894 4.344±0.885

for the driver, which is known to the app and is influenced
by many factors, such as the user rating indicating whether
they are friendly, the expected travel time and distance, the
expected waiting time, etc.

The true state is the joint feature of all orders. Feature (4),
the true cost to the driver, is invisible to the driver when they
must decide the pickup. Uber and Lyft can send signals to
strategically reveal this information in order to persuade the
driver into picking up their orders. The driver has m+n+1
actions, which are picking up one of the m + n orders or
doing nothing. The utility of the driver is the price minus
the true cost of the selected order, or -1 if they don’t select
any order. In our experiments, we set m and n to 4 and the
number of signals to m+ 1.

Results We test the performance of our method and the
baseline neural network structures. Table 1 shows the social
welfare of the senders at the ϵ-local equilibria found by dif-
ferent methods. Mean and 95% confidence intervals with
20 random instances are presented. We can observe that our
method consistently outperforms other methods, indicating
that our discontinuous, piecewise nonlinear network struc-
ture allows us to effectively tackle these richer settings that
prior literature could not.

6. Discussion
We provide a comprehensive computational study of multi-
sender Bayesian persuasion, a model for a wide range of
real-world phenomena. The complex interplay of simul-
taneous sender actions and sequential receiver responses
makes this game challenging. Our work formalizes this
challenge by proving computational hardness results for
both best response and equilibrium computation. Relaxing
the equilibrium concept, however, offers hope, even without
complete information. We propose a novel class of neural
networks that can approximate the non-linear, discontin-
uous utilities in this game; paired with the extra-gradient
algorithm, it is highly effective at finding local equilibria.
Indeed, our network may be of broader interest to many
games with discontinuous utility as it facilitates any down-
stream optimization algorithm. More broadly, BP is part of
the principal-agent model of economics which also includes
problems like contract design and Stackelberg games. In-
sights developed here can be instrumental to multi-principal
variants of those problems which, despite their importance,
have long eluded robust computational solutions.
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Sutterer, P. Learning equilibria in symmetric auction
games using artificial neural networks. Nature machine
intelligence, 3(8):687–695, 2021.
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A. Proofs
A.1. Proof of Proposition 1

Proof. For a joint scheme π, each signal realization s induces a posterior belief µs, wherein receiver take optimal action
a∗(µs). We can equivalently write the function a∗ in terms π(s|·), ad note that a∗(π(s|·)) ∈ A. When the signaling
scheme changes sufficiently such that the new actions are optimal for a given realized posterior µs, the mapping a∗(π(s|·))
changes accordingly. Thus, the function a∗(π(s|·)) is piece-wise constant with the boundary between pieces representing
this changed mapping. The utility of sender i is given by:∑

ω∈Ω

∑
s∈Sn

µ0(ω)ui(ω, a
∗(π(s|ω)))π(s|ω) (3)∑

ω∈Ω

∑
s∈Sn

µ0(ω)ui(ω, a
∗(π(s|ω)))

∏
i

π(si|ω) (4)

where we note that since ui is essentially indexing a matrix, ui(ω, a
∗(π(s|ω))) is piece-wise constant with the same

boundaries as a∗(π(s|·)). It is evident from the last expression above the utility is piece-wise bi-linear in (π1, . . . , πn) and
upon fixing π−i is it piecewise linear in πi.

A.2. Proof of Proposition 2

Proof. Note that π−i refer to the signaling of others and is fixed, with the optimization variables being πi and ys,a. Next,
observe that if ys,a ∈ {0, 1} then this optimization program can be interpreted as follows. πi denotes the signaling scheme
of influence i, and ys,a denotes whether action a is the optimal action for the user upon receiving the joint signal s and
computing the corresponding posterior belief. The sum constraint on ys,a ensure [ys,1, . . . , ys,|A|] is a one hot vector. To
ensure that the choice of ys,a are indeed correct, we need to ensure incentive-compatible. That is, we require the following
holds for the posterior induced by any joint signal s, and any action a′:

∑
ω P (ω|s)

∑
a∈A [v(a, ω)− v(a′, ω)] ys,a. By

Bayes rule, P (ω|s) = π(s|ω)µ0(ω)
P (s) and since P (s) is constant for the whole sum, we can multiply both sides by P (s) and

arrive at the first constraint in the above LP. Since this constraint enforces the choice of user action at each posterior indeed
correct, the objective simply maximizes the sender’s ex-ante expected utility.

The only difference between the presented optimization problem and the best-response sketched above is that the variables
ys,a are now relaxed to within the continuous range [0, 1]. We now show that this relaxation does not change the optimal
solution. That is, an optimal solution to the binary-constrained setting is also an optimal solution to the relaxed continuous
setting. Fix any signaling scheme πi and any joint signal realization s. Let a∗s denote a best action for the user at the posterior
induced by signal realization s with the schemes (πi,π−i). Then we can rewrite the incentive compatibility constraint (first
constraint) as follows (for brevity, we will write π(s|ω) = πi(si|ω) ∗ π−is−i|ω:

∑
a∈A

ys,a

{∑
ω∈Ω

µ0(ω)π(s|ω)v(w, a)−
∑
ω∈Ω

µ0(ω)π(s|ω)v(w, a∗s)

}
≥ 0 (5)

Note that the first summation term inside the inner bracket is proportional to the expected utility for action a under the
posterior induced by s, while the second summation term is the expected utility for action a under this same posterior. If a∗s
is the unique action that maximizes expected user utility at this posterior, then the only way this can be satisfied is by setting
ys,a∗

s
= 1 and 0 to all others. If multiple actions may be optimal for the receiver at this belief, then let a∗s be the action

among these that is most preferred by sender i (if there is a tie here, pick arbitrarily). Thus, by setting the corresponding
ys,a∗

s
= 1 and 0 for the rest satisfies the constraint while also maximizing user utility. Thus it follows that relaxing the

domain of ys,a does not change the optimal solution since these still occur at the endpoints 0 or 1, and it follows that the
continuous bi-linear optimization problem above corresponds to sender i’s best response.
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A.3. Proof of Theorem 3

Figure 6. Public persuasion with k receivers, each with binary actions

The proof uses a reduction from the following problem called public persuasion (Dughmi & Xu, 2017):
Definition 5. A public persuasion (Pub) problem (with multiple receivers with binary actions) is described by tuple
⟨k,Ω, µ, {vj(ω), uj(ω)}j∈[k],ω∈Ω⟩, where:

• There are k receivers denoted by [k] = {1, . . . , k} each having two actions {+,−}.

