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Introduction. Reinforcement learning (RL) [27] researchers have largely con-
verged on common APIs for the development of benchmarks used to evaluate
the performance of RL algorithms. New environments are customarily written in
general-purpose programming languages such as C++ or Python, and implement
a Gym-based [5] API for learning algorithms to interface with environments.

Discussions on experimental methodologies and statistical analyses of empir-
ical evaluations in RL have been on the rise within the RL research community
[13,1,15,22,14,29], but we see little to no discussion on how or by whom tasks
or environments are described or implemented. In our position paper, we argue
that the assumption that environments can be implemented in general-purpose
programming languages, by engineers familiar with machine learning, (i) poses
a challenge to widespread adoption of RL for real-world use cases, and (ii) also
leads the research community to miss out on interesting research directions with
respect to generalisation and transfer in RL.

We posit that more widespread application of RL will be greatly aided if
users can express their tasks in user-friendly domain-specific languages (DSLs)
[20,2], or even in natural language (see Fig. 1). Once we adopt a methodology
in which environments are represented in explicit forms that can be provided as
inputs to an agent (e.g., DSL or natural language snippets), we can also explore
new forms of generalisation or transfer in RL, where effective generalisation or
zero-shot transfer to unseen environments may become feasible given sufficient
understanding of the task descriptions.

Environment Description Languages. The standard practice is to imple-
ment environments in general-purpose programming languages, or more ad-
vanced toolkits such as CUDA or JAX [6,9,18,3,17,10,12,16,25,4,24,28,8]. This
practice requires engineering and RL expertise, therefore forming a barrier to
entry. Provided that they are sufficiently user-friendly for domain experts, DSLs
can lower this barrier. An example of such a DSL is the DSL of Ludii [23], which
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(c) A DSL description can
be converted into a simulator
by a compiler. A natural lan-
guage description can first be
translated into an intermedi-
ate DSL description by a lan-
guage model, or can be trans-
lated directly with a language
model serving as compiler.

Fig. 1: Orange boxes with dashed lines represent components that require sub-
stantial engineering or RL expertise. The green components can be provided by
users with little to no engineering expertise. (a) A depiction of the customary
setting in RL research. (b) The approach for which we posit that increased re-
search attention is warranted. (c) User-friendly environment descriptions may
be written in a DSL, or in a natural language, where the latter approach may
or may not generate an intermediate DSL description.

boasts an official collection of over 1400 different board games described in the
same DSL. Such a large collection would have been impractical to implement in
a general-purpose programming language. Natural languages would arguably be
more user-friendly if they could be interpreted correctly, but until large language
models become more consistently reliable, it likely remains advisable to at least
use human-verifiable DSLs as intermediary [7,21,30].

Environment Descriptions as Context for Generalisation. If RL agents
are not provided with sufficient context to disambiguate between different en-
vironments (or tasks or goals), generalisation to unseen environments may not
be possible without strong assumptions on their similarity to previously seen
ones [19,11]. We argue that precise, complete, and unambiguous descriptions of
environments—complete in the sense that they carry sufficient information that
they could be compiled into a correct simulator—are ideal candidates to serve
as such context, and enable progress in zero-shot generalisation in RL.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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