• µ ∈ ∆(Ω) is a prior distribution of states ω ∈ Ω.

• Let vj(ω,+), vj(ω,−) ∈ [0, 1] be the utilities of receiver j ∈ [k] when taking actions +, − and the state is ω. Let
vj(ω) = vj(ω,+)− vj(ω,−) ∈ [−1, 1] be the utility difference.

• uj(ω,+), uj(ω,−) ∈ [0, 1] are the utilities of the sender when receiver j ∈ [k] takes action +,−, respectively.

Let π : Ω → ∆(S) be a signaling scheme of the sender. Let xs ∈ ∆(Ω) denote the posterior distribution over states induced
by signal s ∈ S:

xs(ω) =
µ(ω)π(s|ω)

π(s)
where π(s) =

∑
ω∈Ω

µ(ω)π(s|ω), ∀ω ∈ Ω.

In the public persuasion problem, given an induced posterior xs, each receiver j ∈ [k] is willing to take action + if and only
if
∑

ω∈Ω xs(ω)vj(ω) ≥ 0. Let a∗j (xs) ∈ {+,−} denote the action taken by receiver j ∈ [k] given posterior xs:

a∗j (xs) =

{
+ if

∑
ω∈Ω xs(ω)vj(ω) ≥ 0

− if
∑

ω∈Ω xs(ω)vj(ω) < 0.
(6)

The sender’s (expected) utility is the average utility obtained across all k receivers:

uPub(π) =
∑
s∈S

π(s)
1

k

k∑
j=1

∑
ω∈Ω

xs(ω)uj(ω, a
∗
j (xs)). (7)
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Figure 7. The multi-sender persuasion problem reduced from public persuasion. k additional states are added with the sole receiver having
2k + 1 actions. The receiver and best-responding sender’s utility are chosen such that for all possible k possible signal realization of
non-best responding sender, the single receiver’s plausible actions mimic that of the kth receiver in public persuasion.

The goal is to find a signaling scheme π to maximize uPub(π).

Theorem 6 [Dughmi & Xu (2017)]. For any constant c ∈ [0, 1
9 ], it is NP-hard to solve, within additive approximation error

c, public persuasion problems with |Ω| = k states and uniform prior µ(ω) = 1
k , ∀ω ∈ [k].

We reduce the public persuasion problem to the best-response problem in multi-sender persuasion, which will prove that
the latter problem is NP-hard. Given the public persuasion problem ⟨k,Ω, µ, {vj(ω), uj(ω)}j∈[k],ω∈Ω⟩, we construct the
following best-response problem with two senders, where we fix sender 2’s signaling scheme π2 and find sender 1’s best
response: Let C,N > 0 and M ≥ N

N−1 be some large numbers to be chosen later.

• There are |Ω|+ k states, denoted by Ω = Ω ∪ {ω1, . . . , ωj}, with prior µ(ω) = µ(ω)
2 for ω ∈ Ω and µ(ωj) =

1
2k for

j = 1, . . . , k.

• The (single) receiver has 2k + 1 actions, denoted by A = {a1+, a1−, . . . , ak+, ak−} ∪ {a∞}.

• The receiver’s utility is:

– For any state ω ∈ Ω, let

v(ω, aj+) = vj(ω)

v(ω, aj−) = 0

v(ω, a∞) = N.

In words, for any state ω ∈ Ω, the receiver’s two actions aj+, aj− mimics receiver j’s actions +,− in the public
persuasion problem. And a∞ is very attractive to the receiver.
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– For any state ωj , j ∈ [k], let

v(ωj , aℓ+) = v(ωj , aℓ−) = −M for ℓ ̸= j

v(ωj , aj+) = v(ωj , aj−) = 0

v(ωj , a∞) = −N.

In words, under state ωj , the receiver is extremely unwilling to take actions other than aj±. And a∞ is very
harmful to the receiver.

• Sender 1’s utility u1(·, ·) is:

– For any state ω ∈ Ω,

u1(ω, aj+) = uj(ω,+) ∀j ∈ [k]

u1(ω, aj−) = uj(ω,−) ∀j ∈ [k]

u1(ω, a∞) = −C.

In words, when the receiver takes actions aj±, the sender obtains the same utility as if receiver j takes action ± in
the public persuasion problem. But the sender suffers a large loss if the receiver takes a∞.

– For any state ωj ∈ Ω, j ∈ [k],

u1(ωj , aℓ+) = u1(ωj , aℓ−) = 0 ∀ℓ ∈ [k]

u1(ωj , a∞) = −C.

• Sender 2’s signaling scheme π2 is the following: it sends k possible signals {t1, . . . , tk} with probability:

π2(tj |ω) =
1

k
, ∀j ∈ [k], ∀ω ∈ Ω.

π2(tj |ωj) = 1, ∀j ∈ [k].

We sketch both the public persuasion framework and the equivalent multi-sender construction outlined above in Fig 6 and 7.

A.3.1. USEFUL CLAIMS REGARDING RECEIVER’S BEHAVIOR

Before proving Theorem 3, we present some useful claims regarding the receiver’s taking-best-action behavior. First, we
characterize the receiver’s expected utilities when taking different actions in the multi-sender persuasion problem:
Claim 1. Let x ∈ ∆(Ω) be a distribution on the enlarged state space Ω. Suppose sender 2 sends signal tj . Then, the
receiver’s expected utilities of taking different actions a ∈ A, denoted by v(x, tj , a), are:

• v(x, tj , aj+) =
1
k

∑
ω∈Ω x(ω)vj(ω);

• v(x, tj , aj−) = 0;

• v(x, tj , aℓ+) =
1
k

∑
ω∈Ω x(ω)vℓ(ω)− x(ωj)M for ℓ ̸= j;

• v(x, tj , aℓ−) = 0 for ℓ ̸= j;

• v(x, tj , a∞) = N
(
1
k

∑
ω∈Ω x(ω)− x(ωj)

)
.

Proof. For any a ∈ A, by definition,

v(x, tj , a) =
∑
ω∈Ω

x(ω)π2(tj |ω)v(ω, a)

=
∑
ω∈Ω

x(ω)
1

k
v(ω, a) +

k∑
ℓ=1

x(ωℓ)π2(tj |ωℓ)v(ωℓ, a)

=
1

k

∑
ω∈Ω

x(ω)v(ω, a) + x(ωj)v(ωj , a).

Plugging in the definitions of utilities v(ω, a) and v(ωj , a) for different a proves the claim.
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As corollaries of the above claim, we have some guarantees when the receiver takes a best action:

Claim 2. Given belief x ∈ ∆(Ω) and sender 2’s signal tj , if the receiver does not take a∞ as the best action, then it must be
1
k

∑
ω∈Ω x(ω) ≤ N

N−1x(ωj).

Proof. If 1
k

∑
ω∈Ω x(ω) > N

N−1x(ωj), then by Claim 1, the receiver’s utility of taking action a∞ is

v(x, tj , a∞) = N
(1
k

∑
ω∈Ω

x(ω)− x(ωj)
)
> N

(1
k

∑
ω∈Ω

x(ω)− N − 1

N

1

k

∑
ω∈Ω

x(ω)
)
=

1

k

∑
ω∈Ω

x(ω) ≥ v(x, tj , a)

for any other actions a ̸= a∞. So, the receiver should take a∞, a contradiction.

Claim 3. Given belief x ∈ ∆(Ω) and sender 2’s signal tj , if the receiver is unwilling to take a∞, then the receiver’s utility
of taking aℓ± for ℓ ̸= j is v(x, tj , aℓ±) ≤ 0. So, we can assume that the receiver will take aj+ or aj−. (Tie-breaking does
not affect our conclusion.)

Proof. According to Claim 2, if the receiver is unwilling to take a∞, then 1
k

∑
ω∈Ω x(ω) ≤ N

N−1x(ωj). This implies that
the receiver’s utility of taking aℓ+ is, by Claim 1

v(x, tj , aℓ+) =
1

k

∑
ω∈Ω

x(ω)vℓ(ω)− x(ωj)M ≤ N

N − 1
x(ωj)vℓ(ω)− x(ωj)M ≤ x(ωj)

( N

N − 1
−M

)
≤ 0,

under the assumption of vℓ(ω) ≤ 1 and M ≥ N
N−1 .

Claim 4. Let x ∈ ∆(Ω) be a belief on Ω. And let x̃ ∈ ∆(Ω) be the conditional belief on Ω: x̃(ω) = x(ω)∑
ω∈Ω x(ω) , ∀ω ∈ Ω.

Fix any j ∈ [k]. Suppose the receiver does not take action a∞ under signal tj in the multi-sender persuasion problem. Then,
the receiver takes action aj+ (and aj−) if and only if the receiver j in the public persuasion problem takes action + (and −)
under belief x̃.

Proof. By Claim 3, the receiver in the multi-sender problem must take action aj+ or aj− if not taking a∞. The receiver is
willing to take aj+ if and only if, by Claim 1,

1

k

∑
ω∈Ω

x(ω)vj(ω) ≥ 0 ⇐⇒
∑
ω∈Ω

x(ω)∑
ω∈Ω x(ω)

vj(ω) ≥ 0 ⇐⇒
∑
ω∈Ω

x̃(ω)vj(ω) ≥ 0,

which means that the receiver j in the public persuasion problem is willing to take action + under belief x̃ (see (6)).

A.3.2. PROOF OF THEOREM 3

Consider a signaling scheme π1 : Ω → ∆(S) of sender 1, where S is the signal space. For a signal s ∈ S, let xs ∈ ∆(Ω) be
the posterior distribution over Ω given s. And let π1(s) =

∑
ω∈Ω µ(ω)π1(s|ω) be the probability of sender 1 sending signal

s. A valid signaling scheme π1 must satisfy the following Bayesian plausibility condition:

∑
s∈S

π1(s)xs = µ ⇐⇒

{∑
s∈S π1(s)xs(ω) = µ(ω) = µ(ω)

2 for ω ∈ Ω∑
s∈S π1(s)xs(ωj) = µ(ωj) =

1
2k for j ∈ [k]

. (8)

Let a∗(xs, tj) be the best action that the receiver will take when the posterior induced by sender 1 is xs (namely, sender 1
sends signal s) and sender 2 sends signal tj . According to Claim 3, we have

a∗(xs, tj) ∈ {a∞, aj+, aj−}. (9)

Let S∞ be the set of signals of sender 1 for which the receiver will take action a∞ given some signal tj from sender 2:

S∞ =
{
s ∈ S

∣∣∣ a∗(xs, tj) = a∞ for some j ∈ [k]
}
.

Since a∞ is very harmful to sender 1 (causing utility −C), we show that the total probability of S∞ cannot be too large.
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Lemma 1. If sender 1’s expected utility under signaling scheme π1 is ≥ 0, then π1(S∞) =
∑

s∈S∞
π1(s) ≤ 2k

C + 1
2N .

Proof. Sender 1’s expected utility is (fixing sender 2’s scheme),

u1(π1) =
∑
s∈S

π1(s)
[ ∑
ω∈Ω

xs(ω)

k∑
j=1

π2(tj |ω)u1(ω, a
∗(xs, tj))

]

=
∑
s∈S

π1(s)
[ ∑
ω∈Ω

xs(ω)

k∑
j=1

1

k
u1(ω, a

∗(xs, tj)) +

k∑
j=1

xs(ωj)u1(ωj , a
∗(xs, tj))

]

=
∑
s∈S

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj)) + xs(ωj)u1(ωj , a

∗(xs, tj))
]

(10)

=
∑
s∈S∞

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj)) + xs(ωj)u1(ωj , a

∗(xs, tj))
]

+
∑

s∈S\S∞

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj)) + xs(ωj)u1(ωj , a

∗(xs, tj))
]
.

Since the utility u1(ω, a) is always ≤ 1, and when receiver takes action a∞ sender 1 gets utility −C,

u1(π1) ≤
∑
s∈S∞

π1(s)
∑

j:a∗(xs,tj)=a∞

[1
k

∑
ω∈Ω

xs(ω)(−C) + xs(ωj)(−C)
]

+
∑
s∈S∞

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω) · 1 + xs(ωj) · 1
]

+
∑

s∈S\S∞

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω) · 1 + xs(ωj) · 1
]

≤ −C
∑
s∈S∞

π1(s)
[1
k

∑
ω∈Ω

xs(ω) + xs(ωj)
]

+
∑
s∈S

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω) + xs(ωj)
]

︸ ︷︷ ︸
=1 by (12)

.

Using u1(π1) ≥ 0 and rearranging, we get
∑

s∈S∞
π1(s)

[
1
k

∑
ω∈Ω xs(ω) + xs(ωj)

]
≤ 1

C , which implies

∑
s∈S∞

π1(s)
[1
k

∑
ω∈Ω

xs(ω)
]
≤ 1

C
=⇒

∑
s∈S∞

π1(s)
∑
ω∈Ω

xs(ω) ≤
k

C
.

By the Bayesian plausibility condition (8), we have∑
s∈S

π1(s)
∑
ω∈Ω

xs(ω) =
∑
ω∈Ω

∑
s∈S

π1(s)xs(ω) =
∑
ω∈Ω

µ(ω) =
1

2
.

So, ∑
s∈S\S∞

π1(s)
∑
ω∈Ω

xs(ω) =
1

2
−

∑
s∈S∞

π1(s)
∑
ω∈Ω

xs(ω) ≥
1

2
− k

C
. (11)

For any signal s ∈ S \ S∞, the receiver does not take a∞ under any tj , which by Claim 2 implies

1

k

∑
ω∈Ω

xs(ω) ≤
N

N − 1
xs(ωj) =⇒ xs(ωj) ≤

N − 1

N

1

k

∑
ω∈Ω

xs(ω)
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for all j ∈ [k]. Moreover, because

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω) + xs(ωj)
]
=

∑
ω∈Ω

x(ω)

k∑
j=1

π2(tj |ω) = 1, (12)

we have for any s ∈ S \ S∞,

1 ≥
k∑

j=1

[1
k

∑
ω∈Ω

xs(ω) +
N − 1

N

1

k

∑
ω∈Ω

xs(ω)
]
=

(
2− 1

N

) ∑
ω∈Ω

xs(ω) =⇒
∑
ω∈Ω

xs(ω) ≤
1

2− 1
N

. (13)

From (11) and (13) we get

1

2
− k

C
≤

∑
s∈S\S∞

π1(s)
1

2− 1
N

=⇒
∑

s∈S\S∞

π1(s) ≥ 1− 2k

C
− 1

2N
,

which proves the lemma since
∑

s∈S π1(s) = 1.

We give another characterization of π1: for most of the signals in S \ S∞, the total posterior probability for states in
Ω, xs(Ω) =

∑
ω∈Ω xs(ω), should be close to 1

2 . Inequality (13) has shown an upper bound
∑

ω∈Ω xs(ω) ≤ 1
2− 1

N

. The
following lemma gives a lower bound:

Lemma 2. Fix any ∆ > 0. Let

S≥ =
{
s ∈ S \ S∞

∣∣∣ 1

2− 1
N

≥
∑
ω∈Ω

xs(ω) ≥
1

2
−∆

}
, S< =

{
s ∈ S \ S∞

∣∣∣ ∑
ω∈Ω

xs(ω) <
1

2
−∆

}
.

(Note that S≥ ∪ S< = S \ S∞ by (13)). We have π1(S≥) is large while π1(S<) is small:

π1(S≥) =
∑
s∈S≥

π1(s) ≥ 1− 2k

C
− 1

2N
− 1

∆

( 1

4N − 2
+

k

C

)
,

π1(S<) =
∑
s∈S<

π1(s) ≤
1

∆

( 1

4N − 2
+

k

C

)
.

Proof. By (11),

1

2
− k

C
≤

∑
s∈S\S∞

π1(s)
∑
ω∈Ω

xs(ω) =
∑
s∈S≥

π1(s)
∑
ω∈Ω

xs(ω) +
∑
s∈S<

π1(s)
∑
ω∈Ω

xs(ω)

≤ 1

2− 1
N

∑
s∈S≥

π1(s) +
(1
2
−∆

) ∑
s∈S<

π1(s)

≤ −∆
∑
s∈S<

π1(s) +
1

2− 1
N

( ∑
s∈S<

π1(s) +
∑
s∈S≥

π1(s)
)

≤ −∆
∑
s∈S<

π1(s) +
1

2− 1
N

· 1

So, ∑
s∈S<

π1(s) ≤
1

∆

( 1

2− 1
N

− 1

2
+

k

C

)
=

1

∆

( 1

4N − 2
+

k

C

)
.

Together with Lemma 1, this implies π1(S≥) = 1− π1(S∞)− π1(S<) ≥ 1− 2k
C − 1

2N − 1
∆

(
1

4N−2 + k
C

)
.
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Now, we construct from π1 a signaling scheme π̃ : Ω → ∆(S̃) for the public persuasion problem. The signal space of π̃ is
S̃ = S≥ ∪ {s0}. For any s ∈ S≥, let the induced posterior x̃s ∈ ∆(Ω) be

x̃s(ω) =
xs(ω)∑

ω∈Ω xs(ω)

(where xs is the posterior induced by s in the signaling scheme π1), and denote

π̃(s) =
π1(s)∑

s∈S≥
π1(s)

≥ π1(s),

so
∑

s∈S≥
π̃(s) = 1. We will construct the posterior for s0 later.

Lemma 3. For any ω ∈ Ω,∣∣ ∑
s∈S≥

π̃(s)x̃s(ω)− µ(ω)
∣∣ ≤ 4∆ +

2

N
+

4k

C
+

1

∆

( 1

2N − 1
+

2k

C

)
.

Proof. On the one hand,∑
s∈S≥

π̃(s)x̃s(ω) ≥
∑
s∈S≥

π1(s)
xs(ω)∑

ω∈Ω xs(ω)
≥

∑
s∈S≥

π1(s)
xs(ω)

1
2− 1

N

=
(
2− 1

N

) ∑
s∈S≥

π1(s)xs(ω)

by (8) =
(
2− 1

N

)(µ(ω)
2

−
∑

s∈S∞∪S<

π1(s)xs(ω)
)

≥
(
2− 1

N

)(µ(ω)
2

−
∑
s∈S∞

π1(s)−
∑
s∈S<

π1(s)
)

by Lemma 1 and 2 ≥
(
2− 1

N

)(µ(ω)
2

− 2k

C
− 1

2N
− 1

∆

( 1

4N − 2
+

k

C

))
≥ µ(ω)− µ(ω)

2N
− 4k

C
− 1

N
− 1

∆

( 1

2N − 1
+

2k

C

)
≥ µ(ω)− 2

N
− 4k

C
− 1

∆

( 1

2N − 1
+

2k

C

)
.

On the other hand, ∑
s∈S≥

π̃(s)x̃s(ω) =
∑
s∈S≥

π1(s)∑
s∈S≥

π1(s)

xs(ω)∑
ω∈Ω xs(ω)

(by definition of S≥) ≤
∑
s∈S≥

π1(s)∑
s∈S≥

π1(s)

xs(ω)
1
2 −∆

=
2

1− 2∆

1∑
s∈S≥

π1(s)

∑
s∈S≥

π1(s)xs(ω)

≤ 2

1− 2∆

1∑
s∈S≥

π1(s)

∑
s∈S

π1(s)xs(ω)

by (8) =
2

1− 2∆

1∑
s∈S≥

π1(s)

µ(ω)

2

by Lemma 2 ≤ 2

1− 2∆

1

1− 2k
C − 1

2N − 1
∆

(
1

4N−2 + k
C

) µ(ω)
2

≤
(
1 + 4∆ +

4k

C
+

1

N
+

1

∆

( 1

2N − 1
+

2k

C

))
µ(ω)

≤ µ(ω) + 4∆ +
4k

C
+

1

N
+

1

∆

( 1

2N − 1
+

2k

C

)
.

Two above two cases together prove the lemma.
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As shown in Lemma 3, the signaling scheme π̃ with signals in S≥ may not satisfy the Bayesian plausibility condition∑
s≥S≥

π̃(s)x̃s = µ(ω). That is why we need the additional signal s0. We want to find a posterior y ∈ ∆(Ω) for signal s0,
and a coefficient α ∈ [0, 1] such that the following convex combination of {x̃s}s∈S≥ and y satisfies Bayesian plausibility:

(1− α)
∑
s∈S≥

π̃(s)x̃s + αy = µ. (14)

Lemma 4. Suppose minω∈Ω µ(ω) ≥ p0 ≥ 2
(
4∆ + 2

N + 4k
C + 1

∆ ( 1
2N−1 + 2k

C )
)
> 0. Then, there exists y ∈ ∆(Ω) and

α ≤ 2
p0

(
4∆ + 2

N + 4k
C + 1

∆ ( 1
2N−1 + 2k

C )
)

that satisfy (14).

Proof. Let z =
∑

s∈S≥
π̃(s)x̃s. By Lemma 3, we have

∥z − µ∥∞ = max
ω∈Ω

|z(ω)− µ(ω)| ≤ 4∆ +
2

N
+

4k

C
+

1

∆

( 1

2N − 1
+

2k

C

)
.

To satisfy (14), which is equivalent to

(1− α)z + αy = µ ⇐⇒ α(y − z) = µ− z,

we can let y be the intersection of the ray starting from z pointing towards µ and the boundary of ∆(Ω). By doing this,
y − µ and z − µ are in the same direction and

α =
∥µ− z∥∞
∥y − z∥∞

.

Since y is on the boundary of ∆(Ω), some y(ω) must be 0. So,

∥y − z∥∞ ≥ min
ω∈Ω

z(ω) ≥ min
ω∈Ω

µ(ω)−
(
4∆ +

2

N
+

4k

C
+

1

∆

( 1

2N − 1
+

2k

C

))
≥ p0 −

p0
2

=
p0
2
.

This implies

α ≤ 2

p0

(
4∆ +

2

N
+

4k

C
+

1

∆

( 1

2N − 1
+

2k

C

))
.

With (14) satisfied, π̃ now is a valid signaling scheme for the public persuasion problem, which sends signal s ∈ S≥ with
probability (1− α)π̃(s), inducing posterior x̃s, and sends signal s0 with probability α, inducing posterior y. Let’s consider
the sender’s utility (7) in the public persuasion problem using π̃:

uPub(π̃) = (1− α)
∑
s∈S≥

π̃(s)
1

k

k∑
j=1

∑
ω∈Ω

x̃s(ω)uj(ω, a
∗
j (x̃s)) + α

1

k

k∑
j=1

∑
ω∈Ω

y(ω)uj(ω, a
∗
j (y))

≥
∑
s∈S≥

π̃(s)
1

k

k∑
j=1

∑
ω∈Ω

x̃s(ω)uj(ω, a
∗
j (x̃s))− α because 0 ≤ uj(ω, a) ≤ 1.

By Claim 4, the receiver j’s best action a∗j (x̃s) is + (and −) if and only if the receiver in the multi-sender problem takes
action a∗(xs, tj) = aj+ (and aj−) given posterior xs from sender 1 and signal tj from sender 2. So, by the definition of
sender 1’s utility in the multi-sender problem,

uj(ω, a
∗
j (x̃s)) = u1(ω, a

∗(xs, tj)).
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Then, we have

uPub(π̃) ≥
∑
s∈S≥

π̃(s)
1

k

k∑
j=1

∑
ω∈Ω

x̃s(ω)u1(ω, a
∗(xs, tj))− α

≥
∑
s∈S≥

π1(s)
1

k

k∑
j=1

∑
ω∈Ω

xs(ω)∑
ω∈Ω xs(ω)

u1(ω, a
∗(xs, tj))− α

≥
(
2− 1

N

) ∑
s∈S≥

π1(s)
1

k

k∑
j=1

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj))− α.

On the other hand, let’s consider sender 1’s utility in the multi-sender problem with signaling scheme π1. By Equation (10),

u1(π1) =
∑
s∈S

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj)) + xs(ωj)u1(ωj , a

∗(xs, tj))
]

≤
∑

s∈S∞∪S<

π1(s) · 1 because u1(·, ·) ≤ 1

+
∑
s∈S≥

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj)) + xs(ωj) u1(ωj , a

∗(xs, tj))︸ ︷︷ ︸
=0 because a∗(xs, tj) ∈ {aj+, aj−} from (9)

]

≤ 2k

C
+

1

2N
+

1

∆

( 1

4N − 2
+

k

C

)
by Lemma 1 and 2

+
∑
s∈S≥

π1(s)

k∑
j=1

[1
k

∑
ω∈Ω

xs(ω)u1(ω, a
∗(xs, tj))

]
So,

∑
s∈S≥

π1(s)
∑k

j=1

[
1
k

∑
ω∈Ω xs(ω)u1(ω, a

∗(xs, tj))
]
≥ u1(π1)− 2k

C − 1
2N − 1

∆

(
1

4N−2 + k
C

)
. This implies

uPub(π̃) ≥
(
2− 1

N

)[
u1(π1)−

2k

C
− 1

2N
− 1

∆

( 1

4N − 2
+

k

C

)]
− α. (15)

Finally, we prove that if the signaling scheme π1 is nearly optimal for the multi-sender best-response problem, then the
corresponding scheme π̃ for the public persuasion problem must be nearly optimal as well.

Claim 5. If π1 is approximately optimal for sender 1’s best-response problem up to additive error c, then the π̃ constructed
above is approximately optimal for the public persuasion problem with additive error 2c+ 4k

C + 2
N + 1

∆

(
1

2N−1 + 2k
C

)
+ α.

Proof. Let π∗ be the optimal signaling scheme for the public persuasion problem, which induces posterior x∗
s ∈ ∆(Ω) at

signal s ∈ S∗. Let π′
1 be the following signaling scheme for sender 1 in the multi-sender problem: for any signal s ∈ S∗,

the probability of the signal is π′
1(s) = π∗(s) and the induced posterior x′

s ∈ ∆(Ω) is

x′
s(ω) =

x∗
s(ω)

2
, x′

s(ωj) =
1

2k
.

It is easy to verify that π′
1 is valid (satisfying Bayesian plausibility (8)). We then note that, at each posterior x′

s, the receiver’s
utility of taking action a∞ is always 0 regardless of sender 2’s signal tj :

v(x′
s, tj , a∞) = N

(1
k

∑
ω∈Ω

x′
s(ω)− x′

s(ωj)
)
= N

(1
k

1

2
− 1

2k

)
= 0.

So, we can assume that the receiver will take aj+ or aj− by Claim 3. Moreover, by Claim 4, the receiver takes aj+ and aj−
if and only if the receiver j in the public persuasion problem with belief x∗

s takes action + and −. So,

u1(ω, a
∗(x′

s, tj)) = uj(ω, a
∗
j (x

∗
s)).
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This means that the utility of sender 1 in the multi-sender problem satisfies:

u1(π
′
1) =

∑
s∗∈S

π′
1(s)

k∑
j=1

[1
k

∑
ω∈Ω

x′
s(ω)u1(ω, a

∗(xs, tj)) + x′
s(ωj) u1(ωj , a

∗(x′
s, tj))︸ ︷︷ ︸

=0 because a∗(x′
s, tj) ̸= a∞

]

=
∑
s∗∈S

π∗(s)

k∑
j=1

[1
k

∑
ω∈Ω

x∗
s(ω)

2
uj(ω, a

∗
j (x

∗
s))

]

=
1

2

∑
s∗∈S

π∗(s)
1

k

k∑
j=1

∑
ω∈Ω

x∗
s(ω)uj(ω, a

∗
j (x

∗
s)) =

1

2
uPub(π∗).

If π1 is approximately optimal up to additive error c in the multi-sender best-response problem, then

u1(π1) ≥ u1(π
′
1)− c

Plugging this into (15),

uPub(π̃) ≥
(
2− 1

N

)[
u1(π

′
1)− c− 2k

C
− 1

2N
− 1

∆

( 1

4N − 2
+

k

C

)]
− α

=
(
2− 1

N

)[1
2
uPub(π∗)− c− 2k

C
− 1

2N
− 1

∆

( 1

4N − 2
+

k

C

)]
− α

≥ uPub(π∗)− uPub(π∗)

2N
− 2c− 4k

C
− 1

N
− 1

∆

( 1

2N − 1
+

2k

C

)]
− α

≥ uPub(π∗)− 2c− 4k

C
− 2

N
− 1

∆

( 1

2N − 1
+

2k

C

)
− α.

This means that π̃ is approximately optimal for the public persuasion problem up to additive error 2c+ 4k
C + 2

N + 1
∆

(
1

2N−1 +
2k
C

)
+ α.

We now prove Theorem 3. Let ⟨k,Ω, µ, {vj(ω), uj(ω)}j∈[k],ω∈Ω⟩ be any public persuasion problem with |Ω| = k states
and uniform prior µ(ω) = 1

k = p0. Construct the multi-sender best-response problem as above (where the range of utility of
sender 1 is [−C, 1]). If we can find an ϵ-approximately optimal signaling scheme π1 for sender 1’s best-response problem
with utility range [−1, 1], with

ϵ =
1

k6
,

then π1 is a Cϵ-approximately optimal signaling scheme with utility range [−C, 1]. Then by Claim 5, the scheme π̃
constructed above is approximately optimal for the public persuasion problem with additive error at most

2Cϵ+
4k

C
+

2

N
+

1

∆

( 1

2N − 1
+

2k

C

)
+ α

by Lemma 4 ≤ 2Cϵ+
4k

C
+

2

N
+

1

∆

( 1

2N − 1
+

2k

C

)
+

2

p0

(
4∆ +

2

N
+

4k

C
+

1

∆

( 1

2N − 1
+

2k

C

))
≤ 2Cϵ+

(
2k + 1

)(
4∆ +

2

N
+

4k

C
+

1

∆

( 1

2N − 1
+

2k

C

))
.

Let C = k5, N = k4,∆ = 1
k2 .

≤ 2k5ϵ+
(
2k + 1

)( 4

k2
+

2

k4
+

4k

k5
+ k2

( 1

2k4 − 1
+

2k

k5
))

= O
(1
k

)
≤ 1

9
,

for sufficiently large k. Theorem 6 says that finding 1
9 -approximation for the public persuasion is NP-hard. So, finding

ϵ = 1
k6 -approximation for the multi-sender best-response problem is NP-hard.
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A.4. Proof of Theorem 4

Proof. Since at each state ω, there is a unique optimal action a it suffices to consider |A| ≤ |Ω|. Next, let the signal space be

|S| = |A|
1

n−1 ≜ k; we shall see this is without loss of generality when the signal space is larger. We first give a construction
for a mapping α between all k-ary strings of length n (all possible joint signals) to |A|. Let ζ denote a subset of these strings
such that for any two strings s1 ∈ ζ , s2 ∈ ζ the hamming distance between them is at least two - dH(s1, s2) ≥ 2. The k-ary
Gray code is an ordering of all unique k-ary strings of length n such that any two consecutive strings are exactly 1 apart in
hamming distance. Such a construction is always possible (Guan, 1998). Since there are k different values possible at any
position, within at least every k strings in the grey code, we should have two strings that are hamming distance 2 apart. Thus
|ζ| ≥ kn−1 = |A|. This is indeed tight since kn−1 is the total number of unique n− 1 length k-ary strings possible - thus if
|ζ| > kn−1, it would mean there are two strings where that match on n− 1 positions, violating the construction of ζ. We
construct α as follows: map each string in ζ to a unique action in A and assign the remaining joint signal strings arbitrarily
to an action.

Under this mapping, we now give a constructive joint signaling scheme that is (1) a Pure Nash Equilibrium and (2) fully
reveals the optimal action to the agent. Let α−1(a) map to the joint signal s ∈ ζ such that α(s) = a. Further, let f : Ω → A
denote the unique agent-optimal action under state ω, with its inverse f−1(a) denoting the set of states for which this action
is agent-optimal. Next, consider the following joint signaling scheme: for all s ∈ ζ, π(s|ω) = 1 if ω ∈ f−1(α(s)). That
is for any ω, the joint signal s ∈ ζ that corresponds to the optimal agent action under ω, i.e. α(s) = f(ω), is sent with
probability 1. The agent can thus uniquely map each joint signal realization to a set of states wherein a fixed action is
optimal. In other words, this fully reveals the optimal action for the agent at any state realization ω. To show this is a Nash
equilibrium, observe that since all strings in ζ are hamming distance at least 2 apart, there is in fact a bijection between any
n − 1 sub-signal/sub-string within ζ and the action. Thus, each optimal action is fully specified by signals of just n − 1
agents. So if a sender unilaterally shifts her signaling, the agent can observe that n− 1 signals still uniquely map to states
that share a common optimal action, and essentially ignore the deviating agent’s signal. Thus, no change in agent belief or
action occurs, leading the deviation to be non-beneficial. Since the choice of deviating agent here is arbitrary, this presented
scheme is a pure Nash equilibrium.

However, full revelation equilibrium is not unique, which we show through an example. Consider n = 2 senders, with
|A| = 4 actions, and |Ω| = 4 states, with the following prior: [0.15, 0.35, 0.15, 0.35]. Sender 1 has utility 1 whenever action
1 is taken and 0 otherwise. Similarly, sender 2 has utility 1 whenever action 3 is taken and 0 otherwise. Note both utilities
are agnostic to the state ω. The receiver utility is given by the following matrix:

V =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (16)

Under a full-revelation or optimal action revelation equilibrium, note that each sender would get utility 0.15. Now consider
the following signaling scheme using only 3 signals, which we express as a |Ω| × |S| matrix1.

π1 =


0 1 0
4
7

3
7 0

1 0 0
1 0 0

 π2 =


0 0 1
0 0 1
0 1 0
4
7

3
7 0

 (17)

Joint signal realizations 01 and 12 from such a scheme induces the following posterior beliefs with probability 0.3:

µ01 = [0, 0, 0.5, 0.5] µ12 = [0.5, 0.5, 0, 0] (18)

Note that for any tie-breaking rule that favors senders, the posteriors above give utility 0.3 to both senders. All other
posteriors have dominant actions that give 0 utilities to both senders. We can use the optimization program presented in
proposition 2 to verify this is an equilibrium.

1a scheme with 3 signals can without loss of generality be extended to a scheme with 4 signals, which is what the optimal receiver
action revelation scheme uses.
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A.5. Proof of Theorem 5

Proof. It is known that finding Nash equilibria in 2-player games with 0/1 utilities is PPAD-hard (Abbott et al., 2005; Chen
et al., 2009). We reduce this PPAD-hard problem to multi-sender persuasion, which proves that the latter problem is also
PPAD-hard. Let û1, û2 ∈ {0, 1}m×m be the utility matrices of the 2 players, where m is the number of actions of each
player. We construct a multi-sender persuasion game as follows:

• There are 2 states Ω = {0, 1} with prior µ0(0) = µ0(1) = 1/2, |A| = 4 actions for the receiver labeled as
A = {a00, a01, a10, a11}, and n = 2 senders each having a signal space S = {1, . . . ,m}.

• The receiver’s utility is 0 regardless of actions and states, so he is indifferent among taking all actions. Suppose the
receiver breaks ties in the following way: given joint signal (s1, s2) from the 2 senders, take action

α(s1, s2) =


a00 if û1(s1, s2) = 0, û2(s1, s2) = 0;

a01 if û1(s1, s2) = 0, û2(s1, s2) = 1;

a10 if û1(s1, s2) = 1, û2(s1, s2) = 0;

a11 if û1(s1, s2) = 1, û2(s1, s2) = 1.

• The utility of each sender i is:

ui(a, ω = 1) =

{
ûi(s1, s2) if there exist s1, s2 ∈ S such that α(s1, s2) = a;
0 otherwise.

ui(a, ω = 0) = 0, ∀a ∈ A.

We note that the first equation is well-defined, because for any different joint signals (s1, s2) and (s′1, s
′
2), if they both

satisfy α(s1, s2) = α(s′1, s
′
2) = a, then they define the same utility ui(a, ω = 1) = ûi(s1, s2) = ûi(s

′
1, s

′
2).

We note that the expected utility of each sender i under signaling schemes π = (π1, π2) is equal to

ui(π) =
∑
ω∈Ω

∑
s∈Sn

µ0(ω)π(s|ω)ui(α(s), ω)

=
1

2
· 0 + 1

2

∑
s1,s2

π1(s1|ω = 1)π2(s2|ω = 1)ui(α(s1, s2), ω = 1)

=
1

2

∑
s1,s2

π1(s1|ω = 1)π2(s2|ω = 1)ûi(s1, s2)

=
1

2
ûi(x1, x2),

where ûi(x1, x2) is the expected utility of player i in the 2-player 0/1 utility game when the two players use mixed strategies
x1, x2 where player i samples action si ∈ {1, . . . ,m} with probability xi(si) = πi(si|ω = 1). If we can find an NE (π1, π2)
for the multi-sender persuasion game, then the corresponding mixed strategy profile (x1, x2) where xi(si) = πi(si|ω = 1)
is an NE for the 2-player 0/1 utility game, which is PPAD-hard to find.

B. Find Local NE via Deep Learning
In this section, we describe the settings of our deep learning experiments and show more results.

For each problem instance, we collect a dataset comprising 50,000 randomly selected samples and train the networks for 30
epochs using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.01. For extra-gradient, we initiate the
optimization process from a set of 300 random starting points. For each starting point, we run 20 iterations of extra-gradient
updates with the Adam optimizer and a learning rate of 0.1. We then use the result with the highest social welfare to compare
the performance of different algorithms.
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Figure 8. Our method retains its advantage and achieves higher social welfare compared against baselines and full-revelation solutions
when we adopt a stricter standard for the local NE check procedure (increase ϵ from 0.005 to 0.01).

To evaluate if a joint signaling policy profile π derived from the extra-gradient algorithm constitutes a local NE, we randomly
select K policies π′

j for each sender j within the vicinity {π′
j | ∥π′

j −πϕj∥∞ ≤ ϵ}. We then verify if any of these deviations
result in increased utility. The number of test samples K grows linearly with the problem size:

K = min {10000, 1000 ∗ (n− 1)(|Ω| − 1)(|S| − 1)(|A| − 1)} . (19)

In the main text, we set the neighborhood size ϵ to 0.005. Now we apply a more stringent criterion for ϵ-local NE, with
ϵ set to 0.01 and the extra-gradient optimization step increased to 30 accordingly. We reassess our method under this
setting against baselines in Fig. 8. As we can observe, the performance of our method is still significantly better than other
algorithms.

C. More Related Works
Our work focuses on a type of Stackelberg game. Since the signaling strategy of principals could be continuous, this game
has a continuous action space. Stackelberg games are employed in various real-world hierarchical scenarios, including
taxation (Zheng et al., 2022), security (Jiang et al., 2013; Gan et al., 2020), and business strategies (Naghizadeh & Liu, 2014;
Zhang et al., 2016; Aussel et al., 2020). These games typically involve a leader and a follower. In such games with discrete
choices, Conitzer & Sandholm (2006) demonstrate that linear programming can efficiently find Stackelberg equilibria using
the strategy spaces of both players. For continuous decision spaces, Jin et al. (2020); Fiez et al. (2020) introduce and define
local Stackelberg equilibria through first- and second-order conditions, with Jin et al. (2020) also showing that gradient
descent-ascent methods can achieve these equilibria under certain conditions, and Fiez et al. (2020) providing specific
updating rules that guarantee convergence.

With multiple followers (Zhang et al., 2024), unless they operate independently (Calvete & Galé, 2007), identifying
Stackelberg equilibria is significantly harder and becomes NP-hard, even if followers have structured equilibria (Basilico et al.,
2017). Wang et al. (2021a) suggest managing an arbitrary equilibrium that the follower may reach through differentiation.
Meanwhile, Gerstgrasser & Parkes (2023) develop a meta-learning framework across various follower policies, facilitating
quicker adaptations for the principal. This builds on Brero et al. (2022), who pioneered the Stackelberg-POMDP model.

The field of multi-agent reinforcement learning (Yu et al., 2022; Wen et al., 2022; Kuba et al., 2021; Christianos et al., 2020;
Peng et al., 2021; Jiang et al., 2019; Wen et al., 2022; Rashid et al., 2018; Wang et al., 2020; 2021b; 2019b; Kang et al.,
2020; Li et al., 2021; Wang et al., 2021d; Guestrin et al., 2002b;a; Böhmer et al., 2020; Kang et al., 2022; Wang et al., 2021c;
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Yang et al., 2022; Dong et al., 2022; 2023; Wang et al., 2019a) is expanding the application of Stackelberg concepts to more
complex, realistic settings. Tharakunnel & Bhattacharyya (2007) introduced a Leader-Follower Semi-Markov Decision
Process for sequential learning in Stackelberg settings. Cheng et al. (2017) developed a method known as Stackelberg
Q-learning, albeit without proving convergence. Furthermore, Shu & Tian (2019); Shi et al. (2019) have empirically
examined these leader-follower dynamics, focusing on the leader’s use of deep learning models to predict follower actions.
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